JP3609458B2 - Heat treatment method and apparatus for fine carbon fiber - Google Patents

Heat treatment method and apparatus for fine carbon fiber Download PDF

Info

Publication number
JP3609458B2
JP3609458B2 JP21667194A JP21667194A JP3609458B2 JP 3609458 B2 JP3609458 B2 JP 3609458B2 JP 21667194 A JP21667194 A JP 21667194A JP 21667194 A JP21667194 A JP 21667194A JP 3609458 B2 JP3609458 B2 JP 3609458B2
Authority
JP
Japan
Prior art keywords
fine carbon
carbon fiber
heat treatment
molding
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21667194A
Other languages
Japanese (ja)
Other versions
JPH0860444A (en
Inventor
彰孝 須藤
利夫 森田
邦夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP21667194A priority Critical patent/JP3609458B2/en
Publication of JPH0860444A publication Critical patent/JPH0860444A/en
Application granted granted Critical
Publication of JP3609458B2 publication Critical patent/JP3609458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は有機化合物の熱分解による気相成長法によって得られる微細な炭素繊維の熱処理方法及び装置に関する。
気相法炭素繊維は中空孔を有する炭素の微細な繊維であって、各種有機高分子材料や無機高分子材料、各種セラミック、金属等のマトリックスに配合して導電材料、抵抗材料、帯電防止材料、静電気除去材料、電磁波シールド材料等の電気伝導性、摺動性、熱伝導性、強度その他の機能を向上または付与させる材料として利用される。
【0002】
【従来の技術】
1)気相法炭素繊維の製造方法
気相成長炭素繊維製造方法は、反応炉内で有機化合物を熱分解してウイスカー状の微細な炭素繊維を1工程で得ることの出来る優れた方法である。しかし工業的な生産性に問題があり種々改善がなされてきた。
例えば初めはセラミック基板に遷移金属の超微粒子を付着させてから有機化合物を供給し分解させ長時間成長させて比較的太く長い気相法炭素繊維を製造する方法であった(特開昭52−103528)。
この方法は良好な物性の炭素繊維が得られるが、繊維径が太くなることや反応速度が遅いことが、工業生産に向かないなど不十分な点が多かった。
これを改善するために、鉄を始めとする遷移金属またはその化合物を触媒とし、この触媒とキャリヤーガス及び例えばベンゼン、トルエン、天然ガス等の有機化合物を液または気体状で反応炉に導入して有機化合物を800℃〜1300℃程度で熱分解し、微細な炭素繊維を短時間で生産する方法が開発され生産性が改善された。
【0003】
この微細な気相法炭素繊維の製造方法としては
▲1▼フェロセン等の遷移金属化合物を気化させ反応炉に導入し、遷移金属の微粒子を生成させシードとして用い製造する方法(特開昭60−54998)。
▲2▼鉄等の遷移金属を直接熱分解炉中で気化させてシードを作り製造する方法(特開昭61−291497)。
▲3▼フェロセン等の遷移金属化合物を液体有機化合物に分散あるいは溶解させて反応炉中にスプレーしてシードとして製造する方法(特開昭58−180615)。
等によって製造されるようになった。
本発明の熱処理に用いられる炭素繊維もこの微細な炭素繊維である。
【0004】
2)微細炭素繊維の構造物性
この炭素繊維は直径が0.01〜5μm、長さが1〜1000μm程度の繊維状粉末で、各繊維は黒鉛の結晶構造の網面が繊維軸に沿って発達し、繊維軸に沿った中心部に微細な中空の孔があるのが特徴である。
そして製造されたままの繊維(粗製繊維)には繊維以外に未利用触媒の残渣(未反応有機物も含む)、非繊維炭化物やタール分などが含まれている。通常これらの気相法炭素繊維を製品にするにはこれらの非繊維状物を除去する必要がある。
3)粗製繊維の処理方法
まず未反応の有機物を除去するには粗製繊維を非酸化性雰囲気下で加熱処理し、タール分を炭化すると同時に一部は揮発除去する。またこれらの熱処理した繊維は粗製繊維に含まれていた非繊維状炭化物やタール分の炭化によって生じた非繊維性の炭素分を含み、これらが繊維の集合物中に挟雑して凝集体をなしている。そこでこの凝集体を解砕し、気流分級等によって繊維状物と粒状炭素や金属等を分級する。
微細な炭素繊維集合物(粉末)は嵩密度が0.005g/cm 以下と非常に低く、移送等に不便であり、また、粉体のまま加熱炉を通すと炉内の壁面に付着してすぐ炉内につまり、粉体を送ることが困難になる。そこで、従来はこれらの微細な繊維の熱処理は、黒鉛ルツボのような容器に入れて熱処理する方法が多く採用されている。
【0005】
【発明が解決しようとする課題】
1)微細な炭素繊維の粉体は生成した直後の嵩密度が0.005g/cm 以下と小さいため粉体のまま熱処理するには加熱炉の処理設備容量が大きくなり設備コストが高くなる。
2)圧縮しない状態での粉体は見かけ上の熱伝導率は0.1W/m/K以下と極めて小さく、加熱するには不利である。
3)このような粉体の熱処理は通常外部加熱の炉を使うようになるため設備容量が大きくなると伝熱の関係で熱効率が悪くなり、結果的に処理コストが高くなる。
4)粉のまま加熱処理するには粉の移送機構が必要となり設備的に複雑となるばかりではなく、粉体の付着や詰まりのトラブルが多くなり、取扱いが非常にやっかいである。通常この処理には容器に微細な炭素繊維を充填し、容器のまま加熱処理する方法が取られている。しかしこの方法でも、微細な炭素繊維のように嵩密度が小さい粉体では容器内に入る繊維の量は著しく少なく、熱はほとんど容器を加熱することに費やされ、その結果処理コストが高くなる。
【0006】
【課題を解決するための手段】
本発明者らはこの気相法炭素繊維の粉体をうまく成形できれば黒鉛ルツボに入れて加熱するのと同等の効果があり、容易に熱処理できるようになるものと考え、種々検討した。その結果、微細な炭素繊維の生成したままのものは炭化してないタール分をはじめ、未反応の有機物が付着していること及び各繊維が絡み合っているため、圧力を加えるとそのまま成形、熱処理が可能であることを見出し本発明に到達した。
即ち、本発明は有機化合物の熱分解により得られたタール分をはじめ、未反応の有機物等を含む微細な炭素繊維を圧縮成形し、非酸化性雰囲気下で加熱することからなる微細炭素繊維の熱処理方法である。またこのための装置としては炭素繊維生成炉にホッパーを介して、圧縮成形装置及び加熱装置を連結し、生成した繊維を連続的に成形、熱処理できるようにする装置が好ましい。このために本発明は成形装置としてホッパー下部にピストンシリンダー型の成形装置を設け、シリンダーの底部を開閉ダンパーとし、このダンパーに加熱装置を備えた炉芯管を接続して、成形終了後は成形体を炉芯管内に押出し、加熱処理する構成としたものである。
【0007】
以下本発明を詳しく説明する。
1)成形法
本発明で用いられる微細な炭素繊維は従来同様ベンゼン、トルエン、天然ガス等の有機化合物を原料とし、フェロセン等を触媒にし、水素ガス等をキャリヤーガスにして製造されるものである。これらの原料は、液相で導入することも気相で投入することもできる。また、触媒と有機化合物は混入して導入してもよいし、別々に入れることも可能であるが、混合した方が簡便である。この場合フェロセン等の触媒はベンゼン等に溶解し、熱分解炉内に噴霧する方法が用いられるが、望ましくは噴霧の方向を炉の長さ方向に平行でなく、炉壁に向けて傾斜させて放射状に噴霧する方法である。この方法によれば炭素繊維は炉壁で効率よく生成し、しかも分枝の多い繊維(特願平5−326042)となるので、繊維の絡みがよく成形体を得るのに好都合である。
【0008】
いずれの方法においても微細炭素繊維は直径が0.01μm〜5μm、長さが1μm〜1000μm程である。これらの繊維は通常800〜1300℃程度の温度で製造されるが、炭化してないタール分が2〜30重量%程度含まれている。タール分は最終製品としては除去しなければならず、通常は熱処理によって炭化し、その後気流分級等によって除去している。
微細な炭素繊維は上記のタール分及び繊維の絡みによってそのまま圧縮成形しただけでも移送、熱処理等の取扱いにおいて崩壊することなく必要な強度を維持することができる。しかし、さらに高い強度を望む場合は加熱処理後の物性に影響を与えない物質、例えば澱粉、CMC、ナフタレン、アントラセン、クリセン、タール等の一次結合材を直接またはベンゼン等に溶解して少量添加することもできる。
成形法としては繊維粉体に圧力をかける方法であればいずれの方法でも可能であるが、具体的にはプレス成形法、ディスクペレッターのような押出し成形法が比較的容易である。
【0009】
成形体の形状は微細炭素繊維が粉体であるため金型及び圧縮方法を選ぶことによって、あらゆる形状に圧縮成形できる。例えば、円柱状、直方体、円板状等は容易である。
しかし工業的にはできるだけ単純な形状がよく、例えば加熱管が角柱型の場合には直方体が、管状型の場合には円柱状が好ましい。
微細炭素繊維の成形時に加える圧力は目的とする成形体の強度、目標嵩密度によって最適な圧力を限定すれば良い。具体的には0.1kg/cm 以上好ましくは0.5kg/cm 以上あれば良い。圧力は高くても良いが繊維の崩壊を起こさない程度が好ましく、また圧力が高くなると金型を始め加圧システム自体の設備費が高くなるので0.1〜100kg/cm 程度、好ましくは0.5〜10kg/cm 程度が良い。
このようにして得られた成形体は嵩密度が通常0.02g/cm 〜1.5g/cm 程度となり、粉体の嵩密度0.001g/cm 〜0.005g/cm に比べ1〜2桁大きい。また強度は加重法で測定した崩壊限界加重は1000g/cm 以上あり、取扱い上充分な強度である。熱伝導率も0.5W/m/K程度となり、成形前の5倍以上となる。
【0010】
2)成形体の加熱処理方法
加熱処理方法は物体の加熱に通常用いられる方法でよく、例えば電熱や高温ガスを用いた外熱式加熱方法、高温ガスによる直接加熱方法など目標温度が達成できれば何れの方法でもよい。
熱処理温度は最終的な用途の物性の目標とする温度によって選定すればよく1300℃以上3200℃以下がよく採用される。但し、2000℃以上の黒鉛化処理の場合には急激に行なうと揮発分の著しい発生とか炭化の進行によってトラブルを発生する可能性があるので、好ましくは予め1400℃程度で熱処理をしたのち高温処理するとか又は黒鉛化温度までの昇温勾配を充分に取る必要がある。
熱処理炉の材質は処理温度によって選択されるが2000℃以上の高温になると黒鉛等の炭素材料が最適である。
【0011】
加熱の雰囲気は熱処理温度が500℃以上、特に1000℃以上の温度になると炭素繊維と雰囲気ガスとの反応を防止するため、加熱部の雰囲気ガスを窒素、ヘリウム、アルゴン、キセノン、クリプトン、その他の非酸化性ガス雰囲気に調整する。従って、加熱部分は非酸化性ガスを導入し又これを排出できる機構を備える必要がある。更に熱処理する際には揮発性のタール分が一部蒸発するのでこれを排出する。排出された非酸化性ガスは揮発分を凝縮、吸着、吸収等の方法で除けばリサイクルすることも可能である。
熱処理した成形体は各種の用途に供するため、通常は解砕あるいは粉砕し、気流分級等によって分級し、非繊維状物を除去し製品とする。
【0012】
3)熱処理装置
成形体の熱処理装置としては成形体を耐熱性容器に収納し、容器を炉内に入れて加熱することも勿論可能であるが、望ましい装置としては図に示すように成形し、加熱を連続して行なう装置である。但しこの装置では炉芯管の材質等から温度は1800℃程度が限度である。これより高い温度、例えば黒鉛化温度にするには成形体を容器に収納して黒鉛化炉で加熱するなどの方法がよい。
【0013】
以下図面に基づいて具体的に説明する。
図1は本発明装置の断面図である。図2は図1のシリンダーと炉芯管の接続点のダンパーを示す正面拡大図である。
熱分解炉で製造された微細炭素繊維1は一旦ホッパー2に集積される。この炭素繊維は粉末状繊維が軟らかく凝集したものなのでホッパーから成形装置に送入するにはブリッジングを防ぐためフィダー3を設けるのがよい。また圧縮成形すると体積が大幅に縮小するので最終の成形体に成形する前に予備成形するのが好ましい。そのためにフィダーから送られた繊維を例えばスクリュー型押出機15で予備成形のためのシリンダー16内に送り込む。これを最終の成形のためのシリンダー5内にピストン17により圧縮装入する。このときはピストン4は後退している。予備成形のピストン17の先端はシリンダー5の形状に合せ、例えばシリンダー5が断面円形の場合はピストン17の先端面はシリンダー5に合せた半円形となる。そしてシリンダー5による成形の際はピストン17の先端はシリンダー5に合せた位置にある。
【0014】
図示の装置は最終の成形機の上に予備成形機が取付けてあるが、予備成形機は最終の成形機の横に、即ち水平方向に取付けることも可能である。
また予備成形機を用いずに直接シリンダー5で成形することも可能である。それにはホッパーから繊維を一度にシリンダー5に供給することは容積の関係で難しいのでシリンダー5に供給された繊維を予備成形し、更に繊維の供給、予備成形を繰り返し所定の繊維量とし、最後に全体の成形を行なう方法などをとればよい。
シリンダーの底部には開閉するダンパー7が設けられ、これはシリンダー径と同じ穴を有するフランジ6内を気密に摺動するようになっている。これによって炉芯管10内からガスが遮断される。繊維の成形はダンパーを閉の状態で行ない、成形終了後開にして成形体9を次の炉芯管10内にピストン4により押出す。
【0015】
炉芯管10は成形後の成形体の膨脹も考慮し、シリンダーの径(成形体の径)よりも大きくする。即ち、この炭素繊維は圧縮後の復元率が高いからである。炉芯管内の成形体は後から順次押し出される成形体によって移動させることが最も簡単である。
炉芯管は加熱処置8に囲繞されている。加熱装置は図示のものは1個であるが、これを直列に二つ設け前段を比較的低温部、後段を高温部としてもよい。加熱源は電熱によるのが最も容易である。
【0016】
炉芯管の先端には成形体の取出し管10′が接続されている。これは断面が四角形状で下端面にスライドする開閉ダンパー14が取付けられている。この取出し管は炉芯管が四角の場合は炉芯管を延長させたものでもよい。
熱処理を終了した成形体は取出し管のダンパーを開くことにより落下し受け器11に収納される。炉芯管内はアルゴンガス等の非酸化性雰囲気とし、そのためにガス送入口12、排出口13を設ける。取出し管10′の先端は目くら止めされており、またダンパー14は熱処理後の成形体を受け器11に押し出すとき以外は閉塞し、送入されたガスが受け器11の方に流れないようにする。炉芯管内のガス送入口と排出口を図のようにしてガスの流れを成形体の移動と逆の方向にするのは、前記したように炉芯管内はタール等の蒸発ガスが存在し、これが熱処理後の成形体に付着するのを防止するためである。
本発明の装置により自動的に連続して成形、加熱が可能である。ピストンとダンパーを自動的に制御し、ダンパー閉、フィダーによる粉体の所定量供給、圧縮、ダンパー開、押出し、ピストンの後退を1サイクルとして順序繰り返される。
【0017】
【実施例】
[実施例1]
微細炭素繊維はベンゼンを原料とし、フェロセンを触媒、水素ガスをキャリヤーガスにして公知の方法に従い製造した。繊維の大部分は直径0.1μm〜0.5μm、長さが10μm〜100μm範囲に入っていた。
図1の装置を用いこの繊維10kgをホッパーに仕込み、押出機15によりシリンダー内16に所定量繊維を供給し、次にこれをピストン17でシリンダー5内に押し込み、最後にシリンダー5とピストン4により成形圧力を6.5kg/cm にして成形した。成形体は直径140mm、長さ200mmの円柱状であった。成形後ダンパーを開として成形体を押出し、炉芯管内に送り出す。この間に要した時間は約10分である。ダンパーを閉じ前と同様に成形し、押出す工程を繰り返した。加熱炉に囲まれた炉芯管の長さ即ち、目的の温度になっている部分の長さは60cm、従って成形体がこの帯域で加熱される時間は約30分間である。加熱帯の最高温度は1400℃とした。炉芯管内はアルゴンガスを向流で流した。 熱処理された成形体は嵩密度が0.15g/cm 、円柱の上下より圧縮したときの崩壊限界加重は1.46kg/cm であった。
【0018】
【発明の効果】
微細な炭素繊維粉体は嵩密度が0.001〜0.005g/cm であり、非常に取扱いにくく、また熱処理する場合にも熱伝導率が低いので効率が悪いが、本発明によればこの繊維は簡単に成形体とすることができ、これによって上記の問題は解決された。
炭素繊維は成形することにより、嵩密度を1〜2桁程度上げることができ、また同時に熱伝導率も大幅に向上するので装置上及び熱効率上顕著な効果をもたらす。
また本発明の熱処理装置は成形、熱処理を連続して行なうことができるので生産性においても有利である。特に炭素繊維の製造から成形、熱処理まで一連の工程で行なえば途中における炭素繊維の大きなストック装置や移送装置も不要となり、その効果は多大である。
【図面の簡単な説明】
【図1】微細炭素繊維を熱処理する本発明装置の1例を示す断面図。
【図2】図1のダンパーの部分拡大図。
【符号の説明】
1 微細炭素繊維
2 ホッパー
3 フィダー
4 ピストン
5 シリンダー
6 フランジ
7 ダンパー
8 加熱装置
9 微細炭素繊維の成形体
10 炉芯管
10′ 取出し管
11 受け器
12 ガス送入口
13 ガス排出口
14 ダンパー
15 スクリュー押出機
16 シリンダー
17 ピストン
[0001]
[Industrial application fields]
The present invention relates to a heat treatment method and apparatus for fine carbon fibers obtained by a vapor phase growth method by thermal decomposition of an organic compound.
Vapor-grown carbon fiber is a fine fiber of carbon with hollow pores. It is blended with various organic polymer materials, inorganic polymer materials, various ceramics, metals, etc. in a matrix of conductive material, resistance material, antistatic material. It is used as a material for improving or imparting electrical conductivity, slidability, thermal conductivity, strength and other functions such as a static eliminating material and an electromagnetic shielding material.
[0002]
[Prior art]
1) Vapor grown carbon fiber production method Vapor growth carbon fiber production method is an excellent method capable of thermally decomposing an organic compound in a reactor to obtain whisker-like fine carbon fibers in one step. . However, there are problems with industrial productivity and various improvements have been made.
For example, first, ultra-fine particles of transition metal were adhered to a ceramic substrate, and then an organic compound was supplied, decomposed and grown for a long time to produce a relatively thick and long vapor grown carbon fiber (JP-A-52-52). 103528).
This method can obtain carbon fibers having good physical properties, but there are many unsatisfactory points such as the fact that the fiber diameter is thick and the reaction rate is low, which is not suitable for industrial production.
In order to improve this, a transition metal such as iron or a compound thereof is used as a catalyst, and this catalyst and a carrier gas and an organic compound such as benzene, toluene, natural gas, etc. are introduced into the reaction furnace in a liquid or gaseous state. A method for pyrolyzing an organic compound at about 800 ° C. to 1300 ° C. to produce fine carbon fibers in a short time has been developed, and productivity has been improved.
[0003]
As a method for producing this fine vapor grown carbon fiber, (1) a method in which a transition metal compound such as ferrocene is vaporized and introduced into a reaction furnace to produce fine particles of transition metal and used as a seed (Japanese Patent Laid-Open No. 60-60). 54998).
(2) A method for producing a seed by vaporizing a transition metal such as iron directly in a pyrolysis furnace (Japanese Patent Laid-Open No. 61-291497).
(3) A method in which a transition metal compound such as ferrocene is dispersed or dissolved in a liquid organic compound and sprayed into a reaction furnace to produce a seed (Japanese Patent Laid-Open No. 58-180615).
Etc. have come to be manufactured.
The carbon fiber used for the heat treatment of the present invention is also this fine carbon fiber.
[0004]
2) Structural properties of fine carbon fiber This carbon fiber is a fibrous powder with a diameter of 0.01 to 5 μm and a length of about 1 to 1000 μm. Each fiber has a network of graphite crystal structure developed along the fiber axis. However, it is characterized by a fine hollow hole at the center along the fiber axis.
In addition to the fibers, the as-manufactured fibers (crude fibers) contain unused catalyst residues (including unreacted organic matter), non-fiber carbides, tars, and the like. Usually, in order to make these vapor grown carbon fibers into products, it is necessary to remove these non-fibrous materials.
3) Treatment method of crude fiber First, in order to remove unreacted organic matter, the crude fiber is heated in a non-oxidizing atmosphere to carbonize the tar and simultaneously volatilize and remove a part thereof. These heat-treated fibers contain non-fibrous carbides contained in the crude fibers and non-fibrous carbons generated by carbonization of tars, which are interspersed in the fiber assembly to form aggregates. There is no. Therefore, this aggregate is crushed and classified into fibrous materials, granular carbon, metal and the like by airflow classification or the like.
A fine carbon fiber aggregate (powder) has a very low bulk density of 0.005 g / cm 3 or less, which is inconvenient for transportation, etc. In addition, if the powder is passed through a heating furnace, it adheres to the wall surface in the furnace. In other words, it becomes difficult to feed the powder into the furnace. Therefore, conventionally, many methods for heat-treating these fine fibers are put in a container such as a graphite crucible and heat-treated.
[0005]
[Problems to be solved by the invention]
1) Since the bulk density of fine carbon fiber powder is as small as 0.005 g / cm 3 or less immediately after production, the processing equipment capacity of the heating furnace is increased and the equipment cost is increased to heat-treat the powder as it is.
2) The powder in an uncompressed state has an apparent thermal conductivity of 0.1 W / m / K or less, which is disadvantageous for heating.
3) Since heat treatment of such a powder usually uses an external heating furnace, if the equipment capacity is increased, the heat efficiency is deteriorated due to heat transfer, resulting in an increase in processing cost.
4) Heat treatment with powder requires a powder transport mechanism, which not only complicates the equipment, but also increases the trouble of powder adhesion and clogging, and is very troublesome to handle. Usually, this process is performed by filling a container with fine carbon fibers and heat-treating the container as it is. However, even with this method, the amount of fibers that enter the container is remarkably small in powders with a small bulk density such as fine carbon fibers, and most of the heat is consumed in heating the container, resulting in high processing costs. .
[0006]
[Means for Solving the Problems]
The inventors of the present invention considered that if this vapor-grown carbon fiber powder can be formed well, it has the same effect as heating it in a graphite crucible and can be easily heat-treated. As a result, fine carbon fibers that are still produced are not carbonized tar, unreacted organic substances are attached, and each fiber is intertwined. The present invention has been found.
That is, the present invention relates to a fine carbon fiber comprising compression molding of fine carbon fibers containing unreacted organic substances and the like, including a tar content obtained by thermal decomposition of an organic compound, and heating in a non-oxidizing atmosphere. This is a heat treatment method. As an apparatus for this purpose, an apparatus that connects a compression molding apparatus and a heating apparatus to a carbon fiber generation furnace via a hopper so that the generated fibers can be continuously formed and heat-treated is preferable. For this purpose, the present invention is provided with a piston cylinder type molding device at the bottom of the hopper as a molding device, the bottom of the cylinder is an open / close damper, and a furnace core tube equipped with a heating device is connected to this damper. The body is extruded into a furnace core tube and heat treated.
[0007]
The present invention will be described in detail below.
1) Molding method The fine carbon fibers used in the present invention are produced using organic compounds such as benzene, toluene and natural gas as raw materials, using ferrocene as a catalyst and hydrogen gas or the like as a carrier gas. . These raw materials can be introduced either in the liquid phase or in the gas phase. Further, the catalyst and the organic compound may be mixed and introduced, or may be added separately, but mixing is easier. In this case, a catalyst such as ferrocene is dissolved in benzene and sprayed into the pyrolysis furnace. Preferably, the spray direction is not parallel to the length of the furnace but inclined toward the furnace wall. It is a method of spraying radially. According to this method, the carbon fiber is efficiently generated at the furnace wall and becomes a fiber having many branches (Japanese Patent Application No. 5-326042). Therefore, the entanglement of the fiber is good and it is convenient to obtain a molded product.
[0008]
In any method, the fine carbon fiber has a diameter of 0.01 μm to 5 μm and a length of about 1 μm to 1000 μm. These fibers are usually produced at a temperature of about 800 to 1300 ° C., but contain about 2 to 30% by weight of a non-carbonized tar. The tar content must be removed as a final product, usually carbonized by heat treatment, and then removed by air classification or the like.
Even if the fine carbon fiber is simply compression-molded as it is due to the tar content and the entanglement of the fiber, it can maintain the required strength without collapsing in handling such as transfer and heat treatment. However, if a higher strength is desired, a substance that does not affect the physical properties after heat treatment, for example, a primary binder such as starch, CMC, naphthalene, anthracene, chrysene, tar is dissolved directly in benzene or the like and added in a small amount. You can also.
As a forming method, any method can be used as long as pressure is applied to the fiber powder. Specifically, a press forming method and an extrusion forming method such as a disk pelleter are relatively easy.
[0009]
Since the shape of the molded body is fine carbon fiber powder, it can be compression molded into any shape by selecting a mold and a compression method. For example, a cylindrical shape, a rectangular parallelepiped, a disk shape, etc. are easy.
However, industrially, a simple shape as much as possible is good. For example, a rectangular parallelepiped is preferable when the heating tube is a prismatic type, and a cylindrical shape is preferable when the heating tube is a tubular type.
What is necessary is just to limit the pressure applied at the time of shaping | molding of a fine carbon fiber according to the intensity | strength of the target molded object, and target bulk density. Specifically, it may be 0.1 kg / cm 2 or more, preferably 0.5 kg / cm 2 or more. Although the pressure may be high, it is preferable that the fiber does not collapse, and when the pressure is high, the equipment cost of the pressurizing system itself including the mold becomes high, so about 0.1 to 100 kg / cm 2 , preferably 0 About 5-10 kg / cm 2 is good.
The thus obtained molded body bulk density is usually 0.02g / cm 3 ~1.5g / cm 3 or so, compared with the bulk density of the powder 0.001g / cm 3 ~0.005g / cm 3 1 to 2 digits larger. In addition, the collapse limit load measured by the weight method is 1000 g / cm 2 or more, which is a sufficient strength for handling. The thermal conductivity is about 0.5 W / m / K, which is 5 times or more that before molding.
[0010]
2) Heat treatment method of the molded body The heat treatment method may be a method commonly used for heating an object. For example, an external heating method using electric heat or high temperature gas, a direct heating method using high temperature gas, or the like can be achieved. The method may be used.
What is necessary is just to select the heat processing temperature with the temperature made into the target of the physical property of a final use, and 1300 degreeC or more and 3200 degrees C or less are employ | adopted well. However, in the case of graphitization treatment at 2000 ° C. or higher, if it is performed rapidly, troubles may occur due to the significant generation of volatile matter or the progress of carbonization. Then, it is necessary to take a sufficient temperature rising gradient up to the graphitization temperature.
The material of the heat treatment furnace is selected depending on the treatment temperature, but a carbon material such as graphite is optimal at a high temperature of 2000 ° C. or higher.
[0011]
In order to prevent the reaction between the carbon fiber and the atmospheric gas when the heat treatment temperature is 500 ° C. or higher, particularly 1000 ° C. or higher, the heating atmosphere is changed to nitrogen, helium, argon, xenon, krypton, other Adjust to a non-oxidizing gas atmosphere. Therefore, it is necessary for the heating part to have a mechanism capable of introducing and discharging a non-oxidizing gas. Further, when the heat treatment is performed, a part of the volatile tar is evaporated and discharged. The discharged non-oxidizing gas can be recycled by removing volatiles by methods such as condensation, adsorption and absorption.
Since the heat-treated molded body is used for various purposes, it is usually crushed or pulverized, classified by airflow classification, etc., and non-fibrous materials are removed to obtain a product.
[0012]
3) Heat treatment apparatus As a heat treatment apparatus for the molded body, it is of course possible to store the molded body in a heat-resistant container and put the container in a furnace and heat it, but as a desirable apparatus, it is molded as shown in the figure, It is an apparatus that performs heating continuously. However, in this apparatus, the temperature is limited to about 1800 ° C. due to the material of the furnace core tube. In order to obtain a temperature higher than this, for example, a graphitization temperature, a method of storing the compact in a container and heating it in a graphitization furnace is preferable.
[0013]
This will be specifically described below with reference to the drawings.
FIG. 1 is a sectional view of the device of the present invention. FIG. 2 is an enlarged front view showing a damper at a connection point between the cylinder and the furnace core tube of FIG.
The fine carbon fibers 1 produced in the pyrolysis furnace are once accumulated in the hopper 2. Since this carbon fiber is a soft and agglomerated powdered fiber, it is preferable to provide a feeder 3 to prevent bridging when it is fed from the hopper to the molding apparatus. Further, since the volume is greatly reduced when compression molding is performed, it is preferable to perform preliminary molding before molding into a final molded body. For this purpose, the fiber sent from the feeder is fed into a cylinder 16 for preforming by, for example, a screw type extruder 15. This is compressed and charged by a piston 17 into a cylinder 5 for final molding. At this time, the piston 4 is retracted. The tip of the preformed piston 17 is matched to the shape of the cylinder 5. For example, when the cylinder 5 is circular in cross section, the tip surface of the piston 17 is semicircular to match the cylinder 5. When the molding is performed by the cylinder 5, the tip of the piston 17 is in a position that matches the cylinder 5.
[0014]
In the illustrated apparatus, a preforming machine is mounted on the final molding machine. However, the preforming machine can be mounted on the side of the final molding machine, that is, in the horizontal direction.
It is also possible to form directly with the cylinder 5 without using a preforming machine. For this purpose, it is difficult to supply the fibers from the hopper to the cylinder 5 at a time because of the volume, so the fibers supplied to the cylinder 5 are preformed, and the fiber supply and preforming are repeated until a predetermined fiber amount is reached. What is necessary is just to take the method of performing the whole shaping | molding.
A damper 7 that opens and closes is provided at the bottom of the cylinder. The damper 7 slides in an airtight manner in a flange 6 having the same hole as the cylinder diameter. As a result, the gas is shut off from the furnace core tube 10. Fiber forming is performed with the damper closed, and after forming is completed, the formed body 9 is pushed into the next furnace core tube 10 by the piston 4.
[0015]
The furnace core tube 10 is made larger than the diameter of the cylinder (diameter of the molded body) in consideration of expansion of the molded body after molding. That is, this carbon fiber has a high restoration rate after compression. The molded body in the furnace core tube is most easily moved by a molded body that is sequentially pushed out later.
The furnace core tube is surrounded by a heating procedure 8. Although only one heating device is shown in the drawing, two of them may be provided in series, and the former stage may be a relatively low temperature part and the latter stage may be a high temperature part. The heating source is most easily by electric heating.
[0016]
At the tip of the furnace core tube, a molded product take-out tube 10 'is connected. This is provided with an open / close damper 14 having a square cross section and sliding to the lower end surface. When the furnace core tube is a square, this take-out tube may be an extension of the furnace core tube.
The formed body after the heat treatment is dropped by opening the damper of the take-out pipe and stored in the receiver 11. The furnace core tube has a non-oxidizing atmosphere such as argon gas, and a gas inlet 12 and an outlet 13 are provided for this purpose. The tip of the take-out pipe 10 ′ is blocked, and the damper 14 is closed except when the molded body after heat treatment is pushed out to the receiver 11, so that the introduced gas does not flow toward the receiver 11. To. The gas inlet and outlet in the furnace core tube are in the direction opposite to the direction of movement of the molded body as shown in the figure, as described above, evaporative gas such as tar exists in the furnace core tube, This is to prevent adhesion to the molded body after the heat treatment.
The apparatus of the present invention can be automatically and continuously molded and heated. The piston and damper are automatically controlled, and the damper is closed, a predetermined amount of powder is supplied by the feeder, compressed, the damper is opened, pushed out, and the piston is retracted in one cycle.
[0017]
【Example】
[Example 1]
Fine carbon fibers were produced according to a known method using benzene as a raw material, ferrocene as a catalyst, and hydrogen gas as a carrier gas. Most of the fibers were in the range of 0.1 μm to 0.5 μm in diameter and 10 μm to 100 μm in length.
Using the apparatus of FIG. 1, 10 kg of this fiber is charged into a hopper, a predetermined amount of fiber is fed into the cylinder 16 by the extruder 15, and then pushed into the cylinder 5 by the piston 17, and finally by the cylinder 5 and the piston 4. Molding was performed at a molding pressure of 6.5 kg / cm 2 . The molded body was a cylindrical shape having a diameter of 140 mm and a length of 200 mm. After molding, the damper is opened and the molded body is extruded and fed into the furnace core tube. The time required during this period is about 10 minutes. The process of forming and extruding the damper was repeated as before closing. The length of the furnace core tube surrounded by the heating furnace, that is, the length of the portion at the target temperature is 60 cm. Therefore, the time for which the molded body is heated in this zone is about 30 minutes. The maximum temperature of the heating zone was 1400 ° C. Argon gas was flowed countercurrently in the furnace core tube. The heat-treated molded body had a bulk density of 0.15 g / cm 3 , and the collapse limit load when compressed from above and below the cylinder was 1.46 kg / cm 2 .
[0018]
【The invention's effect】
The fine carbon fiber powder has a bulk density of 0.001 to 0.005 g / cm 3 and is very difficult to handle, and also has a low thermal conductivity even when heat-treated. This fiber could easily be formed into a molded body, which solved the above problems.
By molding carbon fiber, the bulk density can be increased by about 1 to 2 digits, and at the same time, the thermal conductivity is greatly improved, so that a remarkable effect on the apparatus and the thermal efficiency is brought about.
In addition, the heat treatment apparatus of the present invention is advantageous in productivity because it can perform molding and heat treatment continuously. In particular, if a series of steps from the production of carbon fiber to molding and heat treatment are performed, a large carbon fiber stocking device and transfer device are not required, and the effect is great.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an apparatus of the present invention for heat-treating fine carbon fibers.
FIG. 2 is a partially enlarged view of the damper shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fine carbon fiber 2 Hopper 3 Fender 4 Piston 5 Cylinder 6 Flange 7 Damper 8 Heating device 9 Fine carbon fiber compact 10 Furnace core tube 10 'Extraction pipe 11 Receiver 12 Gas inlet 13 Gas outlet 14 Damper 15 Screw extrusion Machine 16 Cylinder 17 Piston

Claims (5)

有機化合物の熱分解により得られた炭化していないタール分を2〜30重量%含む微細な炭素繊維を圧縮成形し、非酸化性雰囲気下で熱処理し、得られた成形体を解砕あるいは粉砕することを特徴とする微細炭素繊維の製造方法。Compression molding of fine carbon fiber containing 2-30% by weight of non-carbonized tar obtained by thermal decomposition of organic compounds, heat treatment in a non-oxidizing atmosphere, and crushing or grinding the resulting molded product A method for producing fine carbon fiber, characterized in that: 熱処理が1300℃以上3200℃以下の温度で加熱することを特徴とする請求項1に記載の微細炭素繊維の製造方法。The method for producing fine carbon fibers according to claim 1, wherein the heat treatment is performed at a temperature of 1300 ° C. or more and 3200 ° C. or less. 熱処理が成形装置と加熱装置を連結し、成形後成形体を次々に加熱装置に移し、連続的に行われることを特徴とする請求項1または2に記載の微細炭素繊維の製造方法。The method for producing fine carbon fibers according to claim 1 or 2, wherein the heat treatment is carried out continuously by connecting the molding device and the heating device, and sequentially transferring the molded body after molding to the heating device. ホッパーの下部に設けられているピストンシリンダー型の成形装置と該装置に前記シリンダーの底部に取付けた開閉自在のダンパーを介して接続されている炉芯管と該炉芯管を囲繞している加熱装置とよりなる微細炭素繊維の熱処理装置を用い、成形装置の圧力を0.1〜100kg/cmで行う請求項1〜3のいずれかに記載の微細炭素繊維の製造方法。A piston cylinder type molding device provided at the lower part of the hopper, a furnace core tube connected to the device via an openable / closable damper attached to the bottom of the cylinder, and a heating surrounding the furnace core tube The manufacturing method of the fine carbon fiber in any one of Claims 1-3 which performs the pressure of a shaping | molding apparatus at 0.1-100 kg / cm < 2 > using the heat processing apparatus of the fine carbon fiber which consists of an apparatus. 圧縮成形された成形体の嵩密度が0.02g/cm〜1.5g/cmである請求項1〜4のいずれかに記載の微細炭素繊維の製造方法。Method for manufacturing a fine carbon fiber according to claim 1 bulk density of 0.02g / cm 3 ~1.5g / cm 3 of compacted molded body.
JP21667194A 1994-08-17 1994-08-17 Heat treatment method and apparatus for fine carbon fiber Expired - Lifetime JP3609458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21667194A JP3609458B2 (en) 1994-08-17 1994-08-17 Heat treatment method and apparatus for fine carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21667194A JP3609458B2 (en) 1994-08-17 1994-08-17 Heat treatment method and apparatus for fine carbon fiber

Publications (2)

Publication Number Publication Date
JPH0860444A JPH0860444A (en) 1996-03-05
JP3609458B2 true JP3609458B2 (en) 2005-01-12

Family

ID=16692105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21667194A Expired - Lifetime JP3609458B2 (en) 1994-08-17 1994-08-17 Heat treatment method and apparatus for fine carbon fiber

Country Status (1)

Country Link
JP (1) JP3609458B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464950B1 (en) 1998-05-22 2002-10-15 Showa Denko K.K. Method for separating and treating exhaust gas of carbon fiber
AU2001241179A1 (en) * 2000-03-16 2001-09-24 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparationthereof, cell and fuel cell using carbonaceous material having hydrogen absorbe d therein
US20060045837A1 (en) * 2002-10-28 2006-03-02 Kunio Nishimura Method and apparatus for heat treatment of powder of fine carbon fiber
CN100373503C (en) 2002-12-26 2008-03-05 昭和电工株式会社 Carbonaceous material for forming electrically conductive material and use thereof
CN112725938B (en) * 2020-12-16 2022-11-11 福建立亚化学有限公司 Polycarbosilane fiber non-melting treatment equipment

Also Published As

Publication number Publication date
JPH0860444A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP3502490B2 (en) Carbon fiber material and method for producing the same
Andrews et al. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures
JP4533146B2 (en) Fine carbon fiber powder heat treatment method and heat treatment apparatus
US20190322056A1 (en) Solid carbon products comprising carbon nanotubes and methods of forming same
EP1002147B1 (en) Process for producing single wall nanotubes using unsupported metal catalysts
Mathur et al. Co-synthesis, purification and characterization of single-and multi-walled carbon nanotubes using the electric arc method
JP4579061B2 (en) Vapor grown carbon fiber, method for producing the same, and composite material containing carbon fiber
CN1545486A (en) Production of carbon nanotubes
Morisada et al. SiC-coated carbon nanotubes and their application as reinforcements for cemented carbides
WO2004078649A1 (en) Synthesis of carbon nanotubes and / or nanofibres on a porous fibrous matrix
Li et al. A novel method for synthesis of carbon nanotubes: Low temperature solid pyrolysis
JP3609458B2 (en) Heat treatment method and apparatus for fine carbon fiber
JP5716155B2 (en) Powder for producing nanocarbon and method for producing metal-encapsulated fullerene
JP3600640B2 (en) Heat treatment method of vapor grown carbon fiber
JPS61132600A (en) Whisker-shaped carbonaceous material
Iyuke et al. Process synthesis and optimization for the production of carbon nanostructures
KR101672867B1 (en) Method for preparing carbon nanotubes having high purity and high density
CN106633666A (en) Preparation method of CNT (Carbon Nanotube) and resin composite material
CN106633667A (en) Preparation method of carbon nanotube-polymer composite material
CA2510748A1 (en) Nanostructures
Liu et al. Controllable growth of nanostructured carbon from coal tar pitch by chemical vapor deposition
JPH05330915A (en) Production of carbon/carbon composite material
Bai et al. A novel method for preparing preforms of porous alumina and carbon nanotubes by CVD
KR970008693B1 (en) Process for the preparation of carbon composite material
Huang et al. Synthesis of carbon nanofibres from a liquid solution containing both catalyst and polyethylene glycol

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

EXPY Cancellation because of completion of term