JP3609864B2 - Fatty acid oxidation inhibiting method and fatty acid composition excellent in oxidation stability - Google Patents

Fatty acid oxidation inhibiting method and fatty acid composition excellent in oxidation stability Download PDF

Info

Publication number
JP3609864B2
JP3609864B2 JP04136195A JP4136195A JP3609864B2 JP 3609864 B2 JP3609864 B2 JP 3609864B2 JP 04136195 A JP04136195 A JP 04136195A JP 4136195 A JP4136195 A JP 4136195A JP 3609864 B2 JP3609864 B2 JP 3609864B2
Authority
JP
Japan
Prior art keywords
fatty acid
acid
oxidation
ppm
soap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04136195A
Other languages
Japanese (ja)
Other versions
JPH07258682A (en
Inventor
浩之 竹尾
正明 杉野
秀人 山本
武 松尾
好博 大畠
勇生 高柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Shiseido Co Ltd
Original Assignee
NOF Corp
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp, Shiseido Co Ltd filed Critical NOF Corp
Priority to JP04136195A priority Critical patent/JP3609864B2/en
Publication of JPH07258682A publication Critical patent/JPH07258682A/en
Application granted granted Critical
Publication of JP3609864B2 publication Critical patent/JP3609864B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Anti-Oxidant Or Stabilizer Compositions (AREA)
  • Fats And Perfumes (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、脂肪酸の酸化抑制方法、詳しくは、脂肪酸に抗酸化剤と相乗剤としてオキシ酸を併用添加する際に、オキシ酸を微粒子化し添加する酸化抑制方法に関し、またこの方法で得られる酸化安定性にすぐれた脂肪酸組成物に関するものである。
【0002】
【従来の技術】
油脂または油脂を含有する食品は、酸化により、不快臭を発生したり、人体に悪影響を与える過酸化物を生じる。また、動、植物油脂から得られる脂肪酸およびその誘導体は、界面改質作用、潤滑作用、生理活性を持ち、多くの産業分野において利用されているが、脂肪酸、とくに不飽和脂肪酸は、酸化を受けやすく、脂肪酸の着色と臭気の発生原因となる過酸化物を形成する。この過酸化物の分解にて変質した脂肪酸およびその誘導体は、食品、化粧品、医薬品などの諸原料としては望ましくない。
【0003】
油脂または脂肪酸の酸化を防ぐには、一般的に、抗酸化剤が使用される。しかし、酸素と触れ合う系においては、抗酸化剤の消費が著しく、酸化抑制効果が長続きしない。酸化抑制効力を強めるために、多量(500ppm以上)の抗酸化剤を添加することは副作用が生じ、望ましくない。たとえば、石鹸製造においては、ケン化して得られた石鹸が著しく着色することが多い。
【0004】
そこで、抗酸化剤の使用量を必要最小限にとどめ、なおかつ酸化抑制効果を高めるために、一般に、相乗剤を併用することが実用されている。酸化抑制作用を有する相乗剤としては、オキシ酸類、リン酸およびその誘導体、各種アミノ酸およびその誘導体、フラボン誘導体、含硫化合物などが挙げられ、これらの中でもオキシ酸類が最も広く使用されている。
【0005】
脂肪酸の精製に、オキシ酸類を脂肪酸に添加したのち蒸留する方法は、***公開特許第2,038,468号明細書に開示されている。しかしながら、脂肪酸の酸化抑制には、十分な効果は得られていない。また、オキシ酸類は油脂または脂肪酸に対して溶解度が低いので、通常は水溶液またはアルコ―ル溶液として、油脂または脂肪酸に添加し、減圧下で水またはアルコ―ルを十分に留去したのち、析出してくる過剰分を取り除く方法が採られている。しかし、完全に除去できずに残存する溶剤による油脂または脂肪酸の品質低下や、これら操作の多大の時間と手間を要するために、工業上有利ではない。
【0006】
また、油脂または脂肪酸に対する溶解度を上げる目的で、オキシ酸とモノグリセライドとのエステル誘導体が提案され、実用されているが、効果が不十分であり、またオキシ酸に比べ高価となる。界面活性剤などを用いてオキシ酸の溶液を分散する技術も実用されているが、これらの界面活性剤、溶剤などは、油脂または脂肪酸に対して不純物となり、品質低下の原因となる。
【0007】
【発明が解決しようとする課題】
本発明は、このような事情に鑑み、脂肪酸に抗酸化剤とオキシ酸とを併用添加する際に、脂肪酸の品質低下を招くことなく、簡便な操作でオキシ酸を分散または溶解でき、これにより脂肪酸の酸化抑制効果を大幅に向上しうる方法を提供すること、またこの方法で得られる酸化安定性にすぐれた脂肪酸組成物を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために、鋭意検討した結果、特定の抗酸化剤と併用添加する特定のオキシ酸を微粒子状とすることにより、脂肪酸への分散または溶解速度が飛躍的に増大することを知り、本発明を完成するに至つた。
【0009】
すなわち、本発明の第1は、脂肪酸に、t−ブチルヒドロキシアニソール、2,6−ジ−t−ブチル−p−クレゾールから選ばれる抗酸化剤と、酒石酸、クエン酸、リンゴ酸から選ばれる平均粒径200μm以下のオキシ酸とを添加することを特徴とする脂肪酸の酸化抑制方法に係るものであり、この方法によれば、オキシ酸の添加が容易で、脂肪酸の品質低下を生じずに、酸化抑制効果を大きく向上できる。
【0010】
また、本発明の第2は、上記の方法により得られる脂肪酸組成物として、脂肪酸と、t−ブチルヒドロキシアニソール、2,6−ジ−t−ブチル−p−クレゾールから選ばれる抗酸化剤1〜500ppmと、酒石酸、クエン酸、リンゴ酸から選ばれる平均粒径200μm以下のオキシ酸50〜2,000ppmとからなることを特徴とする酸化安定性にすぐれた脂肪酸組成物に係るものである。
【0012】
【発明の構成・作用】
本発明において対象とする脂肪酸としては、動植物油を分解して得られる脂肪酸、たとえば、牛脂脂肪酸、豚脂脂肪酸、乳脂脂肪酸、パ―ム油脂肪酸、パ―ム核油脂肪酸、やし油脂肪酸、大豆油脂肪酸、なたね油脂肪酸、綿実油脂肪酸、サフラワ―油脂肪酸、アマニ油脂肪酸、ヒマワリ油脂肪酸、オリ―ブ油脂肪酸、コメ油脂肪酸、とうもろこし油脂肪酸、桐油脂肪酸、椿油脂肪酸、魚油脂肪酸、ホホバ油脂肪酸またはこれらの水素化精製、脱色、脱水、脱臭された脂肪酸などのほか、これらの脂肪酸を分別または分留して得られるオレイン酸、リノ―ル酸、エルカ酸、リノレン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸などがある。
【0014】
本発明に用いる抗酸化剤は、t−ブチルヒドロキシアニソ―ル、2,6−ジ−t−ブチル−p−クレゾ―ルから選ばれる。このような抗酸化剤の使用量は、脂肪酸に対し、1〜500ppmの添加量とするのがよく、とくに好ましくは、脂肪酸に対し、10〜200ppmの添加量とするのがよい。
【0015】
本発明に用いるオキシ酸は、クエン酸、酒石酸、リンゴ酸から選ばれる。このようなオキシ酸の平均粒径は、200μm以下、好ましくは100μm以下、より好ましくは70μm以下、とくに好ましくは40μm以下で、平均粒径が小さいほど、分散性または溶解性は向上するが、5μm以下では粉砕に要する費用が高くなるばかりで、分散性または溶解性の向上はほとんどない。
【0016】
オキシ酸をこのような微粒子とするには、湿式粉砕、乾式粉砕のいずれの方法によつてもよい。粉砕後の二次凝集を防ぐためには、湿式粉砕が望ましい。乾式粉砕による場合は、微粉砕後のオキシ酸をあらかじめ分散機により適宜の分散媒に分散させておき、この分散体を脂肪酸に添加するのがよい。
【0017】
湿式粉砕による場合、分散媒として、脂肪酸類、とくにオキシ酸添加の対象となる脂肪酸を用いるのが望ましい。粉砕機は、ボ―ルミル、サンドミル、ビ―ズミル、メジアミルなどのいずれのタイプでもよく、たとえば、アシザワ(株)のパ―ルミル、ス―パ―ミル、井上製作所のサンドミル、メジアミル、ス―パ―ミル、三井三池製作所のアトライナ、ビ―ズミル、マイミルなどがある。また、材質については、セラミツク製またはセラミツクコ―テイングしたものが好ましい。粉砕時のオキシ酸の濃度は、分散媒中、1〜40重量%、好ましくは10〜30重量%の範囲であるのがよい。
【0018】
このように微粒子化したオキシ酸を、前記の抗酸化剤とともに、脂肪酸に添加することにより、このオキシ酸が脂肪酸に対し良好に分散または溶解する結果、酸化抑制効果が増大し、しかも、その際に、従来の如き抗酸化剤の多量使用に起因した着色化の問題や、不純物などの混入による品質低下の問題を生じる心配がない。ここで、微粒子化したオキシ酸の使用量は、脂肪酸に対し、50〜2,000ppm、好ましくは100〜1,000ppm、とくに好ましくは200〜800ppmの添加量とするのがよい。
【0019】
【発明の効果】
本発明では、抗酸化剤とともに添加併用するオキシ酸を微粒子化したことにより、脂肪酸への添加が容易で、着色化や品質低下などの問題を生じることなく、酸化抑制効果を格段に向上できる。また、この方法で得られる酸化安定性にすぐれた脂肪酸組成物を提供できる。
【0020】
【実施例】
つぎに、本発明の実施例を記載して、より具体的に説明する。ただし、本発明はこれらの実施例になんら限定されるものではない。
【0021】
なお、以下の各実施例で用いたオキシ酸は、乾式粉砕品〔乾式粉砕機として日本ニユ―マチツク工業(株)のジエツトミルを用いて所定の粒径に乾式粉砕したもの〕か、湿式粉砕品〔湿式粉砕機としてアシザワ(株)のパ―ルミルを、分散媒としてパ―ム油脂肪酸を、それぞれ用いて、分散媒中20重量%濃度となる状態で、所定の粒径に湿式粉砕したもの〕であつて、各オキシ酸の粒径は、日機装(株)のマイクロトラツクで測定した。
【0022】
実施例1
パ―ム油分解脂肪酸を蒸留して、パ―ム油脂肪酸(中和価:207.5、ヨウ素価:53.2)を得、これにt−ブチルヒドロキシアニソ―ル50ppmと、湿式粉砕によつて平均粒径50μmまで微粒子化した酒石酸500ppmとを添加し、80℃、空気存在下に貯蔵し、基準油脂分析試験法2.4.12−86にしたがつて、過酸化物価を経日的に測定した。また、8日間貯蔵したのちの脂肪酸について、下記の方法で、脂肪酸を石鹸にしたときの石鹸カラ―の測定と、DEA着色試験を行つた。これらの試験結果は、後記の表1(過酸化物価)、表2(石鹸カラ―とDEA着色試験)に示されるとおりであつた。
【0023】
<石鹸カラ―の測定>
脂肪酸に等モルの水酸化ナトリウム水溶液(28重量%)を加え、双腕式混練り機で混合し、水分を約15重量%まで乾燥し、押し出し機で圧縮したのち、型押し機で成形した。得られた石鹸につき、白色度(W)と黄色度(b)を、SMカラ―コンピユ―タ〔スガ試験機(株)〕で測定した。
【0024】
<DEA着色試験>
脂肪酸に等モルのジエタノ―ルアミンとエタノ―ルを加え、沸騰湯煎中で20分間反応させたのち取り出し、色相を測定した。この色相の測定法は、APHA法(基準油脂分析試験法2.3.2.5−71)にしたがい、色相がAPHA500を超えるものについては、ガ―ドナ―法(基準油脂分析法2.3.1.3−71)にしたがつた。
【0025】
比較例1
実施例1と同様にして得たパ―ム油脂肪酸(中和価:207.5、ヨウ素価:53.2)にt−ブチルヒドロキシアニソ―ル50ppmのみを添加し、80℃、空気存在下に貯蔵し、実施例1と同様にして、過酸化物価を測定した。また、8日間貯蔵したのちの脂肪酸について、実施例1と同様にして、脂肪酸を石鹸にしたときの石鹸カラ―の測定とDEA着色試験を行つた。これらの試験結果は、後記の表1および表2に示されるとおりであつた。
【0026】
比較例2
実施例1と同様にして得たパ―ム油脂肪酸(中和価:207.5、ヨウ素価:53.2)にt−ブチルヒドロキシアニソ―ルを500ppmもの多量添加し、80℃、空気存在下に貯蔵し、実施例1と同様にして、過酸化物価を測定した。また、8日間貯蔵したのちの脂肪酸について、実施例1と同様にして、脂肪酸を石鹸にしたときの石鹸カラ―の測定とDEA着色試験を行つた。これらの試験結果は、後記の表1および表2に示されるとおりであつた。
【0027】
実施例2
牛脂分解脂肪酸を蒸留して、牛脂脂肪酸(中和価:205.4、ヨウ素価:52.7)を得、これに2,6−ジ−t−ブチル−p−クレゾ―ル50ppmと、乾式粉砕によつて平均粒径100μmまで微粒子化した酒石酸500ppmとを添加し、80℃、空気存在下に貯蔵し、実施例1と同様にして、過酸化物価を測定した。また、8日間貯蔵したのちの脂肪酸について、実施例1と同様にして、脂肪酸を石鹸にしたときの石鹸カラ―の測定とDEA着色試験を行つた。これらの試験結果は、後記の表1および表2に示されるとおりであつた。
【0030】
参考例1
パ―ム核油分解脂肪酸を蒸留して、パ―ム核油脂肪酸(中和価:252.3、ヨウ素価:18.0)を得、これにトコフエロ―ル50ppmと、湿式粉砕によつて平均粒径50μmまで微粒子化したアスコルビン酸500ppmとを添加し、80℃、空気存在下に貯蔵し、実施例1と同様にして、過酸化物価を測定した。また、8日間貯蔵したのちの脂肪酸について、実施例1と同様にして、脂肪酸を石鹸にしたときの石鹸カラ―の測定とDEA着色試験を行つた。これらの試験結果は、下記の表1および表2に示されるとおりであつた。
【0031】
実施例
パ―ム油分解脂肪酸(中和価:206.8、ヨウ素価:52.5)をニツケル触媒の存在下、温度160〜200℃で、水素圧力3気圧で水素添加して、ヨウ素価を10低下させたのち、蒸留して得られたパ―ム油脂肪酸に、2,6−ジ−t−ブチル−p−クレゾ―ル50ppmと、乾式粉砕によつて平均粒径50μmまで微粒子化したクエン酸500ppmとを添加し、80℃、空気存在下に貯蔵し、実施例1と同様にして、過酸化物価を測定した。また、8日間貯蔵したのちの脂肪酸について、実施例1と同様にして、脂肪酸を石鹸にしたときの石鹸カラ―の測定とDEA着色試験を行つた。これらの試験結果は、下記の表1および表2に示されるとおりであつた。
【0032】
さらに、上記の脂肪酸から得られる石鹸の安定性を評価するために、2,6−ジ−t−ブチル−p−クレゾ―ルと微粒子化したクエン酸とを添加した製造直後の脂肪酸に等モルの水酸化ナトリウム水溶液(28重量%)を加えて、双腕式混練り機で混合し、水分を約15重量%まで乾燥し、押し出し機で圧縮したのち、型押し機で成形して石鹸を得、この石鹸をポリ袋〔(株)生産日本社、ユニパツク〕で包装して、40℃において経日的に白色度(W)と黄色度(b)を、SMカラ―コンピユ―タ〔スガ試験機(株)〕で測定した。これらの試験結果は、下記の表3に示されるとおりであつた。
【0033】
比較例
実施例と同様に、パ―ム油分解脂肪酸(中和価:206.8、ヨウ素価:52.5)をニツケル触媒の存在下、温度160〜200℃で、水素圧力3気圧で水素添加して、ヨウ素価を10低下させたのち、蒸留して得られたパ―ム油脂肪酸に、2,6−ジ−t−ブチル−p−クレゾ―ル50ppmと、微粒子化していない平均粒径350μmのクエン酸500ppmとを添加し、80℃、空気存在下に貯蔵し、実施例1と同様にして、過酸化物価を測定した。また、8日間貯蔵したのちの脂肪酸について、実施例1と同様にして、脂肪酸を石鹸にしたときの石鹸カラ―の測定とDEA着色試験を行つた。これらの試験結果は、下記の表1および表2に示されるとおりであつた。
【0034】
さらに、上記の脂肪酸から得られる石鹸の安定性を評価するために、2,6−ジ−t−ブチル−p−クレゾ―ルと微粒子化していないクエン酸とを添加した製造直後の脂肪酸に等モルの水酸化ナトリウム水溶液(28重量%)を加えて、双腕式混練り機で混合し、水分を約15重量%まで乾燥し、押し出し機で圧縮したのち、型押し機で成形して石鹸を得、この石鹸をポリ袋〔(株)生産日本社、ユニパツク〕で包装して、40℃において経日的に白色度(W)と黄色度(b)を、SMカラ―コンピユ―タ〔スガ試験機(株)〕で測定した。これらの試験結果は、下記の表3に示されるとおりであつた。
【0035】

Figure 0003609864
【0036】
Figure 0003609864
【0037】
Figure 0003609864
【0042】
以上のように、実施例1〜および比較例1〜による脂肪酸の酸化安定性試験(表1,2に示す過酸化物価、石鹸カラ―およびDEA着色試験)と、さらに実施例および比較例による誘導体である石鹸の安定性試験(表3に示す石鹸カラ―)とからも明らかなように、本発明の方法は、脂肪酸の酸化抑制効果にすぐれており、しかも石鹸などの誘導体を生成する際の着色化などの問題が少なく、さらに石鹸などの誘導体の安定性の面でもすぐれており、工業的に有用な酸化抑制方法であることがわかる。
【0043】
本発明の方法により上記の如きすぐれた酸化抑制効果が得られるのは、主に、微粒子化したオキシ酸が脂肪酸に対してすぐれた分散性を示すことに基づくものである。 [0001]
[Industrial application fields]
The present invention, oxidation inhibiting process of fatty acids, particularly, when used in combination added oxy acid as synergists and antioxidants fatty relates oxidation control method for adding fine particles of the oxy acid, also obtained in this way oxidation The present invention relates to a fatty acid composition having excellent stability.
[0002]
[Prior art]
Oils and fats or foods containing oils or fats generate unpleasant odors or peroxides that adversely affect the human body due to oxidation. Fatty acids and their derivatives obtained from animal and vegetable fats and oils have interfacial modification, lubrication, and physiological activity, and are used in many industrial fields. However, fatty acids, especially unsaturated fatty acids, are subject to oxidation. It easily forms peroxides that cause fatty acid coloring and odor generation. Fatty acids and their derivatives that have been altered by the decomposition of peroxides are not desirable as raw materials for foods, cosmetics, pharmaceuticals and the like.
[0003]
Antioxidants are generally used to prevent the oxidation of fats or fatty acids. However, in a system that comes into contact with oxygen, the consumption of antioxidants is significant and the oxidation-suppressing effect does not last long. Addition of a large amount (500 ppm or more) of an antioxidant to enhance the oxidation-suppressing effect is undesirable because it causes side effects. For example, in soap production, soap obtained by saponification is often markedly colored.
[0004]
Therefore, in order to keep the amount of the antioxidant used to the minimum necessary and to enhance the oxidation inhibitory effect, it is generally used in combination with a synergist. Examples of the synergist having an oxidation inhibitory action include oxyacids, phosphoric acid and derivatives thereof, various amino acids and derivatives thereof, flavone derivatives, sulfur-containing compounds, etc. Among these, oxyacids are most widely used.
[0005]
A method for distillation after adding oxyacids to fatty acids for purification of fatty acids is disclosed in West German Patent No. 2,038,468. However, a sufficient effect has not been obtained for inhibiting oxidation of fatty acids. Also, since oxyacids have low solubility in fats and oils or fatty acids, they are usually added to fats and oils or fatty acids as an aqueous solution or alcohol solution, and water or alcohol is sufficiently distilled off under reduced pressure, followed by precipitation. A method is used to remove excess excess. However, it is not industrially advantageous because the quality of fats and oils or fatty acids deteriorates due to the remaining solvent that cannot be completely removed, and a great deal of time and labor is required for these operations.
[0006]
In addition, ester derivatives of oxyacids and monoglycerides have been proposed and put to practical use for the purpose of increasing the solubility in fats and oils or fatty acids, but the effect is insufficient and the cost is higher than that of oxyacids. A technique of dispersing a solution of oxyacid using a surfactant or the like has also been put into practical use. However, these surfactants and solvents become impurities with respect to fats and oils or fatty acids and cause quality deterioration.
[0007]
[Problems to be solved by the invention]
In view of the above circumstances, when the combined addition of the antioxidant and an oxyacid to fatty, without lowering the quality of the fatty acids, the oxyacid can be dispersed or dissolved by a simple operation, thereby It aims at providing the method which can improve the oxidation inhibitory effect of a fatty acid significantly, and the fatty acid composition excellent in the oxidation stability obtained by this method.
[0008]
[Means for Solving the Problems]
The present inventors have found that in order to achieve the above object, a result of intensive studies, by the particular oxy acid to be added in combination with certain antioxidants and particulate, is dispersed or dissolution rate of the fatty leap As a result, the present invention has been completed.
[0009]
That is, according to the first aspect of the present invention, the average selected from fatty acid, antioxidant selected from t-butylhydroxyanisole, 2,6-di-t-butyl-p-cresol , tartaric acid, citric acid, and malic acid. It relates to a method for inhibiting oxidation of fatty acid , characterized by adding an oxyacid having a particle size of 200 μm or less. According to this method, addition of oxyacid is easy, without causing deterioration in the quality of fatty acid , The oxidation suppression effect can be greatly improved.
[0010]
In addition, according to the second aspect of the present invention, as the fatty acid composition obtained by the above method, an antioxidant 1 to fatty acid selected from fatty acid, t-butylhydroxyanisole, and 2,6-di-t-butyl-p-cresol is used. The present invention relates to a fatty acid composition having excellent oxidation stability , comprising 500 ppm and 50 to 2,000 ppm oxyacid having an average particle size of 200 μm or less selected from tartaric acid, citric acid, and malic acid .
[0012]
[Configuration and operation of the invention]
Fatty acids targeted in the present invention include fatty acids obtained by decomposing animal and vegetable oils, such as beef tallow fatty acids, tallow fatty acids, milk fat fatty acids, palm oil fatty acids, palm kernel fatty acids, palm oil fatty acids, Soybean oil fatty acid, rapeseed oil fatty acid, cottonseed oil fatty acid, safflower oil fatty acid, flaxseed oil fatty acid, sunflower oil fatty acid, olive oil fatty acid, rice oil fatty acid, corn oil fatty acid, tung oil fatty acid, straw oil fatty acid, fish oil fatty acid, jojoba oil fatty acid or In addition to these hydrorefined, decolorized, dehydrated, and deodorized fatty acids, oleic acid, linoleic acid, erucic acid, linolenic acid, lauric acid, myristic acid obtained by fractionating or fractionating these fatty acids, There are palmitic acid and stearic acid.
[0014]
The antioxidant used in the present invention is selected from t-butylhydroxyanisole and 2,6-di-t-butyl-p-cresol . The amount of the antioxidant used is preferably 1 to 500 ppm with respect to the fatty acid , and particularly preferably 10 to 200 ppm with respect to the fatty acid .
[0015]
Oxyacid used in the present invention include citric acid, tartaric acid, selected from malic acid. The average particle size of such an oxyacid is 200 μm or less, preferably 100 μm or less, more preferably 70 μm or less, particularly preferably 40 μm or less. The smaller the average particle size, the better the dispersibility or solubility, but 5 μm In the following, the cost required for pulverization increases, and there is almost no improvement in dispersibility or solubility.
[0016]
In order to make oxyacid into such fine particles, either wet pulverization or dry pulverization may be used. In order to prevent secondary aggregation after pulverization, wet pulverization is desirable. In the case of dry pulverization, it is preferable to disperse the finely pulverized oxyacid in an appropriate dispersion medium in advance by a disperser and add this dispersion to the fatty acid .
[0017]
If by wet grinding, as a dispersion medium, fatty acids, in particular to use the subject to fatty additives oxyacid are preferable. The pulverizer may be any type such as a ball mill, a sand mill, a bead mill, and a media mill. -Mills, Mitsui Miike Seisakusho, beer mills, my mills, etc. The material is preferably made of ceramic or ceramic coated. The concentration of the oxyacid during pulverization is in the range of 1 to 40% by weight, preferably 10 to 30% by weight in the dispersion medium.
[0018]
Thus the microparticulated oxyacids, together with the antioxidant, by adding the fatty acids, as a result of the oxy acid is well dispersed or dissolved to fatty acid oxidation inhibition effect is increased, moreover, in which In addition, there is no fear of causing a problem of coloring due to a large amount of use of an antioxidant as in the prior art and a problem of quality deterioration due to mixing of impurities or the like. Here, the amount of the finely divided oxyacid used is 50 to 2,000 ppm, preferably 100 to 1,000 ppm, particularly preferably 200 to 800 ppm, based on the fatty acid .
[0019]
【The invention's effect】
In the present invention, since the oxyacid added together with the antioxidant is made into fine particles, the addition to the fatty acid is easy, and the oxidation inhibiting effect can be remarkably improved without causing problems such as coloring and quality deterioration. Moreover, the fatty acid composition excellent in the oxidation stability obtained by this method can be provided.
[0020]
【Example】
Next, examples of the present invention will be described in more detail. However, the present invention is not limited to these examples.
[0021]
In addition, the oxyacid used in each of the following examples is a dry pulverized product (a product obtained by dry pulverization to a predetermined particle size using a dry mill of Nippon-Machiku Kogyo Co., Ltd.) or a wet pulverized product. [A wet mill using Ashizawa's par mill and a palm oil fatty acid as a dispersion medium, and wet milling to a predetermined particle size at a concentration of 20% by weight in the dispersion medium] Therefore, the particle size of each oxyacid was measured with a Nikkiso Co., Ltd. microtrack.
[0022]
Example 1
Palm oil-decomposed fatty acid was distilled to obtain palm oil fatty acid (neutralization value: 207.5, iodine value: 53.2), which was then mixed with 50 ppm t-butylhydroxyanisole, and wet pulverized. Therefore, 500 ppm of tartaric acid finely divided to an average particle diameter of 50 μm was added and stored in the presence of air at 80 ° C., and the peroxide value was determined according to the standard fat analysis method 2.4.12-86. Measured. In addition, the fatty acid after storing for 8 days was subjected to the measurement of soap color when the fatty acid was used as soap and the DEA coloring test by the following method. These test results were as shown in Table 1 (peroxide value) and Table 2 (soap color and DEA coloring test) described later.
[0023]
<Measurement of soap color>
An equimolar aqueous sodium hydroxide solution (28% by weight) was added to the fatty acid, mixed with a double-arm kneader, dried to about 15% by weight, compressed with an extruder, and then molded with a stamping machine. . About the obtained soap, whiteness (W) and yellowness (b) were measured with SM color computer [Suga Test Instruments Co., Ltd.].
[0024]
<DEA coloring test>
Equal moles of diethylamine and ethanol were added to the fatty acid, reacted for 20 minutes in boiling water, taken out, and the hue was measured. The hue is measured in accordance with the APHA method (reference oil analysis test method 2.3.2.5-71). For those whose hue exceeds APHA 500, the Gardener method (reference oil analysis method 2.3). 1.3-71).
[0025]
Comparative Example 1
Only 50 ppm of t-butylhydroxyanisole was added to palm oil fatty acid (neutralization value: 207.5, iodine value: 53.2) obtained in the same manner as in Example 1, and at 80 ° C. in the presence of air. The peroxide value was measured in the same manner as in Example 1. Further, the fatty acid after storage for 8 days was subjected to the measurement of soap color and the DEA coloring test when the fatty acid was used as soap in the same manner as in Example 1. These test results were as shown in Tables 1 and 2 below.
[0026]
Comparative Example 2
A large amount of 500 ppm of t-butylhydroxyanisole was added to palm oil fatty acid (neutralization value: 207.5, iodine value: 53.2) obtained in the same manner as in Example 1, and the presence of air at 80 ° C. The peroxide value was measured in the same manner as in Example 1. Further, the fatty acid after storage for 8 days was subjected to the measurement of soap color and the DEA coloring test when the fatty acid was used as soap in the same manner as in Example 1. These test results were as shown in Tables 1 and 2 below.
[0027]
Example 2
The beef tallow fatty acid was distilled to obtain beef tallow fatty acid (neutralization number: 205.4, iodine number: 52.7), and 2,6-di-t-butyl-p-cresol 50 ppm, 500 ppm of tartaric acid finely pulverized to an average particle size of 100 μm by pulverization was added and stored in the presence of air at 80 ° C., and the peroxide value was measured in the same manner as in Example 1. Further, the fatty acid after storage for 8 days was subjected to the measurement of soap color and the DEA coloring test when the fatty acid was used as soap in the same manner as in Example 1. These test results were as shown in Tables 1 and 2 below.
[0030]
Reference example 1
Palm kernel oil-decomposed fatty acid was distilled to obtain palm kernel oil fatty acid (neutralization number: 252.3, iodine value: 18.0), and tocopherol 50 ppm was added thereto by wet grinding. Ascorbic acid (500 ppm) finely divided to an average particle size of 50 μm was added and stored in the presence of air at 80 ° C., and the peroxide value was measured in the same manner as in Example 1. Further, the fatty acid after storage for 8 days was subjected to the measurement of soap color and the DEA coloring test when the fatty acid was used as soap in the same manner as in Example 1. These test results were as shown in Table 1 and Table 2 below.
[0031]
Example 3
Palm oil-decomposed fatty acid (neutralization number: 206.8, iodine value: 52.5) was hydrogenated in the presence of a nickel catalyst at a temperature of 160 to 200 ° C. and a hydrogen pressure of 3 atm. After the reduction, the palm oil fatty acid obtained by distillation was subjected to 50 ppm of 2,6-di-t-butyl-p-cresol, and a finely pulverized citron by dry grinding to an average particle size of 50 μm. Acid 500 ppm was added and stored in the presence of air at 80 ° C., and the peroxide value was measured in the same manner as in Example 1. Further, the fatty acid after storage for 8 days was subjected to the measurement of soap color and the DEA coloring test when the fatty acid was used as soap in the same manner as in Example 1. These test results were as shown in Table 1 and Table 2 below.
[0032]
Furthermore, in order to evaluate the stability of the soap obtained from the above fatty acid, equimolar amount was added to the fatty acid immediately after production to which 2,6-di-t-butyl-p-cresol and finely divided citric acid were added. A sodium hydroxide aqueous solution (28 wt%) was added, mixed with a double-arm kneader, dried to a moisture content of about 15 wt%, compressed with an extruder, molded with a mold press, and soaped. This soap is packed in a plastic bag [produced by Nihon-Pakku Co., Ltd., Unipack], and the whiteness (W) and yellowness (b) are obtained over time at 40 ° C. with SM color computer [Suga Tester Co., Ltd.]. These test results were as shown in Table 3 below.
[0033]
Comparative Example 3
In the same manner as in Example 3 , a palm oil-decomposed fatty acid (neutralization number: 206.8, iodine value: 52.5) was hydrogenated in the presence of a nickel catalyst at a temperature of 160 to 200 ° C. and a hydrogen pressure of 3 atm. Then, after reducing the iodine value by 10, the palm oil fatty acid obtained by distillation was subjected to 2,6-di-t-butyl-p-cresol 50 ppm, and the average particle size not atomized 350 ppm of citric acid (500 ppm) was added, stored in the presence of air at 80 ° C., and the peroxide value was measured in the same manner as in Example 1. Further, the fatty acid after storage for 8 days was subjected to the measurement of soap color and the DEA coloring test when the fatty acid was used as soap in the same manner as in Example 1. These test results were as shown in Table 1 and Table 2 below.
[0034]
Furthermore, in order to evaluate the stability of the soap obtained from the above fatty acid, the fatty acid immediately after production to which 2,6-di-t-butyl-p-cresol and non-particulated citric acid were added, etc. Molar aqueous solution of sodium hydroxide (28 wt%) is added, mixed with a double-arm kneader, dried to a moisture content of about 15 wt%, compressed with an extruder, and then molded with a mold press to obtain soap. The soap is packaged in a plastic bag (produced by Nihon-Pakku Co., Ltd., Unipack), and the whiteness (W) and yellowness (b) are obtained over time at 40 ° C. using the SM color computer [ Suga Test Instruments Co., Ltd.]. These test results were as shown in Table 3 below.
[0035]
Figure 0003609864
[0036]
Figure 0003609864
[0037]
Figure 0003609864
[0042]
As described above, the oxidation stability test of fatty acids according to Examples 1 to 3 and Comparative Examples 1 to 3 (peroxide value, soap color and DEA coloring test shown in Tables 1 and 2) , and Example 3 and Comparative Example As is clear from the stability test of the soap which is a derivative according to Example 3 (soap color shown in Table 3), the method of the present invention is excellent in the effect of inhibiting oxidation of fatty acids , and a derivative such as soap is used. There are few problems, such as coloring at the time of production | generation, and also it is excellent also in the surface of stability of derivatives, such as soap, and it turns out that it is an industrially useful oxidation suppression method.
[0043]
The reason why the above-described excellent oxidation inhibiting effect is obtained by the method of the present invention is mainly based on the fact that finely divided oxyacids exhibit excellent dispersibility with respect to fatty acids .

Claims (4)

脂肪酸に、t−ブチルヒドロキシアニソール、2,6−ジ−t−ブチル−p−クレゾールから選ばれる抗酸化剤と、酒石酸、クエン酸、リンゴ酸から選ばれる平均粒径200μm以下のオキシ酸とを添加することを特徴とする脂肪酸の酸化抑制方法。 To the fatty acid, an antioxidant selected from t-butylhydroxyanisole and 2,6-di-t-butyl-p-cresol , and an oxyacid having an average particle size of 200 μm or less selected from tartaric acid, citric acid, and malic acid A method for inhibiting oxidation of fatty acids , characterized by comprising adding them. 平均粒径200μm以下のオキシ酸が、脂肪酸を分散媒とした湿式粉砕により調製されたものである請求項1に記載の脂肪酸の酸化抑制方法。The method for inhibiting oxidation of fatty acid according to claim 1, wherein the oxyacid having an average particle size of 200 µm or less is prepared by wet grinding using a fatty acid as a dispersion medium. 抗酸化剤の添加量が1〜500ppm、オキシ酸の添加量が50〜2,000ppmである請求項1または請求項2に記載の脂肪酸の酸化抑制方法。The method for inhibiting oxidation of fatty acid according to claim 1 or 2, wherein the addition amount of the antioxidant is 1 to 500 ppm and the addition amount of the oxyacid is 50 to 2,000 ppm. 脂肪酸と、t−ブチルヒドロキシアニソール、2,6−ジ−t−ブチル−p−クレゾールから選ばれる抗酸化剤1〜500ppmと、酒石酸、クエン酸、リンゴ酸から選ばれる平均粒径200μm以下のオキシ酸50〜2,000ppmとからなることを特徴とする酸化安定性にすぐれた脂肪酸組成物。 1 to 500 ppm of an antioxidant selected from fatty acids, t-butylhydroxyanisole and 2,6-di-t-butyl-p-cresol , oxy having an average particle size of 200 μm or less selected from tartaric acid, citric acid and malic acid A fatty acid composition having excellent oxidation stability, characterized by comprising 50 to 2,000 ppm of acid.
JP04136195A 1994-02-07 1995-02-06 Fatty acid oxidation inhibiting method and fatty acid composition excellent in oxidation stability Expired - Fee Related JP3609864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04136195A JP3609864B2 (en) 1994-02-07 1995-02-06 Fatty acid oxidation inhibiting method and fatty acid composition excellent in oxidation stability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-35420 1994-02-07
JP3542094 1994-02-07
JP04136195A JP3609864B2 (en) 1994-02-07 1995-02-06 Fatty acid oxidation inhibiting method and fatty acid composition excellent in oxidation stability

Publications (2)

Publication Number Publication Date
JPH07258682A JPH07258682A (en) 1995-10-09
JP3609864B2 true JP3609864B2 (en) 2005-01-12

Family

ID=26374403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04136195A Expired - Fee Related JP3609864B2 (en) 1994-02-07 1995-02-06 Fatty acid oxidation inhibiting method and fatty acid composition excellent in oxidation stability

Country Status (1)

Country Link
JP (1) JP3609864B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6193986B1 (en) * 1997-02-25 2001-02-27 The Nisshin Oil Mills, Ltd. Oily composition with increased stability and process for producing the same
JP3581818B2 (en) * 2000-05-19 2004-10-27 イセ食品株式会社 Antioxidant fish oil
WO2010016347A1 (en) 2008-08-08 2010-02-11 Sato Chokichi Apparatus for generating steam plasma, method of sterilization with steam plasma, and method of anti-oxidizing treatment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117288A (en) * 1981-12-30 1983-07-12 ライオン株式会社 Oxidation prevention for oils and fats
US5230836A (en) * 1991-06-20 1993-07-27 Kalamazoo Holdings, Inc. Low micron-sized ascorbic acid particles, especially a suspension thereof in a medium in which they are insoluble, and the use thereof as an antioxidant for mediums in which the particles remain insoluble

Also Published As

Publication number Publication date
JPH07258682A (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US5102659A (en) Natural antioxidant compositions
JP5086634B2 (en) Method for inhibiting coloration of fats and oils containing catechins
JPH0978061A (en) Antioxidant
JPH0428342B2 (en)
JPH075887B2 (en) New antioxidant system
JP3609864B2 (en) Fatty acid oxidation inhibiting method and fatty acid composition excellent in oxidation stability
EP0666300B1 (en) Method for inhibiting oxiation of oils and fats or fatty acids
JP4954528B2 (en) Cleaning composition
JPH06500594A (en) Composition of natural antioxidants for stabilization of polyunsaturated oils
EP0841010B1 (en) Stable compositions dispersible in cold water
US20040195549A1 (en) Lipid-soluble formulations containing mixtures of antioxidants
EP0339382A2 (en) Process for deodorizing mixtures of fatty acid esters
AU2004215531B2 (en) Process for producing powdered composition containing highly unsaturated fatty acid esters of ascorbic acid and powdered composition containing esters
JP2007138067A (en) Horse oil composition having improved quality
JPS594469B2 (en) Lipid-soluble antioxidant composition and method for producing the same
JP3715345B2 (en) Method of adding water-soluble active ingredients to fat
RU2291684C2 (en) Active additive for cosmetic agents and method for production thereof
JP2000270800A (en) Coagulant composition for tofu
JPS61263906A (en) Granular cosmetic
JPS58208383A (en) Liquid antioxidant
JP2002084992A (en) Method for producing liquid propolis food composition and solid propolis raw processed product
JP2766785B2 (en) Powdered fats and oils
JP2980430B2 (en) Antioxidant
JP3229842B2 (en) Oily composition and feed to which it is added
JP2644353B2 (en) Whitening cosmetics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees