JPH0860444A - Method for heat-treating fine carbon fiber and device therefor - Google Patents

Method for heat-treating fine carbon fiber and device therefor

Info

Publication number
JPH0860444A
JPH0860444A JP21667194A JP21667194A JPH0860444A JP H0860444 A JPH0860444 A JP H0860444A JP 21667194 A JP21667194 A JP 21667194A JP 21667194 A JP21667194 A JP 21667194A JP H0860444 A JPH0860444 A JP H0860444A
Authority
JP
Japan
Prior art keywords
fine carbon
carbon fibers
molding
furnace core
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21667194A
Other languages
Japanese (ja)
Other versions
JP3609458B2 (en
Inventor
Akitaka Sudo
彰孝 須藤
Toshio Morita
利夫 森田
Kunio Nishimura
邦夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP21667194A priority Critical patent/JP3609458B2/en
Publication of JPH0860444A publication Critical patent/JPH0860444A/en
Application granted granted Critical
Publication of JP3609458B2 publication Critical patent/JP3609458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the subject device for compression molding fine carbon fibers by a vapor-phase method and continuously heat-treating the compression molded fine carbon fibers in a nonoxidizing atmosphere in excellent thermal efficiency. CONSTITUTION: Fine carbon fibers 1 containing a tar component and having 0.1-0.5μm fiber diameter and 10-100μm length obtained by thermally decomposing an organic compound such as benzene are fed to a hopper 2, supplied to a cylinder 16 by a pushing machine 15, pressed by a piston 17,and compression molded by a cylinder 5 and a piston 4 into a fixed shape. A damper 7 is opened and molded articles 9 are sent to a furnace core pipe 10 in a nonoxidizing atmosphere with a counter flow of an argon gas. The processes are successively carried out, the molded articles 9 are sent in turn to the furnace core pipe 10 and continuously heat-treated by a heater 8 enclosing the furnace core pipe 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機化合物の熱分解によ
る気相成長法によって得られる微細な炭素繊維の熱処理
方法及び装置に関する。気相法炭素繊維は中空孔を有す
る炭素の微細な繊維であって、各種有機高分子材料や無
機高分子材料、各種セラミック、金属等のマトリックス
に配合して導電材料、抵抗材料、帯電防止材料、静電気
除去材料、電磁波シールド材料等の電気伝導性、摺動
性、熱伝導性、強度その他の機能を向上または付与させ
る材料として利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method and apparatus for fine carbon fibers obtained by a vapor growth method by thermal decomposition of organic compounds. The vapor grown carbon fiber is a fine carbon fiber having hollow pores, and is mixed with a matrix of various organic polymer materials, inorganic polymer materials, various ceramics, metals, etc. to be a conductive material, a resistance material, an antistatic material. , A material for improving or imparting electric conductivity, slidability, thermal conductivity, strength and other functions such as static electricity removing material and electromagnetic wave shielding material.

【0002】[0002]

【従来の技術】[Prior art]

1)気相法炭素繊維の製造方法 気相成長炭素繊維製造方法は、反応炉内で有機化合物を
熱分解してウイスカー状の微細な炭素繊維を1工程で得
ることの出来る優れた方法である。しかし工業的な生産
性に問題があり種々改善がなされてきた。例えば初めは
セラミック基板に遷移金属の超微粒子を付着させてから
有機化合物を供給し分解させ長時間成長させて比較的太
く長い気相法炭素繊維を製造する方法であった(特開昭
52−103528)。この方法は良好な物性の炭素繊
維が得られるが、繊維径が太くなることや反応速度が遅
いことが、工業生産に向かないなど不十分な点が多かっ
た。これを改善するために、鉄を始めとする遷移金属ま
たはその化合物を触媒とし、この触媒とキャリヤーガス
及び例えばベンゼン、トルエン、天然ガス等の有機化合
物を液または気体状で反応炉に導入して有機化合物を8
00℃〜1300℃程度で熱分解し、微細な炭素繊維を
短時間で生産する方法が開発され生産性が改善された。
1) Method for producing vapor grown carbon fiber The method for producing vapor grown carbon fiber is an excellent method which can pyrolyze an organic compound in a reaction furnace to obtain fine whisker-like carbon fibers in one step. . However, there are problems in industrial productivity and various improvements have been made. For example, a method of initially depositing ultrafine particles of a transition metal on a ceramic substrate and then supplying an organic compound to decompose and grow for a long time to produce a relatively thick and long vapor grown carbon fiber (Japanese Patent Laid-Open No. 52-52). 103528). Although carbon fibers having good physical properties can be obtained by this method, there are many insufficient points such that the fiber diameter becomes large and the reaction rate is slow, which is not suitable for industrial production. In order to improve this, a transition metal such as iron or a compound thereof is used as a catalyst, and the catalyst and a carrier gas and an organic compound such as benzene, toluene and natural gas are introduced into a reaction furnace in a liquid or gaseous state. 8 organic compounds
A method of thermally decomposing at about 00 ° C to 1300 ° C to produce fine carbon fibers in a short time was developed, and the productivity was improved.

