JP3600817B2 - 電圧比較回路 - Google Patents

電圧比較回路 Download PDF

Info

Publication number
JP3600817B2
JP3600817B2 JP2002031287A JP2002031287A JP3600817B2 JP 3600817 B2 JP3600817 B2 JP 3600817B2 JP 2002031287 A JP2002031287 A JP 2002031287A JP 2002031287 A JP2002031287 A JP 2002031287A JP 3600817 B2 JP3600817 B2 JP 3600817B2
Authority
JP
Japan
Prior art keywords
signal
circuit
level
voltage
comparison
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002031287A
Other languages
English (en)
Other versions
JP2002277492A (ja
Inventor
成治 渡辺
Original Assignee
日本テキサス・インスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本テキサス・インスツルメンツ株式会社 filed Critical 日本テキサス・インスツルメンツ株式会社
Priority to JP2002031287A priority Critical patent/JP3600817B2/ja
Publication of JP2002277492A publication Critical patent/JP2002277492A/ja
Application granted granted Critical
Publication of JP3600817B2 publication Critical patent/JP3600817B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、信号のゼロクロスを検出できる電圧比較回路、特にヒステリシス特性により雑音の影響を抑制でき、誤動作を回避できる電圧比較回路に関するものである。
【0002】
【従来の技術】
一般的に、入力信号のゼロクロスを検出する電圧比較回路は、入力信号の電圧レベルと所定の基準信号の電圧レベルとを比較し、その比較結果により入力信号が基準信号レベルを通過するポイントを検出する。
【0003】
図10は、このような電圧比較回路の基本構成例を示している。図示のように、電圧比較回路は、コンパレータCMP0と基準電圧Vref を提供する電圧源により構成されている。入力信号VinはコンパレータCMP0の反転入力端子(−)に印加され、基準電圧Vref は、コンパレータCMP0の非反転入力端子(+)に印加されている。入力信号Vinは、例えば、図11(a)に示すように所定の基準値を中心にレベルが上下に変動する信号とする。コンパレータCMP0から図11(b)に示す出力信号V が得られる。このように、出力信号V のレベル変化エッジにより、入力信号Vinのレベルが基準値を通過した時点を正確に把握することができる。
【0004】
しかし、入力信号Vinに雑音が混入されている場合には、図10に示す電圧比較回路では正確な結果が得られない。例えば、図12の波形図に示すように、入力信号Vinに混入されている雑音の影響により、入力信号Vinのレベルが基準電圧Vref に接近している場合に、入力信号Vinのレベルが基準電圧Vref を複数回通過し、これに応じて出力信号V の立ち上がりまたは立ち下がりエッジが不安定になる。
【0005】
図13および図14は、入力信号Vinおよび出力信号V のレベル変化点付近を拡大して表示したものである。図13(a)および(b)に示すように、入力信号Vinのレベルが上昇し、基準電圧Vref に近づいている場合に、雑音の影響により信号レベルが所定の期間において基準電圧Vref を上下する。この間、出力信号V にランダムな幅を持つ複数のパルスが発生してしまう。いわゆる出力信号V に“髭”が生じる。入力信号Vinのレベルが降下して、基準電圧Vrefに近づく場合には、図14(a)および(b)に示すように、同様に、出力信号V に“髭”が生じてしまう。
【0006】
このように、入力信号Vinに雑音が混入した場合、図10に示す単純な電圧比較回路においては、出力信号V の立ち上がりおよび立ち下がりエッジが不安定になる。この問題を解決するために、図15および図16に示すヒステリシス特性を有する電圧比較回路が提案されている。
【0007】
図15(a)はヒステリシス特性を持つ電圧比較回路の一例を示す回路図である。図示のように、本例の電圧比較回路においては、出力信号V を抵抗素子R3を介して基準電圧Vref の発生回路にフィードバックさせることにより、電圧比較回路にヒステリシス特性を持たせている。
【0008】
基準電圧Vref は、電源電圧VCCと共通電位VSSとの間に接続されている二つの抵抗素子R1とR2で生じた分圧電圧である。ここで、例えば、抵抗素子R1およびR2の抵抗値をそれぞれr1,r2とし、共通電位VSSを0Vとすると、基準電圧Vref の電圧値vref は、次式より求まる。
【0009】
【数1】
ref =VCC・r2/(r1+r2) …(1)
【0010】
同図(c)に示すように、コンパレータCMP0において、入力端子(+)に印加される基準電圧Vref のレベルが反転入力端子(−)に印加される入力信号Vinのレベルより高い場合、ハイレベルの信号、例えば、電源電圧VCCレベルの信号が出力され、逆に入力端子(+)に印加される基準電圧Vref のレベルが反転入力端子(−)に印加される入力信号Vinのレベルより低い場合、ローレベルの信号、例えば,共通電位VSSレベルの信号が出力される。
【0011】
コンパレータCMP0の出力信号V が抵抗素子R3を介して、抵抗素子R1とR2との接続点にフィードバックされているので、ここで、抵抗素子R3の抵抗値をr3とし、且つ抵抗素子R1とR3の並列抵抗値をr13として、抵抗素子R2とR3との並列抵抗値をr23とすると、図15(b)に示す電圧Vt+およびVt−のレベルがそれぞれ次式により与えられる。
【0012】
【数2】
Vt+=VCC・r2/(r13+r2) …(2)
Vt−=VCC・r23/(r1+r23) …(3)
【0013】
例えば、(r1=r2=r3)の場合に、Vt+=0.67VCC、Vt−=0.33VCCとなる。
このように、入力信号Vinのレベルが基準電圧Vref のレベルより低い場合に、コンパレータCMP0からハイレベルの出力信号V が出力される。このハイレベルの出力信号V が抵抗素子R3を介してフィードバックされるので、コンパレータCMP0の入力端子(+)に式(2)に示す電圧Vt+が入力される。入力信号Vinのレベルが上昇し、電圧Vt+を越えたとき、コンパレータCMP0の出力信号V がローレベルに変化する。これに応じて、コンパレータCMP0の入力端子(+)に式(3)に示す電圧Vt−が印加される。入力信号Vinのレベルが降下して、電圧Vt−以下になるとき、コンパレータCMP0の出力信号レベルが再び変化し、ローレベルからハイレベルに切り替わる。
【0014】
このように、コンパレータCMP0の出力信号V をフィードバックし、これに応じて基準電圧Vref のレベルを制御することにより、電圧比較回路にヒステリシスを与えることができる。
【0015】
図16はヒステリシス特性を持つ電圧比較回路の他の構成例を示している。図示のように、本例においては、図15に示す電圧比較回路とほぼ同様に、出力信号V をフィードバックし、これに応じて基準電圧Vref のレベルを制御し、電圧比較回路にヒステリシス特性を持たせている。
【0016】
同図(a)に示すように、基準電圧Vref は、電源電圧VCCと共通電位VSS間に接続されている抵抗素子R1、R2、R3およびnMOSトランジスタNT0により発生される。ここで、抵抗素子R1,R2,R3の抵抗値をそれぞれr1,r2,r3として、また、nMOSトランジスタNT0がオン状態時の抵抗は、無視できる程度とすると、nMOSトランジスタNT0のオン/オフ状態に応じて、基準電圧Vref のレベルが次式により求められる。
【0017】
【数3】
Vt−=VCC・r2/(r1+r2) …(4)
Vt+=VCC・(r2+r3)/(r1+r2+r3) …(5)
【0018】
ここで、Vt−はnMOSトランジスタNT0がオン状態にあるときの基準電圧Vref のレベルで、Vt+は、nMOSトランジスタNT0がオフ状態にあるときの基準電圧Vref のレベルである。また、式(4)と式(5)の間には、(Vt−<Vt+)の関係が成立する。
【0019】
例えば、入力信号Vinのレベルが基準電圧Vref のレベルより高い場合、コンパレータCMP0’の出力端子からハイレベルの信号V が出力される。これに応じて、トランジスタNT0がオン状態に保持され、基準電圧Vref は、式(4)に示すVt−レベルに保持される。一方、入力信号Vinのレベルが基準電圧Vref のレベルより低い場合、コンパレータCMP0’の出力端子からローレベルの信号V が出力される。これに応じて、トランジスタNT0がオフ状態に保持され、基準電圧Vref は、式(5)に示すVt+レベルに保持される。このように、コンパレータCMP0’の出力信号V をフィードバックすることにより、電圧比較回路にヒステリシス特性を与えることができ、雑音の影響を抑制することが可能である。
【0020】
図13の(c)および同図(d)は、ヒステリシス特性を持つ電圧比較回路に雑音が混入した入力信号Vinが入力した場合の出力信号V の波形を示している。図示のように、入力信号Vinのレベルが上昇し、基準電圧Vref のレベルを越えたとき、出力信号V のレベルが変化し、これに応じてコンパレータに入力される基準電圧がVt−レベルとなり、それ以降の入力信号Vinの雑音によるレベル変動が出力信号V に影響を及ぼすことがなくなる。
同様に、入力信号Vinのレベルが降下し、基準電圧Vref のレベルより低くなったときの入出力信号の波形を図14(c)および同図(d)に示している。図示のように、入力信号Vinのレベルが基準電圧Vref より低くなったとき、出力信号V のレベルが変化し、これに応じて、コンパレータに入力される基準電圧がVt+レベルとなる。このため、それ以降の入力信号の雑音による影響が抑制される。
【0021】
【発明が解決しようとする課題】
ところで、上述した従来のヒステリシス特性を持つ電圧比較回路においては、コンパレータの出力信号のレベル変化点は、実際の入力信号Vinが基準電圧Vref を通過した時点よりΔtの遅延が生じる。このため、時間や位相を重視する応用回路へは使用できないという不利益がある。
【0022】
本発明は、かかる事情に鑑みてなされたものであり、その目的は、入力信号が所定の基準電圧(比較用電圧)に達する時間を正確に検出することができ、当該入力信号に混入した雑音の影響を抑制でき、信号のレベル変化を高精度に検出可能な電圧比較回路を提供することにある。
【0023】
【課題を解決するための手段】
上記目的を達成するため、本発明の電圧比較回路は、入力信号と比較用信号とを比較し、上記入力信号が上記比較用信号よりも大きい場合に第1のレベルの出力信号を出力し、上記入力信号が上記比較用信号よりも小さい場合に第2のレベルの出力信号を出力する比較回路と、上記出力信号が第1のレベルから第2のレベルに変化したことを検出する第1の検出回路と、上記出力信号が第2のレベルから第1のレベルに変化したことを検出する第2の検出回路と、遅延回路を有し、上記第1の検出回路又は上記第2の検出回路の検出結果に応じて、上記遅延回路の遅延時間によって設定された所定の時間を計測するタイマ回路と、上記比較用信号のレベルを電源電圧である第1の基準値、基準電位である第3の基準値、又は上記第1の基準値よりも小さく、上記第3の基準値よりも大きい第2の基準値に設定する比較用信号設定回路と、を有し、上記比較用信号は、上記第1の検出回路又は上記第2の検出回路の検出結果に応じて、上記第1の基準値又は上記第3の基準値に設定され、その後上記所定の時間が経過すると上記第2の基準値に設定される。
【0024】
また、本発明の電圧比較回路は、入力信号と比較用信号とを比較し、上記入力信号が上記比較用信号よりも大きい場合に第1のレベルの出力信号を出力し、上記入力信号が上記比較用信号よりも小さい場合に第2のレベルの出力信号を出力する比較回路と、上記出力信号が第1のレベルから第2のレベルに変化したことを検出する第1の検出回路と、上記出力信号が第2のレベルから第1のレベルに変化したことを検出する第2の検出回路と、第1と第2の時間を遅延時間としてもつ遅延回路を有し、上記第1の検出回路又は上記第2の検出回路の検出結果に応じて、上記遅延回路の遅延時間によって設定された第1の時間又は第2の時間を計測するタイマ回路と、上記比較用信号のレベルを電源電圧である第1の基準値、基準電位である第3の基準値、又は上記第1の基準値よりも小さく、上記第3の基準値よりも大きい第2の基準値に設定する比較用信号設定回路と、を有し、上記比較用信号は、上記第1の検出回路の検出結果に応じて上記第1の基準値に設定され、その後上記第1の時間が経過すると上記第2の基準値に設定され、上記第2の検出回路の検出結果に応じて上記第3の基準値に設定され、その後上記第2の時間が経過すると上記第2の基準値に設定される。
【0025】
また、本発明では、好適には、上記遅延回路は直列に接続された複数のフリップフロップを有する。
【0026】
更に、本発明では、好適には、上記第2の基準値は上記第1の基準値と上記第3の基準値との間のほぼ中央に位置する電位である。
【0027】
本発明によれば、比較回路(コンパレータ)により、雑音が混入している入力信号と比較用信号設定回路からの比較用信号とが比較され、その比較結果に応じて第1または第2のレベルを持つ出力信号が発生される。上記コンパレータから出力される出力信号のレベルが変化したとき、比較用信号設定回路は、所定の期間だけ、例えば遅延回路により設定された遅延時間分だけ比較用信号を初期値(第2の基準値)と異なる第1または第3の基準値に設定し、当該遅延時間が経過した後、比較用信号が再び初期値(第2の基準値)に設定される。これによって、電圧比較回路にヒステリシス特性が付与されることになり、入力信号に混入した雑音の影響を抑制することができ、入力信号のレベル変化点を正確に検出することが可能となる。
【0028】
【発明の実施の形態】
第1実施形態
図1は本発明に係る電圧比較回路の第1の実施形態を示す回路図である。
図示のように、本実施形態の電圧比較回路は、コンパレータCMP1、基準電圧切り替え回路SWC1および遅延回路DLY1,DLY2により構成されている。
【0029】
コンパレータCMP1の非反転入力端子(+)に、比較対象となる信号Vinが入力され、反転入力端子(−)に、基準電圧切り替え回路SWC1からの比較用電圧が入力される。コンパレータCMP1は、入力信号Vinのレベルと比較用電圧のレベルを比較し、比較結果に応じて所定のレベルを持つ信号V を出力する。例えば、入力信号Vinのレベルが比較用電圧のレベルよりも高い場合、ハイレベル、例えば、電源電圧VCCレベルの信号が出力され、逆に、入力信号Vinのレベルが比較用電圧のレベルよりも低い場合、ローレベル、例えば、共通電位VSSレベルの信号が出力される。
【0030】
基準電圧切り替え回路SWC1は、図示のように、スイッチS1,S2およびS3により構成されている。基準電圧切り替え回路SWC1に、外部からvrefのレベルを持つ電圧が入力される。スイッチS1は、電圧vref の入力端子とノードND1との間に接続され、スイッチS2は、共通電位VSSとノードND1との間に接続され、スイッチS3は、電源電圧VCCとノードND1との間に接続されている。
スイッチS1は、NORゲートNRGT1からのスイッチ制御信号SC0によりオン/オフ状態が制御され、スイッチS2は、遅延回路DLY1からのスイッチ制御信号SC1によりオン/オフ状態が制御され、スイッチS3は、遅延回路DLY2からのスイッチ制御信号SC2によりオン/オフ状態が制御される。
NORゲートNRGT1の2つの入力端子に、それぞれスイッチ制御信号SC1,SC2が入力され、これらの制御信号に応じてスイッチ制御信号SC0が発生される。
【0031】
回路動作時に、スイッチ制御信号SC1,SC2およびSC3に応じて、スイッチS1,S2,S3の内、1つのみがオン状態に設定され、他の2つはオフ状態に保持される。スイッチS1がオン状態に設定されているとき、基準電圧vref がノードND1に出力され、スイッチS2がオン状態に設定されているとき、共通電位VSSがノードND1に出力され、スイッチS3がオン状態に設定されているとき、電源電圧VCCがノードND1に出力される。ノードND1の電圧は、比較用電圧として、コンパレータCMP1の反転入力端子(−)に入力される。
【0032】
遅延回路DLY1およびDLY2は、それぞれコンパレータCMP1の出力信号V の立ち上がりエッジおよび立ち下がりエッジに対して、所定の遅延時間を与える。遅延回路DLY1およびDLY2は、それぞれの遅延時間に応じたスイッチ制御信号SC1およびSC2を出力する。
【0033】
遅延回路DLY1は、DフリップフロップD−FF1,D−FF2,D−FF3およびD−FF4、さらにANDゲートAGT3により構成されている。DフリップフロップD−FF1の信号入力端子Dには、電源電圧VCCが印加され、出力端子QはDフリップフロップD−FF2の信号入力端子Dに接続されている。DフリップフロップD−FF1の出力端子Qから、スイッチ制御信号SC1が出力される。DフリップフロップD−FF1のクロック入力端子にANDゲートAGT1の出力信号が印加される。ANDゲートAGT1の一方の入力端子はコンパレータCMP1の出力端子に接続され、他方の入力端子は遅延回路DLY2のDフリップフロップD−FF5の反転出力端子Qzに接続されている。
【0034】
DフリップフロップD−FF2の出力端子Qは、DフリップフロップD−FF3の入力端子Dに接続され、DフリップフロップD−FF3の出力端子Qは、DフリップフロップD−FF4の入力端子Dに接続されている。DフリップフロップD−FF2,D−FF3,D−FF4のクロック入力端子に、クロック信号CLKが入力されている。さらに、DフリップフロップD−FF1,D−FF2,D−FF3のリセット信号端子は、ANDゲートAGT3の出力端子に接続されており、DフリップフロップD−FF4のリセット信号端子は、リセット信号RSTの入力端子に接続されている。ANDゲートAGT3の一方の入力端子は、リセット信号RSTの入力端子に接続され、他方の入力端子は、DフリップフロップD−FF4の反転出力端子Qzに接続されている。
【0035】
遅延回路DLY2は、DフリップフロップD−FF5,D−FF6,D−FF7およびD−FF8、さらにANDゲートAGT4により構成されている。DフリップフロップD−FF5の信号入力端子Dには、電源電圧VCCが印加され、出力端子QはDフリップフロップD−FF6の信号入力端子Dに接続されている。DフリップフロップD−FF5の出力端子Qから、スイッチ制御信号SC2が出力される。DフリップフロップD−FF5のクロック入力端子にANDゲートAGT2の出力信号が印加される。ANDゲートAGT2の一方の入力端子はインバータ1の出力端子に接続され、インバータINV1の入力端子はコンパレータCMP1の出力端子に接続されている。ANDゲートAGT2の他方の入力端子は遅延回路DLY1のDフリップフロップD−FF1の反転出力端子Qzに接続されている。
【0036】
DフリップフロップD−FF6の出力端子Qは、DフリップフロップD−FF7の入力端子Dに接続され、DフリップフロップD−FF7の出力端子Qは、DフリップフロップD−FF8の入力端子Dに接続されている。DフリップフロップD−FF6,D−FF7,D−FF8のクロック入力端子に、クロック信号CLKが入力されている。さらに、DフリップフロップD−FF5,D−FF6,D−FF7のリセット信号端子は、ANDゲートAGT4の出力端子に接続されており、DフリップフロップD−FF8のリセット信号端子は、リセット信号RSTの入力端子に接続されている。ANDゲートAGT4の一方の入力端子は、リセット信号RSTの入力端子に接続され、他方の入力端子は、DフリップフロップD−FF8の反転出力端子Qzに接続されている。
【0037】
図2は、本実施形態の動作を説明するための波形図である。以下、図1および図2を参照しつつ、本実施形態の電圧比較回路の動作について説明する。
まず、動作開始前に、リセット信号RSTが所定の時間においてローレベルに設定される。これに応じて、ANDゲートAGT3およびAGT4の出力信号が同じ時間においてローレベルに保持されるので、遅延回路DLY1およびDLY2にあるすべてのDフリップフロップD−FF1〜D−FF4およびD−FF5〜D−FF8がリセットされ、それぞれの出力端子Qがローレベルに保持され、反転出力端子Qzはハイレベルに保持される。
【0038】
即ち、初期状態において、スイッチ制御信号SC1,SC2がともにローレベルに保持され、これに応じて、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がハイレベルに保持される。この結果、基準電圧切り替え回路SWC1において、スイッチS1のみがオン状態に保持され、他のスイッチS2,S3がともにオフ状態に保持される。このとき、電圧vref が比較用電圧としてコンパレータCMP1に供給される。
【0039】
コンパレータCMP1において、入力信号Vinと比較用電圧(電圧Vref )とが比較される。図2に示すように時間t で入力信号Vinのレベルが比較用電圧(電圧Vref )に達する。これに応じて、コンパレータCMP1の出力信号Vがローレベルからハイレベルに切り替わる。このため、図1においてANDゲートAGT1の出力信号がローレベルからハイレベルに切り替わり、DフリップフロップD−FF1の出力端子Qは、ローレベルからハイレベルに切り替わる。即ち、スイッチ制御信号SC1がローレベルからハイレベルに切り替わるので、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がハイレベルからローレベルに切り替わる。
【0040】
このとき、基準電圧切り替え回路SWC1において、スイッチS1がオン状態からオフ状態に切り替わり、スイッチS2がオフ状態からオン状態に切り替わる。なお、スイッチS3の状態は変化せず、オフ状態のままに保持される。この状態において、共通電位VSSが比較用電圧としてコンパレータCMP1に出力される。
【0041】
クロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF2の出力端子Qは、ローレベルからハイレベルに切り替わり、また、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF3の出力端子もローレベルからハイレベルに切り替わる。さらに、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF4の出力端子もローレベルからハイレベルに切り替わり、これに応じてDフリップフロップD−FF4の反転出力端子Qzはハイレベルからローレベルに切り替わる。
【0042】
ANDゲートAGT3の出力信号は、DフリップフロップD−FF4の反転出力端子Qzのレベル変化に応じてハイレベルからローレベルに切り替わるので、DフリップフロップD−FF1,D−FF2およびD−FF3がリセットされる。これに応じて、スイッチ制御信号SC1がハイレベルからローレベルに切り替わり、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がローレベルからハイレベルに立ち上がる。
【0043】
このとき、基準電圧切り替え回路SWC1において、スイッチS2はオン状態からオフ状態に切り替わり、スイッチS1はオフ状態からオン状態に切り替わる。なお、スイッチS3の状態は変化せず、オフ状態のままに保持される。この状態において、電圧vref が再び比較用電圧としてコンパレータCMP1に供給される。
【0044】
DフリップフロップD−FF1,D−FF2およびD−FF3がリセットされた後、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF4もリセットされ、反転出力端子Qzがローレベルからハイレベルに切り替わる。
【0045】
次いで、図2に示すように、時間t において、入力信号Vinのレベルが降下し、比較用電圧(電圧Vref )のレベルに達する。これに応じてコンパレータCMP1の出力信号V がハイレベルからローレベルに切り替わる。このため、図1においてANDゲートAGT2の出力信号がローレベルからハイレベルに切り替わり、DフリップフロップD−FF5の出力端子Qは、ローレベルからハイレベルに切り替わる。即ち、スイッチ制御信号SC2がローレベルからハイレベルに切り替わるので、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がハイレベルからローレベルに切り替わる。
【0046】
このとき、基準電圧切り替え回路SWC1において、スイッチS1がオン状態からオフ状態に切り替わり、スイッチS3がオフ状態からオン状態に切り替わる。なお、スイッチS2の状態は変化せず、オフ状態のままに保持される。この状態において、電源電圧VCCが比較用電圧としてコンパレータCMP1に出力される。
【0047】
そして、クロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF6の出力端子Qは、ローレベルからハイレベルに切り替わり、また、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF7の出力端子もローレベルからハイレベルに切り替わる。さらに、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF8の出力端子もローレベルからハイレベルに切り替わり、これに応じてDフリップフロップD−FF8の反転出力端子Qzはハイレベルからローレベルに切り替わる。
【0048】
ANDゲートAGT4の出力信号は、DフリップフロップD−FF8の反転出力端子Qzのレベル変化に応じてハイレベルからローレベルに切り替わるので、それに応じて、DフリップフロップD−FF5,D−FF6およびD−FF7がリセットされる。これに応じて、スイッチ制御信号SC2がハイレベルからローレベルに切り替わり、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がローレベルからハイレベルに立ち上がる。
【0049】
このとき、基準電圧切り替え回路SWC1において、スイッチS3はオン状態からオフ状態に切り替わり、スイッチS1はオフ状態からオン状態に切り替わる。なお、スイッチS2の状態は変化せず、オフ状態のままに保持される。この状態において、電圧vref が比較用電圧としてコンパレータCMP1に供給される。
【0050】
DフリップフロップD−FF5,D−FF6およびD−FF7がリセットされた後、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF8もリセットされ、反転出力端子Qzがローレベルからハイレベルに切り替わる。
【0051】
このように、入力信号Vinのレベルが比較用電圧(電圧Vref )のレベルを越えたとき、基準電圧切り替え回路SWC1により、比較用電圧は共通電位VSSレベルに設定され、遅延回路DLY1により、クロック信号CLKの約3周期分の時間において、比較用電圧は共通電位VSSに保持され、その後再び初期値vrefに設定される。同様に、入力信号Vinのレベルが比較用電圧(電圧Vref )のレベルより低くなったとき、比較用電圧は電源電圧VCCレベルに設定され、遅延回路DLY2により、クロック信号CLKの約3周期分の時間において、比較用電圧は電源電圧VCCに保持され、その後再び初期値vref に設定される。
【0052】
以上説明したように、本実施形態によれば、コンパレータCMP1の出力信号の立ち上がりまたは立ち下がりエッジに応じて、遅延回路DLY1またはDLY2を動作させ、遅延回路DLY1の遅延時間内に、基準電圧切り替え回路SWC1は比較用電圧を共通電位VSSに保持し、遅延回路DLY2の遅延時間内に、基準電圧切り替え回路SWC1は比較用電圧を電源電圧VCCに保持する。遅延回路の遅延時間が経過した後、基準電圧切り替え回路SWC1は、比較用電圧を再び初期値(電圧Vref )に設定するので、電圧比較回路にヒステリシス特性が付与され、入力信号Vinに混入した雑音の影響を抑制でき、安定した比較結果が得られる。さらに、出力信号のレベルが切り替わった後、所定の時間後に比較用電圧は、初期値(電圧Vref )に再設定されるので、出力信号の遅延が回避され、入力信号が所定の基準値を通過するレベル変化点を正確に検出することが可能である。
【0053】
なお、図1に示す回路例においては、遅延回路DLY1,DLY2はそれぞれ4段のDフリップフロップにより構成されているが、本発明はこれに限定されるものではなく、遅延回路を構成するDフリップフロップの段数を、雑音による影響を低減させるために必要な遅延時間をもとに、入力信号Vinおよびクロック信号CLKの周波数に応じて任意に設定することができる。さらに、必要に応じて任意にコンパレータの出力信号の立ち上がりエッジおよび立ち下がりエッジに応じて動作する遅延回路DLY1およびDLY2の遅延時間を異なるように設定することも可能である。
【0054】
第2実施形態
図3は本発明に係る電圧比較回路の第2の実施形態を示す回路図である。
本実施形態の電圧比較回路において、コンパレータCMP1および基準電圧切り替え回路SWC1は、図1に示す本発明の第1の実施形態とほぼ同じであるが、他の構成部分は、第1の実施形態と異なる。図3において、図1と同様な構成部分は、図1と同じ符号を用いて表記する。
【0055】
図3に示す電圧比較回路において、ANDゲートAGT1とDフリップフロップD−FF1は、コンパレータCMP1の出力信号V の立ち上がりエッジを検出する第1のエッジ検出回路を構成し、インバータINV1、ANDゲートAGT2およびDフリップフロップD−FF5は、コンパレータCMP1の出力信号V の立ち下がりエッジを検出する第2のエッジ検出回路を構成している。
図示のように、本実施形態において、一つの遅延回路DLY0のみを設けて、コンパレータCMP1の立ち上がりエッジおよび立ち下がりエッジの両方に対して所定の遅延時間を与える。
【0056】
第1のエッジ検出回路において、ANDゲートAGT1の一方の入力端子はコンパレータCMP1の出力端子に接続され、他方の入力端子は第2のエッジ検出回路を構成するDフリップフロップD−FF5の反転出力端子Qzに接続されている。ANDゲートAGT1の出力端子は、DフリップフロップD−FF1のクロック入力端子に接続されている。DフリップフロップD−FF1の出力端子Qからスイッチ制御信号SC1が出力される。
【0057】
第2のエッジ検出回路において、インバータINV1の入力端子は、コンパレータCMP1の出力端子に接続され、ANDゲートAGT2の一方の入力端子はインバータINV1の出力端子に接続され、他方の入力端子は第1のエッジ検出回路を構成するDフリップフロップD−FF1の反転出力端子Qzに接続されている。ANDゲートAGT2の出力端子は、DフリップフロップD−FF5のクロック入力端子に接続されている。DフリップフロップD−FF5の出力端子Qからスイッチ制御信号SC2が出力される。
【0058】
第1のエッジ検出回路は、コンパレータCMP1の出力信号V の立ち上がりエッジを検出する。即ち、出力信号V の立ち上がりエッジに応じてDフリップフロップD−FF1の出力端子Qはローレベルからハイレベルに切り替えられる。そして、遅延回路DLY0の遅延時間において、DフリップフロップD−FF1の出力端子Qは、ハイレベルに保持されるままとなる。なお、この間DフリップフロップD−FF1の反転出力端子Qzがローレベルに保持されているので、ANDゲートAGT2の出力端子もローレベルに保持され、第2のエッジ検出回路は動作しない。
【0059】
第2のエッジ検出回路は、コンパレータCMP1の出力信号V の立ち下がりエッジを検出する。即ち、出力信号V の立ち下がりエッジに応じてDフリップフロップD−FF5の出力端子Qはローレベルからハイレベルに切り替えられる。そして、遅延回路DLY0の遅延時間において、DフリップフロップD−FF5の出力端子Qは、ハイレベルに保持されるままとなる。この間DフリップフロップD−FF5の反転出力端子Qzがローレベルに保持されているので、ANDゲートAGT1の出力端子もローレベルに保持され、第1のエッジ検出回路は動作しない。
【0060】
このように、第1および第2のエッジ検出回路は、一方が動作するとき、他方の動作を禁止することができる。これによって、エッジ検出回路の誤動作を防止でき、コンパレータCMP1の入力信号Vinに混入した雑音の影響を抑制することが可能である。
【0061】
遅延回路DLY0は、ORゲートOGT1、ANDゲートAGT5およびDフリップフロップD−FF2,D−FF3およびD−FF4により構成されている。ORゲートOGT1の2つの入力端子は、それぞれDフリップフロップD−FF1およびD−FF5の出力端子Qに接続され、出力端子はDフリップフロップD−FF2の入力端子Dに接続されている。DフリップフロップD−FF2の出力端子Qは、DフリップフロップD−FF3の入力端子Dに接続され、その出力端子Qは、DフリップフロップD−FF4の入力端子Dに接続されている。
【0062】
ANDゲートAGT5の一方の入力端子は、リセット信号RSTの入力端子に接続され、他方の入力端子は、DフリップフロップD−FF4の反転出力端子Qzに接続されている。ANDゲートAGT5の出力端子は、DフリップフロップD−FF1,D−FF2,D−FF3およびD−FF5のリセット信号端子に接続されている。
【0063】
図4は、本実施形態の電圧比較回路の動作を説明するための波形図である。以下、図3および図4を参照しつつ、本実施形態の動作を説明する。
まず、動作開始前に、リセット信号RSTが所定の時間においてローレベルに設定される。これに応じて、ANDゲートAGT5の出力信号もほぼ同じ時間においてローレベルに保持されるので、遅延回路DLY0にあるすべてのDフリップフロップD−FF2〜D−FF4および第1と第2のエッジ検出回路を構成するDフリップフロップD−FF1,D−FF5がリセットされ、それぞれの出力端子Qがローレベルに保持され、反転出力端子Qzはハイレベルに保持される。
【0064】
即ち、初期状態において、スイッチ制御信号SC1,SC2がともにローレベルに保持され、これに応じてNORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がハイレベルに保持されるので、基準電圧切り替え回路SWC1において、スイッチS1のみがオン状態に保持され、他のスイッチS2,S3がともにオフ状態に保持されている。このとき、電圧vref が比較用電圧としてコンパレータCMP1に供給される。
【0065】
コンパレータCMP1において、入力信号Vinと比較用電圧(電圧Vref )とが比較される。図4に示すように時間t で入力信号Vinのレベルが比較用電圧(電圧Vref )のレベルに達する。これに応じて、コンパレータCMP1の出力信号V がローレベルからハイレベルに切り替わる。このため、ANDゲートAGT1の出力信号がローレベルからハイレベルに切り替わり、DフリップフロップD−FF1の出力端子Qは、ローレベルからハイレベルに切り替わる。即ち、第1のエッジ検出回路によってコンパレータCMP1の出力信号の立ち上がりエッジが検出され、それに応じて、スイッチ制御信号SC1がローレベルからハイレベルに切り替わるので、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がハイレベルからローレベルに切り替わる。
【0066】
このとき、基準電圧切り替え回路SWC1において、スイッチS1がオン状態からオフ状態に切り替わり、スイッチS2がオフ状態からオン状態に切り替わる。なお、スイッチS3の状態は変化せず、オフ状態のままに保持される。この状態において、共通電位VSSが比較用電圧としてコンパレータCMP1に出力される。
【0067】
DフリップフロップD−FF1の出力信号に応じて、ORゲートOGT1の出力信号がハイレベルに保持される。その後クロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF2の出力端子Qは、ローレベルからハイレベルに切り替わり、また、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF3の出力端子もローレベルからハイレベルに切り替わる。さらに、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF4の出力端子もローレベルからハイレベルに切り替わり、これに応じてDフリップフロップD−FF4の反転出力端子Qzはハイレベルからローレベルに切り替わる。
【0068】
ANDゲートAGT5の出力信号は、DフリップフロップD−FF4の反転出力端子Qzのレベル変化に応じてハイレベルからローレベルに切り替わるので、DフリップフロップD−FF1,D−FF2およびD−FF3がリセットされる。これに応じて、スイッチ制御信号SC1がハイレベルからローレベルに切り替えられ、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がローレベルからハイレベルに立ち上がる。
【0069】
このとき、基準電圧切り替え回路SWC1において、スイッチS2はオン状態からオフ状態に切り替わり、スイッチS1はオフ状態からオン状態に切り替わる。なお、スイッチS3の状態は変化せず、オフ状態のままに保持される。この状態において、電圧vref が比較用電圧としてコンパレータCMP1に供給される。
【0070】
遅延回路DLY0において、DフリップフロップD−FF2およびD−FF3がリセットされた後、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF4もリセットされ、その反転出力端子Qzがローレベルからハイレベルに切り替わる。
【0071】
次いで、図4に示すように、時間t において、入力信号Vinのレベルが降下し、比較用電圧(電圧Vref )のレベルに達する。これに応じてコンパレータCMP1の出力信号V がハイレベルからローレベルに切り替わる。このため、図3においてANDゲートAGT2の出力信号がローレベルからハイレベルに切り替わり、DフリップフロップD−FF5の出力端子Qは、ローレベルからハイレベルに切り替わる。即ち、第2のエッジ検出回路によってコンパレータCMP1の出力信号の立ち下がりエッジが検出され、それに応じて、スイッチ制御信号SC2がローレベルからハイレベルに切り替わるので、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がハイレベルからローレベルに切り替わる。
【0072】
このとき、基準電圧切り替え回路SWC1において、スイッチS1がオン状態からオフ状態に切り替わり、スイッチS3がオフ状態からオン状態に切り替わる。なお、スイッチS2の状態は変化せず、オフ状態のままに保持される。この状態において、電源電圧VCCが比較用電圧としてコンパレータCMP1に出力される。
【0073】
DフリップフロップD−FF5の出力信号に応じて、ORゲートOGT1の出力信号がハイレベルに保持される。その後、クロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF2の出力端子Qは、ローレベルからハイレベルに切り替わり、また、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF3の出力端子もローレベルからハイレベルに切り替わる。さらに、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF4の出力端子もローレベルからハイレベルに切り替わり、これに応じてDフリップフロップD−FF4の反転出力端子Qzはハイレベルからローレベルに切り替わる。
【0074】
ANDゲートAGT5の出力信号は、DフリップフロップD−FF4の反転出力端子Qzのレベル変化に応じてハイレベルからローレベルに切り替わるので、DフリップフロップD−FF5,D−FF2およびD−FF3がリセットされる。これに応じて、スイッチ制御信号SC2がハイレベルからローレベルに切り替えられ、NORゲートNRGT1の出力信号、即ちスイッチ制御信号SC0がローレベルからハイレベルに立ち上がる。
【0075】
このとき、基準電圧切り替え回路SWC1において、スイッチS3はオン状態からオフ状態に切り替わり、スイッチS1はオフ状態からオン状態に切り替わる。なお、スイッチS2の状態は変化せず、オフ状態のままに保持される。この状態において、電圧vref が比較用電圧としてコンパレータCMP1に供給される。
【0076】
遅延回路DLY0において、DフリップフロップD−FF2およびD−FF3がリセットされた後、次のクロック信号CLKの立ち上がりエッジにおいて、DフリップフロップD−FF4もリセットされ、その反転出力端子Qzがローレベルからハイレベルに切り替わる。
【0077】
以上説明したように、本実施形態によれば、コンパレータCMP1は入力信号Vinと基準電圧切り替え回路SWC1で設定した比較用電圧とを比較し、比較結果として信号V を出力する。第1および第2のエッジ検出回路はそれぞれ出力信号V の立ち上がりおよび立ち下がりエッジを検出し、検出信号に応じて遅延回路DLY0が動作し、さらにエッジ検出回路の出力信号に応じて、基準電圧切り替え回路SWC1を制御し、比較用電圧のレベルを設定するので、電圧比較回路にヒステリシス特性が付与され、入力信号Vinに混入した雑音の影響を抑制でき、安定した比較結果が得られる。さらに、出力信号の時間遅延が回避され、入力信号Vinのレベル変化点を正確に検出することができる。
また、本実施形態は、前述した第1の実施形態に較べて、遅延回路を一つのみ有するので、回路構成が簡単化され、レイアウト面積の縮小が図れる。
【0078】
なお、遅延回路DLY0を構成するDフリップフロップの段数は図3に例示した3段に限定されることなく、雑音による影響を低減させるために必要な遅延時間をもとに、入力信号Vinおよびクロック信号CLKの周波数に応じて任意に設定することができる。
【0079】
第3実施形態
図5は本発明に係る電圧比較回路の第3の実施形態を示す回路図である。
図示のように、本実施形態の電圧比較回路は、コンパレータCMP1、基準電圧切り替え回路SWC2、遅延回路DLY1aおよびDLY2aにより構成されている。
【0080】
コンパレータCMP1は、上述した本発明の第1および第2の実施形態にあるコンパレータCMP1と同様であり、入力端子(+)に印加される入力信号Vinと反転入力端子(−)に印加される比較用電圧とを比較し、比較結果に応じて所定のレベルを持つ信号V を出力する。例えば、入力信号Vinのレベルが比較用電圧のレベルよりも高い場合、電源電圧VCCレベルの信号が出力され、逆に、入力信号Vinのレベルが比較用電圧のレベルよりも低い場合、共通電位VSSレベルの信号が出力される。
【0081】
基準電圧切り替え回路SWC2は、図示のように、抵抗素子R1,R2、pMOSトランジスタPT1およびnMOSトランジスタNT1により構成されている。抵抗素子R1,R2は、電源電圧VCCと共通電位VSSとの間に直列に接続されており、その接続ノードND2の電圧は比較用電圧としてコンパレータCMP1に供給される。pMOSトランジスタPT1のソースは電源電圧VCCに接続され、ドレインはノードND2に接続され、ゲートに遅延回路DLY2aからの切り替え信号SP1が印加されている。nMOSトランジスタNT1のドレインはノードND2に接続され、ソースは共通電位VSSに接続され、ゲートに遅延回路DLY1aからの切り替え信号SP2が印加されている。
【0082】
遅延回路DLY1aおよびDLY2aは、例えば、図示のように単安定マルチバイブレータOS1,OS2により構成されている。これらの単安定マルチバイブレータOS1,OS2は、入力端子Aに印加される入力信号の立ち下がりエッジまたは入力端子Bに印加される入力信号の立ち上がりエッジに応じて、出力信号Qが立ち上がる。抵抗素子とキャパシタにより設定される時定数に応じて、出力端子Qは一旦ハイレベルに保持され、その後出力端子Qが立ち下がり、ローレベルに保持される。
【0083】
このため、遅延回路DLY1aの遅延時間Δt は、抵抗素子R3とキャパシタC1の値により決定され、遅延回路DLY2aの遅延時間Δt は、抵抗素子R4とキャパシタC2の値により決定される。遅延回路DLY1aおよびDLY2aの遅延時間Δt ,Δt は、入力信号Vinの周波数などに応じて設定される。なお、必要に応じて遅延回路DLY1a,DLY2aの遅延時間Δt ,Δt を等しく設定できることはいうまでもない。
【0084】
単安定マルチバイブレータOS1の入力端子Aは、共通電位VSSに接続され、入力端子Bは、ANDゲートAGT1の出力端子に接続されている。ANDゲートAGT1の一方の入力端子は、コンパレータCMP1の出力端子に接続され、他方の入力端子は、単安定マルチバイブレータOS2の反転出力端子Qzに接続されている。単安定マルチバイブレータOS1の出力端子Qから切り替え信号SP2が出力され、切り替え信号SP2は基準電圧切り替え回路SWC2のnMOSトランジスタNT1のゲートに印加される。
【0085】
単安定マルチバイブレータOS2の入力端子Aは、ANDゲートAGT2の出力端子に接続され、入力端子Bは電源電圧VCCに接続されている。ANDゲートAGT2の一方の入力端子は、インバータINV1の出力端子に接続され、他方の入力端子は、単安定マルチバイブレータOS1の反転出力端子Qzに接続されている。インバータINV1の入力端子は、コンパレータCMP1の出力端子に接続されている。単安定マルチバイブレータOS2の反転出力端子Qzから切り替え信号SP1が出力され、切り替え信号SP1は基準電圧切り替え回路SWC2のpMOSトランジスタPT1のゲートに印加される。
【0086】
単安定マルチバイブレータOS1,OS2のリセット信号端子は、リセット信号RSTの入力端子に接続されている。電圧比較回路が動作を開始するとき、リセット信号RSTが所定の時間において、ローレベルに設定されるので、これに応じて単安定マルチバイブレータOS1,OS2がリセットされ、出力端子Qはローレベルに保持され、反転出力端子Qzはハイレベルに保持される。
【0087】
ANDゲートAGT1はコンパレータCMP1の出力信号V の立ち上がりエッジを検出する第1のエッジ検出回路を構成し、インバータINV1およびANDゲートAGT2は出力信号V の立ち下がりエッジを検出する第2のエッジ検出回路を構成している。
【0088】
図6は、本実施形態の動作を示す波形図である。以下、図5および図6を参照しつつ、本実施形態の動作を説明する。
図6に示すように、初期状態としてコンパレータCMP1の出力信号V がローレベルに保持され、また、リセット信号RSTにより、単安定マルチバイブレータOS1,OS2がリセットされ、単安定マルチバイブレータOS1の出力端子Qはローレベル、単安定マルチバイブレータOS2の反転出力端子Qzはハイレベルにそれぞれ保持されている。即ち、切り替え信号SP1がハイレベル、切り替え信号SP2がローレベルにそれぞれ設定されている。
【0089】
この状態において、基準電圧切り替え回路SWC2において、pMOSトランジスタPT1およびnMOSトランジスタNT1がともにオフ状態に保持され、ノードND2の電圧は、抵抗素子R1,R2による分圧電圧で決まる。ここで、共通電位VSSを0Vとすると、初期状態において、比較用電圧の電圧値v は、次式により求まる。
【0090】
【数4】
=VCC・r2/(r1+r2) …(6)
【0091】
ここで、r1,r2はそれぞれ抵抗素子R1,R2の抵抗値である。
【0092】
入力信号Vinのレベルが上昇し、比較用電圧(電圧V )のレベルを越えたとき、コンパレータCMP1の出力信号V がローレベルからハイレベルに切り替わる。出力信号V の立ち上がりエッジにおいて、ANDゲートAGT1の出力信号が立ち上がる。これに応じて単安定マルチバイブレータOS1の出力端子Qもローレベルからハイレベルに切り替えられる。時間Δt の間に、単安定マルチバイブレータOS1の出力端子Qがハイレベルに保持される。これに応じて基準電圧切り替え回路SWC2において、nMOSトランジスタNT1がオン状態に保持され、比較用電圧は共通電位VSSに設定される。
【0093】
遅延回路DLY1aの遅延時間Δt が経過した後、単安定マルチバイブレータOS1の出力端子Qは、ローレベルに切り替わる。基準電圧切り替え回路SWC2においてnMOSトランジスタNT1はオフ状態に設定されるので、比較用電圧は、初期値v に切り替えられる。
【0094】
入力信号Vinのレベルが降下し、比較用電圧(電圧V )のレベルに達したとき、コンパレータCMP1の出力信号V がハイレベルからローレベルに切り替わる。出力信号V の立ち下がりエッジにおいて、ANDゲートAGT2の出力信号が立ち下がる。これに応じて単安定マルチバイブレータOS2の出力端子Qがローレベルからハイレベルに切り替えられ、その反転出力端子Qzはハイレベルからローレベルに切り替えられる。時間Δt の間に、単安定マルチバイブレータOS2の出力端子Qがハイレベルに保持され、反転出力端子Qzがローレベルに保持される。これに応じて基準電圧切り替え回路SWC2において、pMOSトランジスタPT1がオン状態に保持され、比較用電圧は電源電圧VCCに設定される。
【0095】
遅延回路DLY2aの遅延時間Δt が経過した後、単安定マルチバイブレータOS2の出力端子Qは、ローレベルに切り替わり、反転出力端子Qzはハイレベルに切り替わる。基準電圧切り替え回路SWC2においてpMOSトランジスタPT1はオフ状態に設定されるので、比較用電圧は、初期値v に切り替えられる。
【0096】
以上説明したように、本実施形態によれば、コンパレータCMP1は入力信号Vinと基準電圧切り替え回路SWC2で設定した比較用電圧とを比較し、比較結果として信号V を出力する。ANDゲートAGT1およびAGT2によりそれぞれ出力信号V の立ち上がりおよび立ち下がりエッジを検出し、立ち上がりエッジを検出したとき、遅延回路DLY1aを動作させ、立ち下がりエッジを検出したとき、遅延回路DLY2aを動作させる。これらの遅延回路から出力された切り替え信号SP1,SP2に応じて、基準電圧切り替え回路SWC2を制御し、比較用電圧のレベルを設定するので、電圧比較回路にヒステリシス特性が付与され、入力信号Vinに混入した雑音の影響を抑制でき、安定した比較結果が得られる。さらに、出力信号V の時間遅延が回避され、入力信号Vinのレベル変化点を正確に検出することができる。
また、本実施形態において、遅延回路DLY1a,DLY2aの遅延時間を制御するための外部クロック信号CLKが不要となるため、回路構成が簡単で、配線の簡単化が図れる。
【0097】
第4実施形態
図7は本発明に係る電圧比較回路の第4の実施形態を示す回路図である。
図示のように、本実施形態の電圧比較回路は、コンパレータCMP1、基準電圧切り替え回路SWC2および遅延回路DLY1,DLY2により構成されている。
【0098】
コンパレータCMP1および遅延回路DLY1,DLY2は、前述した本発明の第1の実施形態のものと同じであり、また、基準電圧切り替え回路SWC2は、図5に示す第3の実施形態の基準電圧切り替え回路と同じである。
【0099】
図7に示すように、コンパレータCMP1と基準電圧切り替え回路SWC2は、回路ブロック10を構成している。当該回路ブロック10は、端子3を介して、外部からの入力信号VinをコンパレータCMP1の端子(+)に入力し、さらに、端子1より遅延回路DLY1から切り替え信号SP1を入力し、基準電圧切り替え回路SWC2のnMOSトランジスタNT1のゲートに印加し、端子2より遅延回路DLY2から切り替え信号SP2を入力し、基準電圧切り替え回路SWC2のpMOSトランジスタPT1のゲートに印加する。
なお、切り替え信号SP1は、遅延回路DLY1のDフリップフロップD−FF1の出力端子Qから出力され、切り替え信号SP2は、遅延回路DLY2のDフリップフロップD−FF5の反転出力端子Qzから出力される。
【0100】
以下、図7を参照しつつ、本実施形態の動作について説明する。
電圧比較回路が動作する前に、リセット信号RSTにより初期状態に設定される。即ち、遅延回路DLY1,DLY2の各DフリップフロップD−FF1〜D−FF4,D−FF5〜D−FF8がリセットされ、出力端子Qがローレベルに、反転出力端子Qzがハイレベルに保持される。即ち、初期状態において、切り替え信号SP1がローレベル、切り替え信号SP2がハイレベルにそれぞれ設定される。これに応じて、基準電圧切り替え回路SWC2において、pMOSトランジスタPT1およびnMOSトランジスタNT1がともにオフ状態に設定され、比較用電圧は、抵抗素子R1,R2により設定された分圧電圧v に設定される。
【0101】
コンパレータCMP1の立ち上がりエッジに応じて、ANDゲートAGT1の出力信号が立ち上がり、さらに、遅延回路DLY1のDフリップフロップD−FF1の出力端子Qも立ち上がる。遅延回路DLY1で設定された遅延時間において、DフリップフロップD−FF1の出力端子Qがハイレベルに保持され、その後、ローレベルに切り替えられる。
【0102】
切り替え信号SP1がハイレベルに保持されている間に、基準電圧切り替え回路SWC2のnMOSトランジスタNT1がオン状態に保持され、比較用電圧は共通電位VSSに設定される。
【0103】
コンパレータCMP1の立ち下がりエッジに応じて、ANDゲートAGT2の出力信号が立ち上がり、さらに、これに応じて遅延回路DLY2のDフリップフロップD−FF5の出力端子Qも立ち上がる。遅延回路DLY2で設定された遅延時間において、DフリップフロップD−FF5の出力端子Qがハイレベルに保持され、その後、ローレベルに切り替えられる。DフリップフロップD−FF5の反転出力端子Qzは出力端子Qがハイレベルの間に、ローレベルに保持される。即ち、切り替え信号SP2は、コンパレータCMP1の出力信号の立ち下がりエッジから、遅延回路DLY2の遅延時間の間にローレベルに保持される。
【0104】
切り替え信号SP2がローレベルに保持されている間に、基準電圧切り替え回路SWC2のpMOSトランジスタPT1がオン状態に保持され、比較用電圧は電源電圧VCCに設定される。
【0105】
このように、遅延回路DLY1,DLY2および基準電圧切り替え回路SWC2により、電圧比較回路にヒステリシス特性が付与される。この結果、入力信号Vinに混入された雑音の影響を抑制でき、電圧比較回路の誤動作を回避でき、且つ入力信号Vinのレベル変化点を正確に検出できる。
【0106】
図8は、コンパレータCMP1と基準電圧切り替え回路SWC2により構成された回路ブロック10を示している。なお、当該回路ブロック10は、図7に示す電圧比較回路の回路ブロック10と同じ構成を有する。
【0107】
回路ブロック10においては、コンパレータCMP1が非反転接続である。即ち、入力信号VinはコンパレータCMP1の非反転入力端子(+)に印加され、基準電圧Vref はコンパレータCMP1の反転入力端子(−)に印加される。このため、入力信号Vinのレベルが比較用電圧のレベルより高いとき、コンパレータCMP1からハイレベルの出力信号V が出力され、逆に入力信号Vinのレベルが比較用電圧のレベルより低いとき、コンパレータCMP1からローレベルの出力信号V が出力される。
【0108】
非反転接続の場合に、コンパレータCMP1の出力信号V の立ち上がりエッジから所定の時間において、比較用電圧を初期値より低いレベル、例えば、共通電位VSSに設定し、コンパレータCMP1の出力信号V の立ち下がりエッジから所定の時間において、比較用電圧を初期値より高いレベル、例えば、電源電圧VCCに設定することにより、電圧比較回路にヒステリシス特性を付与できる。
【0109】
図9は、反転接続の場合のコンパレータCMP2および基準電圧切り替え回路SWC3の構成を示している。コンパレータCMP2、基準電圧切り替え回路SWC3およびインバータINV3,INV4により回路ブロック20が構成されている。
【0110】
図示のように、入力信号VinはコンパレータCMP2の反転入力端子(−)に印加され、比較用電圧はコンパレータCMP2の非反転入力端子(+)に印加される。このため、入力信号Vinのレベルが基準電圧レベルより高いとき、コンパレータCMP2からローレベルの出力信号V が出力され、逆に入力信号Vinのレベルが基準電圧レベルより低いとき、コンパレータCMP2からハイレベルの出力信号V が出力される。
【0111】
非反転接続の場合に、コンパレータCMP2の出力信号V の立ち上がりエッジから所定の時間において、比較用電圧を初期値より高いレベル、例えば、電源電圧VCCに設定し、コンパレータCMP2の出力信号V の立ち下がりエッジから所定の時間において、比較用電圧を初期値より低いレベル、例えば、共通電位VSSに設定することにより、電圧比較回路にヒステリシス特性を付与できる。
【0112】
なお、図9に示す回路ブロック20に接続される遅延回路DLY1,DLY2は、図7に示す遅延回路と同じ構成を有するものとする。
初期状態において、切り替え信号SP1はローレベル、切り替え信号SP2はハイレベルにそれぞれ設定されているので、インバータINV2,INV3の出力端子はそれぞれハイレベルとローレベルに設定される。このため、基準電圧切り替え回路SWC3のpMOSトランジスタPT1およびnMOSトランジスタNT1がともにオフ状態に設定される。このとき、比較用電圧は、抵抗素子R1,R2により設定された分圧電圧に設定される。
【0113】
入力信号Vinのレベルが降下し、比較用電圧のレベルに達したとき、コンパレータCMP2の出力信号V がローレベルからハイレベルに立ち上がる。出力信号V の立ち上がりエッジから遅延回路DLY1の遅延時間において、切り替え信号SP1がハイレベルに設定される。これに応じてインバータINV2の出力信号がローレベルに設定されるので、基準電圧切り替え回路SWC3のpMOSトランジスタPT1がオン状態に設定され、比較用電圧は電源電圧VCCに設定される。
【0114】
逆に、入力信号Vinのレベルが上昇し、比較用電圧のレベルを越えたとき、コンパレータCMP2の出力信号V がハイレベルからローレベルに立ち下がる。出力信号V の立ち下がりエッジから遅延回路DLY2の遅延時間において、切り替え信号SP2がローレベルに設定される。これに応じてインバータINV3の出力信号がハイレベルに設定されるので、基準電圧切り替え回路SWC3のnMOSトランジスタNT1がオン状態に設定され、比較用電圧は共通電位VSSに設定される。
【0115】
このように、回路ブロック20により、反転接続の電圧比較回路にヒステリシス特性を与えることができる。反転接続の場合において、入力信号Vinに混入された雑音の影響を抑制でき、回路の誤動作を防止でき、入力信号のレベル変化点を高精度に検出することが可能である。
【0116】
【発明の効果】
以上説明したように、本発明の電圧比較回路によれば、電圧比較回路の出力信号レベルの変化に応じて、所定の時間だけ電圧比較回路にヒステリシス特性を付与することにより、検出対象信号に混入された雑音の影響を抑制でき、検出対象信号が所定の基準値を通過するレベル変化点を高精度に検出することが可能となる。
これにより、検出対象信号の立ち上がりおよび立ち下がりの位相関係が重要な場合に本発明の電圧比較回路を適用することで、従来の電圧比較回路のヒステリシス特性に起因する信号遅延が解消でき、高精度な制御を実現できる利点がある。
【図面の簡単な説明】
【図1】本発明に係る電圧比較回路の第1の実施形態を示す回路図である。
【図2】第1の実施形態の動作を示す波形図である。
【図3】本発明に係る電圧比較回路の第2の実施形態を示す回路図である。
【図4】第2の実施形態の動作を示す波形図である。
【図5】本発明に係る電圧比較回路の第3の実施形態を示す回路図である。
【図6】第3の実施形態の動作を示す波形図である。
【図7】本発明に係る電圧比較回路の第4の実施形態を示す回路図である。
【図8】非反転接続の電圧比較回路の基準電圧切り替え回路およびコンパレータ部分の構成を示す回路図である。
【図9】反転接続の電圧比較回路の基準電圧切り替え回路およびコンパレータ部分の構成を示す回路図である。
【図10】一般的な電圧比較回路の構成を示す回路図である。
【図11】一般的な電圧比較回路の動作を示す波形図である。
【図12】入力信号に雑音が混入した場合の電圧比較回路の動作を示す波形図である。
【図13】入力信号が上昇して基準電圧を通過した前後の入力および出力信号の波形を示す拡大図である。
【図14】入力信号が降下して基準電圧を通過した前後の入力および出力信号の波形を示す拡大図である。
【図15】ヒステリシス特性が付与された電圧比較回路の一例を示す図である。
【図16】ヒステリシス特性が付与された電圧比較回路の他の例を示す図である。
【符号の説明】
10,20…基準電圧切り替え回路とコンパレータで構成した回路ブロック、
CMP0,CMP0’,CMP1,CMP2…コンパレータ、
D−FF1〜D−FF8…Dフリップフロップ、
NRGT1…NORゲート、
AGT1〜AGT5…ANDゲート、
INV1,INV2,INV3…インバータ、
S1,S2,S3…スイッチ、
OGT1…ORゲート、
DLY0,DLY1,DLY2,DLY1a,DLY2a…遅延回路、
OS1,OS2…単安定マルチバイブレータ、
PT1…pMOSトランジスタ、
NT1…nMOSトランジスタ、
R1,R2,R3,R4…抵抗素子、
C1,C2…キャパシタ。

Claims (4)

  1. 入力信号と比較用信号とを比較し、上記入力信号が上記比較用信号よりも大きい場合に第1のレベルの出力信号を出力し、上記入力信号が上記比較用信号よりも小さい場合に第2のレベルの出力信号を出力する比較回路と、
    上記出力信号が第1のレベルから第2のレベルに変化したことを検出する第1の検出回路と、
    上記出力信号が第2のレベルから第1のレベルに変化したことを検出する第2の検出回路と、
    遅延回路を有し、上記第1の検出回路又は上記第2の検出回路の検出結果に応じて所定の期間を計測するタイマ回路と、
    上記比較用信号のレベルを電源電圧である第1の基準値、基準電位である第3の基準値、又は上記第1の基準値よりも小さく、上記第3の基準値よりも大きい第2の基準値に設定する比較用信号設定回路と、
    を有し、
    上記比較用信号は、上記第1の検出回路又は上記第2の検出回路の検出結果に応じて、上記第1の基準値又は上記第3の基準値に設定され、その後上記所定の期間が経過すると上記第2の基準値に設定される
    電圧比較回路。
  2. 入力信号と比較用信号とを比較し、上記入力信号が上記比較用信号よりも大きい場合に第1のレベルの出力信号を出力し、上記入力信号が上記比較用信号よりも小さい場合に第2のレベルの出力信号を出力する比較回路と、
    上記出力信号が第1のレベルから第2のレベルに変化したことを検出する第1の検出回路と、
    上記出力信号が第2のレベルから第1のレベルに変化したことを検出する第2の検出回路と、
    遅延回路を有し、上記第1の検出回路又は上記第2の検出回路の検出結果に応じて、第1の時間又は第2の時間を計測するタイマ回路と、
    上記比較用信号のレベルを電源電圧である第1の基準値、基準電位である第3の基準値、又は上記第1の基準値よりも小さく、上記第3の基準値よりも大きい第2の基準値に設定する比較用信号設定回路と、
    を有し、
    上記比較用信号は、上記第1の検出回路の検出結果に応じて上記第1の基準値に設定され、その後上記第1の時間が経過すると上記第2の基準値に設定され、上記第2の検出回路の検出結果に応じて上記第3の基準値に設定され、その後上記第2の時間が経過すると上記第2の基準値に設定される
    電圧比較回路。
  3. 上記遅延回路は直列に接続された複数のフリップフロップを有する
    請求項1又は2に記載の電圧比較回路。
  4. 上記第2の基準値は上記第1の基準値と上記第3の基準値との間のほぼ中央に位置する電位である
    請求項1、2又は3に記載の電圧比較回路。
JP2002031287A 2002-02-07 2002-02-07 電圧比較回路 Expired - Fee Related JP3600817B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031287A JP3600817B2 (ja) 2002-02-07 2002-02-07 電圧比較回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031287A JP3600817B2 (ja) 2002-02-07 2002-02-07 電圧比較回路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP05399898A Division JP3319717B2 (ja) 1998-03-05 1998-03-05 電圧比較回路

Publications (2)

Publication Number Publication Date
JP2002277492A JP2002277492A (ja) 2002-09-25
JP3600817B2 true JP3600817B2 (ja) 2004-12-15

Family

ID=19192496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031287A Expired - Fee Related JP3600817B2 (ja) 2002-02-07 2002-02-07 電圧比較回路

Country Status (1)

Country Link
JP (1) JP3600817B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690868B2 (ja) * 2017-12-13 2020-04-28 三菱電機株式会社 ノイズ検出回路
CN110535230B (zh) * 2019-09-11 2022-12-16 上海移远通信技术股份有限公司 电源管理装置和终端设备

Also Published As

Publication number Publication date
JP2002277492A (ja) 2002-09-25

Similar Documents

Publication Publication Date Title
US7233213B2 (en) Oscillator of semiconductor device
US6421626B1 (en) Low voltage/low power temperature sensor
KR100857696B1 (ko) 오실레이터 회로 및 반도체 기억 장치
JP3319717B2 (ja) 電圧比較回路
JP3600817B2 (ja) 電圧比較回路
JP2805466B2 (ja) メモリのアドレス遷移検出回路
US5923201A (en) Clock signal generating circuit
US10826467B1 (en) High-accuracy dual-mode free running oscillator
JPH0133052B2 (ja)
JPH0220115A (ja) パルス形信号を発生する回路
KR950004637B1 (ko) 플로우팅 감지 회로
JP2001060851A (ja) 周期補正分周回路及びこれを用いた周期補正型発振回路
JPH07131308A (ja) クロックスキュー抑制回路
JP2930018B2 (ja) 電圧変換回路
JPH0837453A (ja) プログラマブル遅延回路
JP2000224023A (ja) 半導体集積回路及びそのスルーレート制御方法
JP3392278B2 (ja) 発振器
US7075833B2 (en) Circuit for detecting negative word line voltage
JPH10215152A (ja) スイッチング用素子の駆動回路
JPH04183017A (ja) フリップフロップ回路
JPH056928B2 (ja)
JPH08272491A (ja) 電圧検出回路
JPH05206812A (ja) パルス信号発生回路
JPH0545988Y2 (ja)
JPH0329873A (ja) モード設定回路

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees