JP3609572B2 - Method for manufacturing solar cell module - Google Patents

Method for manufacturing solar cell module Download PDF

Info

Publication number
JP3609572B2
JP3609572B2 JP05809597A JP5809597A JP3609572B2 JP 3609572 B2 JP3609572 B2 JP 3609572B2 JP 05809597 A JP05809597 A JP 05809597A JP 5809597 A JP5809597 A JP 5809597A JP 3609572 B2 JP3609572 B2 JP 3609572B2
Authority
JP
Japan
Prior art keywords
surface member
solar cell
cell module
back surface
outer dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05809597A
Other languages
Japanese (ja)
Other versions
JPH10256584A (en
Inventor
孝慶 安田
宏 清水
多 彦坂
節雄 大川
信行 西
晋行 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP05809597A priority Critical patent/JP3609572B2/en
Publication of JPH10256584A publication Critical patent/JPH10256584A/en
Application granted granted Critical
Publication of JP3609572B2 publication Critical patent/JP3609572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は、複数個の太陽電池を表面部材と裏面部材との間に挟持してなる太陽電池モジュールに関し、特に外観の良好な太陽電池モジュールを歩留まり良く製造するものである。
【0002】
【従来の技術】
太陽電池は、クリーンで無尽蔵のエネルギー源である太陽からの光を直接電気に変換できることから新しいエネルギー変換装置として期待され、近年においては一般家庭用の電源としての利用が盛んに進められている。
【0003】
太陽電池を斯かる一般家庭用の電源として用いる場合通常は屋根上に設置することとなるが、一般に屋外に設置するにあたっては高温度や低温度、高湿度や低湿度、或いは雨等の様々な外環境に対する十分な耐久性が要求される。
【0004】
また、太陽電池1つ当たりの出力電圧は高々1V未満に過ぎないが、一般家庭用の電源として用いる場合には、その出力電圧を約180V程度にまで昇圧する必要がある。
【0005】
そこで、従来は、複数個の太陽電池を電気的に直列接続する事で出力電圧を高めると共に、これらの太陽電池を封止材により表面部材と裏面部材との間に封止して太陽電池モジュールとすることで、外環境に対する耐久性を向上させている(例えば特開平6−196740号に詳しい)。
【0006】
図7は、斯かる従来の太陽電池モジュールの断面構造図を示し、1は表面部材、2は裏面部材であり、これらの間に接続部材3…により互いに電気的に直列接続された複数個の太陽電池4…が封止材5により封止され、そして枠体6により一体化されている。
【0007】
これらの材質としては、表面部材1には十分な光の透過性と力学的強度並びに耐候性の点から平板状のガラス板やシート状の透明樹脂が通常用いられる。また、裏面部材2には放熱性の高いアルミ箔をシート状の樹脂で両側からラミネート加工したシートやナイロン等のシート状樹脂或いは平板状のガラス板が、そして封止材5には比較的容易に熱硬化できるシート状のEVAが、夫々用いられる。さらに、枠体6には加工の容易なAl枠が用いられる。
【0008】
次に、斯かる太陽電池モジュールの製造について図8を参照して説明する。
【0009】
図8(A)は、太陽電池モジュールを製造する製造装置の概略構成図であり、100は下側ハウジング、101は該下側ハウジング100の上部開口部に略面一に配備されるヒータープレート、102は前記下側ハウジング100に気密に結合される蓋部材である。
【0010】
前記蓋部材102には、下側ハウジング100の開口部に対向する側にゴム製のダイヤフラム103が設けられており、下側ハウジング100と蓋部材102の周縁部には結合時の気密を確保するためのパッキン104…が取り付けられている。また、下側ハウジング100は図示しない真空ポンプに接続されている。
【0011】
斯かる製造装置を用いて、まずヒータープレート101上に、図8(B)に示す如く下から裏面部材2、封止材5、太陽電池4…、封止材5、表面部材1をこの順に積層してなる積層体105を載置する。
【0012】
次いで、下側ハウジング100を図示しない真空ポンプにより排気すると共にヒータープレート101を約170℃に加熱する。この工程によりダイヤフラムバルブ103が積層体105側に押し付けられ、該積層体5を構成する各素材が加熱圧着される。そして、この加熱圧着された積層体を枠体6により一体化することで、図7に示した太陽電池モジュールが製造される。
【0013】
【発明が解決しようとする課題】
上述した加熱圧着の工程時においてはEVA等からなる封止材5が軟化し、一旦ゲル状化することとなるが、従来は表面部材1と裏面部材2との外寸法を略同一としていたため圧着時に表面部材1と裏面部材2とにズレが生じる、という課題があった。
【0014】
そして、斯かる表面部材1と裏面部材2とのズレが生じると、外観不良となるばかりでなく、枠体6を取り付ける際にこれを容易に取り付ける事ができず、また無理に取り付けんとすると表面部材1或いは裏面部材2にひび或いは割れが生じ、歩留まりが低下するという課題があった。
【0015】
【課題を解決するための手段】
本発明は、斯かる従来の課題を解決せんとして、複数個の太陽電池を表面部材と裏面部材との間に挟持してなる太陽電池モジュールの製造方法であって、外寸法を表面部材の外寸法の99.5%程度とした裏面部材、EVAシート、複数個の太陽電池、EVAシート及び表面部材をこの順に載置し、加熱圧着して太陽電池モジュールとすることを特徴とする。
【0016】
【発明の実施の形態】
図1乃至図4を参照して本発明を説明する。ここで、図1は本発明に係る太陽電池モジュールの平面図、図2は図1においてA−A’で示した部分の断面図、図3は背面図、また4は本発明に係る太陽電池モジュールで用いた端子ボックスの拡大図を夫々示している。
【0017】
これらの図において、1は白板強化ガラスからなる表面部材であり、本実施形態においては外寸法980mm×1065mm、厚さ3.2mmのものを用いた。また、2は青板強化ガラスからなる裏面部材であり、外寸法は978mm×1063mm、厚さ4mm程度と、表面部材1よりも外寸法を小さくしたものを用いている。
【0018】
4…は単結晶Siからなる太陽電池であり、大きさは103mm×103mmである。尚、本実施形態においては斯様な単結晶Si太陽電池72枚が8列×9行に配列され、そして銅薄板等の金属薄板よりなる接続部材3…にて電気的に直列接続されることで全体の出力が略110W程度とされている。
【0019】
そして、この略110Wの出力は太陽電池素子4…の背後において、電力引出線11…により裏面部材2の背面に設けられた端子ボックス10、10へ引出され、外部に取り出されることとなる。
【0020】
この時、本実施形態においては裏面部材2の所定の箇所に、該裏面部材2を貫通する孔が設けられ、この孔を介して接続部材3…がモジュール内部から端子ボックス10、10まで引き出される構造となっている。
【0021】
尚、図4に示した通り、端子ボックス10内には太陽電池保護用のバイパスダイオード22、22が設けられており、モジュール全体で4個のバイパスダイオードが設けてある。従って、本実施形態の太陽電池モジュールにあっては太陽電池4…18個毎に1個のバイパスダイオード22が設けてある。
【0022】
また、本実施形態においては2個の端子ボックス10、10を備えているが、これに限らず1個であっても良いのは言うまでもない。
【0023】
さらには、電力引出線11…は表面部材1と裏面部材2との間の間隙から外部に設けられた端子ボックスにまで引き出すようにしても良い。この例を図5及び図6に示す。
【0024】
図5は電力引出線11を外部に引き出す部分を拡大して示した断面図であり、また図6は端子ボックスの配置を示した平面図である。
【0025】
同図に示す如く、電力引出線11は表面部材1と裏面部材2との間の間隙から封止材5を介して取り出され、端子ボックス10内に設けられた端子31に接続され、そして電気ケーブル32により電気出力が外部に取り出される。
【0026】
また、この時の端子ボックス10の配置としては図6(A)に示した如く太陽電池モジュールの所定の一辺に設けても良いし、同図(B)に示した如く太陽電池モジュールの所定の一辺の略中央付近に設けたものであっても良い。或いは同図(C)に示す如く、太陽電池モジュールの所定の一辺における両隅部に夫々正負の端子ボックス10、10を設けたものであっても良い。特に、同図(C)の配置によれば、裏面部材2の2隅を切り欠くだけで容易に端子ボックスを設ける事ができ、製造が容易である。
【0027】
このような端子ボックスを備えた太陽電池モジュールを製造するにあたっては、前述した如く裏面部材2、EVAシート5、太陽電池3…、EVAシート5、及び表面部材1をこの順に載置し、加熱圧着することで製造する。この際、電力引出線11…の端子ボックスに接続すべき部分を予め外部に取り出しておく。即ち、本実施形態においては、電力引出線…の一部を予めEVAシート5の所定部に設けられた切り込み及び裏面部材2に設けられた孔を介して外部に取り出しておく。そして、上記の加熱圧着を行う事により、電力引出線11…の一部が外部に取り出された太陽電池モジュールが製造される。
【0028】
この加熱圧着時に前述の通り、表面部材1と裏面部材2との間にズレが生じる事となるが、本発明においては表面部材1の外寸法を裏面部材2の外寸法よりも若干大きめにしている。このため、裏面部材2が表面部材1に対して多少ズレたとしても、そのズレは表面部材1の外寸法の範囲内で吸収されることとなる。従って、表面部材1或いは裏面部材2に割れ等の問題が何等生じることなく枠体6で一体化することが可能となる。
【0029】
以上詳述した通り、本発明の太陽電池モジュールによれば、加熱圧着時に表面部材1と裏面部材2との間に生じるズレに起因する外観不良や両部材1、2に発生するヒビや割れ等の問題を解決する事が可能となる。この結果、従来の太陽電池モジュールにあっては歩留まりが高々60%であったのに対し、本発明によれば略100%にまで向上する事ができた。
【0030】
尚、上述した加熱圧着時に生じるズレの大きさはモジュールの大きさと略正の相関があり、例えばモジュールの大きさが約30cm角であればズレの大きさは約1.6mmの範囲内に、モジュールの大きさが約1m角であれば略2mmの範囲内に、またモジュールの大きさが約1.5m角であれば略2.4mmの範囲内に収まることが実験の結果から分かっている。従って、裏面部材2の外寸法を表面部材の外寸法の99.5%程度とすることで、加熱圧着時における上記のズレを略吸収できることとなる。
【0031】
また、外寸法を小さくするのは表面部材或いは裏面部材のいずれでもよいが、例えばカーテンウォール方式の太陽電池モジュール等枠体を用いない構成の太陽電池モジュールにおいては、裏面部材を小さくする方が外観状好ましい。
【0032】
さらに、上述した実施形態にあっては太陽電池として単結晶Siからなるものを用いて説明したが、これに限らず非晶質Si、多結晶Si等他の半導体材料からなる太陽電池を用いた太陽電池モジュールにあっても本発明を適用する事ができる。また、これらの太陽電池の接続方法も、本実施形態の如く直列接続したものに限らず並列接続、或いは直列接続と並列接続を併用した太陽電池モジュールにおいても本発明を適用する事ができる。
【0033】
【発明の効果】
以上詳述したとおり、本発明によれば外寸法を表面部材の外寸法の99.5%程度とした裏面部材を用いたので、加熱圧着時に表面部材いは裏面部材のズレが生じたとしても何ら支障なく枠体を取り付ける事ができる。
【0034】
また、枠体を設けない構成の太陽電池モジュールにあっても、裏面部材の外寸法を表面部材の外寸法よりも小さくする事で、たとえ上記のズレが生じた場合にあっても外観を良好に保つ事ができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係わる太陽電池モジュールの平面図である。
【図2】図1に示した太陽電池モジュールにおける、A−A’で示した部分の断面図である。
【図3】本発明の実施形態に係わる太陽電池モジュールの背面図である。
【図4】端子ボックスの拡大図である。
【図5】別の端子ボックスの拡大断面図である。
【図6】別の端子ボックス配置を示した平面図である。
【図7】従来の太陽電池モジュールの断面構造図である。
【図8】太陽電池モジュールの製造装置の概略構成図である。
【符号の説明】
1…表面部材、2…裏面部材、3…接続部材、4…太陽電池、5…封止材、
6…枠体、10…端子ボックス、11…電力引出線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solar cell module in which a plurality of solar cells are sandwiched between a front member and a back member, and particularly, a solar cell module having a good appearance is manufactured with a high yield.
[0002]
[Prior art]
A solar cell is expected as a new energy conversion device because it can directly convert light from the sun, which is a clean and inexhaustible energy source, into electricity, and in recent years, its use as a power source for general households has been actively promoted.
[0003]
When a solar cell is used as such a power source for general households, it is usually installed on the roof. However, when installed outdoors, it is generally installed at various temperatures such as high temperature, low temperature, high humidity, low humidity, or rain. Sufficient durability against the outside environment is required.
[0004]
Moreover, although the output voltage per solar cell is less than 1V at most, when used as a power supply for general households, it is necessary to boost the output voltage to about 180V.
[0005]
Therefore, conventionally, a plurality of solar cells are electrically connected in series to increase the output voltage, and these solar cells are sealed between a front surface member and a back surface member by a sealing material, and a solar cell module Thus, durability against the external environment is improved (for example, detailed in JP-A-6-196740).
[0006]
FIG. 7 shows a cross-sectional structural view of such a conventional solar cell module, wherein 1 is a front surface member, 2 is a back surface member, and a plurality of members electrically connected in series with each other by connecting members 3. The solar cells 4 are sealed with a sealing material 5 and integrated with a frame body 6.
[0007]
As these materials, a flat glass plate or a sheet-like transparent resin is usually used for the surface member 1 in terms of sufficient light transmission, mechanical strength, and weather resistance. Also, the back member 2 is a sheet made by laminating aluminum foil with high heat dissipation from both sides with sheet-like resin, a sheet-like resin such as nylon, or a flat glass plate, and the sealing material 5 is relatively easy. Each sheet-like EVA that can be thermally cured is used. Further, an Al frame that is easy to process is used for the frame 6.
[0008]
Next, manufacture of such a solar cell module will be described with reference to FIG.
[0009]
FIG. 8A is a schematic configuration diagram of a manufacturing apparatus for manufacturing a solar cell module, in which 100 is a lower housing, 101 is a heater plate disposed substantially flush with an upper opening of the lower housing 100, Reference numeral 102 denotes a lid member that is airtightly coupled to the lower housing 100.
[0010]
The lid member 102 is provided with a rubber diaphragm 103 on the side facing the opening of the lower housing 100, and the peripheral portion of the lower housing 100 and the lid member 102 is secured to be airtight when coupled. Packing 104 ... for is attached. The lower housing 100 is connected to a vacuum pump (not shown).
[0011]
Using such a manufacturing apparatus, first, on the heater plate 101, as shown in FIG. 8B, the back surface member 2, the sealing material 5, the solar cell 4..., The sealing material 5, and the surface member 1 are arranged in this order. A stacked body 105 is stacked.
[0012]
Next, the lower housing 100 is evacuated by a vacuum pump (not shown) and the heater plate 101 is heated to about 170 ° C. Through this step, the diaphragm valve 103 is pressed against the laminated body 105 side, and each material constituting the laminated body 5 is thermocompression bonded. And the solar cell module shown in FIG. 7 is manufactured by integrating this thermocompression-bonded laminated body with the frame 6.
[0013]
[Problems to be solved by the invention]
In the above-described thermocompression bonding process, the sealing material 5 made of EVA or the like is softened and once gelled. However, conventionally, the outer dimensions of the front surface member 1 and the back surface member 2 are substantially the same. There was a problem that the front surface member 1 and the back surface member 2 were displaced at the time of pressure bonding.
[0014]
And when such a deviation between the front surface member 1 and the back surface member 2 occurs, not only the appearance is deteriorated, but also when the frame body 6 is attached, it cannot be easily attached, and it is difficult to attach it. There was a problem that the surface member 1 or the back member 2 was cracked or cracked, resulting in a decrease in yield.
[0015]
[Means for Solving the Problems]
In order to solve such a conventional problem, the present invention is a method for manufacturing a solar cell module in which a plurality of solar cells are sandwiched between a front surface member and a back surface member, and the outer dimensions are outside the surface member. A back surface member, EVA sheet, a plurality of solar cells , an EVA sheet, and a surface member having a size of about 99.5% of the dimensions are placed in this order, and are thermocompression bonded to form a solar cell module.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
With reference to FIGS. 1 to 4 illustrate the present onset bright. Here, 1 is a plan view of a solar cell module according to the present invention, according to FIG. 2 is a sectional view of a portion indicated by A-A 'in FIG. 1, FIG. 3 is a rear view, and FIG. 4 is the invention Taiyo The enlarged view of the terminal box used with the battery module is shown, respectively.
[0017]
In these figures, reference numeral 1 denotes a surface member made of white plate tempered glass. In this embodiment, a surface member having an outer dimension of 980 mm × 1065 mm and a thickness of 3.2 mm was used. Reference numeral 2 denotes a back surface member made of blue sheet tempered glass. The outer dimension is 978 mm × 1063 mm, the thickness is about 4 mm, and the outer dimension is smaller than that of the surface member 1.
[0018]
4... Are solar cells made of single crystal Si and have a size of 103 mm × 103 mm. In the present embodiment, 72 such single-crystal Si solar cells are arranged in 8 columns × 9 rows, and are electrically connected in series by connecting members 3 made of a thin metal plate such as a copper thin plate. Therefore, the overall output is about 110 W.
[0019]
Then, the output of about 110 W is drawn out to the terminal boxes 10 and 10 provided on the back surface of the back member 2 by the power lead wires 11 behind the solar cell elements 4 and taken out to the outside.
[0020]
At this time, in the present embodiment, a hole penetrating the back surface member 2 is provided at a predetermined position of the back surface member 2, and the connecting members 3 are drawn out from the inside of the module to the terminal boxes 10 and 10 through the hole. It has a structure.
[0021]
As shown in FIG. 4, bypass diodes 22 and 22 for protecting solar cells are provided in the terminal box 10, and four bypass diodes are provided in the entire module. Therefore, in the solar cell module of this embodiment, one bypass diode 22 is provided for every 18 solar cells.
[0022]
Moreover, in this embodiment, although the two terminal boxes 10 and 10 are provided, it cannot be overemphasized that not only this but one may be sufficient.
[0023]
Furthermore, the power lead wires 11 may be drawn from the gap between the front surface member 1 and the back surface member 2 to a terminal box provided outside. An example of this is shown in FIGS.
[0024]
FIG. 5 is an enlarged cross-sectional view showing a portion where the power lead wire 11 is pulled out, and FIG. 6 is a plan view showing the arrangement of the terminal box.
[0025]
As shown in the figure, the power lead wire 11 is taken out through the sealing material 5 from the gap between the front surface member 1 and the back surface member 2, connected to a terminal 31 provided in the terminal box 10, and An electrical output is taken out by the cable 32.
[0026]
Further, the terminal box 10 at this time may be disposed on a predetermined side of the solar cell module as shown in FIG. 6A, or may be provided on the predetermined side of the solar cell module as shown in FIG. It may be provided near the approximate center of one side. Alternatively, as shown in FIG. 6C, positive and negative terminal boxes 10 and 10 may be provided at both corners on a predetermined side of the solar cell module. In particular, according to the arrangement shown in FIG. 3C, the terminal box can be easily provided by simply cutting out the two corners of the back surface member 2, and the manufacture is easy.
[0027]
In manufacturing a solar cell module having such a terminal box, as described above, the back member 2, the EVA sheet 5, the solar cells 3,... To manufacture. At this time, a portion to be connected to the terminal box of the power lead wires 11 is previously taken out to the outside. That is, in the present embodiment, a part of the power lead-out line is taken out to the outside through a notch provided in a predetermined portion of the EVA sheet 5 and a hole provided in the back member 2 in advance. And the solar cell module by which a part of electric power leader lines 11 ... was taken out outside is manufactured by performing said thermocompression bonding.
[0028]
As described above, a deviation occurs between the front surface member 1 and the back surface member 2 during the thermocompression bonding. However, in the present invention, the outer dimension of the front surface member 1 is set slightly larger than the outer dimension of the back surface member 2. Yes. For this reason, even if the back surface member 2 is slightly displaced from the front surface member 1, the displacement is absorbed within the range of the outer dimension of the surface member 1. Therefore, it is possible to integrate the front member 1 or the rear member 2 with the frame body 6 without causing any problems such as cracks.
[0029]
As described above in detail, according to the solar cell module of the present invention, an appearance defect caused by a gap generated between the front surface member 1 and the back surface member 2 at the time of thermocompression bonding, cracks or cracks generated in both the members 1 and 2, etc. It becomes possible to solve this problem. As a result, in the conventional solar cell module, the yield was 60% at most, but according to the present invention, the yield could be improved to about 100%.
[0030]
It should be noted that the size of the deviation that occurs during the above-described thermocompression bonding has a substantially positive correlation with the module size. For example, if the module size is about 30 cm square, the size of the deviation is within the range of about 1.6 mm. Experimental results show that if the module size is about 1 m square, it is within the range of about 2 mm, and if the module size is about 1.5 m square, it is within the range of about 2.4 mm. . Therefore, by setting the outer dimension of the back member 2 to about 99.5% of the outer dimension of the front member, the above-described deviation at the time of thermocompression bonding can be substantially absorbed.
[0031]
Further, the outer dimension may be reduced by either the front surface member or the back surface member. For example, in a solar cell module having a configuration that does not use a frame body such as a curtain wall type solar cell module, it is preferable to make the back surface member smaller. The state is preferable.
[0032]
Furthermore, in the above-described embodiments, the solar cell made of single crystal Si has been described. However, the present invention is not limited to this, and a solar cell made of another semiconductor material such as amorphous Si or polycrystalline Si was used. The present invention can also be applied to a solar cell module. Further, the connection method of these solar cells is not limited to the one connected in series as in the present embodiment, and the present invention can also be applied to a parallel connection or a solar cell module using both serial connection and parallel connection.
[0033]
【The invention's effect】
As described above in detail, as so with back surface member was 99.5% of the outer dimension of the outer dimension surface member according to the present invention, the surface member one had during thermocompression bonding occurred deviation of the rear surface member The frame can be attached without any trouble.
[0034]
In addition, even in a solar cell module having a structure without a frame, by reducing the outer dimension of the back member to be smaller than the outer dimension of the front member, the appearance is good even when the above deviation occurs. Can be kept.
[Brief description of the drawings]
FIG. 1 is a plan view of a solar cell module according to an embodiment of the present invention.
2 is a cross-sectional view of the portion indicated by AA ′ in the solar cell module shown in FIG. 1. FIG.
FIG. 3 is a rear view of the solar cell module according to the embodiment of the present invention.
FIG. 4 is an enlarged view of a terminal box.
FIG. 5 is an enlarged cross-sectional view of another terminal box.
FIG. 6 is a plan view showing another terminal box arrangement.
FIG. 7 is a cross-sectional structure diagram of a conventional solar cell module.
FIG. 8 is a schematic configuration diagram of a solar cell module manufacturing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Front surface member, 2 ... Back surface member, 3 ... Connection member, 4 ... Solar cell, 5 ... Sealing material,
6 ... Frame, 10 ... Terminal box, 11 ... Power leader

Claims (1)

複数個の太陽電池を表面部材と裏面部材との間に挟持してなる太陽電池モジュールの製造方法であって、外寸法を表面部材の外寸法の99.5%程度とした裏面部材、EVAシート、複数個の太陽電池、EVAシート及び表面部材をこの順に載置し、加熱圧着して太陽電池モジュールとすることを特徴とする太陽電池モジュールの製造方法。A method for manufacturing a solar cell module in which a plurality of solar cells are sandwiched between a front surface member and a back surface member, the back surface member having an outer dimension of about 99.5% of the outer dimension of the front surface member, EVA sheet A method for manufacturing a solar cell module, wherein a plurality of solar cells , an EVA sheet, and a surface member are placed in this order, and are thermocompression bonded to form a solar cell module.
JP05809597A 1997-03-12 1997-03-12 Method for manufacturing solar cell module Expired - Lifetime JP3609572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05809597A JP3609572B2 (en) 1997-03-12 1997-03-12 Method for manufacturing solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05809597A JP3609572B2 (en) 1997-03-12 1997-03-12 Method for manufacturing solar cell module

Publications (2)

Publication Number Publication Date
JPH10256584A JPH10256584A (en) 1998-09-25
JP3609572B2 true JP3609572B2 (en) 2005-01-12

Family

ID=13074402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05809597A Expired - Lifetime JP3609572B2 (en) 1997-03-12 1997-03-12 Method for manufacturing solar cell module

Country Status (1)

Country Link
JP (1) JP3609572B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179725B2 (en) * 2000-02-07 2008-11-12 富士電機ホールディングス株式会社 Solar cell module
JP2002270886A (en) * 2001-03-14 2002-09-20 Kanegafuchi Chem Ind Co Ltd Solar cell module
KR100967820B1 (en) 2003-03-12 2010-07-05 준 신 이 A method to fabricate long life-time solar cell modules using a back integrated cell
TW200642103A (en) * 2005-03-31 2006-12-01 Sanyo Electric Co Solar battery module
JP4841156B2 (en) * 2005-03-31 2011-12-21 三洋電機株式会社 Solar cell module
JP5404987B2 (en) 2005-09-13 2014-02-05 三洋電機株式会社 Solar cell module
JP2008288547A (en) * 2007-04-20 2008-11-27 Sanyo Electric Co Ltd Solar cell module
WO2008132989A1 (en) * 2007-04-20 2008-11-06 Sanyo Electric Co., Ltd. Solar cell module
JP2010165993A (en) * 2009-01-19 2010-07-29 Yocasol Inc Solar cell module
JP2011054662A (en) * 2009-08-31 2011-03-17 Sanyo Electric Co Ltd Solar cell module
JP5617690B2 (en) * 2011-02-24 2014-11-05 三洋電機株式会社 Solar cell module manufacturing method and solar cell module
KR20140027267A (en) * 2011-05-19 2014-03-06 쌩-고벵 글래스 프랑스 Solar panel
GB2515837A (en) 2013-07-05 2015-01-07 Rec Solar Pte Ltd Solar cell assembly
CN105850034A (en) * 2013-12-27 2016-08-10 松下知识产权经营株式会社 Solar cell module
JP6183658B2 (en) * 2014-05-26 2017-08-23 パナソニックIpマネジメント株式会社 Solar cell module manufacturing method and solar cell module
WO2016135827A1 (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Solar battery panel

Also Published As

Publication number Publication date
JPH10256584A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
JP3609572B2 (en) Method for manufacturing solar cell module
US7960642B2 (en) CIS based thin-film photovoltaic module and process for producing the same
JP5450801B2 (en) Insulating glass composite material including photovoltaic cells arranged diagonally, method for producing the same, and method for using the same
US5476553A (en) Solar cell modules and method of making same
US4686321A (en) Photovoltaic device and method of manufacturing thereof
TWI413266B (en) Photovoltaic module
US20120031465A1 (en) Solar module in an insulating glass composite method for production and use
US20110192449A1 (en) Photovoltaic module
US20100212723A1 (en) Photovoltaic module
EP0788171A2 (en) Heat collector with solar cell and passive solar apparatus
JPH11312820A (en) Solar cell module and its manufacture
JPS6032352A (en) Solar battery module
JP2006286838A (en) Method of manufacturing solar battery module and solar battery module
KR101126430B1 (en) A functional panel using foamed aluminium
WO2012002422A1 (en) Method for manufacturing solar cell module, and solar cell module manufactured by the method
JP5507034B2 (en) Solar cell module and manufacturing method thereof
JPS60260164A (en) Solar battery module and manufacture thereof
JP2001077387A (en) Solar battery module
JP4351457B2 (en) Solar cell module
JPH11303325A (en) Solar battery module
WO2017133571A1 (en) Photovoltaic assembly
JP4330241B2 (en) Solar cell module
CN210073875U (en) Solar curtain wall assembly and solar curtain wall
JP2007201315A (en) Manufacturing method for solar cell module, and manufacturing device therefor
JP2007201316A (en) Manufacturing method for solar cell module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

EXPY Cancellation because of completion of term