JP3614035B2 - エンジンの自動停止再始動装置 - Google Patents

エンジンの自動停止再始動装置 Download PDF

Info

Publication number
JP3614035B2
JP3614035B2 JP13103999A JP13103999A JP3614035B2 JP 3614035 B2 JP3614035 B2 JP 3614035B2 JP 13103999 A JP13103999 A JP 13103999A JP 13103999 A JP13103999 A JP 13103999A JP 3614035 B2 JP3614035 B2 JP 3614035B2
Authority
JP
Japan
Prior art keywords
engine
motor generator
regenerative torque
torque limiter
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13103999A
Other languages
English (en)
Other versions
JP2000320367A (ja
Inventor
祐樹 中島
宏明 大金
太容 吉野
正明 内田
幹雄 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13103999A priority Critical patent/JP3614035B2/ja
Priority to EP00109807A priority patent/EP1052400B1/en
Priority to DE60015230T priority patent/DE60015230T2/de
Publication of JP2000320367A publication Critical patent/JP2000320367A/ja
Application granted granted Critical
Publication of JP3614035B2 publication Critical patent/JP3614035B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、車両停止時にエンジンを自動停止して、発進する際にエンジンを自動再始動するエンジンの自動停止再始動装置に関する。
【0002】
【従来の技術】
自動変速機を搭載した車両のエンジン自動停止再始動装置として、例えば特開平8ー291725号公報のものがあり、この装置では、以下のようにエンジンの自動停止、再始動が行われる。即ち、セレクトレバーの位置を検出するセレクト位置センサ、車速を検出する車速センサ、エンジンの回転数を検出する回転数センサ、およびブレーキペダルが踏み込まれているかどうかを検出するブレーキセンサ等を備え、セレクトレバーがニュートラルレンジにあること、車速がゼロであること、エンジンの回転数がアイドル回転数であること、およびブレーキペダルが踏み込まれていることを検出したときに、エンジンを一時的に停止させる。また、この停止状態で、セレクトレバーがドライブレンジにあること、車速がゼロであること、エンジンの回転数がゼロであること、およびブレーキペダルが踏み込まれていないことを検出したときに、自動変速機を電気的にニュートラルレンジにホールドしてエンジンを再始動させ、エンジンがアイドル回転数になるとそのニュートラルレンジのホールドを解除する。
【0003】
【発明が解決しようとする課題】
しかし、このようなエンジンの自動停止再始動装置では、自動変速機を電気的にニュートラルレンジにしてエンジンを始動するために、従来のトルクコンバータ付き自動変速機を備えた車両に特有なクリープ力の発生は遅れる。セレクトレバーをドライブレンジに入れ、クリープ力を期待してブレーキを放しても、自動変速機のニュートラルレンジのホールドが解除されるまでクリープ力が得られないため、違和感が残る。
【0004】
また、この場合トルクコンバータによってエンジン回転の2乗に比例するトルクが伝えられるため、エンジン回転が立ち上がったときに自動変速機のニュートラルレンジのホールドが解除されると、大きな駆動力が車輪側に伝わるのに伴い、ショックを生じる。特に、ブレーキの解放に前後して、アクセルが踏み込まれた場合には、エンジントルクが大きくなるため、ショックは大きくなる。
【0005】
そこで、このようなショックおよびクリープ力の遅れを解消するように、エンジンにモータジェネレータを連結し、トルクコンバータ(もしくは発進クラッチ)付きの自動変速機を介してエンジン回転力もしくはエンジン軸出力を車輪駆動軸に伝える状態でモータジェネレータによってエンジンを始動させることが考えられている。
【0006】
しかしながら、このような始動方法でも、エンジンの始動直後は、吸気管負圧(Boost)が発達しておらず、シリンダに吸入される空気の量が多い分、発生するエンジントルクは大きくなる。そのため、ブレーキの解放に前後して、アクセルが踏み込まれると、エンジントルクが大きくなりすぎて、違和感を与えかねない。
【0007】
例えば、エンジンが停止(アイドルストップ)されず、アイドル状態からアクセルが踏み込まれた場合には、吸気管負圧が十分に発達しているため、所定のエンジントルクが得られるが、エンジンが停止(アイドルストップ)した場合には、エンジンの再始動直後にアクセル、極端な場合ブレーキの解放と同時にアクセルが踏み込まれると、吸気管の圧力は大気圧のままなので、燃料の噴射によってアイドル回転近傍にて過剰なトルクが発生してしまう。
【0008】
したがって、エンジンが停止されないアイドル状態から発進する場合と、エンジン停止状態からエンジンを始動して発進する場合とで、同等の加速力が得られず、違和感を与えることとなる。
【0009】
このような問題に対して、エンジントルクの発生に同期して、モータジェネレータのトルクを吸収側に制御(発電制御)することで、過剰なトルクを吸収することも考えられるが、エンジン始動時にエンジンは燃料を噴射すれば必ず完爆するわけではなく、完爆していないのに発電制御に移行したのでは、エンジン回転数等の低下を招く。また、モータジェネレータの吸収トルクが大きすぎたのでは、要求の加速力が得られなくなってしまう。
【0010】
この発明は、このような問題点を解決することを目的としている。
【0011】
【課題を解決するための手段】
第1の発明は、エンジンにモータジェネレータを連結し、前記モータジェネレータと車輪駆動軸との間にトルクコンバータもしくは発進クラッチ付きの自動変速機を介装し、車両停止時にエンジンを自動停止すると共に、発進する際にエンジン回転力もしくはエンジン軸出力を車輪駆動軸に伝える状態でモータジェネレータによってエンジンを再始動可能であり、エンジン軸出力や車両制動時の慣性力を受けてモータジェネレータが回生発電を可能となっている車両用エンジンにおいて、エンジンまたはモータジェネレータの回転数を検出する回転数検出手段と、アクセルの状態を検出する手段と、エンジンの再始動時にアイドル回転数を目標回転数としてモータジェネレータの回転数制御を行うモータジェネレータ回転数制御手段と、エンジンの再始動時にアクセルをオンした際には、モータジェネレータの回転数制御における目標回転数をアイドル回転数もしくはアイドル回転数近傍にしたまま、モータジェネレータの回生トルクを制限する回生トルクリミッタを設定する回生トルクリミッタ設定手段とを備える。
【0012】
第2の発明は、第1の発明において、前記回生トルクリミッタは、初期値をエンジン起動後の経過時間もしくは該経過時間とエンジン停止時間もしくは吸気管負圧に基づいて設定し、エンジンが燃焼トルクを発生するタイミングを起点として、所定の傾きで0もしくは0近傍に変化させるようになっていること。
【0013】
第3の発明は、第1の発明において、前記回生トルクリミッタは、初期値をエンジン起動後の経過時間もしくは該経過時間とエンジン停止時間もしくは吸気管負圧に基づいて設定し、エンジンが燃焼トルクを発生するタイミングから所定時間ずらしたタイミングを起点として、所定の傾きで0もしくは0近傍に変化させるようになっている。
【0014】
第4の発明は、第1の発明において、前記回生トルクリミッタは、初期値をエンジン起動後の経過時間もしくは該経過時間とエンジン停止時間もしくは吸気管負圧に基づいて設定し、モータジェネレータの回生トルクが回生トルクリミッタに張り付いたタイミングを起点として、所定の傾きで0もしくは0近傍に変化させるようになっている。
【0015】
第5の発明は、第2、第3の発明において、エンジンの気筒毎に燃料が噴射されたかどうかを判別する判別手段と、現在のエンジンのクランク角位置がどの気筒の圧縮行程にあるかを判別する判別手段とを備え、前記エンジンが燃焼トルクを発生するタイミングは、これらの判別を基に次の点火時期にて燃焼が行われるかどうかを判定することによって判定する。
【0016】
第6の発明は、第1〜第4の発明において、アクセルのオン時には、前記モータジェネレータの回生トルクが回生トルクリミッタに張り付いた状態が所定時間継続した時点、もしくはエンジンの燃焼サイクルが所定サイクル数に達した時点で完爆と判定する完爆判定手段と、完爆判定を基にモータジェネレータを回転数制御からトルク制御に移行させるトルク制御手段とを備える。
【0017】
第7の発明は、第1〜第4の発明において、アクセルのオン時には、前記モータジェネレータの回生トルクが回生トルクリミッタに張り付いた状態が所定時間継続した時点、もしくはエンジンの燃焼サイクルが所定サイクル数に達した時点で完爆と判定する完爆判定手段と、完爆判定後は回生トルクリミッタを解除する方向に変化させるリミッタ解除手段とを備える。
【0018】
第8の発明は、第2の発明において、前記回生トルクリミッタを0もしくは0近傍に変化させる所定の傾きは、吸気管負圧に基づいて可変とする
【0019】
【発明の効果】
第1の発明によれば、エンジンの再始動時にアクセルがオンされ、エンジンが燃焼トルクを発生すると、アイドル回転数を目標回転数とするモータジェネレータの回転数制御によって、モータジェネレータが駆動側から回生側に動作を変化してトルクを吸収すると共に、回生トルクリミッタによってトルクの吸収が制限され、吸気管負圧の状態によって過剰に発生する分のトルクのみが吸収される。そのため、エンジン回転数はスムーズに目標となる回転数に上昇し、エンストも防止される。
【0020】
したがって、アクセルのオンによって駆動力をスムーズに立ち上がらせることができ、エンジンが停止されないアイドル状態から発進する場合と、エンジン停止状態からエンジンを始動して発進する場合とで、同等の加速力、加速感を得ることができ、運転性を向上できる。
【0021】
第2〜第5の発明によれば、回生トルクリミッタの設定を吸気管負圧の状態および燃焼トルクの発生に合わせて的確に行え、過剰分のトルクの吸収を的確に行える。
【0022】
第6、第7の発明によれば、エンジンの完爆を的確に判定できるとともに、通常制御に速やかに、また良好に移行できる。
【0023】
第8の発明によれば、エンジンの燃焼トルクの発生後、過剰分のトルクを一層的確に吸収できる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0025】
図1に示すように、エンジン1と無段自動変速機3との間に発電機および電動機の両機能を併せ持つモータジェネレータ2が配設される。
【0026】
モータジェネレータ2は、エンジン1の図示しないクランクシャフトに直結され、エンジン1と同期回転する。無段自動変速機3は、トルクコンバータ4と、前後進切替えクラッチ5と、ベルト式の無段変速機6とから構成され、エンジン1の駆動トルクをこれらを介してドライブシャフト7およびタイヤ8に伝える。
【0027】
なお、モータジェネレータ2はエンジン1のクランクシャフトにベルトやチェーンを介して連結しても機能的には同等である。また、無段自動変速機3の代わりに有段自動変速機を用いても良い。また、トルクコンバータ4の代わりにエンジン1の再始動時にエンジン1側のトルクを伝える発進クラッチを備えたものでも良い。
