JP3602785B2 - マルチキャリア変調方式用復調回路 - Google Patents

マルチキャリア変調方式用復調回路 Download PDF

Info

Publication number
JP3602785B2
JP3602785B2 JP2000341373A JP2000341373A JP3602785B2 JP 3602785 B2 JP3602785 B2 JP 3602785B2 JP 2000341373 A JP2000341373 A JP 2000341373A JP 2000341373 A JP2000341373 A JP 2000341373A JP 3602785 B2 JP3602785 B2 JP 3602785B2
Authority
JP
Japan
Prior art keywords
signal
phase rotation
phase
filter
phase noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000341373A
Other languages
English (en)
Other versions
JP2002152167A (ja
Inventor
武 鬼沢
匡人 溝口
正博 守倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000341373A priority Critical patent/JP3602785B2/ja
Publication of JP2002152167A publication Critical patent/JP2002152167A/ja
Application granted granted Critical
Publication of JP3602785B2 publication Critical patent/JP3602785B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はディジタル無線通信システムにおいてマルチキャリア信号を復調するマルチキャリア変調方式用復調回路に関するもので、特に、残留キャリア周波数誤差や、位相雑音に起因する位相回転を検出して補正を行う位相トラッキング回路に係る。
【0002】
【従来の技術】
マルチキャリア変復調方式は複数のサブキャリアを用いて情報伝送する方式である。サブキャリアごとに入力データ信号は64QAM(Quadrature amplitude modulation )等に変調される。このマルチキャリア変調方式の中で各サブキャリアの周波数が直交関係にある直交マルチキャリア変調方式は、直交周波数分割多重(OFDM:Orthogonal frequency division multiplexing)変調方式とも呼ばれ、マルチパス伝搬が問題となる無線通信システムで広く適用されている。
【0003】
この、OFDM変調信号は、逆離散フーリエ変換(Inverse discrete Fourier transform)回路を用いて一括生成される。送信時には、このOFDM変調信号を搬送波帯に周波数変換し、送信アンテナより送信する。受信器では、受信した搬送波信号がベースバンド信号に周波数変換される。その後、ADコンバータ(Analog to digital converter )で、ディジタルベースバンド信号として変換されOFDM復調等の処理が行われる。
【0004】
このOFDM変調方式は、キャリア周波数誤差の影響を受けやすく、キャリア周波数誤差の補正を行う自動周波数制御(AFC)回路が必須である。AFC回路では、送受信器間の局部発振器の誤差により生じるキャリア周波数誤差を一定の要求範囲内まで抑えることが可能であるが、制御動作を行うためAFC回路によってOFDM信号に位相回転を生じさせる残留キャリア周波数誤差が生じる。
【0005】
さらに、送受信器での、周波数変換操作の際に、VCO(Voltage−Controlled Oscillator )や、PLL(Phase−locked loop )回路等に起因する位相の揺らぎである位相雑音が局部発振器で発生しOFDM信号に加わる。
【0006】
伝送速度の高速化に適した64QAM等のM値QAMをサブキャリア変調に用いる場合では、復調の際に絶対位相を基準に受信シンボルのデータ判定を行うが、信号点距離が小さいためチャネル等化後の残留キャリア周波数誤差や位相雑音によって生じた位相回転が誤り率に与える影響が大きい。