【0003】この微細な気相法炭素繊維の製造方法とし
ては フェロセン等の遷移金属化合物を気化させ反応炉に導
入し、遷移金属の微粒子を生成させシードとして用い製
造する方法(特開昭60−54998)。 鉄等の遷移金属を直接熱分解炉中で気化させてシード
を作り製造する方法(特開昭61−291497)。 フェロセン等の遷移金属化合物を液体有機化合物に分
散あるいは溶解させて反応炉中にスプレーしてシードと
して製造する方法(特開昭58−180615)。 等によって製造されるようになった。本発明の熱処理に
用いられる炭素繊維もこの微細な炭素繊維である。
As a method for producing this fine vapor grown carbon fiber, a transition metal compound such as ferrocene is vaporized and introduced into a reaction furnace, fine particles of the transition metal are produced and used as a seed (JP-A-60- 54998). A method for producing a seed by directly vaporizing a transition metal such as iron in a pyrolysis furnace (JP-A-61-291497). A method in which a transition metal compound such as ferrocene is dispersed or dissolved in a liquid organic compound and sprayed in a reaction furnace to produce a seed (Japanese Patent Application Laid-Open No. 58-180615). It came to be manufactured by. The carbon fiber used for the heat treatment of the present invention is also this fine carbon fiber.

【0004】2)微細炭素繊維の構造物性 この炭素繊維は直径が0.01〜5μm、長さが1〜1
000μm程度の繊維状粉末で、各繊維は黒鉛の結晶構
造の網面が繊維軸に沿って発達し、繊維軸に沿った中心
部に微細な中空の孔があるのが特徴である。そして製造
されたままの繊維(粗製繊維)には繊維以外に未利用触
媒の残渣(未反応有機物も含む)、非繊維炭化物やター
ル分などが含まれている。通常これらの気相法炭素繊維
を製品にするにはこれらの非繊維状物を除去する必要が
ある。 3)粗製繊維の処理方法 まず未反応の有機物を除去するには粗製繊維を非酸化性
雰囲気下で加熱処理し、タール分を炭化すると同時に一
部は揮発除去する。またこれらの熱処理した繊維は粗製
繊維に含まれていた非繊維状炭化物やタール分の炭化に
よって生じた非繊維性の炭素分を含み、これらが繊維の
集合物中に挟雑して凝集体をなしている。そこでこの凝
集体を解砕し、気流分級等によって繊維状物と粒状炭素
や金属等を分級する。微細な炭素繊維集合物(粉末)は
嵩密度が0.005g/cm3 以下と非常に低く、移送
等に不便であり、また、粉体のまま加熱炉を通すと炉内
の壁面に付着してすぐ炉内につまり、粉体を送ることが
困難になる。そこで、従来はこれらの微細な繊維の熱処
理は、黒鉛ルツボのような容器に入れて熱処理する方法
が多く採用されている。
2) Structural Properties of Fine Carbon Fiber The carbon fiber has a diameter of 0.01 to 5 μm and a length of 1 to 1.
It is a fibrous powder of about 000 μm, and each fiber is characterized in that the mesh surface of the graphite crystal structure develops along the fiber axis, and that there is a fine hollow hole at the center along the fiber axis. The as-produced fiber (crude fiber) contains, in addition to the fiber, residues of unused catalyst (including unreacted organic matter), non-fiber charcoal, tar content, and the like. It is usually necessary to remove these non-fibrous substances in order to make these vapor grown carbon fibers into products. 3) Treatment Method of Crude Fiber First, in order to remove unreacted organic matter, the crude fiber is heat-treated in a non-oxidizing atmosphere to carbonize the tar content and at the same time partially volatilize and remove it. In addition, these heat-treated fibers contain non-fibrous carbides contained in the crude fibers and non-fibrous carbons produced by carbonization of the tar component, which are entangled in the aggregate of fibers to form aggregates. I am doing it. Therefore, the aggregate is crushed and the fibrous material and the granular carbon or metal are classified by air flow classification or the like. The fine carbon fiber aggregate (powder) has a very low bulk density of 0.005 g / cm 3 or less, which is inconvenient for transfer and the like, and when powder is passed through a heating furnace, it adheres to the wall surface inside the furnace. Immediately, it becomes difficult to send the powder into the furnace. Therefore, conventionally, for the heat treatment of these fine fibers, a method of putting them in a container such as a graphite crucible and heat-treating is often adopted.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

1)微細な炭素繊維の粉体は生成した直後の嵩密度が
0.005g/cm3 以下と小さいため粉体のまま熱処
理するには加熱炉の処理設備容量が大きくなり設備コス
トが高くなる。 2)圧縮しない状態での粉体は見かけ上の熱伝導率は
0.1W/m/K以下と極めて小さく、加熱するには不
利である。 3)このような粉体の熱処理は通常外部加熱の炉を使う
ようになるため設備容量が大きくなると伝熱の関係で熱
効率が悪くなり、結果的に処理コストが高くなる。 4)粉のまま加熱処理するには粉の移送機構が必要とな
り設備的に複雑となるばかりではなく、粉体の付着や詰
まりのトラブルが多くなり、取扱いが非常にやっかいで
ある。通常この処理には容器に微細な炭素繊維を充填
し、容器のまま加熱処理する方法が取られている。しか
しこの方法でも、微細な炭素繊維のように嵩密度が小さ
い粉体では容器内に入る繊維の量は著しく少なく、熱は
ほとんど容器を加熱することに費やされ、その結果処理
コストが高くなる。
1) Since the fine carbon fiber powder has a small bulk density of 0.005 g / cm 3 or less immediately after being generated, the heat treatment capacity of the heating furnace is large and the equipment cost is high when the powder is heat treated as it is. 2) The powder in the uncompressed state has an apparent thermal conductivity of 0.1 W / m / K or less, which is disadvantageous for heating. 3) Such heat treatment of powder usually uses an external heating furnace, so that if the equipment capacity increases, the heat efficiency becomes poor due to heat transfer, resulting in high treatment cost. 4) To heat-treat the powder as it is, a powder transfer mechanism is required, which not only complicates the equipment, but also causes many problems such as adhesion and clogging of the powder, which makes the handling very difficult. Usually, for this treatment, a method is used in which a container is filled with fine carbon fibers and the container is heat treated. However, even with this method, in the case of powder having a low bulk density such as fine carbon fibers, the amount of fibers entering the container is extremely small, and most of the heat is spent for heating the container, resulting in high treatment cost. .

【0006】[0006]

【課題を解決するための手段】本発明者らはこの気相法
炭素繊維の粉体をうまく成形できれば黒鉛ルツボに入れ
て加熱するのと同等の効果があり、容易に熱処理できる
ようになるものと考え、種々検討した。その結果、微細
な炭素繊維の生成したままのものは炭化してないタール
分をはじめ、未反応の有機物が付着していること及び各
繊維が絡み合っているため、圧力を加えるとそのまま成
形、熱処理が可能であることを見出し本発明に到達し
た。即ち、本発明は有機化合物の熱分解により得られた
タール分をはじめ、未反応の有機物等を含む微細な炭素
繊維を圧縮成形し、非酸化性雰囲気下で加熱することか
らなる微細炭素繊維の熱処理方法である。またこのため
の装置としては炭素繊維生成炉にホッパーを介して、圧
縮成形装置及び加熱装置を連結し、生成した繊維を連続
的に成形、熱処理できるようにする装置が好ましい。こ
のために本発明は成形装置としてホッパー下部にピスト
ンシリンダー型の成形装置を設け、シリンダーの底部を
開閉ダンパーとし、このダンパーに加熱装置を備えた炉
芯管を接続して、成形終了後は成形体を炉芯管内に押出
し、加熱処理する構成としたものである。
Means for Solving the Problems The inventors of the present invention have the same effect as putting in a graphite crucible and heating if the powder of the vapor grown carbon fiber can be molded well, and the heat treatment can be easily carried out. Therefore, various studies were conducted. As a result, as-produced fine carbon fibers have unreacted organic matter adhering to them, including uncarbonized tar content, and the fibers are entangled with each other. The inventors have found that the above is possible and arrived at the present invention. That is, the present invention includes a tar content obtained by thermal decomposition of an organic compound, compression molding of fine carbon fibers containing unreacted organic matter, etc., and heating of the fine carbon fibers in a non-oxidizing atmosphere. This is a heat treatment method. Further, as an apparatus for this purpose, an apparatus in which a compression molding apparatus and a heating apparatus are connected to a carbon fiber production furnace via a hopper so that the produced fibers can be continuously molded and heat-treated is preferable. To this end, the present invention provides a piston-cylinder type molding device at the lower part of the hopper as a molding device, uses the bottom of the cylinder as an opening / closing damper, and connects a furnace core tube equipped with a heating device to this damper, The body is extruded into a furnace core tube and heat-treated.

【0007】以下本発明を詳しく説明する。 1)成形法 本発明で用いられる微細な炭素繊維は従来同様ベンゼ
ン、トルエン、天然ガス等の有機化合物を原料とし、フ
ェロセン等を触媒にし、水素ガス等をキャリヤーガスに
して製造されるものである。これらの原料は、液相で導
入することも気相で投入することもできる。また、触媒
と有機化合物は混入して導入してもよいし、別々に入れ
ることも可能であるが、混合した方が簡便である。この
場合フェロセン等の触媒はベンゼン等に溶解し、熱分解
炉内に噴霧する方法が用いられるが、望ましくは噴霧の
方向を炉の長さ方向に平行でなく、炉壁に向けて傾斜さ
せて放射状に噴霧する方法である。この方法によれば炭
素繊維は炉壁で効率よく生成し、しかも分枝の多い繊維
(特願平5−326042)となるので、繊維の絡みが
よく成形体を得るのに好都合である。
Hereinafter, the present invention will be described in detail. 1) Molding method The fine carbon fibers used in the present invention are produced using organic compounds such as benzene, toluene, and natural gas as raw materials, ferrocene as a catalyst, and hydrogen gas as a carrier gas as in the past. . These raw materials can be introduced in a liquid phase or added in a gas phase. Further, the catalyst and the organic compound may be mixed and introduced, or they may be separately introduced, but it is easier to mix them. In this case, the catalyst such as ferrocene is dissolved in benzene and sprayed in the pyrolysis furnace, but it is desirable that the spraying direction is not parallel to the length direction of the furnace and is inclined toward the furnace wall. It is a method of spraying radially. According to this method, carbon fibers are efficiently produced on the furnace wall and become fibers with many branches (Japanese Patent Application No. 5-326042), which is convenient for obtaining a molded product with good fiber entanglement.

【0008】いずれの方法においても微細炭素繊維は直
径が0.01μm〜5μm、長さが1μm〜1000μ
m程である。これらの繊維は通常800〜1300℃程
度の温度で製造されるが、炭化してないタール分が2〜
30重量%程度含まれている。タール分は最終製品とし
ては除去しなければならず、通常は熱処理によって炭化
し、その後気流分級等によって除去している。微細な炭
素繊維は上記のタール分及び繊維の絡みによってそのま
ま圧縮成形しただけでも移送、熱処理等の取扱いにおい
て崩壊することなく必要な強度を維持することができ
る。しかし、さらに高い強度を望む場合は加熱処理後の
物性に影響を与えない物質、例えば澱粉、CMC、ナフ
タレン、アントラセン、クリセン、タール等の一次結合
材を直接またはベンゼン等に溶解して少量添加すること
もできる。成形法としては繊維粉体に圧力をかける方法
であればいずれの方法でも可能であるが、具体的にはプ
レス成形法、ディスクペレッターのような押出し成形法
が比較的容易である。
In any of the methods, the fine carbon fiber has a diameter of 0.01 μm to 5 μm and a length of 1 μm to 1000 μm.
It is about m. These fibers are usually produced at a temperature of about 800 to 1300 ° C., but the tar content not carbonized is 2 to
About 30% by weight is contained. The tar content must be removed as a final product, and is usually carbonized by heat treatment and then removed by air stream classification or the like. The fine carbon fibers can maintain the necessary strength without being broken by handling such as transfer and heat treatment even if they are directly compression-molded by the above-mentioned tar content and entanglement of fibers. However, if higher strength is desired, a substance that does not affect the physical properties after heat treatment, such as a primary binder such as starch, CMC, naphthalene, anthracene, chrysene, and tar, is added directly or dissolved in benzene and added in a small amount. You can also As the molding method, any method can be used as long as it is a method of applying pressure to the fiber powder, but specifically, a press molding method and an extrusion molding method such as a disk pelleter are relatively easy.

【0009】成形体の形状は微細炭素繊維が粉体である
ため金型及び圧縮方法を選ぶことによって、あらゆる形
状に圧縮成形できる。例えば、円柱状、直方体、円板状
等は容易である。しかし工業的にはできるだけ単純な形
状がよく、例えば加熱管が角柱型の場合には直方体が、
管状型の場合には円柱状が好ましい。微細炭素繊維の成
形時に加える圧力は目的とする成形体の強度、目標嵩密
度によって最適な圧力を限定すれば良い。具体的には
0.1kg/cm2 以上好ましくは0.5kg/cm2
以上あれば良い。圧力は高くても良いが繊維の崩壊を起
こさない程度が好ましく、また圧力が高くなると金型を
始め加圧システム自体の設備費が高くなるので0.1〜
100kg/cm2 程度、好ましくは0.5〜10kg
/cm2 程度が良い。このようにして得られた成形体は
嵩密度が通常0.02g/cm3 〜1.5g/cm3
度となり、粉体の嵩密度0.001g/cm3 〜0.0
05g/cm3 に比べ1〜2桁大きい。また強度は加重
法で測定した崩壊限界加重は1000g/cm2 以上あ
り、取扱い上充分な強度である。熱伝導率も0.5W/
m/K程度となり、成形前の5倍以上となる。
Since the fine carbon fibers are powdery, the shape of the molded body can be compression molded into any shape by selecting a die and a compression method. For example, a columnar shape, a rectangular parallelepiped shape, a disk shape, or the like is easy. However, industrially, the simplest shape possible is good, for example, if the heating tube is prismatic, a rectangular parallelepiped
In the case of a tubular type, a columnar shape is preferable. The pressure applied during the molding of the fine carbon fibers may be limited to the optimum pressure depending on the strength of the target molded product and the target bulk density. Specifically, 0.1 kg / cm 2 or more, preferably 0.5 kg / cm 2
The above is all you need. Although the pressure may be high, it is preferable that the pressure does not cause the fibers to collapse, and if the pressure is high, the equipment cost of the pressurizing system itself including the mold increases.
About 100 kg / cm 2 , preferably 0.5-10 kg
/ Cm 2 is good. The thus obtained molded body bulk density is usually 0.02g / cm 3 ~1.5g / cm 3 or so, the bulk density of the powder 0.001g / cm 3 ~0.0
It is one to two orders of magnitude larger than 05 g / cm 3 . As for the strength, the collapse limit weight measured by the weighting method is 1000 g / cm 2 or more, which is a sufficient strength for handling. Thermal conductivity is 0.5W /
It is about m / K, which is more than 5 times that before molding.

【0010】2)成形体の加熱処理方法 加熱処理方法は物体の加熱に通常用いられる方法でよ
く、例えば電熱や高温ガスを用いた外熱式加熱方法、高
温ガスによる直接加熱方法など目標温度が達成できれば
何れの方法でもよい。熱処理温度は最終的な用途の物性
の目標とする温度によって選定すればよく1300℃以
上3200℃以下がよく採用される。但し、2000℃
以上の黒鉛化処理の場合には急激に行なうと揮発分の著
しい発生とか炭化の進行によってトラブルを発生する可
能性があるので、好ましくは予め1400℃程度で熱処
理をしたのち高温処理するとか又は黒鉛化温度までの昇
温勾配を充分に取る必要がある。熱処理炉の材質は処理
温度によって選択されるが2000℃以上の高温になる
と黒鉛等の炭素材料が最適である。
2) Heat Treatment Method for Molded Article The heat treatment method may be a method usually used for heating an object, for example, an external heating type heating method using electric heat or high temperature gas, a direct heating method using high temperature gas, and the like. Any method may be used as long as it can be achieved. The heat treatment temperature may be selected according to the target temperature of the physical properties of the final application, and 1300 ° C. or more and 3200 ° C. or less are often adopted. However, 2000 ° C
In the case of the above graphitization treatment, if it is carried out rapidly, there is a possibility that troubles may occur due to remarkable generation of volatile matter or progress of carbonization. Therefore, it is preferable to perform heat treatment at about 1400 ° C. in advance and then perform high temperature treatment or It is necessary to take a sufficient temperature rising gradient up to the reaction temperature. The material of the heat treatment furnace is selected according to the treatment temperature, but carbon materials such as graphite are most suitable when the temperature rises to 2000 ° C. or higher.

【0011】加熱の雰囲気は熱処理温度が500℃以
上、特に1000℃以上の温度になると炭素繊維と雰囲
気ガスとの反応を防止するため、加熱部の雰囲気ガスを
窒素、ヘリウム、アルゴン、キセノン、クリプトン、そ
の他の非酸化性ガス雰囲気に調整する。従って、加熱部
分は非酸化性ガスを導入し又これを排出できる機構を備
える必要がある。更に熱処理する際には揮発性のタール
分が一部蒸発するのでこれを排出する。排出された非酸
化性ガスは揮発分を凝縮、吸着、吸収等の方法で除けば
リサイクルすることも可能である。熱処理した成形体は
各種の用途に供するため、通常は解砕あるいは粉砕し、
気流分級等によって分級し、非繊維状物を除去し製品と
する。
In the heating atmosphere, when the heat treatment temperature is 500 ° C. or higher, particularly 1000 ° C. or higher, the reaction gas between the carbon fibers and the atmosphere gas is prevented. Therefore, the atmosphere gas in the heating portion is nitrogen, helium, argon, xenon, or krypton. , Adjust to other non-oxidizing gas atmosphere. Therefore, the heating part needs to be provided with a mechanism capable of introducing non-oxidizing gas and discharging it. During the heat treatment, part of the volatile tar component evaporates and is discharged. The discharged non-oxidizing gas can be recycled by removing the volatile components by a method such as condensation, adsorption, absorption. Since the heat-treated molded body is used for various purposes, it is usually crushed or crushed,
Classify by airflow classification, etc. to remove non-fibrous material to obtain a product.

【0012】3)熱処理装置 成形体の熱処理装置としては成形体を耐熱性容器に収納
し、容器を炉内に入れて加熱することも勿論可能である
が、望ましい装置としては図に示すように成形し、加熱
を連続して行なう装置である。但しこの装置では炉芯管
の材質等から温度は1800℃程度が限度である。これ
より高い温度、例えば黒鉛化温度にするには成形体を容
器に収納して黒鉛化炉で加熱するなどの方法がよい。
3) Heat Treatment Apparatus As a heat treatment apparatus for a molded body, it is of course possible to store the molded body in a heat-resistant container and put the container in a furnace for heating. It is a device that performs molding and heating continuously. However, in this apparatus, the temperature is limited to about 1800 ° C. due to the material of the furnace core tube and the like. To raise the temperature higher than this, for example, the graphitization temperature, it is preferable to store the molded body in a container and heat it in a graphitization furnace.

【0013】以下図面に基づいて具体的に説明する。図
1は本発明装置の断面図である。図2は図1のシリンダ
ーと炉芯管の接続点のダンパーを示す正面拡大図であ
る。熱分解炉で製造された微細炭素繊維1は一旦ホッパ
ー2に集積される。この炭素繊維は粉末状繊維が軟らか
く凝集したものなのでホッパーから成形装置に送入する
にはブリッジングを防ぐためフィダー3を設けるのがよ
い。また圧縮成形すると体積が大幅に縮小するので最終
の成形体に成形する前に予備成形するのが好ましい。そ
のためにフィダーから送られた繊維を例えばスクリュー
型押出機15で予備成形のためのシリンダー16内に送
り込む。これを最終の成形のためのシリンダー5内にピ
ストン17により圧縮装入する。このときはピストン4
は後退している。予備成形のピストン17の先端はシリ
ンダー5の形状に合せ、例えばシリンダー5が断面円形
の場合はピストン17の先端面はシリンダー5に合せた
半円形となる。そしてシリンダー5による成形の際はピ
ストン17の先端はシリンダー5に合せた位置にある。
A detailed description will be given below with reference to the drawings. FIG. 1 is a sectional view of the device of the present invention. FIG. 2 is an enlarged front view showing a damper at the connection point between the cylinder and the furnace core tube of FIG. The fine carbon fibers 1 produced in the pyrolysis furnace are once accumulated in the hopper 2. Since this carbon fiber is a soft and agglomerated powdery fiber, it is preferable to provide a feeder 3 in order to prevent bridging when the carbon fiber is fed from the hopper to the molding apparatus. Further, since the volume is significantly reduced by compression molding, it is preferable to perform pre-molding before molding into a final molded body. For that purpose, the fiber sent from the feeder is sent into the cylinder 16 for preforming by, for example, the screw type extruder 15. This is compression-loaded by the piston 17 into the cylinder 5 for final molding. At this time, piston 4
Is receding. The tip of the preformed piston 17 conforms to the shape of the cylinder 5. For example, when the cylinder 5 has a circular cross section, the tip surface of the piston 17 has a semicircular shape conforming to the cylinder 5. When the cylinder 5 is used for molding, the tip of the piston 17 is at a position aligned with the cylinder 5.

【0014】図示の装置は最終の成形機の上に予備成形
機が取付けてあるが、予備成形機は最終の成形機の横
に、即ち水平方向に取付けることも可能である。また予
備成形機を用いずに直接シリンダー5で成形することも
可能である。それにはホッパーから繊維を一度にシリン
ダー5に供給することは容積の関係で難しいのでシリン
ダー5に供給された繊維を予備成形し、更に繊維の供
給、予備成形を繰り返し所定の繊維量とし、最後に全体
の成形を行なう方法などをとればよい。シリンダーの底
部には開閉するダンパー7が設けられ、これはシリンダ
ー径と同じ穴を有するフランジ6内を気密に摺動するよ
うになっている。これによって炉芯管10内からガスが
遮断される。繊維の成形はダンパーを閉の状態で行な
い、成形終了後開にして成形体9を次の炉芯管10内に
ピストン4により押出す。
Although the illustrated apparatus has a preformer mounted on top of the final molding machine, the preformer could be mounted next to the final molding machine, ie horizontally. It is also possible to directly mold with the cylinder 5 without using a preforming machine. In order to do so, it is difficult to supply the fibers from the hopper to the cylinder 5 at a time because of the volume. Therefore, the fibers supplied to the cylinder 5 are preformed, and the supply and preforming of the fibers are repeated to obtain a predetermined amount of fiber. A method of molding the whole may be adopted. A damper 7 for opening and closing is provided at the bottom of the cylinder, and it is adapted to slide airtightly inside a flange 6 having a hole having the same diameter as the cylinder. This shuts off the gas from the inside of the furnace core tube 10. The molding of the fiber is performed with the damper closed, and after the molding is completed, the molded body 9 is opened and the molded body 9 is extruded into the next furnace core tube 10 by the piston 4.

【0015】炉芯管10は成形後の成形体の膨脹も考慮
し、シリンダーの径(成形体の径)よりも大きくする。
即ち、この炭素繊維は圧縮後の復元率が高いからであ
る。炉芯管内の成形体は後から順次押し出される成形体
によって移動させることが最も簡単である。炉芯管は加
熱処置8に囲繞されている。加熱装置は図示のものは1
個であるが、これを直列に二つ設け前段を比較的低温
部、後段を高温部としてもよい。加熱源は電熱によるの
が最も容易である。
The furnace core tube 10 is made larger than the diameter of the cylinder (the diameter of the molded body) in consideration of the expansion of the molded body after molding.
That is, this carbon fiber has a high restoration rate after compression. The molded body in the furnace core tube is most easily moved by the molded body that is sequentially extruded later. The furnace core tube is surrounded by a heating procedure 8. The heating device shown is 1
However, two of them may be provided in series, and the former stage may be a relatively low temperature part and the latter stage may be a high temperature part. The heat source is most easily electric heat.

【0016】炉芯管の先端には成形体の取出し管10′
が接続されている。これは断面が四角形状で下端面にス
ライドする開閉ダンパー14が取付けられている。この
取出し管は炉芯管が四角の場合は炉芯管を延長させたも
のでもよい。熱処理を終了した成形体は取出し管のダン
パーを開くことにより落下し受け器11に収納される。
炉芯管内はアルゴンガス等の非酸化性雰囲気とし、その
ためにガス送入口12、排出口13を設ける。取出し管
10′の先端は目くら止めされており、またダンパー1
4は熱処理後の成形体を受け器11に押し出すとき以外
は閉塞し、送入されたガスが受け器11の方に流れない
ようにする。炉芯管内のガス送入口と排出口を図のよう
にしてガスの流れを成形体の移動と逆の方向にするの
は、前記したように炉芯管内はタール等の蒸発ガスが存
在し、これが熱処理後の成形体に付着するのを防止する
ためである。本発明の装置により自動的に連続して成
形、加熱が可能である。ピストンとダンパーを自動的に
制御し、ダンパー閉、フィダーによる粉体の所定量供
給、圧縮、ダンパー開、押出し、ピストンの後退を1サ
イクルとして順序繰り返される。
At the tip of the furnace core tube, a molded body take-out tube 10 'is provided.
Is connected. This has a rectangular cross section and is provided with an opening / closing damper 14 that slides to the lower end surface. This take-out tube may be an extension of the furnace core tube when the furnace core tube is square. The molded body that has undergone the heat treatment is dropped by opening the damper of the take-out tube and is stored in the receiver 11.
The inside of the furnace core tube is filled with a non-oxidizing atmosphere such as argon gas, and therefore a gas inlet 12 and an outlet 13 are provided. The tip of the take-out pipe 10 'is blinded, and the damper 1
No. 4 is closed except when the molded body after heat treatment is pushed out to the receiver 11, so that the introduced gas does not flow to the receiver 11. To make the gas flow in the furnace core tube in the opposite direction to the movement of the molded body as shown in the figure for the gas inlet and outlet, there is evaporative gas such as tar in the furnace core tube as described above. This is to prevent adhesion to the molded body after heat treatment. The apparatus of the present invention can automatically and continuously perform molding and heating. The piston and the damper are automatically controlled, the damper is closed, a predetermined amount of powder is fed by a feeder, compression, the damper is opened, the extrusion is performed, and the piston is retracted as one cycle.

【0017】[0017]

【実施例】【Example】

[実施例1]微細炭素繊維はベンゼンを原料とし、フェ
ロセンを触媒、水素ガスをキャリヤーガスにして公知の
方法に従い製造した。繊維の大部分は直径0.1μm〜
0.5μm、長さが10μm〜100μm範囲に入って
いた。図1の装置を用いこの繊維10kgをホッパーに
仕込み、押出機15によりシリンダー内16に所定量繊
維を供給し、次にこれをピストン17でシリンダー5内
に押し込み、最後にシリンダー5とピストン4により成
形圧力を6.5kg/cm2 にして成形した。成形体は
直径140mm、長さ200mmの円柱状であった。成
形後ダンパーを開として成形体を押出し、炉芯管内に送
り出す。この間に要した時間は約10分である。ダンパ
ーを閉じ前と同様に成形し、押出す工程を繰り返した。
加熱炉に囲まれた炉芯管の長さ即ち、目的の温度になっ
ている部分の長さは60cm、従って成形体がこの帯域
で加熱される時間は約30分間である。加熱帯の最高温
度は1400℃とした。炉芯管内はアルゴンガスを向流
で流した。 熱処理された成形体は嵩密度が0.15g
/cm3 、円柱の上下より圧縮したときの崩壊限界加重
は1.46kg/cm2 であった。
[Example 1] Fine carbon fibers were produced by a known method using benzene as a raw material, ferrocene as a catalyst, and hydrogen gas as a carrier gas. Most of the fibers have a diameter of 0.1 μm
It was 0.5 μm and the length was in the range of 10 μm to 100 μm. Using the apparatus of FIG. 1, 10 kg of this fiber is charged into a hopper, a predetermined amount of fiber is fed into the cylinder 16 by an extruder 15, then this is pushed into the cylinder 5 by a piston 17, and finally by the cylinder 5 and the piston 4. Molding was performed at a molding pressure of 6.5 kg / cm 2 . The molded body was a column having a diameter of 140 mm and a length of 200 mm. After molding, the damper is opened and the molded body is extruded and fed into the furnace core tube. The time required during this period is about 10 minutes. The process of molding and extruding the damper as before closing was repeated.
The length of the furnace core tube surrounded by the heating furnace, that is, the length of the portion at the target temperature is 60 cm, and therefore the time for heating the molded body in this zone is about 30 minutes. The maximum temperature of the heating zone was 1400 ° C. Argon gas was made to flow countercurrently in the furnace core tube. The heat-treated molded body has a bulk density of 0.15 g.
/ Cm 3 , and the collapse limit load when compressed from above and below the cylinder was 1.46 kg / cm 2 .

【0018】[0018]

【発明の効果】微細な炭素繊維粉体は嵩密度が0.00
1〜0.005g/cm3 であり、非常に取扱いにく
く、また熱処理する場合にも熱伝導率が低いので効率が
悪いが、本発明によればこの繊維は簡単に成形体とする
ことができ、これによって上記の問題は解決された。炭
素繊維は成形することにより、嵩密度を1〜2桁程度上
げることができ、また同時に熱伝導率も大幅に向上する
ので装置上及び熱効率上顕著な効果をもたらす。また本
発明の熱処理装置は成形、熱処理を連続して行なうこと
ができるので生産性においても有利である。特に炭素繊
維の製造から成形、熱処理まで一連の工程で行なえば途
中における炭素繊維の大きなストック装置や移送装置も
不要となり、その効果は多大である。
The fine carbon fiber powder has a bulk density of 0.00
1 to 0.005 g / cm 3, which is very difficult to handle and has low thermal conductivity even when heat-treated, resulting in poor efficiency. However, according to the present invention, this fiber can be easily formed into a molded body. , Which solved the above problem. By molding the carbon fiber, the bulk density can be increased by about 1 to 2 digits, and at the same time, the thermal conductivity is significantly improved, which brings about a remarkable effect on the apparatus and thermal efficiency. Further, the heat treatment apparatus of the present invention can perform molding and heat treatment continuously, which is advantageous in productivity. In particular, if a series of steps from carbon fiber production to molding and heat treatment are performed, a large carbon fiber stocking device and transfer device are not required, and the effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】微細炭素繊維を熱処理する本発明装置の1例を
示す断面図。
FIG. 1 is a sectional view showing an example of an apparatus of the present invention for heat-treating fine carbon fibers.

【図2】図1のダンパーの部分拡大図。FIG. 2 is a partially enlarged view of the damper shown in FIG.

【符号の説明】[Explanation of symbols]

1 微細炭素繊維 2 ホッパー 3 フィダー 4 ピストン 5 シリンダー 6 フランジ 7 ダンパー 8 加熱装置 9 微細炭素繊維の成形体 10 炉芯管 10′ 取出し管 11 受け器 12 ガス送入口 13 ガス排出口 14 ダンパー 15 スクリュー押出機 16 シリンダー 17 ピストン 1 Fine carbon fiber 2 Hopper 3 Fider 4 Piston 5 Cylinder 6 Flange 7 Damper 8 Heating device 9 Fine carbon fiber molded body 10 Furnace core tube 10 'Ejection tube 11 Receiver 12 Gas inlet 13 Gas outlet 14 Damper 15 Screw extrusion Machine 16 Cylinder 17 Piston

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機化合物の熱分解により得られたター
ル分を含む微細な炭素繊維を圧縮成形し、非酸化性雰囲
気下で加熱することを特徴とする微細炭素繊維の熱処理
方法。
1. A heat treatment method for fine carbon fibers, which comprises compression-molding fine carbon fibers containing a tar component obtained by thermal decomposition of an organic compound and heating them in a non-oxidizing atmosphere.
【請求項2】 成形装置と加熱装置を連結し、成形後成
形体を次々に加熱装置に移し、連続的に加熱することを
特徴とする請求項1記載の微細炭素繊維の熱処理方法。
2. The heat treatment method for fine carbon fibers according to claim 1, wherein the molding device and the heating device are connected to each other, and the molded products after molding are successively transferred to the heating device and continuously heated.
【請求項3】 ホッパーの下部に設けられているピスト
ンシリンダー型の成形装置と該装置に前記シリンダーの
底部に取付けた開閉自在のダンパーを介して接続されて
いる炉芯管と該炉芯管を囲繞している加熱装置とよりな
る微細炭素繊維の熱処理装置。
3. A piston-cylinder type molding device provided in the lower part of a hopper, a furnace core pipe connected to the device through an openable damper attached to the bottom of the cylinder, and the furnace core pipe. A heat treatment device for fine carbon fibers, which comprises an enclosing heating device.
JP21667194A 1994-08-17 1994-08-17 Heat treatment method and apparatus for fine carbon fiber Expired - Lifetime JP3609458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21667194A JP3609458B2 (en) 1994-08-17 1994-08-17 Heat treatment method and apparatus for fine carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21667194A JP3609458B2 (en) 1994-08-17 1994-08-17 Heat treatment method and apparatus for fine carbon fiber

Publications (2)

Publication Number Publication Date
JPH0860444A true JPH0860444A (en) 1996-03-05
JP3609458B2 JP3609458B2 (en) 2005-01-12

Family

ID=16692105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21667194A Expired - Lifetime JP3609458B2 (en) 1994-08-17 1994-08-17 Heat treatment method and apparatus for fine carbon fiber

Country Status (1)

Country Link
JP (1) JP3609458B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068523A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
US6464950B1 (en) 1998-05-22 2002-10-15 Showa Denko K.K. Method for separating and treating exhaust gas of carbon fiber
WO2004038074A1 (en) * 2002-10-28 2004-05-06 Bussan Nanotech Reserch Institute Inc. Method and apparatus for heat treatment of powder of fine carbon fiber
US7585434B2 (en) 2002-12-26 2009-09-08 Showa Denko K.K. Carbonaceous material for forming electrically conductive material and use thereof
CN112725938A (en) * 2020-12-16 2021-04-30 福建立亚化学有限公司 Polycarbosilane fiber non-melting treatment equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464950B1 (en) 1998-05-22 2002-10-15 Showa Denko K.K. Method for separating and treating exhaust gas of carbon fiber
US6602486B2 (en) 1998-05-22 2003-08-05 Showa Denko K.K. Method for separating and treating exhaust gas of carbon fiber
WO2001068523A1 (en) * 2000-03-16 2001-09-20 Sony Corporation Carbonaceous material for hydrogen storage and method for preparation thereof, carbonaceous material having hydrogen absorbed therein and method for preparation thereof, cell and fuel cell using carbonaceous material having hydrogen absorbed therein
WO2004038074A1 (en) * 2002-10-28 2004-05-06 Bussan Nanotech Reserch Institute Inc. Method and apparatus for heat treatment of powder of fine carbon fiber
JPWO2004038074A1 (en) * 2002-10-28 2006-02-23 株式会社物産ナノテク研究所 Fine carbon fiber powder heat treatment method and heat treatment apparatus
JP4533146B2 (en) * 2002-10-28 2010-09-01 保土谷化学工業株式会社 Fine carbon fiber powder heat treatment method and heat treatment apparatus
US7585434B2 (en) 2002-12-26 2009-09-08 Showa Denko K.K. Carbonaceous material for forming electrically conductive material and use thereof
CN112725938A (en) * 2020-12-16 2021-04-30 福建立亚化学有限公司 Polycarbosilane fiber non-melting treatment equipment
CN112725938B (en) * 2020-12-16 2022-11-11 福建立亚化学有限公司 Polycarbosilane fiber non-melting treatment equipment

Also Published As

Publication number Publication date
JP3609458B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP4533146B2 (en) Fine carbon fiber powder heat treatment method and heat treatment apparatus
JP3502490B2 (en) Carbon fiber material and method for producing the same
CA1043990A (en) Method of making a silicon carbide filamentary reinforced silicon composite article
Andrews et al. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures
US20190322056A1 (en) Solid carbon products comprising carbon nanotubes and methods of forming same
JP4579061B2 (en) Vapor grown carbon fiber, method for producing the same, and composite material containing carbon fiber
JP2004537488A (en) Method for producing porous graphite and articles made therefrom
EP1082473A1 (en) Plasma catalysis of carbon nanofibers
CN1545486A (en) Production of carbon nanotubes
JPH0451510B2 (en)
Morisada et al. SiC-coated carbon nanotubes and their application as reinforcements for cemented carbides
WO2004078649A1 (en) Synthesis of carbon nanotubes and / or nanofibres on a porous fibrous matrix
CN1541939A (en) Technical method and schedule for preparation of foam carbon material used asphalt as raw material
CN105198447A (en) Preparation method of aluminum oxide-carbon nano tube composite powder material
JP3609458B2 (en) Heat treatment method and apparatus for fine carbon fiber
CN101367515A (en) Method for preparing metal filling carbon nano-pipe
JP3600640B2 (en) Heat treatment method of vapor grown carbon fiber
JPS61132600A (en) Whisker-shaped carbonaceous material
JP6422779B2 (en) An improved method for synthesizing carbon nanotubes on multiple supports
CN106633667A (en) Preparation method of carbon nanotube-polymer composite material
CN106633666A (en) Preparation method of CNT (Carbon Nanotube) and resin composite material
KR101672867B1 (en) Method for preparing carbon nanotubes having high purity and high density
Patel et al. Synthesis and microstructure analysis of aligned carbon nanotube/pyrocarbon composites
CA2510748A1 (en) Nanostructures
AU2016342606A1 (en) Method of preparing aluminum oxide-carbon nanotube composite powder material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041014

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101022

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20131022

EXPY Cancellation because of completion of term