JP7024327B2 - Photocatalyst and method for manufacturing photocatalyst - Google Patents

Photocatalyst and method for manufacturing photocatalyst Download PDF

Info

Publication number
JP7024327B2
JP7024327B2 JP2017210767A JP2017210767A JP7024327B2 JP 7024327 B2 JP7024327 B2 JP 7024327B2 JP 2017210767 A JP2017210767 A JP 2017210767A JP 2017210767 A JP2017210767 A JP 2017210767A JP 7024327 B2 JP7024327 B2 JP 7024327B2
Authority
JP
Japan
Prior art keywords
nitrogen
photocatalyst
titanium oxide
containing titanium
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017210767A
Other languages
Japanese (ja)
Other versions
JP2019081155A (en
Inventor
周 佐伯
稔貴 田辺
飛展 池田
良文 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2017210767A priority Critical patent/JP7024327B2/en
Publication of JP2019081155A publication Critical patent/JP2019081155A/en
Application granted granted Critical
Publication of JP7024327B2 publication Critical patent/JP7024327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)

Description

本発明は窒素含有酸化チタンを用いる光触媒体に関する。 The present invention relates to a photocatalyst using nitrogen-containing titanium oxide.

有機物を分解する光触媒体が知られており、部材の表面にコーティングすることにより汚れを分解できるため、各種の用途に用いられている。特に、酸化チタン(TiO)が光触媒として機能することは古くから知られており、酸化チタンに窒素をドープした窒素含有酸化チタン(N-TiO)は可視光で光触媒活性を示すため広く普及している。 A photocatalyst that decomposes organic substances is known, and it is used for various purposes because it can decompose stains by coating the surface of a member. In particular, it has long been known that titanium oxide (TiO 2 ) functions as a photocatalyst, and nitrogen-containing titanium oxide (N-TiO 2 ) obtained by doping titanium oxide with nitrogen is widely used because it exhibits photocatalytic activity in visible light. is doing.

ここで、光触媒体は、有機物の分解効率はなるべく高い方がよい。そこで、効率改善について各種の提案がある。 Here, the photocatalyst should have as high a decomposition efficiency as possible for organic substances. Therefore, there are various proposals for improving efficiency.

特許文献1には、光触媒と光触媒でない吸着物質(ゼオライト等)の混合体が示されている。 Patent Document 1 discloses a mixture of a photocatalyst and an adsorbent (zeolite or the like) that is not a photocatalyst.

特許文献2には、吸収波長の異なる二つの光触媒材料の混合体が示されている。 Patent Document 2 shows a mixture of two photocatalytic materials having different absorption wavelengths.

特許文献3には、白金担持N-TiOとCu担持N-TiOの混合体が示されている。 Patent Document 3 shows a mixture of platinum-supported N-TiO 2 and Cu-supported N-TiO 2 .

特許文献4には、Cu担持N-TiOとAg担持N-TiOの混合体が示されている。 Patent Document 4 shows a mixture of Cu-supported N-TiO 2 and Ag-supported N-TiO 2 .

特開2016-047516号公報Japanese Unexamined Patent Publication No. 2016-047516 特開2001-061948号公報Japanese Unexamined Patent Publication No. 2001-061948 特開2012-106153号公報Japanese Unexamined Patent Publication No. 2012-106153 特開2016-198704号公報Japanese Unexamined Patent Publication No. 2016-198704

吸着剤との組み合わせでは、分解対象となる目的物質が吸着剤から離脱し難く、分解効率を十分に上昇することができない場合もある。また、2種類の光触媒の混合体では、異なる光触媒の特性が生かされる場合に性能が向上できるが、必ずしも性能向上が図られる訳ではない。白金や、銅などの酸化触媒を担持することで分解効率が上昇するが、さらに効率を上昇したいという要求がある。 In combination with an adsorbent, the target substance to be decomposed may not easily separate from the adsorbent, and the decomposition efficiency may not be sufficiently increased. Further, in a mixture of two types of photocatalysts, the performance can be improved when the characteristics of different photocatalysts are utilized, but the performance is not necessarily improved. The decomposition efficiency is increased by supporting an oxidation catalyst such as platinum or copper, but there is a demand for further increase in efficiency.