【0007】
この位相回転を抑えるために位相トラッキング回路が必要になる。位相トラッキング回路としては、パイロットサブキャリア信号を利用して、位相回転量の検出補正を行う方式が一般的である。従来の復調回路では、伝搬路のチャネル伝達関数を等化したチヤネル等化後のサブキャリア信号からパイロットサブキャリアを抽出して位相トラッキングを行う。ここで、時間軸と周波数軸で示した受信信号内でのパイロットサブキャリアの配置を図3示す。
【0008】
従来技術では、このOFDMシンボルごとにデータサブキャリアの間に挿人されるパイロットサブキャリアを用いて位相回転量を検出している。従来の位相トラッキング回路を含んだ復調回路のブロック図を図6に示し、この復調回路の動作を以下に説明する。(参考文献:鬼沢他、“OFDM無線LANシステム用位相トラッキング方式の一検討”電子情報通信学会通信ソサイエテイ大会、B−5−62、1999.9)。
【0009】
図6のAFC回路1において、受信OFDM信号のキャリア周波数誤差の補正が行われる。その後、OFDM受信信号s1はFFT回路2に入力されOFDM一括復調が行われる。OFDM復調された各サブキャリア信号s2はチャネル等化回路3に入力され、マルチパス伝搬路で生じた各チャネルの伝達関数を推定し、サブキャリアごとにチャネル等化を行う。
【0010】
また、チャネル等化回路3で検出されたサブキャリアごとのチャネル伝達関数は、1OFDMシンボル当りの位相回転検出の際に各パイロットサブキャリア信号の重み付け操作に用いることも可能である。チャネル等化信号s3はパイロットサブキャリア抽出回路4でパイロットサブキャリア信号s5とパイロットサブキヤリア信号以外の情報サブキャリア信号s5とに分けられる。
【0011】
位相回転検出回路5では、パイロットサブキャリア信号s4に対して既知のパイロットデータ信号を用いて残留キャリア周波数誤差および位相雑音による1OFDMシンボル当たりの位相回転信号s6を検出する。フィルタ6においては、複数のOFDMシンボルに渡り時間方向の平滑化操作を行うことで、熱雑音の影響を押さえた平滑化位相回転信号s9を抽出する。
【0012】
その後、位相補正回路9において、抽出された平滑化位相回転信号s9を用いて情報サブキャリア信号s5に対して位相回転量の補正を行い位相補正信号s10を出力する。判定回路10においてはデータの判定が行われデータs11を出力する。
【0013】
以上説明したように、図6に示した従来の位相トラッキング回路ではパイロットサブキャリアを利用して残留キャリア周波数と位相雑音に起因する位相回転の検出及び補正を行っている。位相回転の検出及び補正を行うことで、位相回転による劣化が大きいサブキャリアの変調方式にM値QAM−OFDM変調方式を用いることが可能になる。
【0014】
【発明が解決しようとする課題】
上述したような従来の技術を高速な伝送速度を実現するM値QAM変調方式をOFDM変調方式のサブキャリア変調方式に適用するには、残留キャリア周波数誤差および位相雑音に起因する位相回転を補正する検出補正回路が必須となる。チャネル等化後に位相回転が生じる原因は、残留キャリア周波数誤差と位相雑音が主な発生源である。
【0015】
OFDM変調方式は、キャリア周波数誤差から著しい影響を受けるためAFCは必須であり、残留キャリア周波数誤差は必ず受信OFDM変調方式信号に加わる。一方、位相雑音は、使用するシステムの要求値により発生する位相雑音電力の大きさは異なるが、位相雑音をゼロにすることは実質不可能であり、受信信号に必ず加わる。
【0016】
この位相雑音の要求値は、各システムにより異なるが、例えば、IEEE8O2.11a規格に準拠した無線LANシステム等では変調精度を尺度として各伝送速度ごとに満足する要求値が記載されている。この規格を満足すれば各製品間でのインターオペラビリティは確保されるものの、送信されるOFDM信号に加わる実際の位相雑音は、各送信器で異なるデバイスを使用した場合には異なる。
この位相雑音電力の大小に応じて、受信パケットの誤り率を最小化する位相トラッキング回路内のフルタのタップ数は異なるため、送信器の位相雑音電力が変動した場合には誤り率特性が劣化するという問題がある。
【0017】
一方、OFDM変調方式の適用システムとして上述した無線LANシステム以外に、ディジタル・テレビでの検討が進んでいる。しかし、ディジタルテレビの様に、パケット伝送ではなく連続的かつ1個所の放送局から送信されるシステムでは、送信される端末が変更されることは実質上ほとんど無いため、位相雑音電力が変動することは少ない。しかし、送信局が固定されない無線LANでは、パケット毎の位相雑音電力が変動していることは頻繁に起こり深刻な問題となる。
【0018】
従来の位相トラッキング回路では、検出された位相回転量を複数のOFDMシンボルに渡って移動平均フルタを用いて平滑化し補正を行う。位相雑音電力が小さい場合には、熱雑音の影響を平滑化するため、フィルタの平均タップ数は、2、または3シンボル等の複数シンボルに渡って平滑化を行った場合の特性が優れ、逆に、位相雑音電力が大きい場合については、熱雑音の影響よりも位相雑音による位相回転が支配的なため、複数のシンボルに渡り平滑化を行うことは、逆に位相回転量に変動を与えてしまうので誤り率は劣化する。
【0019】
特に、位相回転の影響を受けやすい64QAMをサブキャリア変調方式に使用する場合には、位相雑音電力が大きい場合に、複数シンボルに渡る平滑化を行うフィルタを用いると特性の劣化が著しい。しかし、従来の復調回路では、位相トラッキング回路内の平滑化フルタのタップ数は固定であり、位相雑音電力の大小に応じて復調回路の回路構成やパラメータは変更されない。
【0020】
よって、様々な送信器が混在する様なシステムで使用する場合には、位相雑音電力が変動するため、特性が固定のフルタを使用すると、誤り率特性が劣化するという問題があった。本発明では、この問題を解決し、検出された位相回転量から位相雑音を推定後、この推定値に応じて、移動平均フィルタの平均シンボル数を適応的に切り替え、残留キャリア周波数誤差や位相雑音に起因する位相回転に対して高精度に位相回転の検出補正を行う位相トラッキング回路を含んだ復調回路を提供することを目的とする。
【0021】
【課題を解決するための手段】
従来の復調回路の構成では、位相トラッキング回路内部の移動平均フルタの平均シンボル数が固定されているため、受信信号に付加された位相雑音電力に応じた位相回転検出を高精度に行うことが不可能なため誤り率特性が劣化することが避けられなかった。
【0022】
本発明では、パイロットサブキャリアを利用して検出された位相回転量から位相雑音電力を推定し、この推定値に従って移動平均フルタの平均シンボル数を切り替えることにより問題を解決している。位相回転量は位相雑音電力に比例して変動が大きくなるため、この特性を利用して検出された位相回転量に基いて位相雑音量を推定する。
【0023】
この推定の方法としては、各パイロットサブキャリアを利用して検出された1OFDMシンボル当りの位相回転の絶対値を、複数シンボルに渡り加算した加算結果を用いることが考えられる。当然、複数シンボルに渡って加算しない場合、絶対値を用いない場合など様々な場合が考えられるが、本発明の回路は、検出された位相回転量から位相雑音電力を推定し、この推定値に応じてフルタの特性を適応的に可変とするところに特徴がある。
【0024】
ここで具体例に従い説明を行う。検出された1OFDMシンボル当りの位相回転量の絶対値を複数シンボルに渡って加算した場合の分散値φを図4に示す。但し、ここでは、4シンボルに渡って位相回転量の絶対値を加算した場合を示した。又、fBWはPLL帯域幅を示す。この図より、明かな様に複数シンボル時間経過後での位相回転量の分散値は、位相雑音電力に応じて分離している。
【0025】
位相雑音の信号電力比であるψrms が−20dBの場合と、−30dBの場合について示した。この図から、高Eb/Noから低Eb/Noまで変化した場合でも、位相雑音量の大小により分離が可能であることがわかる。この特徴を利用して、算出されたRMS値から閾値thを設定し、“数1”に示す様にthより分散値が大きい場合には、移動平均フィルタの平均シンボル数nを1と設定し、th以下の場合には平均シンボル数nを2と設定する様な制御を行う。
【0026】
【数1】
Figure 0003602785
【0027】
4パイロットシンボルから検出された1OFDMシンボル当りの検出位相回転量をxとすると、移動平均フルタ出力信号yは“数2”として得られる。
【0028】
【数2】
Figure 0003602785
【0029】
但し、x、yは複素数である。ここでは簡単化のために、平均シンボル数が1または2であり、かつフルタのタップ係数が全て1の移動平均フィルタとしたが、検出された分散値に応じて平均シンボル数、タップ係数共に複数の組み合わせ中から選択することも当然可能である。
【0030】
この演算においては、1OFDMシンボル当りの位相回転量を検出した場合に、チャネル等化回路で推定されたサブキャリアごとのチャネル伝達関数を利用して重み付けを行い、さらに検出精度を向上することも可能である。また、位相雑音電力を推定するまでの期間ではフルタのタップ数は固定とするが、低Eb/Noの使用環境の場合にはタップ数を大きく、逆に高Eb/Noの場合にはタップ数を小さく設定することが望ましい。
【0031】
さらに、本発明の様々に考えられる構成の中で、例えば、1OFDMシンボル当りの位相回転量の絶対値を積分し、あらかじめ設定された閾値と比較して、フィルタの平均シンボル数を選択する構成を用いて実現した場合には、回路規模の増加が少ないことも利点として考えられる。
【0032】
本発明の請求項1及び2に記載された発明では、無線マルチキャリア信号を受信後にキャリア周波数誤差補正を行う自動周波数制御手段と、前記自動周波数制御手段から出力されるキャリア周波数誤差の補正が行われたマルチキャリア信号のマルチキャリア一括復調を行いサブキャリア信号を出力するマルチキャリア復調手段と、前記サブキャリア信号に対して伝搬路のチャネル伝達関数の等化を行うチャネル等化手段と、
【0033】
前記チャネル等化手段の出力信号からパイロットサブキャリア信号の抽出を行いパイロットサブキャリア信号と情報サブキャリア信号を分けて出力する抽出手段と、前記抽出手段により得られたパイロットサブキャリア信号を入力し、前記パイロットサブキャリアの位相回転を検出する位相回転検出手段と、前記位相回転検出手段の出力信号である位相回転信号が入力され、位相回転信号を複数シンボルに渡り平滑化するフルタ手段と、
【0034】
前記抽出手段のもう1つの出力信号である情報サブキャリア信号、及び前記フルタ手段で平滑化されたの位相回転信号を入力し、前記情報サブキャリア信号に対して前記位相回転信号が示す位相回転を与えることで位相回転補正が行われたサブキャリア信号を出力する位相補正手段とを有するマルチキャリア変調方式用位相復調回路において、
【0035】
前記位相回転検出手段の出力信号を複数シンボルに渡り加算した位相回転信号を入力として、位相回転量に基づいて位相雑音電力の推定を行う位相雑音推定手段と、前記位相雑音推定手段の出力信号である推定位相雑音値が入力され、この値に基づいて前記フィルタ手段を制御する信号を出力するフィルタ制御手段とを別途備え、前記フィルタ手段はその特性が可変であり、前記フィルタ制御手段の制御信号に従い特性を位相雑音電力に応じて可変とすることを特徴とする。
【0036】
この請求項1及び2の発明では、パイロットサブキャリアから1OFDMシンボル当りの位相回転を検出する。この位相回転量を複数OFDMシンボルに渡り検出演算し位相雑音電力の推定が可能な特徴量を検出する。この値に基いて位相雑音電力に応じたタップ数の設定が可能になり、位相雑音電力が変動した場合でも高精度な位相回転の補正が可能である。
【0037】
本発明の請求項に記載された発明では、請求項1及び2に記載のマルチキャリア用復調回路において、前記復調回路にはデータ部のサブキャリア変調方式を示す変調方式判定信号が別途入力され、前記フルタ制御手段には、前記変調方式判定信号、及び前記位相雑音推定手段の出力信号である推定位相雑音値が入力され、両入力信号に基いて前記フルタ手段を制御する制御信号を出力することを特徴とする。
【0038】
この請求項の発明では、パイロットサブキャリアから1OFDMシンボル当りの位相回転を検出する。この位相回転量を複数OFDMシンボルに渡り検出演算し位相雑音電力の推定が可能な特徴量を検出する。この値に基いて位相雑音電力に応じたタッ数の設定が可能になり、位相雑音電力が変動した場合でも高精度な位相回転の補正が可能である。
【0039】
また、この請求項の発明では、使用されるデータ部のサブキャリア変調方式の判定情報も利用したフルタのタプ数を選択可能である。低Eb/Noでは、BPSK(Binary Phase Shift Keying )が使用され、高Eb/Noでは、64QAM等の多値数が多い変調方式が使用されるようなシステムでは、受信器でBPSKと判断した場合には使用環境が低Eb/Noと判断し、64QAMと判断した場合には使用環境が高Eb/Noと判断可能なため、使用環境に応じた適切なタップ数選択が可能となる。
【0040】
本発明では、以上説明した処理を行い、パイロットサブキャリアを利用して検出した位相回転から位相雑音電力を推定し、位相トラッキング回路内部の移動平均フルタの平均タップ数を選択する手法を用いることで、位相雑音電力が変動した場合に位相回転を高精度に検出できないため誤り率特性が劣化するという従来の問題を解決している。
【0041】
本発明を用いることにより位相雑音が異なる受信OFDM変調信号を受信した場合でも、特性の劣化を抑えることのできる位相トラッキング回路を含む復調回路を実現することが可能である。
【0042】
【発明の実施の形態】
本発明の実施の形態の第1の例として、請求項1及び2によるマルチキャリア用復調回路の実施の形態の例を図1に示す。この回路の動作は以下の通りである。受信OFDM信号は、AFC回路101において受信信号のキャリア周波数誤差の補正が行われる。その後、OFDM受信信号s101は、FFT回路102に入力されOFDM一括復調が行われる。
【0043】
OFDM復調された各サブキャリア信号s102は、チャネル等化回路103に入力され、推定したサブキャリアごとのチャネル伝達関数を用いてチャネル等化が行われる。ここで、チャネル等化回路で検出された各サブキャリアごとのチャネル伝達関数は、位相回転量検出の際に各パイロットサブキャリア信号の重み付け操作に用いることも可能である。
【0044】
パイロットサブキャリア抽出回路104ではチャネル等化信号s103からパイロットサブキャリアの抜き出しが行われパイロットサブキャリア信号s104と情報サブキャリア信号s105が分けて出力される。位相回転検出回路105ではパイロットサブキャリア信号s104から1OFDMシンボル当たりの位相回転信号s106を検出する。
【0045】
その際に、チャネル等化回路で推定されたサブキャリアごとのチャネル伝達関数を利用して重み付けを行うことも可能である。この位相回転信号s106は、位相雑音推定回路107に入力され、位相回転検出回路105の出力信号である位相回転信号s106を複数シンボルに渡り加算した位相回転信号を入力として、受信信号に加えられた位相雑音電力の推定が行われ、位相雑音推定信号s107が出力される。
【0046】
位相雑音推定信号s107はフルタ制御回路108に入力され、推定された位相雑音電力が受信OFDM信号に加わった場合に誤り率特性が改善するフィルタのタップ数を選択する制御信号s108が前記“数1”、“数2”に従い出力される。この制御信号s108は、フィルタ106に入力されs106の位相回転信号を数OFDMシンボルに渡って平滑化し、データ部に加わった平滑化位相回転信号s109の抽出を行う。
【0047】
この位相回転量推定回路107、フルタ制御回路108が、本発明のマルチキャリア変調方式用位相トラッキング回路の特徴とするところであり。請求項1及び2に記載の位相雑音推定手段、フィルタ制御手段とに対応している。その後、平滑化位相回転信号s109を用いて位相補正回路109において位相回転の補正をデータサブキヤリア信号s105に対して行い位相補正信号s110を出力する。判定回路110では、各サブキャリア変調方式のデータの判定が行われデータs111を出力する。
【0048】
本発明の実施の形態の第2の例として、請求項に対応するマルチキャリア用復調回路の例を図2に示す。この回路の動作は以下の通りである。受信OFDM信号はAFC回路201において受信信号のキャリア周波数誤差の補正が行われる。その後、OFDM受信信号s201はFFT回路202に入力されOFDM一括復調が行われる。
【0049】
OFDM復調された各サブキャリア信号s202は、チャネル等化回路203に入力され、推定したサブキャリアごとのチャネル伝達関数を用いてチャネル等化が行われる。ここで、チャネル等化回路で検出された各サブキャリアごとのチャネル伝達関数は、位相回転量検出の際に各パイロツトサブキヤリア信号の重み付け操作に用いることも可能である。
【0050】
パイロットサブキャリア抽出回路204では、チャネル等化信号s203からパイロットサブキャリアの抜き出しが行われパイロットサブキャリア信号s204と情報サブキャリア信号s205が分かれて出力される。位相回転検出回路205ではパイロットサブキャリア信号s204から1OFDMシンボル当たりの位相回転信号s206を検出する。
【0051】
その際に、チャネル等化回路で推定されたサブキャリアごとのチャネル伝達関数を利用して重み付けを行うことも可能である。この位相回転信号s206は、位相雑音推定回路207に入力され、位相回転検出回路205の出力信号である位相回転信号s206を複数シンボルに渡り加算した位相回転信号の絶対値信号を入力として、受信信号に加えられた位相雑音電力の推定が行われ、位相雑音推定信号s207が出力される。
【0052】
位相雑音推定信号s207は、サブキャリア変調方式判定回路の出力信号である判定信号s213と共に、フィルタ制御回路208に入力され、サブキャリア変調方式の情報を反映し、推定された位相雑音電力が受信に加わっている場合に誤り率特性が改善するフルタのタップ数を、前記“数1”、“数2”に従い選択するための制御信号s208を出力する。
【0053】
この制御信号s208は、フルタ206に入力されs206の位相回転信号を数OFDMシンボルに渡って平滑化し、平滑化位相回転信号s209を出力する。その後、平滑化位相回転信号s209を用いて位相補正回路209において位相回転の補正をデータサブキャリア信号s205に対して行い位相補正信号s210を出力する。
【0054】
一方、請求項に記載の復調回路に、別途入力される変調方式判定信号s213はフルタ制御回路208に入力される。このフルタ制御手段208が本発明のマルチキャリア変調方式用位相トラッキング回路の特徴とするところであり、請求項に記載のフルタ制御手段とに対応している。最後に判定回路212では位相補正信号s210に対してデータの判定を行いデータs214を出力する。
【0055】
本発明の請求項による位相トラッキング回路の計算機シミュレーシヨンによる実施形態の効果を図5に示す。図には残留キャリア周波数誤差と位相雑音が存在する場合のパケット誤り率(PER)特性が示されている。この場合のシミュレーシヨンの条件を表1に示す。
【0056】
【表1】
Figure 0003602785
【0057】
位相雑音のパラメータとしてfBWはPLL帯域幅であり、ψ r.m.s は位相雑音の信号電力比を示す。また、送信アンプのアウトプット・バックオフ=12dBとした。従来の位相トラッキング回路を用いてフィルタでの平均数を1OFDMシンボル、2OFDMシンボルと固定にした場合の特性を示した。
【0058】
本発明は、位相雑音電力の推定を行い、この値に応じたフルタの平均シンボル数の選択を行っているために特性が改善されている。平均シンボル数が固定である1シンボル平均と比較すると、位相雑音の信号電力比が−30dBの場合PER=0.01において1シンボル平均の場合と比較して所要Eb/Noが約0.5dB改善し、位相雑音の信号電力比が−20dBの場合には同程度の特性が得られる。
【0059】
また、2シンボル平均の場合との比較では、位相雑音の信号電力比が−30dBの場合PER=0.01において所要Eb/Noが約0.3dB劣化するが、位相雑音の信号電力比が−20dBの場合には所要Eb/Noが約1.4dB改善される。以上より、本発明を用いることで位相雑音電力が変化する状況でも、高精度な位相回転の抽出が可能になりPERの劣化を抑え特性を改善させることが可能であることがわかる。
【0060】
【発明の効果】
以上述べた通り、本発明のマルチキャリア用復調回路によれば、従来の位相雑音電力が変動した場合に位相回転を高精度に検出できないため誤り率特性が劣化するという問題を解決することができる。そして、本発明を用いることにより位相雑音電力が異なるOFDM変調信号を受信した場合でも、特性の劣化を抑えた復調回路を実現することが可能である。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1の例を示すブロック図である。
【図2】本発明の実施の形態の第2の例を示すブロック図である。
【図3】送信パケットでのパイロットサブキャリア信号の配置説明図である。
【図4】本発明の実施の形態に用いる位相回転量の分散特性を示す図である。
【図5】シミュレーシヨンの結果を示す図である。
【図6】従来の復調回路の構成を示すブロック図である。
【符号の説明】
101、201 AFC回路
102、202 FFT回路
103、203 チャネル等化回路
104、204 パイロットサブキャリア抽出回路
105、205 位相回転検出回路
106、206 フィルタ
107、207 位相雑音推定回路
108、208 フルタ制御回路
109、209 位相補正回路
110、212 判定回路

Claims (4)

  1. 無線マルチキャリア信号を受信後にキャリア周波数誤差補正を行う自動周波数制御手段と、
    該自動周波数制御手段から出力されるキャリア周波数誤差の補正が行われたマルチキャリア信号のマルチキャリア一括復調を行い、サブキャリア信号を出力するマルチキャリア復調手段と、
    該サブキャリア信号に対して伝搬路のチャネル伝達関数の等化を行うチャネル等化手段と、
    該チャネル等化手段の出力信号からパイロットサブキャリア信号の抽出を行いパイロットサブキャリア信号と情報サブキャリア信号とを分けて出力する抽出手段と、
    該抽出手段により得られたパイロットサブキャリア信号を入力し、前記パイロットサブキャリアの位相回転を検出する位相回転検出手段と、
    該位相回転検出手段の出力信号である位相回転信号が入力され、位相回転信号を複数シンボルに渡り平滑化するフィルタ手段と、
    前記抽出手段のもう1つの出力信号である情報サブキャリア信号、及び前記フィルタ手段で平滑化された位相回転信号を入力し、前記情報サブキャリア信号に対して前記位相回転信号が示す位相回転を与えることで位相回転補正が行われたサブキャリア信号を出力する位相補正手段とを有するマルチキャリア変調方式用復調回路において、
    前記位相回転検出手段の出力信号を複数シンボルに渡り加算した位相回転信号を入力として、位相雑音電力に比例して変動が大きくなる位相回転量に基づいて位相雑音電力の推定を行う位相雑音推定手段と、
    該位相雑音推定手段の出力信号である推定位相雑音値を入力として、この値に基づいて前記フィルタ手段を制御する制御信号を出力するフィルタ制御手段とを別途備え、
    前記フィルタ手段は、タップ数が可変であり、前記フィルタ制御手段の制御信号に従って、タップ数を位相雑音電力に応じて変化させることを特徴とする、マルチキャリア変調方式用復調回路。
  2. 無線マルチキャリア信号を受信後にキャリア周波数誤差補正を行う自動周波数制御手段と、
    該自動周波数制御手段から出力されるキャリア周波数誤差の補正が行われたマルチキャリア信号のマルチキャリア一括復調を行い、サブキャリア信号を出力するマルチキャリア復調手段と、
    該サブキャリア信号に対して伝搬路のチャネル伝達関数の等化を行うチャネル等化手段と、
    該チャネル等化手段の出力信号からパイロットサブキャリア信号の抽出を行いパイロットサブキャリア信号と情報サブキャリア信号とを分けて出力する抽出手段と、
    該抽出手段により得られたパイロットサブキャリア信号を入力し、前記パイロットサブキャリアの位相回転を検出する位相回転検出手段と、
    該位相回転検出手段の出力信号である位相回転信号が入力され、位相回転信号を複数シンボルに渡り平滑化するフィルタ手段と、
    前記抽出手段のもう1つの出力信号である情報サブキャリア信号、及び前記フィルタ手段で平滑化された位相回転信号を入力し、前記情報サブキャリア信号に対して前記位相回転信号が示す位相回転を与えることで位相回転補正が行われたサブキャリア信号を出力する位相補正手段とを有するマルチキャリア変調方式用復調回路において、
    前記位相回転検出手段の出力信号を複数シンボルに渡り加算した位相回転信号の絶対値信号を入力として、位相雑音電力に比例して変動が大きくなる位相回転量に基づいて位相雑音電力の推定を行う位相雑音推定手段と、
    該位相雑音推定手段の出力信号である推定位相雑音値を入力として、この値に基づいて前記フィルタ手段を制御する制御信号を出力するフィルタ制御手段とを別途備え、
    前記フィルタ手段は、タップ数が可変であり、前記フィルタ制御手段の制御信号に従って、タップ数を位相雑音電力に応じて変化させることを特徴とする、マルチキャリア変調方式用復調回路。
  3. 前記フルタ制御手段は、
    位相雑音推定手段の出力信号である推定位相雑音値と、別途入力されたデータ部のサブキャリア変調方式を示す変調方式判定信号との両入力信号に基いて、フルタ手段を制御する制御信号を生成し出力する請求項1又は請求項2に記載のマルチキャリア変調方式用復調回路。
  4. 前記フィルタ手段は、移動平均フィルタによりタップ数を可変することを特徴とする請求項1から3に記載のいずれかのマルチキャリア変調方式用復調回路。
JP2000341373A 2000-11-09 2000-11-09 マルチキャリア変調方式用復調回路 Expired - Fee Related JP3602785B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341373A JP3602785B2 (ja) 2000-11-09 2000-11-09 マルチキャリア変調方式用復調回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000341373A JP3602785B2 (ja) 2000-11-09 2000-11-09 マルチキャリア変調方式用復調回路

Publications (2)

Publication Number Publication Date
JP2002152167A JP2002152167A (ja) 2002-05-24
JP3602785B2 true JP3602785B2 (ja) 2004-12-15

Family

ID=18816122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341373A Expired - Fee Related JP3602785B2 (ja) 2000-11-09 2000-11-09 マルチキャリア変調方式用復調回路

Country Status (1)

Country Link
JP (1) JP3602785B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6928062B2 (en) * 2002-10-29 2005-08-09 Qualcomm, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US7042857B2 (en) 2002-10-29 2006-05-09 Qualcom, Incorporated Uplink pilot and signaling transmission in wireless communication systems
US7203261B2 (en) * 2003-04-07 2007-04-10 Qualcomm Incorporated Phase locked loop for an OFDM system
US7177297B2 (en) 2003-05-12 2007-02-13 Qualcomm Incorporated Fast frequency hopping with a code division multiplexed pilot in an OFDMA system
KR100555508B1 (ko) * 2003-07-22 2006-03-03 삼성전자주식회사 직교 주파수 분할 다중 수신 시스템에서의 임펄스 잡음억제 회로 및 방법
US8611283B2 (en) 2004-01-28 2013-12-17 Qualcomm Incorporated Method and apparatus of using a single channel to provide acknowledgement and assignment messages
US8891349B2 (en) 2004-07-23 2014-11-18 Qualcomm Incorporated Method of optimizing portions of a frame
US8238923B2 (en) 2004-12-22 2012-08-07 Qualcomm Incorporated Method of using shared resources in a communication system
US8831115B2 (en) 2004-12-22 2014-09-09 Qualcomm Incorporated MC-CDMA multiplexing in an orthogonal uplink
JP4930424B2 (ja) 2008-03-24 2012-05-16 富士通株式会社 位相トラッキング回路、無線受信機、信号処理方法、及び信号処理に用いるプログラム
JP2010177954A (ja) * 2009-01-28 2010-08-12 Toshiba Corp 受信回路
JP5415189B2 (ja) * 2009-09-04 2014-02-12 日本無線株式会社 無線中継装置
RU2510132C2 (ru) * 2009-09-04 2014-03-20 Нек Корпорейшн Устройство радиосвязи с функцией устранения фазового шума несущей и способ радиосвязи
JP5465033B2 (ja) * 2010-02-12 2014-04-09 三菱電機株式会社 搬送波位相補正回路
JP6883659B2 (ja) 2017-04-28 2021-06-09 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 測定装置及び測定方法

Also Published As

Publication number Publication date
JP2002152167A (ja) 2002-05-24

Similar Documents

Publication Publication Date Title
JP3642784B2 (ja) ダイバーシチ受信装置およびダイバーシチ受信方法
US7577206B2 (en) OFDM signal receiving apparatus and method for estimating common phase error of OFDM signals using data subcarriers
US8463213B2 (en) Reception method and reception apparatus
US7519122B2 (en) OFDM reception apparatus and OFDM reception method
JP3602785B2 (ja) マルチキャリア変調方式用復調回路
JP4409743B2 (ja) 無線通信装置及び無線通信方式
EP1636957B1 (en) Receiver for multi-carrier communication system
JP3492565B2 (ja) Ofdm通信装置および検波方法
EP2289216B1 (en) Methods for estimating a residual frequency error in a communications system
JP3740468B2 (ja) Ofdm受信装置及びデータ復調方法
US10063399B2 (en) Method and system for adaptive guard interval (GI) combining
US7551691B2 (en) Receiver for a multi-carrier communication system
WO2005015813A1 (en) Method and device for determining the link quality in an ofdm network
JP7268727B2 (ja) 無線通信装置、無線通信システム及び無線通信方法
JP3534020B2 (ja) マルチキャリア変調方式用復調回路
US20110243280A1 (en) Receiver and receiving method
KR100317384B1 (ko) 채널 특성 보정 방법
JP2008278161A (ja) Ofdm信号受信装置、ofdm信号の受信方法、及びofdm信号の復調方法
JP2005236666A (ja) Ofdm復調装置
EP1665710B1 (en) Apparatus and method for adaptive orthogonality correction
KR20030047591A (ko) 직교주파수분할다중방식의 이동통신 통신시스템의 신호보상장치 및 방법
Haider et al. Phase noise effect on hiperLAN/2 system performance
Das et al. Data transmission over pilot tones in OFDM based wireless systems
Sun et al. Optimization of link-level performance and complexity for the floating-point and fixed-point design of IEEE 82.16 e OFDMA/TDD mobile modem
JP2011124779A (ja) 無線通信システム、無線通信装置、及び無線通信方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees