JP3589177B2 - Method for producing inorganic oxynitride - Google Patents

Method for producing inorganic oxynitride Download PDF

Info

Publication number
JP3589177B2
JP3589177B2 JP2000343655A JP2000343655A JP3589177B2 JP 3589177 B2 JP3589177 B2 JP 3589177B2 JP 2000343655 A JP2000343655 A JP 2000343655A JP 2000343655 A JP2000343655 A JP 2000343655A JP 3589177 B2 JP3589177 B2 JP 3589177B2
Authority
JP
Japan
Prior art keywords
oxide
oxynitride
nitrogen
heating
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000343655A
Other languages
Japanese (ja)
Other versions
JP2002154823A (en
Inventor
憲一 鈴木
健志 森川
恒勇 青木
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2000343655A priority Critical patent/JP3589177B2/en
Publication of JP2002154823A publication Critical patent/JP2002154823A/en
Application granted granted Critical
Publication of JP3589177B2 publication Critical patent/JP3589177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、無機系酸窒化物の製造方法および無機系酸窒化物、特に光触媒活性を有する無機系酸窒化物に関する。
【0002】
【従来の技術】
従来より、光触媒として酸化チタン(TiO)が広く利用されている。しかし、この酸化チタンは、紫外光において触媒活性を示すが、可視光においてはほとんど触媒活性を示さない。
【0003】
【発明が解決しようとする課題】
一方、太陽光における紫外線領域の光は、数%程度であり、蛍光灯の光などは紫外線領域の光をほとんど含まない。従って、可視光においても光触媒活性を示す物質が望まれている。
【0004】
本出願人は、酸化チタンの酸素を部分的に窒素と置換した酸窒化チタン(Ti−O−N)が、可視光においても良好な光触媒活性を示すことを発見した。この酸窒化チタンは、酸化チタンなどのチタン化合物をターゲットとして窒素雰囲気でスパッタリングすることにより薄膜として形成することができる。これについては、特願平11−223003号において提案した。また、特願2000−19315号において、酸窒化物の製造方法について各種の提案をした。
【0005】
また、光触媒物質としては、粉末形状のものなどが利用しやすい。すなわち、粉末形状であれば、接着剤などと一緒に必要な場所に塗布するなどの方法で、所望の場所に容易に光触媒の膜を形成することができる。そこで、粉末状の酸窒化物を効率的に製造することが望まれている。
【0006】
本発明は、光触媒として機能する粉末形状の無機系酸窒化物を効率的に製造する方法および製造された無機系酸窒化物に関する。
【0007】
なお、特開2000−86210号公報には、ホウ酸と尿素の混合物を加熱して窒化ホウ素を得る方法が示されており、また特開2000−144394号公報には、ホウ酸と酸化チタンと尿素の混合物から熱処理で窒化チタンを得ることが示されているが、これらは条件および結果生成物の両方が本発明と異なるものである。
【0008】
【課題を解決するための手段】
本発明は、無機系酸窒化物の製造方法であって、比表面積が5m/g以上の酸化物と、常温で酸化物に吸着する窒素化合物の混合物を加熱して光触媒活性を有する無機系酸窒化物を製造することを特徴とする。
【0009】
このように、窒素供給源として、酸化物に常温で吸着する窒素化合物を使用し、これらの混合物を加熱することによって、原料酸化物内へ窒素を侵入させることができる。これによって、酸化物の酸素の一部が窒素に置換され酸窒化物が生成される。すなわち、酸窒化物の形成が比較的低温(例えば、150℃〜600℃程度)で、かつ短時間の加熱で達成できる。また、原料酸化物結晶の表面に窒素化合物の吸着され、原料酸化物結晶の表面が窒素化合物で覆われる。この結果、加熱処理によって形成される酸窒化物の結晶の粗大化が抑制され、原料酸化物とほぼ同じ比表面積を有する酸窒化物が得られる。これにより、生成された酸窒化物において、原料酸化物と同様の紫外光触媒活性が得られるとともに、可視光においても高い光触媒活性を得ることができる。
【0010】
また、前記酸化物は、酸化チタン、酸化亜鉛から選ばれた1以上の物質であることが好適である。これらの物質は、元々紫外線照射下において光触媒機能を有しており、窒素を導入することで、可視光による光触媒機能を発揮するようになる。
【0011】
また、前記窒素化合物は、各種アミノ化合物、アミド等が使用できるが、尿素であることが好適である。尿素は、酸化物の表面に吸着されやすく、また加熱することによって窒素が酸化物中に効果的に侵入する。
【0012】
なお、窒素化合物としては、上述の尿素の他、チオ尿素、二酸化チオ尿素、1,1−ジメチル尿素、シアヌル酸など還元力を有するもの(特に、尿素類似化合物)が利用可能である。これは、炭酸アンモニウムのように還元力のないものであると、酸化物と反応せず、酸化物中に窒素が侵入しないからである。
【0013】
また、前記加熱は、アンモニアガス雰囲気において行われることが好適である。アンモニアガスからの窒素が酸化物中に侵入し、さらに窒素含有量の多い酸窒化物を形成することができる。
【0014】
本発明に係る無機系酸窒化物は、比表面積が5m/g以上の酸化物と、常温で液体もしくは固体の窒素化合物の混合物を加熱して製造された光触媒活性を有する粉末状の無機系酸窒化物であって、窒素原子による酸素原子の置換割合が、0.1〜25%であることを特徴とする。窒素含有量が多いため、可視光において十分な光触媒活性を得ることができる。例えば、酸窒化チタンであれば、TiO1.9980.002〜Ti1.50.5の範囲である。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について、図面に基づいて説明する。
【0016】
本実施形態の処理について図1に基づいて説明する。まず、粉末状の酸化チタンと、尿素を用意する(S11)。酸化チタンは、比表面積が5m/g以上のものとし、好ましくは300m/g以上のものとする。このような粉末状の酸化チタンは市販されているので、それを利用すればよい。ただし、粉末粒子の大きさが上述のようなものであれば問題はないため、市販されているものでなくてもよい。なお、表面積の小さなものは、その分だけ触媒としての能力が劣ってしまうため、好ましくない。さらに、尿素からの窒素の侵入も十分なものにできない。
【0017】
また、尿素は試薬として市販されている粉末状のものを利用すればよい。
【0018】
次に、粉末状の酸化チタンと尿素を混合する(S12)。尿素は、常温で酸化チタンの表面に吸着される。そこで、両者を攪拌混合することで、尿素が酸化チタンの表面に付着する。量的には、両者をほぼ同重量ずつ混合すればよく、これによって十分な尿素を酸化チタンの表面全体に吸着させることができる。なお、尿素などの窒素化合物の水溶液を作り、これを酸化チタン粉末の表面に付着させてもよい。
【0019】
このようにして、酸化チタンと尿素が攪拌混合され、酸化チタン粉末の表面に尿素が吸着された場合には、その混合物を加熱する。温度は500℃程度、時間は30分程度が好適であり、さらに加熱中も攪拌を継続することが好ましい。このような加熱処理によって、酸化チタンの内部に窒素が侵入し、酸窒化チタンが生成される。
【0020】
特に、加熱前から尿素が酸化チタンの表面に吸着されており、窒素の侵入が非常に容易に行われる。そこで、600℃未満という低温でかつ短時間での酸窒化チタンの生成が可能になる。
【0021】
そして、このような600℃未満での短時間の加熱により、酸窒化チタンの結晶の粗大化が抑制され、原料の酸化チタンと同じ比表面積を有する酸窒化チタンが得られる。特に、酸化チタンの表面に尿素が吸着されており、酸化チタンの粉末粒子同士が直接接触していない。そこで、加熱されたときに、粉末粒子同士が合体して結晶化が進むのが防止され、粒子の粗大化が抑制される。
【0022】
このようにして、尿素からの窒素が導入された酸窒化チタンの粉末が生成される。この粉末の粒子径は、基本的に原料の酸化チタンと同一であり、従って酸化チタンと同様の紫外光における光触媒を維持することができる。そして、窒素が導入されて得られた酸窒化チタンは、紫外光だけでなく可視光において触媒活性を有する。そこで、屋外、屋内における防曇、防汚材として広く利用できる。特に接着剤などのバインダを利用して所望の表面に塗布することができ、広範囲な利用が期待できる。
【0023】
なお、酸窒化チタンの窒素は、酸素との置換により、Ti原子とN原子との間の化学結合が存在する状態で導入されている。
【0024】
ここで、使用する酸化物は、比表面積が5m/g以上を有する酸化物であればいかなるものでのよいが、光触媒などに使用できる、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化タングステン、酸化ケイ素の中から選ばれた1種または2種以上が好適である。酸化物の表面積が上記値を下回る場合、窒素化合物の吸着量が不足して酸窒化物の形成に支障をきたし、結晶粒子の粗大化を抑制できる温度範囲の加熱では酸窒化物が形成できなくなる。
【0025】
また、酸化物の形態は、湿式法あるいは乾式法で製造される粉末や膜、あるいは内部に微細孔を有するメソポア多孔質材料などいかなるものでもよい。さらに、本発明でいう酸化物とは、非酸化性雰囲気中での加熱によって酸化物になるものを含み、含水酸化物、水酸化物であってもよい。
【0026】
また、酸化物の比表面積は、5m/g以上であることが好適である。これは、この程度の比表面積がないと、窒素の侵入を十分なものとできず、また生成された酸窒化物が触媒活性を十分発揮することができないからである。
【0027】
酸化物の比表面積がこの値を下回ると、窒素化合物の吸着量が不足して、酸窒化物の形成に支障をきたし、また結晶粒子の粗大化を抑制できる温度範囲での加熱では酸窒化物の形成が困難になるからである。
【0028】
また、尿素に代えて他の窒素化合物、例えばチオ尿素、二酸化チオ尿素、1,1−ジメチル尿素、シアヌル酸など各種のアミノ化合物やアミド等の還元力のある窒素化合物を利用することもできる。なお、限定されるわけではないが、窒素化合物は常温で固体のものが好ましい。これは、アンモニアやヒドラジン等の常温で気体のものは酸化物の表面への吸着が効果的に行えないからである。
【0029】
また、窒素化合物と酸化物の混合には、任意の混合方法が選択できる。例えば、粉末同士であれば、上述のように、そのまま両者を混合すればよい。また、窒素化合物を適当な溶媒に溶解してから酸化物粉末と混合してもよい。さらに、酸化物が基体上の膜である場合には、窒素化合物溶液をスプレーなどで塗布してもよい。
【0030】
さらに、加熱処理時の雰囲気は、大気中でもよが、酸窒化物の再酸化を防止するために、窒素ガス、アルゴンガスなどの不活性ガス雰囲気あるいは、水素ガス、アンモニアガス、ヒドラジンガスなど従来公知の還元性ガス雰囲気が好ましい。特に、アンモニアガス雰囲気では、酸窒化物の酸化防止されるとともに、雰囲気ガスからも窒素が供給され、酸窒化物の生成効率が高まるため、特に好ましい。 ここで、加熱中は原料の酸化物が還元力のある窒素化合物に均一に曝されるのが好ましく、原料酸化物が粉末の場合は、加熱炉は流動層炉やロータリーキルンなどの連続攪拌機構を持つものが好ましい。しかし、連続攪拌機構を持たない炉であっても、原料の酸化物と窒素化合物の混合物を、一度大気中で150℃程度まで加熱し、攪拌具を使って原料をよく混ぜ合わせ、その後所望の温度および雰囲気ガス中で加熱すれば、最初から流動層炉などを用いた場合と同様の酸窒化反応を行わせることができる。
【0031】
加熱処理は、上記のように既成の酸化物と窒素化合物との混合物を加熱するのが簡便であるが、原料の酸化物の製造段階における加熱工程を利用してもよい。例えば、酸化チタンの粉末を得る一般的な製造方法では、四塩化チタンや硫化チタニルなどのチタン塩水溶液を加熱あるいはアルカリを添加して加水分解させて酸化チタンの微結晶を沈殿させた後、ろ過、洗浄を経て加熱乾燥される。さらに、場合によっては、この微結晶をオートクレーブ中で100℃以上の温度で水熱処理して所望の結晶体にまで成長させる。
【0032】
よって、この酸化物製造の加熱工程を本発明の加熱工程と兼ねてもよい。すなわち、酸化物粉末の乾燥やオートクレーブ処理などの加熱工程に入る前に尿素やチオ尿素などの還元力のある窒素化合物を混合し、しかるのちに加熱を行う。この方法によれば、加熱温度やガス雰囲気は従来条件から適宜変更する必要はあるが、省エネルギー、低コストの酸窒化物製造方法となり好ましい。
【0033】
また、本発明の酸窒化物粉末を光触媒などに利用する場合には、酸窒化物粉末を水や有機溶媒に分散させてゾルあるいはスラリーとし、これをコーティング液として基体に塗布した後、加熱して酸窒化物粉末を膜状に基体に密着させるのが一般的である。そこで、この密着加熱工程を本発明の酸窒化物製造の加熱工程と兼ねてもよい。すなわち、原料の酸化物粉末と尿素などの還元力のある窒素化合物との混合物をゾルあるいはスラリーとして基体に塗布した後に加熱を行い、酸窒化物の製造とコーティング膜化を同時に行ってもよい。この方法では、酸窒化物の種類および基体の種類によって加熱温度やガス雰囲気を従来条件から適宜変更する必要はあるが、低コストの酸窒化物コーティング液が得られるという利点がある。また、処理が全体として簡略化されるため、コーティングが低コストで行える。
【0034】
このように、窒素供給源として、酸化物に常温で吸着する尿素などの窒素化合物を使用し、これらの混合物を加熱することによって、原料酸化物内へ窒素を侵入させ酸素原子を窒素原子に置換させることができる。すなわち、酸窒化物の形成が600℃未満の低温で、かつ短時間の加熱で達成できる。また、原料酸化物結晶の表面に窒素化合物が吸着され、原料酸化物結晶の表面が窒素化合物で覆われる。この結果、加熱処理によって形成される酸窒化物の結晶の粗大化が抑制され、原料酸化物とほぼ同じ比表面積を有する酸窒化物が得られる。これにより、生成された酸窒化物において、原料酸化物と同様の紫外光触媒活性が得られるとともに、可視光においても高い光触媒活性を得ることができる。
【0035】
【実施例】
「実施例1」
酸化物として、比表面積が1〜320m/gのアナターゼ型酸化チタン粉末を5種類用意した。酸化チタン粉末を50gずつガラスビーカに入れ、さらに試薬の二酸化チオ尿素粉末を25g添加した。そして、両者をへらで、十分攪拌混合した。このとき、混合物は、純白色を呈していた。
【0036】
ここで、酸化チタン粉末の比表面積は、サンプル1が320m/g、サンプル2が90m/gサンプル3が7m/g、サンプル4が4m/g、サンプル5が1m/gである。
【0037】
次に、大気開放下で、ガラスビーカをマントルヒータにより加熱し、混合物の温度が200℃に達するまでへらでかき混ぜながら混合物の色調変化を目視観察した。その結果を表1に示す。
【0038】
【表1】

Figure 0003589177
表1より、比較例である比表面積が5m/gを下回るサンプル4および5では、昇温途中において二酸化チオ尿素の分解ガスであるイオウ臭は強く感じられたものの、混合物の温度が200℃に到達しても、何ら色調変化は観察されなかった。
【0039】
これに対し、実施例である比表面積が5m/g以上であるサンプル1,2および3では、150℃以上において、混合物の色調が黄色に変化し、酸化チタンに窒素が導入されて酸窒化チタンが生成されることが確認された。
【0040】
また、得られた酸窒化チタンの窒素原子による酸素原子の置換割合をX線光電子分光分析で調べたところ、実施例では、0.2%以上という値を示した。また、比較例では0.1%以下であった。
【0041】
「実施例2」
表2に示すように、酸化物として、実施例1のサンプル1で使用したものと同じ比表面積が320m/gのアナターゼ型酸化チタン粉末を用意した。比較例であるサンプル10〜12ではこれをそのまま使用した。また、実施例であるサンプル6〜9では、尿素試薬を等量混合した。
【0042】
【表2】
Figure 0003589177
尿素を混合した実施例であるサンプル6〜9については、大気中で150℃まで加熱してよく攪拌し、ついで炉中に静置して、サンプル6は窒素ガス中で250℃:30分、サンプル7は窒素ガス中で350℃:30分、サンプル8はアンモニアガス中350℃:30分、サンプル9はアンモニアガス中450℃:30分加熱した。
【0043】
一方、尿素を混合しない比較例であるサンプル10〜12については、サンプル10は加熱なし、サンプル11はアンモニアガス中で450℃:30分、サンプル12は、アンモニアガス中600℃:3時間加熱した。
【0044】
そして、各サンプル6〜9,11,12を表2に示す条件で加熱処理した。その結果、粉末の色調は、白色から、薄い黄色〜橙色に変化した。サンプル10は、酸化チタンの原料粉末のまま加熱しないものであり、色調は白色のままであった。
【0045】
加熱処理の後、尿素を混合して加熱したサンプル6〜9については、脱イオン水で洗浄し、酸窒化物以外の残留物を除去して乾燥した。
【0046】
各サンプルについて、X線回折法により結晶形の調査を行った結果、いずれの加熱サンプルもサンプル10の原料酸化物と同じアナターゼ型酸化チタンの結晶形を維持していた。その平均結晶粒径は、実施例であるサンプル6〜9では、原料酸化物(サンプル10)と同じ7nmであった。これに対し、比較例であるサンプル11では、12nm、サンプル12では20nmと結晶成長を起こしていた。
【0047】
また、X線光電子分光法により原料酸化物の酸素原子の窒素原子による置換割合を測定した結果、表2に示すように、サンプル6〜9における窒素原子による酸素原子の置換割合は、それぞれ、サンプル6:0.3%、サンプル7:7.8%、サンプル8:8.7%、サンプル9:10.5%であった。一方、比較例であるサンプル11,12では、それぞれ0.06%、0.09%であった。このように、実施例の酸窒化物では、比較例より低温の加熱条件でも高い置換割合を示した。
【0048】
次に、各サンプルについて、紫外光線および可視光線の照射下での光触媒能の測定を行った。この測定は、定法に従い、アセトアルデヒドガスの光分解能を測定した。すなわち、アセトアルデヒドの初期濃度を50ppmとし、10Wのブラックライトを1時間照射後のアセトアルデヒドの残留濃度を測定することで紫外光線による光触媒活性を測定した。また、紫外線カットフィルタ付10W白色蛍光灯を7時間照射後のアセトアルデヒドの残留濃度により、可視光線による光触媒活性を測定した。
【0049】
その結果を表2に示す。
【0050】
これより、実施例であるサンプル6〜9および比較例であるサンプル10では、紫外光線照射により残留アルデヒド濃度は2ppmとなった。これより、600℃以下の加熱により、結晶粒子が粗大化することなく、酸窒化物が形成された結果、紫外光線照射下での光触媒作用が原料粉末であるサンプル10(比較例)と同等に維持されることが確認された。一方、サンプル11および12では、残留アルデヒド濃度がそれぞれ5ppm、8ppmであり、紫外光線活性が損なわれていることがわかる。これは、酸化チタンが粗大化したためである。
【0051】
また、7時間の可視光照射後の残留アルデヒド濃度は、サンプル6で20ppm、サンプル7で15ppm、サンプル8で12ppm、サンプル9で8ppmとなった。これより、粗大化が起こらない範囲では、加熱温度は高い方がよく、また窒素中よりはアンモニア中が好ましいことがわかった。
【0052】
これは、大気中では酸窒化物の再酸化が進むが、窒素ガス雰囲気中ではこれが防止されること、およびアンモニア雰囲気においてはアンモニアからの窒素が酸化チタン中に侵入するためと考えられる。
【0053】
また、サンプル12(比較例)では、色調は、黄色で酸窒化物が形成されているものの、結集粒子の粗大化が起こっており、可視光活性が認められる反面、紫外光活性が損なわれていた。
【0054】
なお、実施例である上述のサンプル6〜9の酸窒化炭素について分析したところ、表2に示すように、窒素原子による酸素原子の置換割合で0.3%以上の窒素が含まれていた。一方、比較例であるサンプル11,12では、窒素含有率は0.1%以下である。このように、本発明により、従来に比べ、酸化チタンへの窒素の導入を効率的なものとして、窒素含有率の大きな酸窒化物を得ることができる。
【0055】
【発明の効果】
以上説明したように、本発明によれば、窒素供給源として、酸化物に常温で吸着する窒素化合物を使用し、これらの混合物を加熱することによって、原料酸化物内へ窒素を侵入させることができる。すなわち、酸窒化物の形成が比較的低温で、かつ短時間の加熱で達成できる。また、原料酸化物結晶の表面に窒素化合物が吸着され、原料酸化物結晶の表面が窒素化合物で覆われる。この結果、加熱処理によって形成される酸窒化物の結晶の粗大化が抑制され、原料酸化物とほぼ同じ比表面積を有する酸窒化物が得られる。これにより、生成された酸窒化物において、原料酸化物と同様の紫外光触媒活性が得られるとともに、可視光においても高い光触媒活性を得ることができる。
【図面の簡単な説明】
【図1】実施形態の処理を示すフローチャートである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an inorganic oxynitride and an inorganic oxynitride, particularly to an inorganic oxynitride having photocatalytic activity.
[0002]
[Prior art]
Conventionally, titanium oxide (TiO 2 ) has been widely used as a photocatalyst. However, this titanium oxide shows catalytic activity in ultraviolet light, but shows almost no catalytic activity in visible light.
[0003]
[Problems to be solved by the invention]
On the other hand, light in the ultraviolet region in sunlight is about several percent, and light from a fluorescent lamp or the like hardly contains light in the ultraviolet region. Therefore, a substance exhibiting photocatalytic activity even in visible light is desired.
[0004]
The present applicant has discovered that titanium oxynitride (Ti-ON) in which oxygen of titanium oxide is partially substituted with nitrogen exhibits good photocatalytic activity even in visible light. This titanium oxynitride can be formed as a thin film by sputtering in a nitrogen atmosphere using a titanium compound such as titanium oxide as a target. This was proposed in Japanese Patent Application No. 11-223003. In Japanese Patent Application No. 2000-19315, various proposals were made on a method for producing an oxynitride.
[0005]
Further, as the photocatalyst substance, a powdery one or the like is easily used. That is, in the case of a powder form, a photocatalyst film can be easily formed at a desired place by a method such as applying it to a necessary place together with an adhesive or the like. Therefore, it is desired to efficiently produce powdery oxynitride.
[0006]
The present invention relates to a method for efficiently producing a powdery inorganic oxynitride that functions as a photocatalyst, and to the produced inorganic oxynitride.
[0007]
JP-A-2000-86210 discloses a method of heating a mixture of boric acid and urea to obtain boron nitride. JP-A-2000-144394 discloses a method in which boric acid and titanium oxide are used. It has been shown that heat treatment of titanium nitride from a mixture of ureas results in both conditions and resulting products differing from the present invention.
[0008]
[Means for Solving the Problems]
The present invention relates to a method for producing an inorganic oxynitride, comprising heating a mixture of an oxide having a specific surface area of 5 m 2 / g or more and a nitrogen compound adsorbed on the oxide at room temperature to thereby obtain an inorganic oxynitride having photocatalytic activity. It is characterized by producing oxynitride.
[0009]
As described above, by using a nitrogen compound which is adsorbed on an oxide at normal temperature as a nitrogen supply source and heating a mixture thereof, nitrogen can be introduced into the raw material oxide. As a result, part of the oxygen of the oxide is replaced with nitrogen, and oxynitride is generated. That is, formation of oxynitride can be achieved by heating at a relatively low temperature (for example, about 150 ° C. to 600 ° C.) and for a short time. Further, the nitrogen compound is adsorbed on the surface of the raw material oxide crystal, and the surface of the raw material oxide crystal is covered with the nitrogen compound. As a result, coarsening of the crystal of the oxynitride formed by the heat treatment is suppressed, and an oxynitride having substantially the same specific surface area as the raw material oxide is obtained. Thereby, in the generated oxynitride, an ultraviolet photocatalytic activity similar to that of the raw material oxide can be obtained, and a high photocatalytic activity can be obtained even in visible light.
[0010]
The oxide is preferably at least one substance selected from titanium oxide and zinc oxide . These substances originally have a photocatalytic function under ultraviolet irradiation, and can exhibit a photocatalytic function by visible light by introducing nitrogen.
[0011]
As the nitrogen compound, various amino compounds, amides and the like can be used, but urea is preferred. Urea is easily adsorbed on the surface of the oxide, and nitrogen effectively enters the oxide by heating.
[0012]
As the nitrogen compound, in addition to the above-mentioned urea, thiourea, thiourea dioxide, 1,1-dimethylurea, cyanuric acid, and other compounds having a reducing power (particularly, urea-like compounds) can be used. The reason for this is that if the material has no reducing power, such as ammonium carbonate, it does not react with the oxide and nitrogen does not enter the oxide.
[0013]
Preferably, the heating is performed in an ammonia gas atmosphere. Nitrogen from the ammonia gas enters the oxide, and an oxynitride having a high nitrogen content can be formed.
[0014]
The inorganic oxynitride according to the present invention is a powdery inorganic oxynitride having a photocatalytic activity produced by heating a mixture of an oxide having a specific surface area of 5 m 2 / g or more and a liquid or solid nitrogen compound at room temperature. An oxynitride, wherein a substitution ratio of oxygen atoms by nitrogen atoms is 0.1 to 25%. Since the nitrogen content is large, sufficient photocatalytic activity can be obtained in visible light. For example, in the case of titanium oxynitride, the range is TiO 1.998 N 0.002 to Ti 1.5 N 0.5 .
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
The processing of the present embodiment will be described with reference to FIG. First, powdery titanium oxide and urea are prepared (S11). Titanium oxide has a specific surface area of 5 m 2 / g or more, preferably 300 m 2 / g or more. Since such powdered titanium oxide is commercially available, it may be used. However, as long as the size of the powder particles is as described above, there is no problem. A catalyst having a small surface area is not preferred because the performance as a catalyst is inferior to that extent. Furthermore, the entry of nitrogen from urea cannot be sufficient.
[0017]
Urea may be a commercially available powdery reagent.
[0018]
Next, powdery titanium oxide and urea are mixed (S12). Urea is adsorbed on the surface of titanium oxide at room temperature. Then, by stirring and mixing both, urea adheres to the surface of titanium oxide. Quantitatively, the two may be mixed by almost the same weight, whereby sufficient urea can be adsorbed on the entire surface of the titanium oxide. Note that an aqueous solution of a nitrogen compound such as urea may be prepared and attached to the surface of the titanium oxide powder.
[0019]
In this way, the titanium oxide and the urea are stirred and mixed, and when the urea is adsorbed on the surface of the titanium oxide powder, the mixture is heated. The temperature is preferably about 500 ° C., and the time is preferably about 30 minutes, and it is preferable that stirring be continued during heating. By such a heat treatment, nitrogen enters the inside of the titanium oxide, and titanium oxynitride is generated.
[0020]
In particular, urea is adsorbed on the surface of the titanium oxide before heating, and nitrogen intrusion is performed very easily. Therefore, it is possible to generate titanium oxynitride at a low temperature of less than 600 ° C. and in a short time.
[0021]
Such short-time heating at less than 600 ° C. suppresses the coarsening of the crystal of titanium oxynitride, and obtains titanium oxynitride having the same specific surface area as the raw material titanium oxide. In particular, urea is adsorbed on the surface of titanium oxide, and powder particles of titanium oxide are not in direct contact with each other. Thus, when heated, the powder particles are prevented from coalescing and the crystallization is prevented, and the coarsening of the particles is suppressed.
[0022]
In this manner, a powder of titanium oxynitride into which nitrogen from urea has been introduced is generated. The particle size of this powder is basically the same as that of the raw material titanium oxide, and therefore, the same photocatalyst in ultraviolet light as titanium oxide can be maintained. The titanium oxynitride obtained by introducing nitrogen has catalytic activity not only in ultraviolet light but also in visible light. Therefore, it can be widely used as an antifogging and antifouling material outdoors and indoors. In particular, it can be applied to a desired surface using a binder such as an adhesive, and wide use can be expected.
[0023]
Note that nitrogen of titanium oxynitride is introduced in a state where a chemical bond exists between a Ti atom and an N atom by substitution with oxygen.
[0024]
Here, any oxide may be used as long as it has an specific surface area of 5 m 2 / g or more, but titanium oxide, zinc oxide, tin oxide, iron oxide, oxide One or two or more selected from tungsten and silicon oxide are preferable. When the surface area of the oxide is less than the above value, the amount of adsorption of the nitrogen compound is insufficient, which hinders the formation of the oxynitride, and the oxynitride cannot be formed by heating in a temperature range in which the coarsening of the crystal grains can be suppressed. .
[0025]
The oxide may be in any form such as a powder or film produced by a wet method or a dry method, or a mesoporous material having fine pores therein. Furthermore, the oxide referred to in the present invention includes those that become oxides by heating in a non-oxidizing atmosphere, and may be hydrated oxides or hydroxides.
[0026]
Further, the specific surface area of the oxide is preferably 5 m 2 / g or more. This is because, if there is no such specific surface area, it is impossible to sufficiently infiltrate nitrogen, and the generated oxynitride cannot exhibit sufficient catalytic activity.
[0027]
If the specific surface area of the oxide falls below this value, the amount of adsorbed nitrogen compounds becomes insufficient, which hinders the formation of oxynitrides. This makes it difficult to form
[0028]
Instead of urea, other nitrogen compounds, for example, various amino compounds such as thiourea , thiourea dioxide, 1,1-dimethylurea, and cyanuric acid, and reducing nitrogen compounds such as amides can be used. Although not limited, the nitrogen compound is preferably solid at room temperature. This is because gaseous substances such as ammonia and hydrazine at normal temperature cannot effectively adsorb to the oxide surface.
[0029]
In addition, an arbitrary mixing method can be selected for mixing the nitrogen compound and the oxide. For example, in the case of powders, both may be mixed as they are as described above. Alternatively, the nitrogen compound may be dissolved in an appropriate solvent and then mixed with the oxide powder. Further, when the oxide is a film on the substrate, a nitrogen compound solution may be applied by spraying or the like.
[0030]
Furthermore, the atmosphere during the heat treatment may be in the air, but in order to prevent reoxidation of oxynitride, an inert gas atmosphere such as nitrogen gas, argon gas, or a conventionally known gas such as hydrogen gas, ammonia gas, hydrazine gas, etc. Is preferable. In particular, in an ammonia gas atmosphere, oxidation of the oxynitride is prevented, and nitrogen is also supplied from the atmosphere gas, so that the efficiency of oxynitride generation is increased. Here, it is preferable that the oxide of the raw material is uniformly exposed to a nitrogen compound having a reducing power during heating, and when the raw material oxide is a powder, the heating furnace is a continuous stirring mechanism such as a fluidized bed furnace or a rotary kiln. Having one is preferred. However, even in a furnace without a continuous stirring mechanism, the mixture of the oxide and the nitrogen compound as the raw materials is heated once to about 150 ° C. in the air, and the raw materials are mixed well using a stirrer, and then the desired mixture is obtained. By heating in a temperature and atmosphere gas, the same oxynitriding reaction as in the case of using a fluidized bed furnace or the like can be performed from the beginning.
[0031]
In the heat treatment, it is convenient to heat the mixture of the existing oxide and the nitrogen compound as described above, but a heating step in the stage of manufacturing the raw material oxide may be used. For example, in a general production method for obtaining a powder of titanium oxide, an aqueous solution of a titanium salt such as titanium tetrachloride or titanyl sulfide is heated or added with an alkali to hydrolyze to precipitate fine crystals of titanium oxide, and then filtered. After washing, it is dried by heating. Further, in some cases, the microcrystal is subjected to hydrothermal treatment in an autoclave at a temperature of 100 ° C. or more to grow to a desired crystal.
[0032]
Therefore, the heating step of producing the oxide may also serve as the heating step of the present invention. That is, a nitrogen compound having a reducing power such as urea or thiourea is mixed before the heating step such as drying of the oxide powder or autoclave treatment, and then heating is performed. According to this method, it is necessary to appropriately change the heating temperature and the gas atmosphere from the conventional conditions. However, this method is preferable because it is an energy-saving and low-cost oxynitride production method.
[0033]
When the oxynitride powder of the present invention is used for a photocatalyst or the like, the oxynitride powder is dispersed in water or an organic solvent to form a sol or a slurry, which is applied to a substrate as a coating liquid, and then heated. Generally, the oxynitride powder is adhered to the substrate in a film form. Therefore, this contact heating step may also serve as the heating step of the oxynitride production of the present invention. That is, a mixture of a raw material oxide powder and a nitrogen compound having a reducing power such as urea may be applied as a sol or a slurry to a substrate, followed by heating to simultaneously perform production of an oxynitride and formation of a coating film. In this method, it is necessary to appropriately change the heating temperature and the gas atmosphere from the conventional conditions depending on the type of the oxynitride and the type of the base, but there is an advantage that a low-cost oxynitride coating solution can be obtained. Further, since the processing is simplified as a whole, coating can be performed at low cost.
[0034]
As described above, a nitrogen compound such as urea that is adsorbed on an oxide at room temperature is used as a nitrogen supply source, and by heating these mixtures, nitrogen enters the raw material oxide to replace oxygen atoms with nitrogen atoms. Can be done. That is, the formation of oxynitride can be achieved at a low temperature of less than 600 ° C. and by heating for a short time. Further, the nitrogen compound is adsorbed on the surface of the raw material oxide crystal, and the surface of the raw material oxide crystal is covered with the nitrogen compound. As a result, coarsening of the crystal of the oxynitride formed by the heat treatment is suppressed, and an oxynitride having substantially the same specific surface area as the raw material oxide is obtained. Thereby, in the generated oxynitride, an ultraviolet photocatalytic activity similar to that of the raw material oxide can be obtained, and a high photocatalytic activity can be obtained even in visible light.
[0035]
【Example】
"Example 1"
As the oxide, five types of anatase-type titanium oxide powder having a specific surface area of 1 to 320 m 2 / g were prepared. 50 g of the titanium oxide powder was put into a glass beaker, and 25 g of thiourea dioxide powder as a reagent was further added. Then, both were sufficiently stirred and mixed with a spatula. At this time, the mixture had a pure white color.
[0036]
Here, the specific surface area of the titanium oxide powder, the sample 1 is 320 m 2 / g, the sample 2 is 90m 2 / g sample 3 7m 2 / g, sample 4 is 4m 2 / g, the sample 5 with 1 m 2 / g is there.
[0037]
Next, the glass beaker was heated with a mantle heater under the open air, and the color tone change of the mixture was visually observed while stirring with a spatula until the temperature of the mixture reached 200 ° C. Table 1 shows the results.
[0038]
[Table 1]
Figure 0003589177
As shown in Table 1, in Comparative Examples 4 and 5, in which the specific surface area was less than 5 m 2 / g, although the sulfur odor as the decomposition gas of thiourea dioxide was strongly felt during the temperature rise, the temperature of the mixture was 200 ° C. , No change in color tone was observed.
[0039]
On the other hand, in Samples 1, 2, and 3, which have specific surface areas of 5 m 2 / g or more, the color tone of the mixture changes to yellow at 150 ° C. or more, and nitrogen is introduced into titanium oxide to cause oxynitridation. It was confirmed that titanium was produced.
[0040]
Further, when the replacement ratio of oxygen atoms by nitrogen atoms in the obtained titanium oxynitride was examined by X-ray photoelectron spectroscopy, it was found to be 0.2% or more in Examples. Moreover, in the comparative example, it was 0.1% or less.
[0041]
"Example 2"
As shown in Table 2, as the oxide, an anatase type titanium oxide powder having the same specific surface area as that used in Sample 1 of Example 1 was 320 m 2 / g. This was used as it was in Samples 10 to 12 as comparative examples. In Samples 6 to 9 as examples, urea reagents were mixed in equal amounts.
[0042]
[Table 2]
Figure 0003589177
For Samples 6 to 9, which are examples in which urea is mixed, heat to 150 ° C. in the atmosphere and stir well, then leave in a furnace, and place Sample 6 in nitrogen gas at 250 ° C. for 30 minutes. Sample 7 was heated in nitrogen gas at 350 ° C. for 30 minutes, sample 8 was heated in ammonia gas at 350 ° C. for 30 minutes, and sample 9 was heated in ammonia gas at 450 ° C. for 30 minutes.
[0043]
On the other hand, with respect to Samples 10 to 12 which are comparative examples not mixed with urea, Sample 10 was heated without heating, Sample 11 was heated in ammonia gas at 450 ° C. for 30 minutes, and Sample 12 was heated in ammonia gas at 600 ° C. for 3 hours. .
[0044]
The samples 6 to 9, 11, and 12 were heat-treated under the conditions shown in Table 2. As a result, the color tone of the powder changed from white to pale yellow to orange. In Sample 10, the raw material powder of titanium oxide was not heated, and the color tone remained white.
[0045]
After the heat treatment, Samples 6 to 9 heated by mixing urea were washed with deionized water to remove residues other than oxynitride and dried.
[0046]
As a result of investigating the crystal form of each sample by an X-ray diffraction method, all the heated samples maintained the same crystal form of the anatase-type titanium oxide as the raw material oxide of Sample 10. The average crystal grain size of Samples 6 to 9 as Examples was 7 nm, which is the same as that of the raw material oxide (Sample 10). On the other hand, the crystal growth of sample 11 as a comparative example was 12 nm, and that of sample 12 was 20 nm.
[0047]
In addition, as a result of measuring the replacement ratio of oxygen atoms of the raw material oxides by nitrogen atoms by X-ray photoelectron spectroscopy, as shown in Table 2, the replacement ratio of oxygen atoms by nitrogen atoms in Samples 6 to 9 was as follows: 6: 0.3%, Sample 7: 7.8%, Sample 8: 8.7%, Sample 9: 10.5%. On the other hand, in samples 11 and 12, which are comparative examples, they were 0.06% and 0.09%, respectively. As described above, the oxynitride of the example exhibited a higher substitution ratio than the comparative example even under a lower heating condition.
[0048]
Next, the photocatalytic ability of each sample was measured under irradiation of ultraviolet light and visible light. In this measurement, the optical resolution of acetaldehyde gas was measured according to a standard method. That is, the initial concentration of acetaldehyde was set to 50 ppm, and the photocatalytic activity by ultraviolet light was measured by measuring the residual concentration of acetaldehyde after irradiating 10 W black light for 1 hour. The photocatalytic activity by visible light was measured based on the residual concentration of acetaldehyde after irradiating a 10 W white fluorescent lamp with an ultraviolet cut filter for 7 hours.
[0049]
Table 2 shows the results.
[0050]
Thus, in Samples 6 to 9 as Examples and Sample 10 as Comparative Example, the residual aldehyde concentration was 2 ppm by irradiation with ultraviolet light. From this, the oxynitride was formed without the crystal grains being coarsened by heating at 600 ° C. or less. As a result, the photocatalysis under ultraviolet light irradiation was equivalent to that of Sample 10 (comparative example) as the raw material powder. It was confirmed that it would be maintained. On the other hand, in Samples 11 and 12, the residual aldehyde concentrations were 5 ppm and 8 ppm, respectively, indicating that the ultraviolet light activity was impaired. This is because titanium oxide was coarsened.
[0051]
The residual aldehyde concentration after 7 hours of visible light irradiation was 20 ppm for sample 6, 15 ppm for sample 7, 12 ppm for sample 8, and 8 ppm for sample 9. From this, it was found that the higher the heating temperature is, the better the temperature is in the range where the coarsening does not occur, and it is preferable to use ammonia in ammonia than in nitrogen.
[0052]
This is presumably because the reoxidation of the oxynitride proceeds in the atmosphere, but is prevented in a nitrogen gas atmosphere, and nitrogen from ammonia enters titanium oxide in an ammonia atmosphere.
[0053]
In Sample 12 (Comparative Example), although the color tone was yellow and oxynitride was formed, the aggregated particles were coarsened and visible light activity was observed, but ultraviolet light activity was impaired. Was.
[0054]
In addition, when the carbon oxynitrides of the above-mentioned samples 6 to 9 as examples were analyzed, as shown in Table 2, nitrogen was contained in an amount of 0.3% or more as a replacement ratio of oxygen atoms by nitrogen atoms. On the other hand, in Samples 11 and 12, which are comparative examples, the nitrogen content is 0.1% or less. As described above, according to the present invention, it is possible to efficiently introduce nitrogen into titanium oxide and obtain an oxynitride having a large nitrogen content as compared with the related art.
[0055]
【The invention's effect】
As described above, according to the present invention, as a nitrogen supply source, a nitrogen compound adsorbed on an oxide at normal temperature is used, and by heating these mixtures, nitrogen can be introduced into the raw material oxide. it can. That is, the formation of oxynitride can be achieved by heating at a relatively low temperature for a short time. Further, the nitrogen compound is adsorbed on the surface of the raw material oxide crystal, and the surface of the raw material oxide crystal is covered with the nitrogen compound. As a result, coarsening of the crystal of the oxynitride formed by the heat treatment is suppressed, and an oxynitride having substantially the same specific surface area as the raw material oxide is obtained. Thereby, in the generated oxynitride, an ultraviolet photocatalytic activity similar to that of the raw material oxide can be obtained, and a high photocatalytic activity can be obtained even in visible light.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating a process according to an embodiment.

Claims (4)

比表面積が5m2/g以上の酸化チタン、含水酸化チタン及び水酸化チタンからなる群から選択された少なくとも1種の酸化物と、常温で前記酸化物に吸着する還元力のある窒素化合物であって常温で固体であるものとを混合し、この混合物を加熱することにより、光触媒活性を有する酸窒化チタンを、加熱による酸窒化チタン結晶の粗大化を抑制して製造する方法。At least one oxide selected from the group consisting of titanium oxide, titanium oxide hydroxide, and titanium hydroxide having a specific surface area of 5 m 2 / g or more, and a reducing nitrogen compound adsorbed to the oxide at room temperature. A method of producing a titanium oxynitride having photocatalytic activity by mixing a solid that is solid at room temperature and heating the mixture to suppress the titanium oxynitride crystal from being coarsened by heating. 請求項1に記載の方法において、前記窒素化合物が尿素、チオ尿素、二酸化チオ尿素、1,1−ジメチル尿素、シアヌル酸、アミノ化合物又はアミドから選択された少なくとも1つの物質であることを特徴とする方法。2. The method according to claim 1, wherein the nitrogen compound is at least one substance selected from urea, thiourea, thiourea dioxide, 1,1-dimethylurea, cyanuric acid, amino compound or amide. how to. 請求項1又は2に記載の方法において、前記加熱を150℃以上600℃以下の温度範囲で行った後、前記窒素化合物の残留物を除去することを特徴とする方法。The method according to claim 1 or 2, after Tsu row at a temperature range of the heating 600 ° C. 0.99 ° C. or more, wherein the removing residues of said nitrogen compound. 請求項1〜のいずれか1つに記載の方法において、前記加熱をアンモニアガス雰囲気中で行うことを特徴とする方法。The method according to any one of claims 1 to 3 , wherein the heating is performed in an ammonia gas atmosphere.
JP2000343655A 2000-11-10 2000-11-10 Method for producing inorganic oxynitride Expired - Lifetime JP3589177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343655A JP3589177B2 (en) 2000-11-10 2000-11-10 Method for producing inorganic oxynitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343655A JP3589177B2 (en) 2000-11-10 2000-11-10 Method for producing inorganic oxynitride

Publications (2)

Publication Number Publication Date
JP2002154823A JP2002154823A (en) 2002-05-28
JP3589177B2 true JP3589177B2 (en) 2004-11-17

Family

ID=18817989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343655A Expired - Lifetime JP3589177B2 (en) 2000-11-10 2000-11-10 Method for producing inorganic oxynitride

Country Status (1)

Country Link
JP (1) JP3589177B2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063912A (en) * 2001-08-22 2003-03-05 Ulvac Japan Ltd Antibacterial and antifouling material and manufacturing method for conductive and visible light sensitive titanium oxide
JP4147300B2 (en) * 2002-10-23 2008-09-10 独立行政法人産業技術総合研究所 Nitrogen-containing titanium oxide photocatalyst and method for purifying environmental pollutant gas using the same
KR20060021385A (en) 2003-06-20 2006-03-07 가부시키가이샤 호소카와 훈타이 기쥬쓰켄큐쇼 Powder treatment method, powder treatment device, and method of manufacturing porous granulated matter
JP4484195B2 (en) * 2003-09-16 2010-06-16 テイカ株式会社 Method for producing titanium oxide
JP4942062B2 (en) * 2003-09-22 2012-05-30 昭栄化学工業株式会社 Method for producing oxynitride
JP4198582B2 (en) 2003-12-02 2008-12-17 独立行政法人科学技術振興機構 Tantalum oxynitride oxygen reduction electrocatalyst
JP2005187294A (en) * 2003-12-26 2005-07-14 Dowa Mining Co Ltd Titanium dioxide for visible light response type catalyst and its manufacturing method
US20070161504A1 (en) * 2004-03-12 2007-07-12 Toho Titanium Co., Ltd. Titanium oxide photocatalyst and method for preparation thereof
KR100670944B1 (en) 2005-04-28 2007-01-17 학교법인 포항공과대학교 Process for preparing titanate and titanium oxynitride
ES2614555T3 (en) 2005-12-13 2017-05-31 Asahi Kasei Kabushiki Kaisha Aqueous organic-inorganic hybrid composition
JP2007253148A (en) * 2006-02-24 2007-10-04 Osaka Prefecture Univ Photocatalyst, method for manufacturing photocatalyst, method for electrolyzing water, method for producing hydrogen, electrolyzer, and hydrogen produing device
US8790754B1 (en) * 2008-02-05 2014-07-29 Materials Modification, Inc. Method of preparing metal nitride and/or metal oxynitride particulate material as nanoparticles, microparticles, nanotubes, bulk powder, and/or coatings from organometallic precursors, and precursors therefor
EP2165974A1 (en) * 2008-09-17 2010-03-24 L. Brüggemann Kommanditgesellschaft Method for bleaching hydrolytically cut titanium hydroxide hydrate
JP2010111565A (en) * 2008-10-07 2010-05-20 Toyota Motor Corp Method for producing lithium phosphorus oxynitride compound
JP2011001254A (en) * 2009-05-21 2011-01-06 Toyota Motor Corp METHOD FOR PRODUCING NITRIDED Li-Ti COMPOUND OXIDE, NITRIDED Li-Ti COMPOUND OXIDE AND LITHIUM BATTERY
JP5671831B2 (en) * 2009-05-21 2015-02-18 トヨタ自動車株式会社 Method for producing lithium nitride-transition metal composite oxide, lithium nitride-transition metal composite oxide, and lithium battery
EP2515956B8 (en) * 2009-12-15 2016-08-24 Universitetet i Oslo COMPOSITION COMPRISING NANOPARTICLES OF TiO2
JP5676907B2 (en) * 2010-02-17 2015-02-25 石原産業株式会社 Method for treating lithium titanate particles
CN102792495B (en) 2010-03-12 2015-10-21 丰田自动车株式会社 The manufacture method of electrode active material and electrode active material
WO2011111227A1 (en) * 2010-03-12 2011-09-15 トヨタ自動車株式会社 Electrode active material and method for producing electrode active material
JP2012003289A (en) * 2011-10-03 2012-01-05 Dainippon Printing Co Ltd Method for manufacturing pattern forming body
US9902623B2 (en) 2012-02-17 2018-02-27 Japan Science And Technology Agency Macroporous titanium compound monolith and method for producing same
JP6375565B2 (en) * 2015-02-28 2018-08-22 千葉県 Photocatalyst production method
KR101908956B1 (en) * 2016-09-01 2018-10-17 한국세라믹기술원 Manufacturing method of titanium oxynitrides
JP7024327B2 (en) * 2017-10-31 2022-02-24 株式会社豊田中央研究所 Photocatalyst and method for manufacturing photocatalyst

Also Published As

Publication number Publication date
JP2002154823A (en) 2002-05-28

Similar Documents

Publication Publication Date Title
JP3589177B2 (en) Method for producing inorganic oxynitride
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
US8518848B2 (en) Titanium oxide photocatalyst and method for producing the same
KR101318743B1 (en) Tungsten oxide photocatalyst and method for producing the same
DE102004027549A1 (en) Carbonaceous titania photocatalyst and process for its preparation
US20120309617A1 (en) Method of Production of Photocatalytic Powder Comprising Titanium Dioxide and Manganese Dioxide Active Under Ultraviolet and Visible Light
JP4135921B2 (en) Titanium dioxide fine particles and method for producing the same
JP2002211928A (en) Visible light-reactive titanium dioxide, method for producing the same and method for removing contaminant
TWI291895B (en) Sol containing titanium oxide, thin film formed therefrom and production process of the sol
JP2003246622A (en) Titanium oxide precursor, method of producing the same and method of producing titanium oxide using the precursor
JP4424905B2 (en) Anatase type titania-silica composite, production method thereof and photocatalytic material
KR20070092627A (en) Photocatalyst dispersion
JP2003192347A (en) Titanium oxide, and photocatalyst body and photocatalyst coating agent obtained by using the same
JP2003055841A (en) Titanium oxide fiber and photocatalyst body using the same
JP2002159865A (en) Titanium oxide photocatalyst for basic gas removal
JP2004344863A (en) Photocatalyst support porous gel and manufacturing method therefor
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
JP2000302422A (en) Coating composition for forming photocatalyst film
JP4002497B2 (en) Metal oxide sol and method for producing the same
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP2004161573A (en) Titanium oxide sol, titanium oxide coating film, and its forming method
JP4246933B2 (en) Photocatalyst particles and method for producing the same
JP4496427B2 (en) Method for producing titanium oxide for visible light responsive photocatalyst
JP2004182558A (en) Titanium oxide dispersion liquid

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R151 Written notification of patent or utility model registration

Ref document number: 3589177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

EXPY Cancellation because of completion of term