本発明に係る光触媒体は、を表面に担持した窒素含有酸化チタンからなる可視光応答型の第1光触媒物質と、を担持しない窒素含有酸化チタンからなる可視光応答型の第2光触媒物質と、が物理的に混合されており、第2光触媒物質の混合量が5重量%から95重量%の範囲であるThe photocatalyst according to the present invention is a visible light responsive first photocatalyst substance made of nitrogen-containing titanium oxide having copper on its surface and a visible light responsive second photocatalyst substance made of nitrogen-containing titanium oxide not carrying copper . And are physically mixed , and the mixing amount of the second photocatalytic substance is in the range of 5% by weight to 95% by weight .

また、第1および第2光触媒物質を構成する窒素含有酸化チタンは、窒素の含有原子数比Xが0%<X<10%であるとよい。 Further, the nitrogen-containing titanium oxide constituting the first and second photocatalytic substances may have a nitrogen-containing atomic number ratio X of 0% <X <10%.

また、第1光触媒における銅の含有量が0.01重量%から6.0重量%であるとよい。 Further, the copper content in the first photocatalyst is preferably 0.01% by weight to 6.0% by weight.

また、第1光触媒物質がフェントン反応によりOHラジカルを優位に生成するとよい。 Further, it is preferable that the first photocatalytic substance predominantly generates OH radicals by the Fenton reaction.

また、上述した光触媒体の製造方法であって、第1または第2光触媒物質の窒素含有酸化チタンは、酸化チタンと尿素を混合するか、アンモニアガス雰囲気下のいずれかの条件で、300~700℃の範囲で熱処理して窒素をドープすることで製造するとよい。 Further, in the above-mentioned method for producing a photocatalyst, the nitrogen-containing titanium oxide of the first or second photocatalyst is 300 to 700 under the conditions of either mixing titanium oxide and urea or under an ammonia gas atmosphere. It may be produced by heat-treating in the temperature range of ° C and doping with nitrogen.

また、第1光触媒物質は、担持する金属触媒の金属の硝酸塩、硫酸塩、または塩化物を、窒素含有酸化チタンと接触させることで、窒素含有酸化チタンに金属触媒を担持させることで製造するとよい。 Further, the first photocatalyst substance may be produced by contacting the nitrate, sulfate, or chloride of the metal of the metal catalyst to be carried with the nitrogen-containing titanium oxide to support the metal catalyst on the nitrogen-containing titanium oxide. ..

本発明によれば、高い酸化反応活性の光触媒体が得られる。これにより、有機物の酸化分解効率を向上することができ、これまでの光触媒材料では実現できなかった高濃度の有害ガス分解や短時間での有害物質の処理が可能となる。 According to the present invention, a photocatalyst having high oxidation reaction activity can be obtained. As a result, the oxidative decomposition efficiency of organic substances can be improved, and high-concentration toxic gas decomposition and treatment of toxic substances in a short time, which could not be realized by conventional photocatalytic materials, become possible.

実施形態に係る光触媒体の製造方法を示す図である。It is a figure which shows the manufacturing method of the photocatalyst body which concerns on embodiment. 混合割合に対する酸化分解反応の大きさを示す図である。It is a figure which shows the magnitude of the oxidative decomposition reaction with respect to the mixing ratio. 無担持窒素含有酸化チタンと、銅担持窒素含有酸化チタンのESR測定結果を示す図である。It is a figure which shows the ESR measurement result of the titanium oxide containing a non-supported nitrogen, and the titanium oxide containing copper-supported nitrogen.

以下、本発明の実施形態について、図面に基づいて説明する。なお、本発明は、ここに記載される実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described here.

「実施形態」
本実施形態では、第1光触媒物質としての金属触媒担持窒素含有酸化チタンと第2光触媒物質としての金属触媒無担持の窒素含有酸化チタンと、を物理的に混合する。通常、2種類の触媒を物理的に混合した場合、それぞれの触媒の能力を合わせたものになると考えられる。例えば、性能指数2の金属触媒担持量0.5wt%の窒素含有酸化チタンと、性能指数1の金属触媒担持量0wt%の窒素含有酸化チタンを50%ずつ物理混合した場合には、その能力は光触媒の性能が粉末量に依存することから、性能指数2の50%と性能指数1の50%を足し合わせた性能指数1.5になり、性能指数2よりも低下すると考えられる。
"Embodiment"
In the present embodiment, the metal catalyst-supported nitrogen-containing titanium oxide as the first photocatalyst substance and the nitrogen-containing titanium oxide without the metal catalyst as the second photocatalyst substance are physically mixed. Usually, when two kinds of catalysts are physically mixed, it is considered that the ability of each catalyst is combined. For example, when 50% each of nitrogen-containing titanium oxide having a figure of merit 2 with a metal catalyst carrying amount of 0.5 wt% and nitrogen-containing titanium oxide having a figure of merit 1 with a metal catalyst carrying amount of 0 wt% are physically mixed, their capacities are high. Since the performance of the photocatalyst depends on the amount of powder, the figure of merit is 1.5, which is the sum of 50% of the figure of merit 2 and 50% of the figure of merit 1, which is considered to be lower than the figure of merit 2.

ところが、物理混合した場合に、金属触媒を担持した窒素含有酸化チタンのみのものより、高性能の光触媒が得られた。 However, when physically mixed, a photocatalyst with higher performance was obtained than that of only nitrogen-containing titanium oxide carrying a metal catalyst.

なお、物理的な混合の方法としては、粉末の金属触媒無担持の窒素含有酸化チタンと、粉末の金属触媒担持の窒素含有酸化チタンを水中で物理的に混合することが好適である。 As a physical mixing method, it is preferable to physically mix the powdered nitrogen-containing titanium oxide without a metal catalyst and the powdered nitrogen-containing titanium oxide with a metal catalyst in water.

「製造方法」
物理混合光触媒の製造方法について、図1に基づいて説明する。まず、アナターゼ型の酸化チタンを用意する。そして、用意した酸化チタンに窒素をドープする(S11)。これによって、可視光応答型の光触媒体である金属無担持窒素含有酸化チタンが生成される。
"Production method"
A method for producing a physically mixed photocatalyst will be described with reference to FIG. First, anatase-type titanium oxide is prepared. Then, nitrogen is doped into the prepared titanium oxide (S11). This produces metal-free nitrogen-containing titanium oxide, which is a visible light-responsive photocatalyst.

この金属無担持窒素含有酸化チタンについて、その表面に触媒機能を持つ金属を担持する(S12)。これによって、金属担持窒素含有酸化チタンが生成される。 A metal having a catalytic function is supported on the surface of the metal-free nitrogen-containing titanium oxide (S12). This produces metal-supported nitrogen-containing titanium oxide.

このようにして、得られた金属無担持窒素含有酸化チタンと金属担持窒素含有酸化チタンを物理混合する(S13)。これによって、金属無担持窒素含有酸化チタンと金属担持窒素含有酸化チタンが物理混合された光触媒体が得られる。 In this way, the obtained metal-supported nitrogen-containing titanium oxide and the metal-supported nitrogen-containing titanium oxide are physically mixed (S13). As a result, a photocatalyst in which metal-supported nitrogen-containing titanium oxide and metal-supported nitrogen-containing titanium oxide are physically mixed can be obtained.

<窒素含有酸化チタン>
S11では、酸化チタンに窒素をドープする。例えば、市販の酸化チタン粉末を尿素と混合するか、アンモニアガス雰囲気下のいずれかの条件にて所定温度で熱処理することで、酸化チタンに窒素をドープすることができ、窒素含有酸化チタンの粉末が得られる。窒素含有酸化チタンにおける窒素の含有原子数比Xは、0%<X<10%が好適あり、熱処理温度は300から700℃の範囲が好適である。
<Nitrogen-containing titanium oxide>
In S11, titanium oxide is doped with nitrogen. For example, by mixing commercially available titanium oxide powder with urea or heat-treating it at a predetermined temperature under any of the conditions of an ammonia gas atmosphere, the titanium oxide can be doped with nitrogen, and the nitrogen-containing titanium oxide powder can be doped. Is obtained. The nitrogen-containing atomic number ratio X of the nitrogen-containing titanium oxide is preferably 0% <X <10%, and the heat treatment temperature is preferably in the range of 300 to 700 ° C.

<金属担持窒素含有酸化チタン>
S12では、窒素含有酸化チタンに5族から12族の遷移金属の1種以上を担持する。この場合、担持金属材料の硝酸塩、硫酸塩、または塩化物を窒素含有酸化チタンと接触させて、窒素含有酸化チタンの表面に金属を担持するとよい。例えば、水中に窒素含有酸化チタン粉末を懸濁し、その粉末に対して遷移金属の塩の水溶液を加えて攪拌することで接触させる。そして、ろ過した後に乾燥させて金属担持窒素含有酸化チタン粉末を得る。担持金属としては、銅が好適であるが、5から12族の遷移金属元素であって、銅、鉄及び、白金から選ばれるいずれか一種以上が好適であり、その含有量が0.01重量%から6.0重量%とするとよい。
<Metal-supported nitrogen-containing titanium oxide>
In S12, one or more of group 5 to group 12 transition metals are supported on nitrogen-containing titanium oxide. In this case, the metal may be supported on the surface of the nitrogen-containing titanium oxide by contacting the nitrate, sulfate, or chloride of the supported metal material with the nitrogen-containing titanium oxide. For example, nitrogen-containing titanium oxide powder is suspended in water, and an aqueous solution of a transition metal salt is added to the powder and stirred to bring the powder into contact with the powder. Then, after filtering, it is dried to obtain a metal-supported nitrogen-containing titanium oxide powder. As the supporting metal, copper is preferable, but any one or more of group 5 to 12 transition metal elements selected from copper, iron and platinum is suitable, and the content thereof is 0.01 weight by weight. It is good to set from% to 6.0% by weight.

<物理混合>
そして、S13では、金属担持窒素含有酸化チタン粉末と、窒素含有酸化チタン粉末を所定割合で物理混合する。例えば、両者の粉末を水中に投入し、ここで攪拌し、その後乾燥させる。なお、金属無担持の窒素含有酸化チタンの混合量が5重量%から95重量%の範囲であることが好適である。
<Physical mixing>
Then, in S13, the metal-supported nitrogen-containing titanium oxide powder and the nitrogen-containing titanium oxide powder are physically mixed at a predetermined ratio. For example, both powders are put into water, stirred here, and then dried. It is preferable that the mixed amount of nitrogen-containing titanium oxide without metal support is in the range of 5% by weight to 95% by weight.

<作用効果>
このようにして得た、実施形態に係る光触媒体によれば、高い酸化反応活性が得られる。従って、これまでの光触媒材料では実現できなかった高濃度の有害ガス分解や短時間での有害物質の処理が可能となる。
<Action effect>
According to the photocatalyst according to the embodiment thus obtained, high oxidation reaction activity can be obtained. Therefore, it is possible to decompose harmful gases at a high concentration and treat harmful substances in a short time, which could not be realized by conventional photocatalytic materials.

ここで、窒素含有酸化チタンに銅や鉄を担持した光触媒体は、担持金属が作用するフェントン反応により酸化活性種であるOHラジカルなどが多く生成され高活性である。ただし、担持量が過剰になると活性が低下することが知られており、担持量の最適値が存在する。 Here, the photocatalyst in which copper or iron is supported on nitrogen-containing titanium oxide is highly active because a large amount of OH radicals, which are oxidatively active species, are generated by the Fenton reaction in which the supported metal acts. However, it is known that the activity decreases when the loading amount becomes excessive, and there is an optimum value for the loading amount.

窒素含有酸化チタンは励起光によって生成した電子が酸素に渡り、これが周辺の水と反応して、過酸化水素やOHラジカルなどの酸化活性種を発生させる。一方で、電子の抜けた正孔が分解対象の有機物の電子を引き抜き酸化させ、有機鎖を分断、または酸化分解しやすい状態にする。 In nitrogen-containing titanium oxide, electrons generated by excitation light pass to oxygen, which reacts with surrounding water to generate oxidatively active species such as hydrogen peroxide and OH radical. On the other hand, the holes from which the electrons have escaped pull out the electrons of the organic substance to be decomposed and oxidize them, so that the organic chain is easily divided or oxidatively decomposed.

銅や鉄などのフェントン反応剤の役割を果たす金属を担持すると酸化反応種の生成量が増えるが、担持量が過剰な場合は有機鎖を分解する反応場が少なくなり、正孔の消費が抑制され、結果的に活性が低下する。 Supporting a metal that acts as a Fenton's reagent, such as copper or iron, increases the amount of oxidation reaction species produced, but if the amount of support is excessive, the reaction field that decomposes organic chains decreases, and hole consumption is suppressed. As a result, the activity decreases.

本実施形態では、酸化活性種を増加させる金属担持窒素含有酸化チタンに対して、有機鎖分解を優位に行う無担持の窒素含有酸化チタンを物理的に混合することで、各反応場を分離して、全体的な分解反応を効率的に進行させることで、高活性化を実現している。 In the present embodiment, each reaction field is separated by physically mixing the metal-supported nitrogen-containing titanium oxide that increases the number of oxidatively active species with the non-supported nitrogen-containing titanium oxide that predominantly decomposes the organic chain. Therefore, high activation is realized by efficiently advancing the overall decomposition reaction.

「実験例」
<光触媒体の製造>
市販のアナターゼ型の酸化チタン粉末を尿素と混合して熱処理し窒素含有酸化チタン粉末を得た。次に水中に窒素含有酸化チタン粉末を懸濁し、その粉末量に対して重量比で銅が0.5wt%となる量の硝酸銅水溶液を加えて攪拌し、ろ過した後に乾燥させて銅担持窒素含有酸化チタン粉末を得た。物理混合した光触媒体の粉末は、銅担持窒素含有酸化チタン粉末と窒素含有酸化チタン粉末を所定割合で混合し全体で1gとなるように調整し、33mlの水中で1時間攪拌し、120℃で乾燥させて製造した。
・実施例1:無担持窒素含有酸化チタン(N-TiO)の混合割合が5wt%のものを実施例1として用いた
・実施例2:N-TiOの混合割合が15wt%のものを実施例2として用いた
・実施例3:N-TiOの混合割合が33wt%のものを実施例3として用いた
・実施例4:N-TiOの混合割合が50wt%のものを実施例4として用いた
・実施例5:N-TiOの混合割合が67wt%のものを実施例5として用いた
・実施例6:N-TiOの混合割合が80wt%のものを実施例6として用いた
・実施例7:N-TiOの混合割合が95wt%のものを実施例7として用いた
・比較例1:物理混合用の銅無担持N-TiOが0wt%のものとして比較例1(銅担持N-TiOのみ)として用いた
・比較例2:物理混合用の銅無担持N-TiOが100wt%のものとして比較例2として用いた
"Experimental example"
<Manufacturing of photocatalyst>
A commercially available anatase-type titanium oxide powder was mixed with urea and heat-treated to obtain a nitrogen-containing titanium oxide powder. Next, nitrogen-containing titanium oxide powder is suspended in water, an aqueous solution of copper nitrate having an amount of copper in an amount of 0.5 wt% by weight to the amount of the powder is added, stirred, filtered, and then dried to carry copper-supported nitrogen. The contained titanium oxide powder was obtained. The physically mixed photocatalyst powder is prepared by mixing copper-supported nitrogen-containing titanium oxide powder and nitrogen-containing titanium oxide powder in a predetermined ratio to make a total of 1 g, stirring in 33 ml of water for 1 hour, and stirring at 120 ° C. Manufactured by drying.
-Example 1: Titanium oxide containing unsupported nitrogen (N-TiO 2 ) having a mixing ratio of 5 wt% was used as Example 1.-Example 2: N-TiO 2 having a mixing ratio of 15 wt% was used. Used as Example 2-Example 3: The mixture ratio of N-TiO 2 was 33 wt% was used as Example 3-Example 4: The mixture ratio of N-TiO 2 was 50 wt%. Used as No. 4 ・ Example 5: The one having a mixing ratio of N—TiO 2 of 67 wt% was used as Example 5. ・ Example 6: The one having a mixed ratio of N—TiO 2 of 80 wt% was used as Example 6. Used-Example 7: A mixture ratio of N-TiO 2 of 95 wt% was used as Example 7.-Comparative Example 1: Copper-free N-TiO 2 for physical mixing was used as a comparative example of 0 wt%. Used as 1 (only copper-supported N-TiO 2 ) -Comparative Example 2: Copper-free N-TiO 2 for physical mixing was used as Comparative Example 2 with 100 wt%.

<光触媒活性評価>
光触媒活性は、アセトアルデヒド(AA)の完全分解により生成するCO量で評価した。1Lのガラス瓶に0.1gの光触媒体の粉末を入れて大気組成の酸素・窒素混合ガスで置換し、3%のAAガスを40mLの1200ppm相当量を注入して、16時間暗所で静置した。その後、410nm以下カットフィルターを巻いた10W蛍光灯で20000Lxの照度で光照射し、ガラス瓶内のCO濃度を測定した。24時間後のCO濃度から光触媒活性を比較した。
<Evaluation of photocatalytic activity>
The photocatalytic activity was evaluated by the amount of CO 2 produced by the complete decomposition of acetaldehyde (AA). Put 0.1 g of photocatalyst powder in a 1 L glass bottle, replace it with an oxygen / nitrogen mixed gas of atmospheric composition, inject 40 mL of 1200 ppm equivalent of AA gas, and leave it in the dark for 16 hours. did. Then, a 10 W fluorescent lamp wrapped with a cut filter of 410 nm or less was irradiated with light at an illuminance of 20000 Lx, and the CO 2 concentration in the glass bottle was measured. The photocatalytic activity was compared from the CO 2 concentration after 24 hours.

<酸化反応種の同定>
銅無担持窒素含有酸化チタン(比較例1)と銅担持窒素含有酸化チタン(比較例2)はESR(Electron Spin Resonance)測定により生成する反応種を同定した。各粉末2mと水2mlを容量13.5ml、内径2mmの容器に入れて、マグネチックスターラーで攪拌しながら、上部からレンズで集光した光を照射した。光源は600WのHgランプを使用し、窒素含有酸化チタンは4時間、銅担持窒素含有酸化チタンは30分光照射した。光照射停止直後にラジカルトラップ剤であるDMPO(5,5-Dimethyl-1-pyrroline N-Oxide、東京化成、97%)を濃度が0.25Mとなるように57.5μL投入した。ESR測定は表1の条件で実施した。
<Identification of oxidation reaction species>
Copper-free nitrogen-containing titanium oxide (Comparative Example 1) and copper-supported nitrogen-containing titanium oxide (Comparative Example 2) were identified as reaction species produced by ESR (Electron Spin Resonance) measurement. 2 m of each powder and 2 ml of water were placed in a container having a capacity of 13.5 ml and an inner diameter of 2 mm, and while stirring with a magnetic stirrer, light collected by a lens was irradiated from above. A 600 W Hg lamp was used as a light source, and nitrogen-containing titanium oxide was optically irradiated for 4 hours, and copper-supported nitrogen-containing titanium oxide was optically irradiated for 30 hours. Immediately after the light irradiation was stopped, 57.5 μL of DMPO (5,5-Dimethyl-1-pyrroline N-Oxide, Tokyo Kasei, 97%), which was a radical trapping agent, was added so that the concentration was 0.25 M. The ESR measurement was performed under the conditions shown in Table 1.

Figure 0007024327000001
Figure 0007024327000001

図2に実施例1-7と比較例1、比較例2のサンプルのAA分解試験24時間後のCO濃度を示す。図において、横軸が、金属無担持窒素含有酸化チタン(N-TiO)
の含有量であり、0%が金属担持窒素含有酸化チタン(比較例2)のみ、100%が金属無担持窒素含有酸化チタン(比較例1)のみの結果である。また、図中、黒四角が1回目、グレーの菱形が2回目の実験結果である。このように、金属無担持窒素含有酸化チタンの混合量が増大すると40~60wt%の間で最もCO濃度が高く、光触媒活性が良好であることが確認された。0%の銅担持窒素含有酸化チタンに対して、最も良好な条件で1.4倍の性能向上が確認された。
FIG. 2 shows the CO 2 concentrations of the samples of Example 1-7, Comparative Example 1 and Comparative Example 2 after 24 hours of the AA decomposition test. In the figure, the horizontal axis is metal-free nitrogen-containing titanium oxide (N-TiO 2 ).
0% is the result of only the metal-supported nitrogen-containing titanium oxide (Comparative Example 2), and 100% is the result of only the metal-free nitrogen-containing titanium oxide (Comparative Example 1). In the figure, the black square is the result of the first experiment, and the gray rhombus is the result of the second experiment. As described above, it was confirmed that when the mixing amount of the metal-free nitrogen-containing titanium oxide was increased, the CO 2 concentration was the highest between 40 and 60 wt%, and the photocatalytic activity was good. It was confirmed that the performance of titanium oxide containing 0% copper-supported nitrogen was improved by 1.4 times under the best conditions.

図3に比較例1(窒素含有酸化チタン:N-TiO)と比較例2(銅担持窒素含有酸化チタンCu/N-TiO)のESR測定結果を示す。なお、比較例1では光照射4時間(4h)、比較例2では光照射30分(30min)とした。比較例1ではDMPOのメチル基が切れて検出されたメチルラジカルのピークが観察され、比較例2では典型的なOHラジカルのピークとDMPOの分解物でN由来のピークが検出された。これより比較例1の無担持窒素含有酸化チタンは、有機鎖分断が主な役割で正孔が優位に働いていると想定される。一方で、比較例2の銅担持窒素含有酸化チタンはOHラジカル生成の役割が大きいと言える。以上から、比較例1と2ではそれぞれ役割が異なり、混合することで光触媒活性が向上した理由は、銅担持で少なくなった正孔消費の反応場を無担持窒素含有酸化チタンで補填しているためと考えられる。
FIG. 3 shows the ESR measurement results of Comparative Example 1 (nitrogen-containing titanium oxide: N-TiO 2 ) and Comparative Example 2 (copper-supported nitrogen-containing titanium oxide Cu / N-TiO 2 ). In Comparative Example 1, light irradiation was set to 4 hours (4 hours), and in Comparative Example 2, light irradiation was set to 30 minutes (30 min). In Comparative Example 1, the peak of the methyl radical detected by breaking the methyl group of DMPO was observed, and in Comparative Example 2, the peak of typical OH radical and the peak derived from N were detected in the decomposition product of DMPO. From this, it is presumed that in the non-supported nitrogen-containing titanium oxide of Comparative Example 1, holes play a dominant role mainly in organic chain disruption. On the other hand, it can be said that the copper-supported nitrogen-containing titanium oxide of Comparative Example 2 plays a large role in OH radical generation. From the above, the roles of Comparative Examples 1 and 2 are different from each other, and the reason why the photocatalytic activity is improved by mixing is that the reaction field of hole consumption, which is reduced by supporting copper, is supplemented by titanium oxide containing unsupported nitrogen. It is thought that this is the reason.

Claims (6)

を表面に担持した窒素含有酸化チタンからなる可視光応答型の第1光触媒物質と、
を担持しない窒素含有酸化チタンからなる可視光応答型の第2光触媒物質と、
が物理的に混合されており、
第2光触媒物質の混合量が5重量%から95重量%の範囲である、
光触媒体。
A visible light-responsive first photocatalytic material consisting of nitrogen-containing titanium oxide with copper on its surface,
A visible light responsive second photocatalytic material made of nitrogen-containing titanium oxide that does not support copper ,
Is physically mixed ,
The mixing amount of the second photocatalytic substance is in the range of 5% by weight to 95% by weight.
Photocatalyst.
請求項1に記載の光触媒体であって、
第1および第2光触媒物質を構成する窒素含有酸化チタンは、窒素の含有原子数比Xが0%<X<10%である、
光触媒体。
The photocatalyst according to claim 1.
The nitrogen-containing titanium oxide constituting the first and second photocatalytic substances has a nitrogen-containing atomic number ratio X of 0% <X <10%.
Photocatalyst.
請求項1または2に記載の光触媒体であって、
第1光触媒における銅の含有量が0.01重量%から6.0重量%である、
光触媒体。
The photocatalyst according to claim 1 or 2.
The copper content in the first photocatalyst is 0.01% by weight to 6.0% by weight.
Photocatalyst.
請求項3に記載の光触媒体であって、
第1光触媒物質がフェントン反応によりOHラジカルを優位に生成する光触媒体。
The photocatalyst according to claim 3.
A photocatalyst in which the first photocatalyst substance predominantly produces OH radicals by the Fenton reaction.
請求項1~のいずれか1つに記載の光触媒体の製造方法であって、
第1または第2光触媒物質の窒素含有酸化チタンは、酸化チタンと尿素を混合するか、アンモニアガス雰囲気下のいずれかの条件で、300~700℃の範囲で熱処理して窒素をドープすることで製造する、
光触媒体の製造方法。
The method for producing a photocatalyst according to any one of claims 1 to 4 .
The nitrogen-containing titanium oxide of the first or second photocatalyst substance is obtained by mixing titanium oxide and urea, or by heat-treating in the range of 300 to 700 ° C. under the conditions of either an ammonia gas atmosphere and doping with nitrogen. To manufacture,
A method for manufacturing a photocatalyst.
請求項1~のいずれか1つに記載の光触媒体の製造方法であって、
第1光触媒物質は、担持するの硝酸塩、硫酸塩、または塩化物を、窒素含有酸化チタンと接触させることで、窒素含有酸化チタンにを担持させることで製造する、
光触媒体の製造方法。
The method for producing a photocatalyst according to any one of claims 1 to 4 .
The first photocatalytic substance is produced by supporting copper on nitrogen-containing titanium oxide by contacting the nitrate, sulfate, or chloride of the supporting copper with nitrogen-containing titanium oxide.
A method for manufacturing a photocatalyst.
JP2017210767A 2017-10-31 2017-10-31 Photocatalyst and method for manufacturing photocatalyst Active JP7024327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017210767A JP7024327B2 (en) 2017-10-31 2017-10-31 Photocatalyst and method for manufacturing photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017210767A JP7024327B2 (en) 2017-10-31 2017-10-31 Photocatalyst and method for manufacturing photocatalyst

Publications (2)

Publication Number Publication Date
JP2019081155A JP2019081155A (en) 2019-05-30
JP7024327B2 true JP7024327B2 (en) 2022-02-24

Family

ID=66669897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210767A Active JP7024327B2 (en) 2017-10-31 2017-10-31 Photocatalyst and method for manufacturing photocatalyst

Country Status (1)

Country Link
JP (1) JP7024327B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114904522A (en) * 2021-02-09 2022-08-16 中国石油化工股份有限公司 Photocatalytic material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205103A (en) 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body
JP2001205104A (en) 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic material and photocatalytic body
JP2002154823A (en) 2000-11-10 2002-05-28 Toyota Central Res & Dev Lab Inc Manufacturing method of inorganic oxynitride and inorganic oxynitride
JP2004066218A (en) 2002-06-12 2004-03-04 Toshiba Lighting & Technology Corp Photocatalyst body
JP2004209472A (en) 2002-12-31 2004-07-29 Ind Technol Res Inst Visible ray response type photocatalyst
JP2010179285A (en) 2009-02-09 2010-08-19 Catarise Corp Photocatalyst, photocatalyst carrier, and photocatalyst kit
JP2012106153A (en) 2010-11-15 2012-06-07 Toyota Central R&D Labs Inc Photocatalyst and method of manufacturing the same
JP2016198704A (en) 2015-04-08 2016-12-01 株式会社豊田中央研究所 catalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205103A (en) 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body
JP2001205104A (en) 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic material and photocatalytic body
JP2002154823A (en) 2000-11-10 2002-05-28 Toyota Central Res & Dev Lab Inc Manufacturing method of inorganic oxynitride and inorganic oxynitride
JP2004066218A (en) 2002-06-12 2004-03-04 Toshiba Lighting & Technology Corp Photocatalyst body
JP2004209472A (en) 2002-12-31 2004-07-29 Ind Technol Res Inst Visible ray response type photocatalyst
JP2010179285A (en) 2009-02-09 2010-08-19 Catarise Corp Photocatalyst, photocatalyst carrier, and photocatalyst kit
JP2012106153A (en) 2010-11-15 2012-06-07 Toyota Central R&D Labs Inc Photocatalyst and method of manufacturing the same
JP2016198704A (en) 2015-04-08 2016-12-01 株式会社豊田中央研究所 catalyst

Also Published As

Publication number Publication date
JP2019081155A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
Qiu et al. Hybrid Cu x O/TiO2 nanocomposites as risk-reduction materials in indoor environments
Shah et al. Facile synthesis of N/B-double-doped Mn2O3 and WO3 nanoparticles for dye degradation under visible light
JP6995334B2 (en) Photocatalyst and how to use it
JP5578593B2 (en) Visible light responsive photocatalyst, its catalytic activity promoter and photodegradation method of environmental pollutants
EA027629B1 (en) Catalyst and method for its preparation
JP6552090B2 (en) Photocatalyst composite material and method for producing the same
Wang et al. DNA-templated plasmonic Ag/AgCl nanostructures for molecular selective photocatalysis and photocatalytic inactivation of cancer cells
Bahadori et al. Semi‐Batch Photocatalytic Reduction of Nitrates: Role of Process Conditions and Co‐Catalysts
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
JP7024327B2 (en) Photocatalyst and method for manufacturing photocatalyst
Mehta et al. Fluorescent carbon dot decorated MnO 2 nanorods for complete photomineralization of phenol from water
KR100722429B1 (en) Preparation method of nano size copper-manganese complex oxide catalyst and the catalyst prepared by the method
Besharati-Seidani Photocatalytic oxidation of an organophosphorus simulant of chemical warfare agent by modified TiO2 nanophotocatalysts
CN1290573A (en) Light catalyst for purifying air
KR100506813B1 (en) Mn oxide catalyst for decomposing ozone and the method therefor
KR20210024133A (en) Ultraviolet-activated photocatalytic material, its use in decomposing volatile compounds
KR20120134506A (en) Surface-modified photocatalyst and method of preparing same
KR20120096171A (en) Low temperature oxidation catalyst for removal of toxic gases and preparation method thereof
JP2016198704A (en) catalyst
CN109365005B (en) Photocatalyst hydrosol with high catalytic degradation performance and production process thereof
JP2015100755A (en) Photocatalyst material and method for producing the same
CN107469821B (en) Preparation method and application of Ag-loaded manganese oxide catalyst
CN107252694A (en) CO catalyst and preparation method thereof is aoxidized under a kind of steam and carbon dioxide atmosphere
CN110935476B (en) Doped modified TiO2Photocatalytic film and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R150 Certificate of patent or registration of utility model

Ref document number: 7024327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150