【0028】
電力コントロールユニット12により、モータジェネレータ2が駆動、被駆動されると共に、その電力はバッテリ13から供給またはバッテリ13に充電される。
【0029】
9はエンジン1ならびにモータジェネレータ2の回転数、およびエンジン1のクランク角を検出する回転数センサ、11は車両のブレーキペダル16(図2参照)の踏み込み量を検出するブレーキセンサ、15はアクセルペダル17(図2参照)の操作量を検出するアクセルセンサを示す。
【0030】
始動制御コントロールユニット10は、これらのセンサ信号ならびに後述するエンジンコントロールユニット20(図2参照)からの信号に基づき、電力コントロールユニット12にモータジェネレータ2の目標トルク、目標回転数を出力して、電力コントロールユニット12を介して、モータジェネレータ2の制御を行う。
【0031】
なお、始動制御コントロールユニット10は、エンジンコントロールユニット20内に設けられるが、車両のパワートレイン全体の制御を統括する統合コントローラ(図示しない)内に設けても良い。
【0032】
図2は、エンジンの制御システムを示しており、11はブレーキセンサ、15はアクセルセンサ、9は回転数センサ、21はエンジンの冷却水温を検出する水温センサ、22は自動変速機3のセレクトレバーの位置を検出するセレクト位置センサ、23は車速を検出する車速センサを示す。
【0033】
エンジンコントロールユニット20は、これらのセンサ信号に基づいて、エンジン1の停止(自動停止)および始動(再始動)を制御する。また、エアフローメータ24で計測されるエンジン1の吸入空気量と回転数センサ9で計測されるエンジン回転数およびエンジン回転の位相(クランク角)とに基づいて、吸入空気量に見合った燃料量とエンジン負荷およびエンジン回転数に見合った点火時期とを演算し、演算した燃料量を供給すべく各気筒の吸気ポートに設けた燃料インジェクタ25を駆動すると共に、演算した点火時期に合わせて各気筒の点火プラグ26の点火を制御する。本エンジン1は、各気筒の吸気ポートに燃料インジェクタを設けて燃料を噴射する、所謂MPI方式のものであるが、各気筒に直接燃料を噴射する、所謂直噴方式のエンジンであっても良い。
【0034】
また、吸気系には開度を電子制御可能な電制スロットルバルブ27が備えられ、図示しない統合コントローラから入力される目標エンジントルクに応じてエンジン1の吸入空気量を制御する。
【0035】
なお、エンジン1はガソリンエンジンを示すが、ディーゼルエンジンを用いても良い。ディーゼルエンジンの場合、燃料噴射量を制御することによりトルクを制御することができる。
【0036】
次に、エンジンの自動停止および再始動制御の内容を、図3、図4のフローチャートに基づいて説明する。
【0037】
図3に示すように、ステップ1〜5では、暖機運転が終了していること、ブレーキペダル16が踏み込まれている(オン)こと、車速がほぼ0km/hであること、アクセルペダル17が踏み込まれていない(オフ)こと、エンジン1の回転数がアイドル回転数(例えば、800rpm)以下であることを判断する。
【0038】
ステップ6では、これらの条件が全て成立したのが初めて(フラグFCOND=0)かどうかを判別し、初めてであれば、ステップ7にてディレイ時間およびフラグFCOND=1を設定する。
【0039】
ステップ8では、セレクトレバーの位置を見る。リバースレンジにないときは、ステップ9以降に進む。
【0040】
リバースレンジのときは、エンジン1の自動停止を行わず、エンジン1が停止中にある場合、ステップ29〜32よりステップ22以降に進んで、エンジン1を再始動(後述する)する。
【0041】
リバースレンジにないとき、つまりドライブレンジもしくはニュートラルレンジもしくはパーキングレンジのときは、ステップ9にてリバースレンジにないことを示すフラグFRFST=0をセットし、ステップ10にてエンジン1が停止中かどうかを見る。
【0042】
エンジン1が停止中でなければ、ステップ11からステップ7で設定したディレイ時間が経過したときに、ステップ12〜17のエンジン停止モードに入る。
【0043】
ステップ12〜14では、モータジェネレータ2のモータトルク=0とし、エンジン1の燃料噴射を停止する。ステップ15〜17では、エンジン停止シーケンスが初めて(フラグFISTPFST=0)かどうかを判別し、初めてであれば、アイドルストップ(I/S)許可時間およびフラグFISTPFST=1の設定後、エンジン1の停止を示すフラグFENGSTRT=0をセットする。
【0044】
このように、車両を一時停止する場合、エンジン1を一時的に自動停止する。なお、このエンジン1の自動停止はドライブレンジにあるときにのみ行うようにしても良い。
【0045】
一方、ステップ1〜4の条件が外れた場合、即ちエンジンが自動停止中にある場合、ブレーキペダル16が解放される(オフ)と、あるいはアクセルペダル17が踏み込まれる(オン)と、ステップ18にてフラグFCONDをクリア(=0)し、ステップ19よりステップ22以降のエンジン再始動モードに入る。
【0046】
ステップ22〜24では、始動制御コントロールユニット10に目標起動トルクを与え、モータジェネレータ2の駆動を開始すると共に、初めに、吸気管負圧(Boost)の発達時間に相当するディレイ時間およびエンジン1の始動を示すフラグFENGSTRT=1を設定する。
【0047】
Boostの発達時間に相当するディレイ時間は、エンジン1の起動(大気圧状態)からアクセルをオフのままBoostが−500mmHg相当になるまでの時間で、例えば1.5秒程度に設定している。
【0048】
ステップ25では、アクセルペダル17が踏み込まれているかどうかを判定する。
【0049】
アクセルペダル17が踏み込まれていない始動時は、ステップ26〜28にて始動制御コントロールユニット10にアイドル回転数を目標回転数に設定してモータジェネレータ2の回転数制御に移行すると共に、ステップ24で設定したBoostの発達時間に相当するディレイ時間が経過した後、燃料噴射を開始する。エンジン1が完爆すれば、モータジェネレータ2のトルク=0のトルク制御に入り、再始動制御を終了する。
【0050】
アクセルペダル17が踏み込まれているときは、ステップ33〜35にて始動制御コントロールユニット10にアイドル回転数を目標回転数に設定してモータジェネレータ2の回転数制御に移行(ステップ26にて回転数制御に入った後、アクセルペダル17が踏み込まれた場合は継続)すると共に、燃料噴射を開始する。エンジン1が完爆すれば、後述の回生トルクリミッタの解除と共に、ステップ36にてモータジェネレータ2のトルク=0のトルク制御に入り、再始動制御を終了する。
【0051】
そして、このエンジン1の再始動時に再始動制御に並行して、モータジェネレータ2の回生トルクを制限する回生トルクリミッタ制御(回生トルクリミッタの設定)を行う。
【0052】
図4に示すように、ステップ101では、フラグFCYLBRNを見て、次に点火タイミングがくる気筒が燃焼するかどうかを判定する。これは、後述するフラグがセットされないうちは、フラグFCYLBRN=0によりステップ109に進む。
【0053】
ステップ109では、エンジン1のクランク角を基に、現在のクランク角位置がどの気筒の圧縮行程にあるかを示すフラグCYLCSと、該気筒に燃料が噴射されたかどうかを示すフラグFHINJEX(CYLCS)とにより、次に点火タイミングがくる気筒に燃料が噴射された(フラグFHINJEX(CYLCS)=1)かどうかを判定する。
【0054】
燃料が噴射されていないときは、ステップ110にて所定のディレイ時間TFCBNDECを設定すると共に、フローの実行周期(10ms)毎に、ステップ111にて回生トルクリミッタTRQLMTSTの初期値の演算(更新)を繰り返す。
【0055】
燃料が噴射されると、ステップ102にて次に点火タイミングがくる気筒が燃焼すると推定するフラグFCYLBRNをセット(=1)する。以降は、ステップ101からも同じルーチンを進む。
【0056】
ステップ103では、ステップ110で設定したディレイ時間TFCBNDECが0になったかどうかを見、0でない場合は、フローの実行周期(10ms)毎に、ステップ112にて回生トルクリミッタTRQLMTSTの初期値の演算(更新)を繰り返し、ステップ113にてディレイ時間TFCBNDECを減算する。
【0057】
回生トルクリミッタTRQLMTSTの初期値は、エンジンの停止時間(燃料カット開始からの時間)TISTPONと、エンジンの起動後経過時間TISTPOFとの関数で与え、これらを基に、図5のような特性に設定したマップを検索して求める。図6はマップの例を示す。
【0058】
エンジンの起動直後は、Boostが発達しておらず、余剰空気を吸い込む分、発生するエンジントルクが大きくなり、時間が経過するのにしたがい、Boostが発達して、余剰空気がなくなる。また、エンジンの停止後、起動するまでの時間が長いと、停止前のBoostはなくなり大気圧になるが、短いほど、Boostは残る。したがって、エンジンの停止時間TISTPONが長く、エンジンの起動後経過時間TISTPOFが短かいときほど、回生トルクリミッタTRQLMTSTの初期値は、大きな余剰空気に相当する分のトルクを吸収するように大きな値に設定し、エンジンの停止時間TISTPONが短く、エンジンの起動後経過時間TISTPOFが長くなるほど、回生トルクリミッタTRQLMTSTの初期値を小さくするように設定している。
【0059】
図7にエンジンの起動とほぼ同時にアクセルを踏み込んだとき(エンジンの起動後経過時間TISTPOFがほぼ0秒)と、エンジンの起動後、例えば0.8秒経過してからアクセルを踏み込んだときの、アクセル踏み込み時点からの余剰空気と、吸収すべきトルク要求値の特性を示す。エンジンの起動とほぼ同時にアクセルを踏み込んだときは、余剰空気が大きい分、吸収すべきトルクは大きく、時間の経過と共に余剰空気が減少して、例えば0.7秒後(エンジン負荷による)はトルクの吸収は不要となる。また、エンジンの起動後、例えば0.8秒経過してからアクセルを踏み込んだときは、余剰空気はほとんどなく、吸収すべきトルクは極めて小さくなる。ただし、図7は起動時の吸気管圧力を大気圧としている。
【0060】
なお、回生トルクリミッタTRQLMTSTの初期値は、エンジンの起動後経過時間TISTPOFのみの関数として与えても良い。
【0061】
ステップ103にて、ステップ110で設定したディレイ時間TFCBNDECが0になったことが判定されると、ステップ104以降に入る。
【0062】
ディレイ時間TFCBNDECは、次に圧縮行程がくる気筒の、その圧縮行程から点火タイミングまでの時間に設定している。したがって、エンジンが燃焼トルクを発生したときにステップ104以降に入る。このディレイ時間TFCBNDECは、燃焼のピークに合うように、点火タイミングより所定時間長くしても良い。
【0063】
ステップ104では、モータジェネレータ2のトルク(回生トルク)が所定値以下(0もしくは0近傍)の状態を所定時間継続したかどうかを判定する。
【0064】
モータジェネレータ2の回生トルクが所定値以下になっていないとき(吸収すべきトルクが大きいとき)は、ステップ106にて回生トルクリミッタTRQLMTST(初期値)の減算を行う。これは、フローの実行周期(10ms)毎に、前回値から所定値DTTRQLMTを、目標値TGTRQLMT(0もしくは0近傍)を下回らない範囲において、減算する。
【0065】
モータジェネレータ2の回生トルクが所定値以下(0もしくは0近傍)の状態を所定時間継続すると、エンジンの完爆と判定して、ステップ107にてフラグfKANBAKU=1をセットすると共に、ステップ108にて回生トルクリミッタTRQLMTSTの加算(解除)を行う。これは、フローの実行周期(10ms)毎に、前回値に所定値DLTLMTPを、最大値TGTRQMAXを上回らない範囲において、加算する。
【0066】
即ち、図8のように、エンジンの起動と同時に回生トルクリミッタTRQLMTSTの初期値の演算を始め、エンジンが燃焼トルクを発生するタイミングを起点に、その回生トルクリミッタTRQLMTSTを所定の傾き(所定値DLTLMTP/10ms)で0もしくは0近傍に減算していく。完爆後は、回生トルクリミッタTRQLMTSTを解除するように加算する。
【0067】
ステップ111,112での回生トルクリミッタTRQLMTSTの初期値の演算値およびステップ106,108での回生トルクリミッタTRQLMTSTの減算値、加算値は、その演算毎に、アクセルペダル17が踏み込まれているときにのみ、始動制御コントロールユニット10に送信する。
【0068】
なお、これらの演算は簡単のため正の値で行っているが、回生トルクはマイナスの値であるため、回生トルクリミッタTRQLMTSTはマイナス値に変換して送信する。
【0069】
このように構成したため、エンジン1が自動停止している状態からブレーキペダル16を解放した場合(アクセルペダル17は踏み込んでいない場合)、モータジェネレータ2が駆動され、エンジン1が再始動される。
【0070】
アイドル回転数を目標回転数としてモータジェネレータ2の回転数制御が行われ、Boostの発達時間に相当するディレイ時間の経過後(アイドル回転数に到達)に燃料噴射が開始されると共に、エンジントルクが発生すると、回転数制御によるモータジェネレータ2のトルクの減少、回生が行われる。
【0071】
このため、図9のようにエンジン回転数はスムーズに立ち上げられ、アイドル回転数に維持される。
【0072】
モータジェネレータ2のトルクが所定値以下の状態が所定時間続くと、完爆と判定され、再始動が終了されるが、くすぶり、失火等でエンジントルクが出ない場合は、回転数制御によりモータジェネレータ2が駆動される。したがって、エンジントルクの発生が遅れても、エンストに陥ることはなく、クリープトルクは確実に維持される。
【0073】
一方、エンジン1が自動停止している状態からブレーキペダル16を解放して、アクセルペダル17を踏み込んだ場合、モータジェネレータ2が駆動され、アイドル回転数を目標回転数としてモータジェネレータ2の回転数制御が行われ、アクセルペダル17の踏み込みと同時に燃料噴射が開始されると共に、モータジェネレータ2の回生トルクリミッタが設定される。
【0074】
この回生トルクリミッタは、エンジンの停止時間とエンジンの起動後経過時間とを基に、停止時間が長く、起動後経過時間が短かいときほど、過剰に発生するエンジントルクを吸収するように、初期値が演算設定される。停止時間が長く、起動後経過時間が短かいつまりブレーキペダル16を解放してすぐにアクセルペダル17を踏み込んだときほど、Boostが発達しておらず、余剰空気が大きく、過剰にエンジントルクが発生するのであるが、その過剰なエンジントルクを吸収するように、初期値が演算設定される。
【0075】
即ち、アクセルペダル17の踏み込みにより燃料噴射が開始され、エンジンが燃焼トルクを発生すると、アイドル回転数を目標回転数とするモータジェネレータ2の回転数制御によって、図10のようにモータジェネレータ2が駆動側から回生側に動作を変化してトルクを吸収すると共に、その回生トルクリミッタによって設定値(初期値)にトルクの吸収が制限される。
【0076】
この場合、エンジンが燃焼トルクを発生する前は、モータジェネレータ2はトルクが回生トルクリミッタに張り付くことなく力行駆動されるが、エンジンが燃焼トルクを発生すると、モータジェネレータ2はトルクが回生トルクリミッタに張り付き(モータジェネレータ2の回生トルクが回生トルクリミッタに一致する)回生動作される。
【0077】
そして、この初期値の設定後、回生トルクリミッタは所定の傾きで0もしくは0近傍に減算、即ち、図10のようにモータジェネレータ2によるトルクの吸収を減少させるように制御される。
【0078】
回生トルクリミッタがない場合は、モータジェネレータ2がアイドル回転数維持分の燃焼トルク以外の全てのトルクを吸収するように動作してしまうが、その回生トルクリミッタの初期設定および減算設定によって過剰分のトルクのみが吸収される。
【0079】
モータジェネレータ2のトルクは回生トルクリミッタに張り付いたままとなり、したがってアイドル回転数を目標回転数とするモータジェネレータ2の回転数制御のまま、エンジン回転数はアイドル回転数から目標となる回転数にスムーズに上昇される。もちろん、そのモータジェネレータ2の回転数制御によって、くすぶり、失火等でエンジントルクの発生が遅れても、エンストに陥ることは防止される。
【0080】
そして、モータジェネレータ2のトルクが所定値以下(0もしくは0近傍)の状態が所定時間続くと、完爆と判定され、再始動が終了される。ただし、図10では表していないが、完爆後、回生トルクリミッタは解除されると共に、モータジェネレータ2の回転数制御からトルク制御に移行される。
【0081】
このように、Boostの発達状態を基に、過剰なエンジントルクを吸収するべく回生トルクリミッタを設定するので、ブレーキペダル16を解放して、アクセルペダル17を踏み込んだ場合に、オーバーシュートトルクを的確に吸収でき、車両発進時の駆動力をスムーズに立ち上がらせることができる。
【0082】
したがって、エンジンが停止されないアイドル状態から発進する場合と、エンジン停止状態からエンジンを始動して発進する場合とで、同等の加速力、加速感を得ることができ、運転性を向上できる。
【0083】
なお、回生トルクリミッタの初期値は、エンジンの停止時間とエンジンの起動後経過時間とを基に設定しているが、エンジンの起動後経過時間のみの関数として与えれば、制御を簡略化できる。また、吸気管負圧を検出する吸気圧センサを設け、その検出値を基に回生トルクリミッタの初期値の設定を行えば、設定を一層的確に行える。
【0084】
また、回生トルクリミッタは、初期値の設定後、所定の傾き(所定値DLTLMTP/10ms)で0もしくは0近傍に変化させているが、吸気管負圧に応じて可変つまり吸気管負圧が大きいときは傾きを小さくし、小さくなるにしたがい傾きを大きくするように変化させても良い。このようにすれば、エンジンの燃焼トルクの発生後、過剰分のトルクを一層的確に吸収できる。
【0085】
また、モータジェネレータ2のトルクが所定値以下(0もしくは0近傍)の状態が所定時間、つまり回生トルクリミッタが0もしくは0近傍となった状態が所定時間続くと、エンジンの完爆と判定しているが、モータジェネレータ2の回生トルクが回生トルクリミッタに張り付いた状態(エンジンが燃焼トルクを発生している状態)が所定時間継続した時点、もしくは、燃焼トルクを発生するエンジンの燃焼サイクルが所定サイクル数に達した時点で、完爆と判定しても良い。
【0086】
また、この例では、回生トルクリミッタの設定を小さめにして、アイドルストップ後の加速力を従来より大きめにすることも可能であり、このようにすることで、発進性能の向上を図ることができる。
【0087】
図11、図12、図14は、本発明の第2〜第4の実施の形態を示す。これらは、回生トルクリミッタの減算フローを示し、前図4の回生トルクリミッタ減算ステップ(ステップ106)に代わって行うものである。
【0088】
図11のものは、ステップ201にてエンジン負荷TPつまりエンジンの吸入空気量(アクセルペダル17の操作量)を読み込む。
【0089】
ステップ202では、エンジン負荷TPを基に、回生トルクリミッタTRQLMTST(初期値)を目標値TGTRQLMT(0もしくは0近傍)に減算するまでの減衰時間DTDLMTを演算する。これは、エンジン負荷TPを基に、予め目標値TGTRQLMTを定めたテーブル(ステップ202内の特性図参照)を参照して求める。
【0090】
ステップ203では、回生トルクリミッタTRQLMTSTと目標値TGTRQLMTと減衰時間DTDLMTとにより、減衰ステップ量DTTRQLMT(TRQLMTST−TGTRQLMT/DTDLMT)を算出する。
【0091】
ステップ204では、回生トルクリミッタTRQLMTSTの減算を行う。これは、フローの実行周期TJOB(10ms)毎に、前回値から減衰ステップ量DTTRQLMT×実行周期TJOBを減算する。
【0092】
なお、ステップ205,206にて回生トルクリミッタTRQLMTSTが目標値TGTRQLMTになると、減算を終了する。
【0093】
図12のものは、ステップ301にてエンジン負荷TPを読み込む。
【0094】
ステップ302では、回生トルクリミッタTRQLMTST(初期値)とエンジン負荷TPを基に、減衰ステップ量DTTRQLMTを演算する。これは、回生トルクリミッタTRQLMTSTとエンジン負荷TPを基に、予め減衰ステップ量DTTRQLMTを定めたマップ(ステップ302内の特性図参照)を参照して求める。
【0095】
ステップ303では、回生トルクリミッタTRQLMTSTの減算を行う。これは、フローの実行周期(10ms)毎に、前回値から減衰ステップ量DTTRQLMTを減算する。
【0096】
なお、ステップ304,305にて回生トルクリミッタTRQLMTSTが目標値TGTRQLMTになると、減算を終了する。
【0097】
この図11、図12のタイミングチャートを図13に示す。このように、エンジン負荷TPを基に減衰ステップ量DTTRQLMTを演算して減算を行えば、回生トルクリミッタの減算設定を過剰分のトルクに合わせて的確に行える。
【0098】
図14のものは、加重平均によって回生トルクリミッタの減算設定を行うもので、ステップ401にてエンジン負荷TPを読み込む。
【0099】
ステップ402では、エンジン負荷TPを基に、加重平均係数KJLMT(0≦KJLMT≦1)を演算する。これは、エンジン負荷TPを基に、予め加重平均係数KJLMTを定めたテーブル(ステッ402内の特性図参照)を参照して求める。
【0100】
ステップ403では、次式(1)により回生トルクリミッタTRQLMTSTの減算設定を行う。
【0101】
Figure 0003614035
このタイミングチャートを図15に示す。このように、加重平均によって回生トルクリミッタの減算設定を行えば、過剰分のトルク吸収を一層的確に行える。
【0102】
なお、上記各形態では、回生トルクリミッタは、モータジェネレータの回生トルク(トルクそのもの)を制限する、としているが、トルクを制限する代わりに、回生出力を制限するようにしても良い。
【図面の簡単な説明】
【図1】実施の形態を示す構成図である。
【図2】エンジンの制御システムを示す構成図である。
【図3】制御内容を示すフローチャートである。
【図4】制御内容を示すフローチャートである。
【図5】回生トルクリミッタの初期値の特性図である。
【図6】回生トルクリミッタのマップ図である。
【図7】アクセル踏み込み時点からの余剰空気と吸収すべきトルク要求値の特性図である。
【図8】回生トルクリミッタのタイミングチャートである。
【図9】エンジン再始動時(アクセルオフ)のタイミングチャートである。
【図10】エンジン再始動時(アクセルオン)のタイミングチャートである。
【図11】第2の実施の形態の制御内容を示すフローチャートである。
【図12】第3の実施の形態の制御内容を示すフローチャートである。
【図13】回生トルクリミッタのタイミングチャートである。
【図14】第4の実施の形態の制御内容を示すフローチャートである。
【図15】回生トルクリミッタのタイミングチャートである。
【符号の説明】
1 エンジン
2 モータジェネレータ
3 無段自動変速機
4 トルクコンバータ
7 ドライブシャフト
8 タイヤ
9 回転数センサ
10 始動制御コントロールユニット
11 ブレーキセンサ
12 電力コントロールユニット
13 バッテリ
15 アクセルセンサ
20 エンジンコントロールユニット
21 水温センサ
22 セレクト位置センサ
23 車速センサ
24 エアフローメータ
25 燃料インジェクタ
26 点火プラグ
27 電制スロットルバルブ

Claims (8)

  1. エンジンにモータジェネレータを連結し、前記モータジェネレータと車輪駆動軸との間にトルクコンバータもしくは発進クラッチ付きの自動変速機を介装し、車両停止時にエンジンを自動停止すると共に、発進する際にエンジン回転力もしくはエンジン軸出力を車輪駆動軸に伝える状態でモータジェネレータによってエンジンを再始動可能であり、エンジン軸出力や車両制動時の慣性力を受けてモータジェネレータが回生発電を可能となっている車両用エンジンにおいて、
    エンジンまたはモータジェネレータの回転数を検出する回転数検出手段と、
    アクセルの状態を検出する手段と、
    エンジンの再始動時にアイドル回転数を目標回転数としてモータジェネレータの回転数制御を行うモータジェネレータ回転数制御手段と、
    エンジンの再始動時にアクセルをオンした際には、モータジェネレータの回転数制御における目標回転数をアイドル回転数もしくはアイドル回転数近傍にしたまま、モータジェネレータの回生トルクを制限する回生トルクリミッタを設定する回生トルクリミッタ設定手段とを備えることを特徴とするエンジンの自動停止再始動装置。
  2. 前記回生トルクリミッタは、初期値をエンジン起動後の経過時間もしくは該経過時間とエンジン停止時間もしくは吸気管負圧に基づいて設定し、エンジンが燃焼トルクを発生するタイミングを起点として、所定の傾きで0もしくは0近傍に変化させるようになっていることを特徴とする請求項1に記載のエンジンの自動停止再始動装置。
  3. 前記回生トルクリミッタは、初期値をエンジン起動後の経過時間もしくは該経過時間とエンジン停止時間もしくは吸気管負圧に基づいて設定し、エンジンが燃焼トルクを発生するタイミングから所定時間ずらしたタイミングを起点として、所定の傾きで0もしくは0近傍に変化させるようになっていることを特徴とする請求項1に記載のエンジンの自動停止再始動装置。
  4. 前記回生トルクリミッタは、初期値をエンジン起動後の経過時間もしくは該経過時間とエンジン停止時間もしくは吸気管負圧に基づいて設定し、モータジェネレータの回生トルクが回生トルクリミッタに張り付いたタイミングを起点として、所定の傾きで0もしくは0近傍に変化させるようになっていることを特徴とする請求項1に記載のエンジンの自動停止再始動装置。
  5. エンジンの気筒毎に燃料が噴射されたかどうかを判別する判別手段と、現在のエンジンのクランク角位置がどの気筒の圧縮行程にあるかを判別する判別手段とを備え、前記エンジンが燃焼トルクを発生するタイミングは、これらの判別を基に次の点火時期にて燃焼が行われるかどうかを判定することによって判定することを特徴とする請求項2または3に記載のエンジンの自動停止再始動装置。
  6. アクセルのオン時には、前記モータジェネレータの回生トルクが回生トルクリミッタに張り付いた状態が所定時間継続した時点、もしくはエンジンの燃焼サイクルが所定サイクル数に達した時点で完爆と判定する完爆判定手段と、完爆判定を基にモータジェネレータを回転数制御からトルク制御に移行させるトルク制御手段とを備えることを特徴とする請求項1〜4のいずれか1つに記載のエンジンの自動停止再始動装置。
  7. アクセルのオン時には、前記モータジェネレータの回生トルクが回生トルクリミッタに張り付いた状態が所定時間継続した時点、もしくはエンジンの燃焼サイクルが所定サイクル数に達した時点で完爆と判定する完爆判定手段と、完爆判定後は回生トルクリミッタを解除する方向に変化させるリミッタ解除手段とを備えることを特徴とする請求項1〜4のいずれか1つに記載のエンジンの自動停止再始動装置。
  8. 前記回生トルクリミッタを0もしくは0近傍に変化させる所定の傾きは、吸気管負圧に基づいて可変とすることを特徴とする請求項2に記載のエンジンの自動停止再始動装置。
JP13103999A 1999-05-12 1999-05-12 エンジンの自動停止再始動装置 Expired - Fee Related JP3614035B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13103999A JP3614035B2 (ja) 1999-05-12 1999-05-12 エンジンの自動停止再始動装置
EP00109807A EP1052400B1 (en) 1999-05-12 2000-05-09 Automatic stop-restart system of automotive internal combustion engine
DE60015230T DE60015230T2 (de) 1999-05-12 2000-05-09 Automatische Stop-Startanlage für Verbrennungsmotor für Kraftfahrzeuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13103999A JP3614035B2 (ja) 1999-05-12 1999-05-12 エンジンの自動停止再始動装置

Publications (2)

Publication Number Publication Date
JP2000320367A JP2000320367A (ja) 2000-11-21
JP3614035B2 true JP3614035B2 (ja) 2005-01-26

Family

ID=15048602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13103999A Expired - Fee Related JP3614035B2 (ja) 1999-05-12 1999-05-12 エンジンの自動停止再始動装置

Country Status (1)

Country Link
JP (1) JP3614035B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140191B2 (ja) * 2009-06-15 2013-02-06 ボッシュ株式会社 ディーゼルエンジンの制御装置
KR102440540B1 (ko) * 2016-12-12 2022-09-06 현대자동차주식회사 연비 개선을 위한 하이브리드 시동 발전기 제어 방법 및 환경 차량

Also Published As

Publication number Publication date
JP2000320367A (ja) 2000-11-21

Similar Documents

Publication Publication Date Title
EP1196689B1 (en) Vehicle idling stop system
JP3546735B2 (ja) エンジンの始動制御装置
JP3788736B2 (ja) エンジンの自動停止始動制御装置
KR100458257B1 (ko) 차량의 엔진 아이들 정지 제어 시스템
US8280608B2 (en) System for restarting internal combustion engine when engine restart condition is met
JP3649031B2 (ja) 車両のエンジン自動停止再始動装置
JP2857666B2 (ja) ハイブリッド車両の制御装置
EP1666712A1 (en) Engine control apparatus
EP1052400B1 (en) Automatic stop-restart system of automotive internal combustion engine
US20030022755A1 (en) Apparatus and method for controlling automatic stop of internal combustion engine
JP2001233088A (ja) 車両のエンジン自動停止再始動装置
JP3588673B2 (ja) アイドルストップ車両
JP2004108340A (ja) 内燃機関の始動方法及び始動装置並びにそれらに用いる始動エネルギの推定方法及び装置
JP2000320366A (ja) エンジン自動停止再始動車両
US20190118820A1 (en) Vehicle control apparatus
JP3541875B2 (ja) ハイブリッド車のエンジン始動装置
JP5098921B2 (ja) 内燃機関の制御装置
JP3555516B2 (ja) エンジンの自動停止再始動装置
JP5223737B2 (ja) シリンダ吸入空気量算出装置
JP3614035B2 (ja) エンジンの自動停止再始動装置
JP6595091B2 (ja) 車両用制御装置
JP3777946B2 (ja) 車両のエンジン制御装置
JP3216076B2 (ja) ハイブリッド車両の制御装置
JP3978959B2 (ja) 車両用内燃機関の制御装置
JP2022052806A (ja) 内燃機関の制御方法及び内燃機関の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees