JP3613845B2 - 車両用発電装置 - Google Patents

車両用発電装置 Download PDF

Info

Publication number
JP3613845B2
JP3613845B2 JP18037595A JP18037595A JP3613845B2 JP 3613845 B2 JP3613845 B2 JP 3613845B2 JP 18037595 A JP18037595 A JP 18037595A JP 18037595 A JP18037595 A JP 18037595A JP 3613845 B2 JP3613845 B2 JP 3613845B2
Authority
JP
Japan
Prior art keywords
control means
electric load
engine
capacity
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18037595A
Other languages
English (en)
Other versions
JPH0937597A (ja
Inventor
冬樹 前原
忠利 浅田
康弘 高瀬
和加子 金沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP18037595A priority Critical patent/JP3613845B2/ja
Priority to US08/670,314 priority patent/US5754030A/en
Publication of JPH0937597A publication Critical patent/JPH0937597A/ja
Application granted granted Critical
Publication of JP3613845B2 publication Critical patent/JP3613845B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • H02P9/26Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices
    • H02P9/30Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices
    • H02P9/305Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field using discharge tubes or semiconductor devices using semiconductor devices controlling voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • H02J7/24Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices
    • H02J7/2434Regulation of the charging current or voltage by variation of field using discharge tubes or semiconductor devices with pulse modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両用発電装置に関し、詳しくは大容量電気負荷への給電を制御する車両用発電装置に関する。
【0002】
【従来の技術】
特開平6−22543号公報は、励磁コイル及び電機子コイルを有してエンジンにより駆動されるとともにバッテリ及び大容量電気負荷を含む車両用電気負荷に給電する発電機と、励磁コイルと直列接続される半導体スイッチを有するとともに半導体スイッチの導通率の制御により励磁電流を制御して電機子コイルの出力電流を調節する制御手段とを備える車両用発電装置において、大容量電気負荷の要求電流が大きい場合に、特別の励磁電流発生回路(出力電流増大手段)から励磁コイルへ高励磁電圧を印加して励磁電流を増大させ、これにより出力電流すなわち発電電流を増大させることを提案している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記公報が提案する大容量電気負荷給電方式では、装置構成が複雑となるという問題があった。
この問題を改善するために、単に励磁電流の導通率増大に基づく界磁束増強により大容量電気負荷作動時における大電流発電を実施することも考えられるが、このような大出力発電機の採用は、大容量電気負荷の非作動時において小容量の通常電気負荷の断続やバッテリ電位の変動によりこの大出力発電機が断続して、発電に係わるエンジンの負荷トルクの変動が大きくなり、例えばアイドリング時のアイドル回転数の低下などの不具合が問題となった。もちろん、このような場合でも大容量電気負荷の断続時点からある程度時間が経過すれば、例えば検出したバッテリ電圧と基準電圧との差を解消するよう励磁電流制御トランジスタの導通率をフィードバック制御するなどの従来手法により発電に係わるエンジンの負荷トルクの変動を低減できるであろうが、発電時間がある程度持続するようなモードでは発電開始時や発電停止時にエンジンに与える負荷変動ショックが大きくなるという問題があった。
【0004】
本発明は上記問題点に鑑みなされたものであり、装置規模や制御規模の増大を回避しつつ、大容量電気負荷の非作動時における発電機の発電と発電停止との発電状態の遷移に伴うエンジン負荷の変動を低減可能な車両用発電装置を提供することを、その目的としている。
【0005】
【課題を解決するための手段及び発明の効果】
本発明の第1の構成は、励磁コイル及び電機子コイルを有してエンジンにより駆動されるとともにバッテリ及び大容量電気負荷を含む車両用電気負荷に給電する発電機と、前記励磁コイルと直列接続される半導体スイッチを有するとともに前記半導体スイッチの導通率の制御により励磁電流を制御して前記電機子コイルの出力電流を調節する制御手段とを備える車両用発電装置において、
前記制御手段は、前記バッテリの電圧と前記バッテリの基準電圧との比較を行う回路と、入力される導通率制御信号と前記回路の出力との論理積演算結果を前記半導体スイッチに実質的に出力する回路とを有しており、
前記制御手段は、入力されるかまたは自ら検出した前記大容量電気負荷の作動、非作動に関連する電気信号に基づいて判定した前記大容量電気負荷の非作動期間の一部又は全部の期間に前記導通率制御信号により前記導通率の制限を行い、かつ、前記電気信号に基づいて判定した少なくとも前記大容量電気負荷の作動期間に前記導通率制御信号による前記導通率の制限を禁止することを特徴とすることを特徴とする車両用発電装置である。
【0006】
本構成では、大容量電気負荷の非作動時に(すなわち、非作動時の一部又は全部の期間において)、励磁電流の導通率を所定の最大導通率値未満に強制的に制限し、前記大容量電気負荷の作動期間中、この導通率の制限を禁止する。なお、導通率の制限を禁止するとは、通常のバッテリ電圧と基準電圧との比較に基づく導通率制御を100%を含む範囲で行うか又は導通率を100%に固定することを意味する。
【0007】
このようにすれば、大容量電気負荷の非作動時において発電機が発電を開始したとしても発電機の出力電流が急増することなく、エンジン負荷の急増によるショックやエンジン回転数の低下を防止することができる。
なお、本構成は、特にエンジンのアイドル時などの低回転域においてその回転数の急低下によるエンジンストールを防止できる点で特に有効である。したがって、本構成は、エンジンのアイドル時などの低回転域を例えば発電周波数などに基づいて検出し、この低回転域において実施することもできる。
【0008】
本発明の第2の構成は、上記第1の構成において更に、前記制御手段が、前記電気信号に基づいて判定した前記大容量電気負荷の作動終了時点から所定時間経過後に前記導通率の制限を開始することを特徴としている。
すなわち、大容量電気負荷の作動終了時点直後はバッテリ電位が低下しているのが通常であるので、大容量電気負荷の作動終了時点直後の期間も導通率の制限を行わないことによりバッテリ電位をある程度回復させ、その後、導通率制限を行う。これにより、大容量電気負荷の非作動時におけるバッテリ電圧の低電位状態を回避することができる。
【0009】
本発明の第3の構成は、上記第1又は第2の構成において更に、前記制御手段が、前記導通率の制限時に前記導通率の上限値を前記バッテリ及び大容量電気負荷以外の前記車両用電気負荷の駆動に必要な電流以上でかつ100%未満に設定することを特徴としている。本構成によれば、導通率制限時に万が一、通常の車両用電気負荷を全て作動させたとしてもバッテリが過放電となることがない。
【0010】
本発明の第4の構成は、上記第3の構成において更に、前記制御手段が、前記導通率の制限時に前記導通率を一定値に設定することを特徴としている。本構成によれば、導通率を一定値に制限するので、制御が簡単となる。
本発明の第5の構成は、上記第3の構成において更に、前記制御手段が、前記導通率の制限時に前記励磁電流が所定値以下となるように前記導通率を制御することを特徴としている。本構成によれば、励磁電流の制限時に、励磁電流を検出するとともに検出した励磁電流が所定値以下となるように導通率を制御するので、一層正確なエンジン負荷の変動抑制が可能となる。
【0011】
本発明の第6の構成は、上記第3の構成において更に、前記制御手段が、バッテリ電圧が所定値以上となる場合又はその所定時間経過後、前記導通率の制限を開始することを特徴としている。本構成によれば、バッテリ電圧がある値以上にアップすることで大容量電気負荷の非作動を判断するので、検出はいわゆるレギュレータの内部にて行うことができ、大容量電気負荷の作動、非作動を検出するための配線を減らすことができる。これは、大容量電気負荷の作動時、特にある一定期間連続作動する例えば排気ガス浄化用触媒加熱のためののヒータなどの作動期間の終了時点にはバッテリ電圧が低下し、その後、バッテリの充電により一時的にバッテリ電圧が所定の基準電圧を超過するためにバッテリ電圧のある値以上にアップすることで大容量電気負荷の非作動を判断できることに基づいている。
【0012】
また、本構成では、大容量電気負荷の通電停止直後、バッテリ電圧が低下している場合でも、このバッテリ電圧を上昇させてから(バッテリを充電してから)導通率制限を行うので、大容量電気負荷の非作動時におけるバッテリ電圧の低電位状態も回避することができる。
本発明の第7の構成は、上記第3の構成において更に、前記制御手段が、バッテリ電圧が所定値未満となる場合、前記導通率の制限禁止を開始することを特徴としている。本構成によれば、バッテリ電圧がある値以上ダウンすることで大容量電気負荷の作動を判断するので、作動検出は多少遅れるものの検出をいわゆるレギュレータの内部にて行うことができ、大容量電気負荷の作動、非作動を検出するための配線を減らすことができる。
【0013】
本発明の第8の構成は、上記第3の構成において更に、前記大容量電気負荷が前記エンジンの始動時点から所定時間だけ運転される排気ガス浄化用触媒加熱のためのヒータ(以下、触媒ヒータと略称する。)からなり、前記制御手段が、前記エンジンの始動時点から所定時間経過後、前記導通率の制限を開始することを特徴としている。すなわち、本構成では、触媒ヒータはエンジン始動後、ある一定時間以上は絶対に作動することがないということが予めわかっているので、エンジン始動後、所定時間経過してから導通率制限を行えば制御を簡素化でき、作動検出は多少遅れるものの検出をレギュレータの内部にて行うことができ、大容量電気負荷の作動、非作動を検出するための配線を減らすことができる。更に、触媒ヒータ通電停止後、バッテリ電圧が回復した後、導通率制限を行うこともでき、大容量電気負荷非作動時におけるバッテリ電圧低下を防止することができる。
【0014】
本発明の第9の構成は、上記第3の構成において更に、前記大容量電気負荷が前記エンジンの始動時点から所定時間だけ運転される排気ガス浄化用触媒加熱のためのヒータからなり、前記制御手段は、前記エンジンの始動時点又はその所定時間経過後から前記導通率の制限禁止を開始することを特徴としている。すなわち、本構成では、触媒ヒータはエンジン始動後のある一定期間の他は絶対に作動することがないということが予めわかっているので、エンジン始動後導通率制限を解除すれば制御を簡素化でき、大容量電気負荷の作動検出をレギュレータの内部にて行うことができ、大容量電気負荷の作動、非作動を検出するための配線を減らすことができる。また、エンジンの始動時点から所定時間経過後、導通率制限を解除する場合にはそれまでにエンジン回転数を上昇させて負荷急増に耐えることが容易となり、エンジン回転数の落ち込みを減らせる。
【0015】
本発明の第10の構成は、上記第3の構成において更に、前記制御手段近傍の温度を検出する温度検出手段を備え、前記制御手段が、前記温度が所定値値以上となる場合又はその所定時間経過後、前記導通率の制限を開始することを特徴としている。すなわち、本構成では、触媒ヒータなどの大容量電気負荷に通電する場合、制御手段に内蔵されて励磁電流を制御する半導体スイッチの導通率が大きくその発熱が大きいので、制御手段内部又はその近傍の温度を検出するのみにより簡単確実に大容量電気負荷の作動検出を多少の時間遅延はあるものの実現することができ、更にこの検出方式はレギュレータ(制御手段)の内部にて行うことができ、大容量電気負荷の作動、非作動を検出するための配線を減らすことができる。なお、この大容量電気負荷作動検出は触媒ヒータのようにある期間持続して作動する大容量電気負荷の作動検出に特に好適である。
【0016】
なお、外気温度変動の影響などを排除するために、単に温度の高低により判定する代わりに温度上昇の大小や温度上昇率の大小により判定することも可能である。
本発明の第11の構成は、上記第3の構成において更に、前記制御手段が、前記大容量電気負荷の作動判定時に前記エンジンのアイドル回転数を上昇させる指令を前記エンジンの制御装置へ出力することを特徴としている。本構成によれば、大容量電気負荷の作動によるエンジンストールを防止することができ、かつ、このエンジンストール防止と導通率制限制御との両方の制御のための大容量電気負荷作動判定手段を共用することもできる。
【0017】
本発明の第12の構成は、上記第11の構成において更に、アイドル回転数を検出するアイドル回転数検出手段を備え、前記制御手段が、前記指令出力時点から所定時間経過後又は前記アイドル回転数の上昇後、前記導通率の制限を禁止することを特徴としている。本構成によれば、実質的にアイドル回転数の上昇後、導通率制限を解除するので、導通率制限の解除によるエンジン負荷の増大をアイドル回転数の上昇後とすることができ、エンジンストールを一層確実に防止することができる。
【0018】
本発明の第13の構成は、上記第11の構成において更に、前記制御手段が、前記大容量電気負荷の非作動判定時又はその所定時間経過後、前記エンジンのアイドル回転数を下降させる指令を前記エンジンの制御装置へ出力することを特徴としている。本構成によれば、簡単にエンジンのアイドル回転数を下降させることができる。
本発明の第14の構成は、励磁コイル及び電機子コイルを有してエンジンにより駆動されるとともにバッテリ及び大容量電気負荷を含む車両用電気負荷に給電する発電機と、前記励磁コイルと直列接続される半導体スイッチを有するとともに前記半導体スイッチの導通率の制御により励磁電流を制御して前記電機子コイルの出力電流を調節する制御手段とを備える車両用発電装置において、
前記制御手段は、入力されるかまたは自ら検出した前記大容量電気負荷の作動、非作動に関連する電気信号に基づいて判定した前記大容量電気負荷の非作動期間の一部又は全部の期間に前記導通率の制限を行い、かつ、前記電気信号に基づいて判定した少なくとも前記大容量電気負荷の作動期間に前記導通率の制限を禁止し、
前記制御手段は、前記電気信号に基づいて判定した前記大容量電気負荷の作動終了時点から所定時間経過後に前記導通率の制限を開始することを特徴とする車両用発電装置である。
本発明の第15の構成は、励磁コイル及び電機子コイルを有してエンジンにより駆動されるとともにバッテリ及び大容量電気負荷を含む車両用電気負荷に給電する発電機と、前記励磁コイルと直列接続される半導体スイッチを有するとともに前記半導体スイッチの導通率の制御により励磁電流を制御して前記電機子コイルの出力電流を調節する制御手段とを備える車両用発電装置において、
前記制御手段は、入力されるかまたは自ら検出した前記大容量電気負荷の作動、非作動に関連する電気信号に基づいて判定した前記大容量電気負荷の非作動期間の一部又は全部の期間に前記導通率の制限を行い、かつ、前記電気信号に基づいて判定した少なくとも前記大容量電気負荷の作動期間に前記導通率の制限を禁止し、
前記制御手段は、前記導通率の制限時に前記導通率の上限値を前記バッテリ及び大容量電気負荷以外の前記車両用電気負荷の駆動に必要な電流以上でかつ100%未満に設定することを特徴とする車両用発電装置である。
【0019】
【発明の実施形態】
以下、本発明の好適な実施態様を以下の複数の実施例に基づいて説明する。
【0020】
【実施例】
(実施例1)
本発明の車両用発電装置の一実施例を図1を参照して説明する。
本実施例の車両用発電装置は、発電を行う発電部2と、エンジン1の運転状態を制御するエンジンコントロールユニット(ECU、本発明でいう制御手段)3とからなる。発電部2は、電機子コイル9及び励磁コイル10を有してエンジン1により駆動される三相交流発電機20と、電機子コイル9が発電する三相交流発電電圧を整流してその高位直流出力端からバッテリ4へ給電する三相全波整流器11と、励磁コイル10へ給電する励磁電流を断続制御するレギュレータ300とからなる。低位端が接地されるバッテリ4の高位端は、車両用電気負荷5を通じて接地されるとともに、スイッチ7及び触媒ヒータ(大容量電気負荷)6を通じて接地されている。
【0021】
レギュレータ300は、抵抗14、21、22及び定電圧ダイオード15からなる基準電圧発生回路301と、抵抗18、19からなる分圧回路302と、コンパレータ17と、アンド回路25と、励磁電流断続用のトランジスタ13と、フライホイルダイオード12と、バッテリ4からキースイッチ8を通じてトランジスタ13のベースにベース電流を給電する負荷抵抗31とからなる。アンド回路25の出力段はオープンコレクタ接続のエミッタ接地トランジスタであって、負荷抵抗31はこのオープンコレクタ接続のエミッタ接地トランジスタの負荷素子をなしており、キースイッチ8の遮断時におけるトランジスタ13のオンを禁止する構成となっている。
【0022】
コンパレータ17は、基準電圧発生回路301が出力する基準電圧Vrefと、分圧回路302が出力するバッテリ電圧の分圧Vsとを比較し、VsがVrefより大きい場合にローレベル信号Loを出力し、VsがVrefより小さい場合にハイレベル信号Hiを出力する。アンド回路25は、ECU3から入力される導通率制御信号Sdがハイレベルの場合に、コンパレータ17の出力信号をトランジスタ13に出力し、トランジスタ13はコンパレータ17の出力信号に応じて励磁電流Ifを断続制御してバッテリ電圧を所定レベルに維持する。
【0023】
次に、本実施例の特徴をなすECU3の導通率制御動作(導通率制限及びその解除動作)を、図2のフローチャートを参照して説明する。
ECU3はバッテリ4からキースイッチ8を通じて電源電圧を給電されており、キースイッチ8のオンとともにルーチンをスタートし、最初にステップ100にて初期設定を行ってから、導通率制御信号Sdであるオン・デューティ比Fdutyが25%のPWM(パルス幅変調)信号をアンド回路25に出力する(102)。この時、バッテリ電圧はスタータモータ(図示せず)への給電のために低値であるので、コンパレータ17の出力信号はハイレベルとなっており、トランジスタ13は導通率制御信号Sdによってのみ規制されることになり、その結果、励磁電流のデューティ比は25%に固定されることになる。
【0024】
次に、図示しないエンジン回転数センサからのエンジン回転数が所定レベル以上となったことを判定することにより(又は例えば発電周波数などエンジン回転数センサを用いないエンジン回転数検出方式により)、エンジン回転数が所定値以上になったかどうかによりエンジン1が始動したかどうかを調べてエンジン1が始動するまで待機し(104)、エンジンが始動したらスイッチ7を閉じて触媒ヒータ(EHC)6に給電するとともにアイドル回転数の設定値をアップする(106)。ECU3によるアイドル回転数を所定レベルに維持するアイドル制御自体は周知であり、その制御の詳細については説明を省略する。
【0025】
次に、エンジン回転数Neがアイドル回転数を超えるエンジン回転数の設定値1000rpmを超えるまで待機し(108、109)、超えれば、導通率制御信号Sdのオン・デューティ比Fdutyを100%に設定する(110)。すなわち、エンジン回転数Neが設定値1000rpmを超えれば大出力発電によるエンジンストールを回避できるのでFdutyを100%に設定して導通率の制限を解除し、トランジスタ13を持続してオンする(110)。触媒ヒータ6は大容量であり、その導通期間中はバッテリ電圧は充分低下するのでコンパレータ17は常にハイレベルを出力し、コンパレータ17によりトランジスタ13のこのFduty100%での導通が規制されることはない。
【0026】
次に、触媒ヒータ6の温度を検出する温度センサ60が検出する温度Tが所定温度Ttを超えるまで待機し(112、114)、超えれば触媒ヒータ6への通電は不要と判定して触媒ヒータ6への通電を遮断するとともにアイドル回転数の設定値を元の値にダウンする(116)。その後、一定時間ΔTだけ待機した後(118)、導通率制御信号Sdのオン・デューティ比Fdutyを60%に設定する(120)。本実施例では、触媒ヒータ6が遮断された場合には、残りの車両用電気負荷全部からなる車両用電気負荷5がオンしてもトランジスタ13のオン・デューティ比Fdutyは60%未満としてあるので、過渡的に車両用電気負荷5の状態がいかなる状態であろうとトランジスタ13の導通率を60%未満に抑制することができ、エンジン負荷の急増を防止でき、エンジンストールを防止することができる。
【0027】
本実施例における導通率変化を図5の(a)に示す。Lは導通率を60%未満に制限した領域である。ステップ118における待機時間を0とすることも可能である。
(実施例2)
本発明の車両用発電装置の他の実施例を図3を参照して説明する。
【0028】
本実施例の車両用発電装置は、トランジスタ13の導通率の制御(導通率制限及びその解除)をレギュレータ300aにてハードウエアにより実施するものであり、したがって、本実施例では、レギュレータ300aが本発明でいう制御手段を構成している。
レギュレータ300aは、NAND回路26がハイレベルを出力する場合(導通率制限を行わない場合)、トランジスタ13はアンド回路25を通じてコンパレータ17の出力により制御され、コンパレータ17は、基準電圧発生回路301aが出力する基準電圧Vrefと、分圧回路302aが出力するバッテリ電圧の分圧Vsとの比較結果を出力し、励磁コイル10にバッテリ電圧を一定レベルに維持する励磁電流を給電する制御を行う点で、実施例1又は通常のレギュレータと同じである。
【0029】
ただし、基準電圧発生回路31aは抵抗21、22と直列に抵抗23、24とをもち、基準電圧Vref2及び基準電圧Vref3を発生している。また、分圧回路32aも抵抗18、19と直列に抵抗20とをもち、バッテリ電圧の分圧Vs2を発生している。
次に、導通率制限及びその解除を行う回路部の構成及び動作を説明する。
【0030】
この回路部は、アンド回路25に出力するNAND回路26と、基準電圧Vref2と分圧Vs2との比較結果をNAND回路26に出力するコンパレータ16と、トランジスタ13のエミッタと接地間に接続される電流検出用のエミッタ抵抗32と、トランジスタ13のエミッタ電位と基準電圧Vref3とを比較するコンパレータ27と、コンパレータ27の出力電圧の低下時点から遅延動作を行う遅延回路303aとからなる。遅延回路303aは、低位端が接地されるコンデンサ29と、コンデンサ29からコンパレータ27の出力端への逆流を阻止するダイオード28と、コンデンサ30と並列に接続される抵抗30とからなり、コンデンサ29の高位端はダイオード28を通じてコンパレータ27により充電される。
【0031】
いま、触媒ヒータ6に通電が開始されたものとする。触媒ヒータ6は大容量であるので、バッテリ電圧の低下によりトランジスタ13の導通率は100%となり、励磁電流Ifに比例するトランジスタ13のエミッタ電圧は基準電圧Vref3より大きくなるので(すなわち励磁電流Ifが所定値を超えるので)、コンパレータ27はハイレベルを出力し、ダイオード28を通じてコンデンサ29を充電するとともにNAND回路26にハイレベルを出力する。この時、上述したようにバッテリ電圧が低いので、コンパレータ16はローレベルを出力し、その結果、NAND回路26はハイレベルを出力し、結局、アンド回路25はハイレベルを出力し、トランジスタ13は常時オンされる。
【0032】
その後、触媒ヒータ6への通電が遮断されると、導通率100%の発電によりバッテリ電圧が回復し、バッテリ電圧の分圧Vs2が基準電圧Vref2より大きくなり、コンパレータ16はハイレベルを出力する。この時、コンパレータ17はまだハイレベルを出力している。この結果、NAND回路26の出力信号は遅延回路303aの出力信号の反転信号を出力する。
【0033】
すなわち、トランジスタ13の通電電流が増大して、そのエミッタ電圧が基準電圧Vref3より大きくなればコンパレータ27はハイレベルを出力し、ダイオード28を通じてコンデンサ29を充電するとともにNAND回路26にハイレベルを出力する。すると、NAND回路26はローレベルを出力し、トランジスタ13をオフする。トランジスタ13がオフすれば、励磁コイル10にはダイオード12を通じて励磁電流を流しつつ、徐々に励磁電流Ifが低下していく。
【0034】
一方、トランジスタ13を流れる励磁電流が遮断されれば、コンパレータ27はローレベルを出力するが、遅延回路303aはコンデンサ29の蓄電によりすぐにはNAND回路26にローレベルを出力せず、一定の遅延時間遅れて漸くローレベルを出力し、NAND回路26はハイレベルを出力し、トランジスタ13は再びオンする。このトランジスタ13のオンにより励磁コイル10への励磁電流Ifは徐々に増大され、結局、トランジスタ13のエミッタ電位に比例するトランジスタ13の励磁電流成分が所定のピーク値を超えない範囲でトランジスタ13が断続することになる。なお、励磁コイル10に流れる電流はトランジスタ13のオフ時にもダイオード12を通じて流れるので、励磁電流Ifは所定の一定レベルを超えないように制限されることになる。
【0035】
次に、このように励磁電流Ifの瞬時値を所定の一定レベルに制限しつつ発電を行っても、車両用電気負荷5が軽いのでバッテリ電圧は徐々に増大し、分圧Vsが基準電圧Vrefを超えると、コンパレータ17がローレベルを出して、トランジスタ13をオフする。すなわち、レギュレータ300aは、励磁電流Ifの瞬時値が所定の一定レベルを超えないように制限するとともに、バッテリ電圧の分圧Vsを基準電圧Vrefに維持する制御動作を行う。
【0036】
この実施例の導通率の変化を図5の(b)に示し、バッテリ電圧Vbの変化をVbに示す。なお、コンパレータ16は触媒ヒータ6が遮断された後、所定時間経過したことをレギュレータ300aの内部で検出する機能を果たす。
(実施例3)
本発明の車両用発電装置の他の実施例を図4を参照して説明する。
【0037】
本実施例の車両用発電装置は、実施例2のレギュレータ300aの回路を一部変更したものである。
すなわちこの実施例では、実施例2のコンパレータ16が出力する比較結果の代わりに、抵抗33とコンデンサ34とからなる遅延回路304bの出力電圧をNAND回路26に出力するものである。
【0038】
このようにすれば、キースイッチ8をオンした後、抵抗33とコンデンサ34とで決定される遅延時間ΔT1だけ、遅延回路304bはNAND回路26にローレベルを出力し、この期間中、NAND回路26はハイレベルを出力し、トランジスタ13はオンされる。
この遅延時間T1が過ぎれば、遅延回路304bはハイレベルを出力し、実施例2と同様の励磁電流制限を行いつつバッテリ電圧の分圧Vsを基準電圧Vrefに収束させる動作を行う。
【0039】
この実施例の導通率の変化を図5の(c)に示す。なお、遅延回路304bは触媒ヒータ6が遮断された後、所定時間経過したことをレギュレータ300aの内部で検出する機能を果たす。
(実施例4)
本発明の車両用発電装置の他の実施例を図6を参照して説明する。
【0040】
本実施例の車両用発電装置は、実施例1のスイッチ7を、三相全波整流器11の高位直流出力端をバッテリ4の高位端と触媒ヒータ6の高位端との一方に切り換える切り換えスイッチ7cに変更した点が異なっている。ECU3の動作自体は図2のフローチャートに示す通りであるが、切り換えスイッチ7cはステップ106にて触媒ヒータ6側に切り換えられ、ステップ116にてバッテリ4側に切り換えられる。
【0041】
このようにすれば、バッテリ4から触媒ヒータ6に給電することはなく、かつ、触媒ヒータ6の作動期間中における車両用電気負荷5の使用電力自体はバッテリ4の容量からみて充分小さいので、で、触媒ヒータ6の作動時のバッテリ4の電位低下を抑止できるという利点が生じる。
(実施例5)
本発明の車両用発電装置の他の実施例を図7及び図8を参照して説明する。
【0042】
本実施例の車両用発電装置は、実施例2(図3参照)において、コンパレータ16に入力するバッテリ電圧の分圧Vs2の代わりにサーミスタ40と抵抗41との直列接続回路からなる温度検出回路305cの出力信号Vs4をコンパレータ16に入力する点と、コンパレータ16の出力を所定時間遅延する遅延回路303cを設けたものである。遅延回路303cは抵抗42とコンデンサ43とからなる通常のローパスフィルタであるが、どんな回路形式を採用してもよい。サーミスタ40はトランジスタ13の近傍に配設される。
【0043】
以下、上記変更回路部分の動作を説明する。触媒ヒータ6への通電時において、トランジスタ13は導通率100%で運転され、サーミスタ40は次第に温度が上昇し、その抵抗が低下し、温度信号電圧Vs4が低下し、所定時間経過すると温度信号電圧Vs4は基準電圧Vref2を下回る。すると、コンパレータ17はハイレベルを出力し、抵抗42を通じてコンデンサ43を充電し、コンデンサ43は所定時間後、ハイレベルをNAND回路26に出力する。その他の動作は実施例2と同じである。サーミスタ40以外の他の温度検出手段をレギュレータ300cに内蔵することは当然可能である。また、遅延回路303cの省略も可能である。
【0044】
更に、上記実施例2、3、5では、レギュレータ(制御手段)内部にて、バッテリ電圧の低下またはキースイッチ8のオンの検出を行うことにより、触媒ヒータ6のオンを推定することができ、触媒ヒータ6の動作検出のための配線を必要としない。また、上記実施例2、3、5では、レギュレータ(制御手段)内部にて、触媒ヒータ6のオフを推定することができ、触媒ヒータ6の動作検出のための配線を必要としない。
【0045】
(変形態様1)
触媒ヒータ6がオンすればすぐにバッテリ電圧が大幅に低下するので、バッテリ電圧が所定値未満となる場合、触媒ヒータ6のオンと判定して導通率の制限禁止を開始することができる。このようにすれば、触媒ヒータ6のオン時、導通率の制限禁止を速やかに実施することができる。
【0046】
なお、この態様では、この場合、実際に触媒ヒータ6がオンしてから実際にバッテリ電圧が触媒ヒータ6のオンの判定可能なレベルまで低下する期間は、厳密に言えば導通率制限の禁止を行うことができない。しかし、この制御モードも本発明に包含されるものとする。
(変形態様2)
エンジン1の始動時点またはその直後を触媒ヒータ6のオン時点とし、その一定時間後を触媒ヒータ6のオフ時点とし、このオフ時点より長い所定時間がエンジン始動時から経過した後、トランジスタ13の導通率の制限を開始することができる。すなわち、本態様では、エンジン始動時点から所定時間経過するまでの期間に触媒ヒータ6の作動期間が含まれると仮定して、その作動、非作動をレギュレータ内部で検出している。
【図面の簡単な説明】
【図1】本発明の実施例1の車両用発電装置を含む車両電気系のブロック図である。
【図2】実施例1のECU3の制御動作を示すフローチャートである。
【図3】本発明の実施例2の車両用発電装置を含む車両電気系のブロック図である。
【図4】本発明の実施例3の車両用発電装置を含む車両電気系のブロック図である。
【図5】実施例1〜3における導通率波形を示すタイミングチャートである。
【図6】本発明の実施例4の車両用発電装置を含む車両電気系のブロック図である。
【図7】本発明の実施例5の車両用発電装置を含む車両電気系のブロック図である。
【図8】図7の要部回路図である。
【符号の説明】
10は励磁コイル、9は電機子コイル、1はエンジン、4はバッテリ、6は触媒ヒータ(大容量電気負荷)、5は車両用電気負荷、20は車両用交流発電機(発電機)、13はトランジスタ(半導体スイッチ)、300、300a、300cはレギュレータ(制御手段)、3はECU(制御手段)、40はサーミスタ(温度検出手段)、60はアイドル回転数検出手段。

Claims (15)

  1. 励磁コイル及び電機子コイルを有してエンジンにより駆動されるとともにバッテリ及び大容量電気負荷を含む車両用電気負荷に給電する発電機と、
    前記励磁コイルと直列接続される半導体スイッチを有するとともに前記半導体スイッチの導通率の制御により励磁電流を制御して前記電機子コイルの出力電流を調節する制御手段と、
    を備える車両用発電装置において、
    前記制御手段は、前記バッテリの電圧と前記バッテリの基準電圧との比較を行う回路と、入力される導通率制御信号と前記回路の出力との論理積演算結果を前記半導体スイッチに実質的に出力する回路とを有しており、
    前記制御手段は、入力されるかまたは自ら検出した前記大容量電気負荷の作動、非作動に関連する電気信号に基づいて判定した前記大容量電気負荷の非作動期間の一部又は全部の期間に前記導通率制御信号により前記導通率の制限を行い、かつ、前記電気信号に基づいて判定した少なくとも前記大容量電気負荷の作動期間に前記導通率制御信号による前記導通率の制限を禁止することを特徴とする車両用発電装置。
  2. 前記制御手段は、前記電気信号に基づいて判定した前記大容量電気負荷の作動終了時点から所定時間経過後に前記導通率の制限を開始する請求項1記載の車両用発電装置。
  3. 前記制御手段は、前記導通率の制限時に前記導通率の上限値を前記バッテリ及び大容量電気負荷以外の前記車両用電気負荷の駆動に必要な電流以上でかつ100%未満に設定する請求項1又は2記載の車両用発電装置。
  4. 前記制御手段は、前記導通率の制限時に前記導通率を一定値に設定する請求項3記載の車両用発電装置。
  5. 前記制御手段は、前記導通率の制限時に前記励磁電流が所定値以下となるように前記導通率を制御する請求項3記載の車両用発電装置。
  6. 前記制御手段は、バッテリ電圧が所定値以上となる場合又はその所定時間経過後、前記導通率の制限を開始する請求項3記載の車両用発電装置。
  7. 前記制御手段は、バッテリ電圧が所定値未満となる場合、前記導通率の制限禁止を開始する請求項3記載の車両用発電装置。
  8. 前記大容量電気負荷は前記エンジンの始動時点から所定時間だけ運転される排気ガス浄化用触媒加熱のためのヒータからなり、前記制御手段は、前記エンジンの始動時点から所定時間経過後、前記導通率の制限を開始する請求項3記載の車両用発電装置。
  9. 前記大容量電気負荷は前記エンジンの始動時点から所定時間だけ運転される排気ガス浄化用触媒加熱のためのヒータからなり、前記制御手段は、前記エンジンの始動時点又はその所定時間後、前記導通率の制限禁止を開始する請求項3記載の車両用発電装置。
  10. 前記制御手段近傍の温度を検出する温度検出手段を備え、前記制御手段は、前記温度が所定値値以上となる場合又はその所定時間経過後、前記導通率の制限を開始する請求項3記載の車両用発電装置。
  11. 前記制御手段は、前記大容量電気負荷の作動判定時に前記エンジンのアイドル回転数を上昇させる指令を前記エンジンの制御装置へ出力する請求項3記載の車両用発電装置。
  12. アイドル回転数を検出するアイドル回転数検出手段を備え、前記制御手段は、前記指令出力時点から所定時間経過後又は前記アイドル回転数の上昇後、前記導通率の制限を禁止する請求項11記載の車両用発電装置。
  13. 前記制御手段は、前記大容量電気負荷の非作動判定時又はその所定時間経過後、前記エンジンのアイドル回転数を下降させる指令を前記エンジンの制御装置へ出力する請求項11記載の車両用発電装置。
  14. 励磁コイル及び電機子コイルを有してエンジンにより駆動されるとともにバッテリ及び大容量電気負荷を含む車両用電気負荷に給電する発電機と、前記励磁コイルと直列接続される半導体スイッチを有するとともに前記半導体スイッチの導通率の制御により励磁電流を制御して前記電機子コイルの出力電流を調節する制御手段とを備える車両用発電装置において、
    前記制御手段は、入力されるかまたは自ら検出した前記大容量電気負荷の作動、非作動に関連する電気信号に基づいて判定した前記大容量電気負荷の非作動期間の一部又は全部の期間に前記導通率の制限を行い、かつ、前記電気信号に基づいて判定した少なくとも前記大容量電気負荷の作動期間に前記導通率の制限を禁止し、
    前記制御手段は、前記電気信号に基づいて判定した前記大容量電気負荷の作動終了時点から所定時間経過後に前記導通率の制限を開始することを特徴とする車両用発電装置。
  15. 励磁コイル及び電機子コイルを有してエンジンにより駆動されるとともにバッテリ及び大容量電気負荷を含む車両用電気負荷に給電する発電機と、前記励磁コイルと直列接続される半導体スイッチを有するとともに前記半導体スイッチの導通率の制御により励磁電流を制御して前記電機子コイルの出力電流を調節する制御手段とを備える車両用発電装置において、
    前記制御手段は、入力されるかまたは自ら検出した前記大容量電気負荷の作動、非作動に関連する電気信号に基づいて判定した前記大容量電気負荷の非作動期間の一部又は全部の期間に前記導通率の制限を行い、かつ、前記電気信号に基づいて判定した少なくとも前記大容量電気負荷の作動期間に前記導通率の制限を禁止し、
    前記制御手段は、前記導通率の制限時に前記導通率の上限値を前記バッテリ及び大容量電気負荷以外の前記車両用電気負荷の駆動に必要な電流以上でかつ100%未満に設定することを特徴とする車両用発電装置。
JP18037595A 1995-07-17 1995-07-17 車両用発電装置 Expired - Fee Related JP3613845B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP18037595A JP3613845B2 (ja) 1995-07-17 1995-07-17 車両用発電装置
US08/670,314 US5754030A (en) 1995-07-17 1996-07-16 Duty ratio control for a vehicular generator responsive to low and high power loads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18037595A JP3613845B2 (ja) 1995-07-17 1995-07-17 車両用発電装置

Publications (2)

Publication Number Publication Date
JPH0937597A JPH0937597A (ja) 1997-02-07
JP3613845B2 true JP3613845B2 (ja) 2005-01-26

Family

ID=16082147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18037595A Expired - Fee Related JP3613845B2 (ja) 1995-07-17 1995-07-17 車両用発電装置

Country Status (2)

Country Link
US (1) US5754030A (ja)
JP (1) JP3613845B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2757325B1 (fr) * 1996-12-16 1999-03-05 Valeo Equip Electr Moteur Procede pour la gestion de l'excitation d'un alternateur de vehicule automobile par un regulateur
JP3932067B2 (ja) * 1997-11-04 2007-06-20 株式会社デンソー 車両用交流発電機の制御装置
JP3418673B2 (ja) * 1998-02-12 2003-06-23 株式会社日立製作所 車両用充電発電機の制御装置
WO2000030236A1 (fr) * 1998-11-18 2000-05-25 Mitsubishi Denki Kabushiki Kaisha Unite de commande de generateur de courant alternatif de vehicule
JP3913391B2 (ja) * 1999-02-26 2007-05-09 三菱電機株式会社 車両用交流発電機の制御装置
WO2001020769A1 (fr) * 1999-09-10 2001-03-22 Mitsubishi Denki Kabushiki Kaisha Regulateur d'alternateur d'automobile
JP3556871B2 (ja) * 1999-11-11 2004-08-25 三菱電機株式会社 オルタネータの制御装置
JP3866013B2 (ja) * 2000-06-07 2007-01-10 三菱電機株式会社 オルタネータの電圧制御装置
JP2002204597A (ja) * 2001-01-05 2002-07-19 Honda Motor Co Ltd インバータ制御式発電機
US6700353B2 (en) * 2001-04-16 2004-03-02 Denso Corporation Battery charging system and vehicle generator control system
JP4547846B2 (ja) * 2001-09-28 2010-09-22 株式会社デンソー 車両用発電制御装置
DE10150372A1 (de) * 2001-10-11 2003-04-24 Bosch Gmbh Robert Speicherloses Teilbordnetz eines Kraftfahrzeugs
US6876177B2 (en) * 2003-02-04 2005-04-05 General Motors Corporation Load dump transient voltage controller
JP2004357428A (ja) * 2003-05-29 2004-12-16 Mitsubishi Electric Corp 発電機制御装置
US7019496B1 (en) * 2003-12-09 2006-03-28 Garretson Donald H Demand responsive power generation system
JP4120603B2 (ja) * 2004-03-16 2008-07-16 株式会社デンソー 車両用発電装置
JP4151642B2 (ja) * 2004-10-25 2008-09-17 株式会社デンソー 車両用発電制御システム
US7466107B2 (en) * 2006-12-01 2008-12-16 C.E. Niehoff & Co. System and method for electric current and power monitoring and control of a generator
JP4561792B2 (ja) * 2007-08-10 2010-10-13 株式会社デンソー 車両用発電制御装置
JP2009112169A (ja) * 2007-10-31 2009-05-21 Honda Motor Co Ltd 発電機の出力制御装置
CN109519287B (zh) * 2017-09-19 2021-12-21 郑州宇通客车股份有限公司 一种发动机怠速控制方法、***及车辆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4682044A (en) * 1984-10-25 1987-07-21 Mazda Motor Corporation Engine idling load control means
JPH03117400A (ja) * 1989-09-28 1991-05-20 Nippondenso Co Ltd 車両用交流発電機の制御装置
JP3052319B2 (ja) * 1989-12-15 2000-06-12 株式会社デンソー 車両用充電装置
JP2754963B2 (ja) * 1991-08-08 1998-05-20 松下電器産業株式会社 電源切替え回路
JP2983375B2 (ja) * 1992-04-10 1999-11-29 三菱電機株式会社 車両用電子制御装置
CA2108343A1 (en) * 1992-10-14 1994-04-15 Roy D. Schultz Electronic power regulator for an automotive alternator
JPH06225473A (ja) * 1993-01-25 1994-08-12 Toyota Motor Corp 車両用充電装置
JP3102981B2 (ja) * 1993-12-28 2000-10-23 三菱電機株式会社 車両用交流発電機の出力制御装置
JP3214224B2 (ja) * 1994-04-22 2001-10-02 株式会社日立製作所 車両用発電機
JP3138596B2 (ja) * 1994-09-26 2001-02-26 三菱電機株式会社 車両用電源装置

Also Published As

Publication number Publication date
JPH0937597A (ja) 1997-02-07
US5754030A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP3613845B2 (ja) 車両用発電装置
JP3826822B2 (ja) 車両用発電制御装置
KR100277297B1 (ko) 차량 발전기 제어 시스템
JP4561792B2 (ja) 車両用発電制御装置
JP2651030B2 (ja) 発電機の制御装置及び制御方法とそれを応用した車両用発電機の制御装置及び制御方法
EP0430203B1 (en) Vehicle AC generator control system
JP2576233B2 (ja) 車両用交流発電機の制御装置
US6700353B2 (en) Battery charging system and vehicle generator control system
JP3519905B2 (ja) 車両用発電機の制御装置
JP2006223018A (ja) 車両用発電装置
US7394227B2 (en) Power generation control apparatus for vehicle
JP4158513B2 (ja) 車両用発電制御装置
JP3574146B2 (ja) 車両用交流発電機の制御装置
US4727307A (en) Control apparatus for vehicular generator
JP5201196B2 (ja) 車両用発電制御装置
JP4193348B2 (ja) 車両用発電制御装置
JP3519048B2 (ja) 車両用交流発電機の電圧制御装置
JP4548469B2 (ja) 車両用発電制御装置
JPH0690533A (ja) 車両用発電制御装置
US4686446A (en) Power generation control apparatus for alternating current generator
JP2522797Y2 (ja) 車両用交流発電機の制御装置
JP2002327687A (ja) 圧縮機の予熱制御装置
JP2005080336A (ja) 車両用スイッチング電源装置
JPH089567A (ja) 車両用交流発電機の出力制御方法及び出力制御装置
JP3004296B2 (ja) 車両用交流発電機の制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees