JP3582161B2 - Positive electrode active material and non-aqueous electrolyte secondary battery using the same - Google Patents

Positive electrode active material and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP3582161B2
JP3582161B2 JP20608395A JP20608395A JP3582161B2 JP 3582161 B2 JP3582161 B2 JP 3582161B2 JP 20608395 A JP20608395 A JP 20608395A JP 20608395 A JP20608395 A JP 20608395A JP 3582161 B2 JP3582161 B2 JP 3582161B2
Authority
JP
Japan
Prior art keywords
positive electrode
composite oxide
active material
electrode active
oxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20608395A
Other languages
Japanese (ja)
Other versions
JPH0955210A (en
Inventor
潔 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20608395A priority Critical patent/JP3582161B2/en
Publication of JPH0955210A publication Critical patent/JPH0955210A/en
Application granted granted Critical
Publication of JP3582161B2 publication Critical patent/JP3582161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池等で用いられる正極活物質及びそれを用いた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、種々の電子機器の飛躍的進歩に伴い、長時間安定にかつ経済的に使用できるポータブル電源として、二次電池の研究が進められている。
【0003】
代表的な二次電池としては、鉛蓄電池、アルカリ蓄電池、リチウム二次電池等を挙げることができる。このうちリチウム二次電池は、従来の他の二次電池に比べて高出力、高エネルギー密度を達成できることから活発に研究がなされ、種々の構成で提案がなされている。また、既に実用に供されているものもある。
【0004】
たとえば、リチウム二次電池の負極としては、一般に、リチウムをドープ・脱ドープできる材料、金属リチウムまたはリチウム合金が使用される。リチウムをドープ・脱ドープできる材料としては、リチウムをドープした導電性高分子もしくは層状化合物(炭素材料、金属酸化物等)などが提案されている。
【0005】
一方、正極を構成する正極活物質としては、金属酸化物、金属硫化物、特定のポリマーが使用できる。具体的には、TiS,MoS,NbSe,V等のリチウムを含有しない化合物や、LiMO(但し、MはCo,Ni,Mn,Fe等である)のようにリチウムを含有している複合酸化物が挙げられる。なかでも、Niを含むリチウム含有複合酸化物は、容量が大きく、比較的安価であることから期待されている。なお、これらの化合物は単独使用の他、複数種を混合して使用することもできる。
【0006】
また、負極と正極の間に介在させるセパレータとしては、ポリプロピレン等の高分子フィルムが使用される。この場合、リチウムイオンの伝導度とエネルギー密度の点から、高分子フィルムは可能な限り薄くすることが必要とされ、実用的には50μm以下である。
【0007】
そして、電解液としては、プロピレンカーボネート等の高誘電率溶媒を主体とする非水溶媒に、LiPF等のリチウム塩を電解質塩として溶解させたものが使用されている。
【0008】
【発明が解決しようとする課題】
ところで、一般に、電池では、その内部抵抗によって内在するエネルギーの一部が消費される。したがって、充電したエネルギーを効率よく使用するためには、内部抵抗は低ければ低いほど望ましいと言える。
【0009】
電池の内部抵抗は、主に活物質内の抵抗と、活物質粒子と電解液との界面に発生する抵抗(以下、界面分極抵抗と称する)とに由来し、これらの抵抗を合わせたものが電池全体の内部抵抗に相当する。
【0010】
ここで、先に正極活物質として例示したリチウム含有複合酸化物では、この界面分極抵抗が経時的に増加するといった現象が見られる。なかでもNiを含有するリチウム含有複合酸化物は、容量が大きく比較的安価であるといった長所を有するものの、LiCoO等に比べてこの界面抵抗の経時的増加が比較的大きい傾向が短所の一つになっている。
【0011】
そこで、本発明はこのような従来の実情に鑑みて提案されたものであり、界面分極抵抗の経時的な増加が少ない正極活物質を提供することを目的とする。また、そのような正極活物質を用いることで、内部抵抗が小さく充電エネルギーが効率良く使用される非水電解質二次電池を提供することを目的とする。
【0012】
【課題を解決するための手段】
上述の目的を達成するために、本発明者等が鋭意検討を重ねた結果、Niを含有するリチウム含有複合酸化物の表面近傍で、固体状態としてCo,AlまたはMnのいずれかをNiに対して高濃度に存在せしめるようにすると、この複合酸化物における経時的な界面分極抵抗の増加が抑えられるとの知見を得るに至った。
【0013】
本発明の正極活物質は、このような知見に基づいて完成されたものであって、LiNiMyO(但し、MはAl,Mn,Fe,Ni,Co,Cr,Ti,Zn,P,Bから選ばれる少なくとも一種の元素を表し、xは0<x≦1、yは0≦y<1である)で表される複合酸化物粒子の表面を、Co,Al,Mnの少なくともいずれかを含有する金属アルコキシドによって被覆処理したものである
【0015】
複合酸化物粒子表面を、これら化合物によって被覆処理すると、粒子表面にCo,Al,Mnを含有する化合物が付着したかたちになり、複合酸化物粒子の表面におけるz/(x+z)(但し、xはNiの原子組成比であり、zはCo,Al,Mnの原子組成比の合計である。ここではこの値をD(s)とする)が、複合酸化物粒子全体におけるz/(x+z)(ここではこの値をD(b)とする)よりも大なる値となる。なお、特に、処理用の化合物としてCoを含有するものを用いる場合には、D(s)は1≧D(s)>0.3であるのが望ましい。
【0016】
【発明の実施の形態】
以下、本発明の具体的な実施の形態について説明する。
【0017】
本発明の正極活物質は、LiNi(但し、MはAl,Mn,Fe,Ni,Co,Cr,Ti,Zn,P,Bから選ばれる少なくとも一種の元素を表し、xは0<x≦1、yは0≦y<1である)で表される複合酸化物粒子の表面が、Co,Al,Mnの少なくともいずれかを含有する化合物によって被覆処理されてなっている。すなわち、上記正極活物質は、Niを含有するリチウム複合酸化物粒子表面に、Co,AlまたはMnを含有する化合物が付着し、これによって粒子が表面改質されたかたちになっている。
【0018】
このような表面改質が施された複合酸化物粒子では、表面にCo,AlまたはMnを含有する化合物が付着した分、表面においてNiの占める割合が減少している。このNiの占める割合が減少したことで、界面分極抵抗の経時的増加が抑えられる。したがって、高容量、安価であるといったNiを含有する複合酸化物粒子の長所を備えながら、しかも電池の内部抵抗を増大させず、正極活物質として優れた特性が得られる。
【0019】
処理用の化合物としては、例えばCo,AlまたはMnの金属アルコキシド等が挙げられる。このうち、例えばCoアルコキシドによって複合酸化物粒子の表面改質を行うには、Coアルコキシドを溶解した表面処理液に、被処理体となる複合酸化物粒子を投入、攪はん後、1日程度保存する。保存中に、複合酸化物粒子表面には−O−Co−Oの結合が生成し、Co濃度の高い層が形成される。保存後、上澄液を捨て、残存粒子を溶媒で数回洗浄する。そして、この粒子を、乾燥することによって表面改質された複合酸化物粒子が得られる。Alアルコキシド、Mnアルコキシドによる表面改質もこれに準じて行われる。
【0020】
また、処理用の化合物としては、Liを含んだもの、すなわちLiとMn,AlあるいはCoの複合化合物であっても良い。
【0021】
なお、処理用の化合物としてはCoを含有するものを用いるのが望ましい。AlあるいはMnでは、複合酸化物粒子に固溶した場合に電池の容量を若干減少させる方向に働くが、Coの場合には電池の容量をほとんど減少させないからである。
【0022】
このようにして表面改質が行われた複合酸化物粒子では、Co,AlあるいはMnの濃度が、粒子全体よりも粒子表面において大きくなる。すなわち、表面におけるz/(x+z)(但し、xはNiの原子組成比であり、zはCo,Al,Mnの原子組成比の合計である)をD(s)、粒子全体におけるz/(x+z)をD(b)としたときに、D(s)の値がD(b)の値よりも大なる値になる。なお、特に、処理用の化合物としてCoを含有するものを用いる場合には、D(s)の値は1≧D(s)>0.3であるのが望ましい。D(s)が0.3以下である場合には、複合酸化物粒子の界面抵抗の経時的増加を十分に低めることができない。
【0023】
なお、このD(s),D(b)はそれぞれ以下のようにして求められる値である。
【0024】
D(s)の測定:
0.1MHCl水溶液を50cc秤量し、常温下でこのHCl水溶液に粉体500mgを投入し、室温23℃下、5分間浸漬する。これにより、粉体の表面が酸によって溶解される。次に、HCl水溶液から溶解せずに残存した残査粉末を除去する。そして、上澄液として残ったHCl水溶液のみをICP−AES(inductively coupled plasma−atomic emission spectroscopy) で分析し、溶液中に存在するNiと、Co,AlまたはMnの量比を測定し、その測定量に基づいてz/(x+z)を算出する。
【0025】
D(b)の測定:
1MHCl水溶液に、粉体500mgを投入し、粉体全体を溶解させる。そして、粉体を溶解させたHCl水溶液をICP−AESで分析し、溶液中に存在するNiと、Co,AlまたはMnの量比を測定し、その測定量に基づいてz/(x+z)を算出する。
【0026】
以上のような表面改質が施された複合酸化物粒子は、非水電解質二次電池の正極に用いられる。
【0027】
上記複合酸化物粒子で正極を形成するには、この複合酸化物粒子と導電剤及結着剤を混合して正極合剤を調製し、この正極合剤を所望の電極形状に圧縮成型する。ここで、導電剤や結着剤は、この種の電池で通常用いられているものがいずれも使用可能である。
【0028】
また、上記正極と組み合わせて用いられる負極及び非水電解液も、やはりこの種の電池で用いられているものであって良い。
【0029】
例えば負極の活物質としては、金属リチウムまたはリチウム−アルミニウム合金等のリチウム合金の他、リチウムをドープ・脱ドープすることが可能な材料が使用される。リチウムをドープ・脱ドープすることが可能な材料としては、例えば、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭等の炭素質材料、あるいはポリアセチレン、ポリピロール等のポリマー等を使用することができる。
【0030】
このような炭素質材料やポリマーで負極を形成するには、これら材料と結着剤を混合して負極合剤を調製し、この負極合剤を所望の電極形状に圧縮成型する。
【0031】
一方、非水電解液の非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、スルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、プロピオン酸メチル、酪酸メチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等を使用することができる。特に、電圧に安定な点から、プロピレンカーボネート,ビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート類を使用することが好ましい。なお、これら非水溶媒はそれぞれ単独で使用しても2種類以上を組み合わせて使用しても構わない。
【0032】
非水溶媒に溶解させる電解質塩としては、LiPF,LIBF,LiClO,LiAsF,LiBF,LiCFSO,LiN(CFSO等を使用でき、このうち特にLiPFやLIBFを使用することが好ましい。
【0033】
なお、この電池では、非水電解液の代わりに固体電解質を用いるようにしても良い。
【0034】
また、電池の形状は特に限定されず、円筒型、角型、コイン型、ボタン型等の種々に形状にすることができる。
【0035】
【実施例】
以下、本発明の実施例を実験結果に基づいて説明する。
【0036】
実施例1
次のようにして正極活物質を生成した。
【0037】
まず、以下に示す複合酸化物粒子及び表面処理液を用意した。
【0038】
複合酸化物粒子(被処理体):CoO,NiO及びLiOH・HOを、Li:Ni:Co=1:0.8:0.2(mol比)となるように混合し、大気中、温度700〜800℃で10時間加熱処理することで得られたLiNi0.8Co0.2粉末
表面処理液:Coイソプロポキシド〔Co(O−i−C〕を、1g(5.6×10−3mol相当量)秤り取り、2−エトキシエタノール(COCHCHOH)100ccに溶解したCoアルコキシド溶液
窒素雰囲気下、上記表面処理液に複合酸化物粒子2gを投入し、混合攪はんした後、24時間常温で保存した。保存後、上澄液を捨て、残存粒子を2−エトキシエタノールで数回洗浄した。そして、この粒子を、乾燥後、大気中で300〜800℃の温度にて加熱することによって表面改質された複合酸化物粒子(正極活物質)を得た。
【0039】
なお、未処理の複合酸化物粒子と表面処理が施された複合酸化物粒子について、0.1MHClあるいは1MHClの溶解試験によってD(s),D(b)を測定した。その結果を表1に示す。
【0040】
【表1】

Figure 0003582161
【0041】
表1に示すように、表面処理が施された複合酸化物粒子は、未処理の複合酸化物粒子よりもD(s)の値が増加している。このことから、この表面処理によって複合酸化物粒子表面のCo濃度が増加したことが確認された。
【0042】
次に、以上のようにして表面改質がなされた複合酸化物粒子を正極活物質としてコイン型電池を作製した。
【0043】
上記複合酸化物粒子90重量部にグラファイト7重量部及びフッ素系高分子バインダー3重量部を加え、ジメチルホルムアミド(DMF)とともに混合することで正極合剤を調製した。この正極合剤を十分乾燥することで溶媒であるDMFを完全に揮発させた後、その約60mgを秤り取り、加圧成型することで、表面積約2cmの円盤状の正極電極を作製した。
【0044】
一方、負極は、Li圧延金属を円盤状に打ち抜くことで作製した。
【0045】
なお、この負極のLi量は正極の最大充電能力の数100倍であり、正極の電気化学的性能を制限するものではない。
【0046】
以上のようにして作製された正極、負極をそれぞれ正極缶、負極缶に収納し、セパレータを間に挟んで積層した。そして、缶内にLiPFをプロピレンカーボネート(PC)に溶解させた電解液を注入し、正極缶及び負極缶をガスケットを介してかしめ密閉することでコイン型電池を作製した。そして、この電池について、充放電電流密度0.5mA/cmなる条件でOCV(開回路電圧)が4.2Vになるまで充電した。
【0047】
実施例2
複合酸化物粒子の表面処理液に溶解する金属アルコキシドとしてAl(OCHを使用したこと以外は実施例1と同様にして正極活物質を生成し、コイン型電池を作製した。そして、この電池について、充放電電流密度0.5mA/cmなる条件でOCV(開回路電圧)が4.2Vになるまで充電した。
【0048】
実施例3
複合酸化物粒子の表面処理液に溶解する金属アルコキシドとしてMn(O−i−Cを使用したこと以外は実施例1と同様にして正極活物質を生成し、コイン型電池を作製した。そして、この電池について、充放電電流密度0.5mA/cmなる条件でOCV(開回路電圧)が4.2Vになるまで充電した。
【0049】
比較例1
表面処理を施していない複合酸化物粒子をそのまま正極活物質として使用したこと以外は実施例1と同様にしてコイン型電池を作製した。そして、この電池について、充放電電流密度0.5mA/cmなる条件でOCV(開回路電圧)が4.2Vになるまで充電した。
【0050】
以上のようにして作製された電池について、複素インピーダンス測定を12時間毎に行い、求められるCole−Cole plotより正極表面における界面分極抵抗を見積もった。なお、複素インピーダンスの測定条件は以下の通りである。
【0051】
測定使用機種:HP4192A Impedannce Analizer
温度:常温(23℃)
周波数範囲:0.5Hz〜1000Hz
印加バイアス電圧:4.2V
最大電流:10mA
測定間隔:12時間毎
求められた界面分極抵抗の経時変化を図1に示す。なお、図1において、縦軸は、測定開始からt時間後の界面分極抵抗Rを、測定開始時の界面分極抵抗Rt=0で規格化した値である。
【0052】
図1からわかるように、Co,AlまたはMnの金属アルコキシドによって表面処理が施された複合酸化物粒子を正極に用いた実施例1〜実施例3の電池は、未処理の複合酸化物粒子を正極に用いた比較例1の電池に比べて、正極表面における界面分極抵抗の経時的な増加が抑制されている。
【0053】
このことから、Niを含有する複合酸化物粒子をCo,Al,Mnを含む化合物で処理することは、非水電解質二次電池において、当該複合酸化物粒子と電解液との間の界面分極抵抗が増大し難いものとする上で有効であることがわかった。
【0054】
【発明の効果】
以上の説明からも明らかなように、本発明の正極活物質は、LiNiMyO(但し、MはAl,Mn,Fe,Ni,Co,Cr,Ti,Zn,P,Bから選ばれる少なくとも一種の元素を表し、xは0<x≦1、yは0≦y<1である)で表される複合酸化物粒子の表面を、Co,Al,Mnの少なくともいずれかを含有する金属アルコキシドによって被覆処理したものであるので、高容量,安価であるとともに界面分極抵抗の経時的な増加が少ない。したがって、このような正極活物質を用いることで、内部抵抗が小さく、充電エネルギーが効率良く使用される非水電解質二次電池が実現できる。
【図面の簡単な説明】
【図1】正極表面における界面分極抵抗の経時変化を示す特性図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode active material used in a non-aqueous electrolyte secondary battery and the like, and a non-aqueous electrolyte secondary battery using the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the dramatic progress of various electronic devices, research on a secondary battery has been promoted as a portable power source that can be used stably and economically for a long time.
[0003]
Representative secondary batteries include a lead storage battery, an alkaline storage battery, a lithium secondary battery, and the like. Among these, lithium secondary batteries are being actively studied because they can achieve higher output and higher energy density than other conventional secondary batteries, and proposals are made in various configurations. Some are already in practical use.
[0004]
For example, as a negative electrode of a lithium secondary battery, a material capable of doping and undoping lithium, metallic lithium or a lithium alloy is generally used. As a material capable of doping and undoping lithium, a conductive polymer or a layered compound (carbon material, metal oxide, or the like) doped with lithium has been proposed.
[0005]
On the other hand, as the positive electrode active material constituting the positive electrode, metal oxides, metal sulfides, and specific polymers can be used. Specifically, lithium-free compounds such as TiS 2 , MoS 2 , NbSe 2 , and V 2 O 5 , and lithium such as LiMO 2 (where M is Co, Ni, Mn, Fe, etc.) Complex oxides contained therein. Above all, lithium-containing composite oxides containing Ni are expected to be large in capacity and relatively inexpensive. These compounds can be used alone or in combination of two or more.
[0006]
As a separator interposed between the negative electrode and the positive electrode, a polymer film such as polypropylene is used. In this case, from the viewpoint of lithium ion conductivity and energy density, the polymer film needs to be as thin as possible, and is practically 50 μm or less.
[0007]
As the electrolytic solution, a solution obtained by dissolving a lithium salt such as LiPF 6 as an electrolyte salt in a nonaqueous solvent mainly containing a high dielectric constant solvent such as propylene carbonate is used.
[0008]
[Problems to be solved by the invention]
By the way, in general, in a battery, a part of the inherent energy is consumed by its internal resistance. Therefore, in order to use the charged energy efficiently, it can be said that the lower the internal resistance, the better.
[0009]
The internal resistance of a battery is mainly derived from the resistance in the active material and the resistance generated at the interface between the active material particles and the electrolyte (hereinafter referred to as interfacial polarization resistance). It corresponds to the internal resistance of the whole battery.
[0010]
Here, in the lithium-containing composite oxide exemplified above as the positive electrode active material, a phenomenon such that the interfacial polarization resistance increases with time is observed. Among them, the lithium-containing composite oxide containing Ni has an advantage that it has a large capacity and is relatively inexpensive, but one of its disadvantages is that the increase in interface resistance with time tends to be relatively large as compared with LiCoO 2 or the like. It has become.
[0011]
Therefore, the present invention has been proposed in view of such a conventional situation, and an object of the present invention is to provide a positive electrode active material having a small increase in interfacial polarization resistance with time. Another object of the present invention is to provide a nonaqueous electrolyte secondary battery having a low internal resistance and using charging energy efficiently by using such a positive electrode active material.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted intensive studies, and as a result, in the vicinity of the surface of the lithium-containing composite oxide containing Ni, any one of Co, Al, and Mn has been added to Ni as a solid state. It has been found that if the compound oxide is present at a high concentration, the increase in interfacial polarization resistance of this composite oxide over time can be suppressed.
[0013]
The positive electrode active material of the present invention has been completed based on such findings, and includes LiNi x MyO 2 (where M is Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, P, B represents at least one element selected from the group consisting of B, where x is 0 <x ≦ 1 and y is 0 ≦ y <1). Coated with a metal alkoxide containing
[0015]
When the surface of the composite oxide particle is coated with these compounds, a compound containing Co, Al, and Mn adheres to the particle surface, and z / (x + z) on the surface of the composite oxide particle (where x is This is the atomic composition ratio of Ni, and z is the sum of the atomic composition ratios of Co, Al, and Mn. Here, this value is D (s), but z / (x + z) ( Here, this value is assumed to be larger than D (b). In particular, when a compound containing Co is used as the treatment compound, D (s) preferably satisfies 1 ≧ D (s)> 0.3.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, specific embodiments of the present invention will be described.
[0017]
The positive electrode active material of the present invention, LiNi x M y O 2 (where, M represents Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, P, at least one element selected from B, x is The surface of the composite oxide particles represented by 0 <x ≦ 1, y is 0 ≦ y <1) is coated with a compound containing at least one of Co, Al, and Mn. That is, in the positive electrode active material, a compound containing Co, Al, or Mn adheres to the surface of the lithium composite oxide particles containing Ni, whereby the particles are surface-modified.
[0018]
In the composite oxide particles subjected to such surface modification, the proportion of Ni occupied on the surface is reduced by the amount of the compound containing Co, Al or Mn attached to the surface. The decrease in the proportion occupied by Ni suppresses an increase in interfacial polarization resistance with time. Therefore, excellent characteristics as a positive electrode active material can be obtained while having the advantages of high-capacity and inexpensive composite oxide particles containing Ni without increasing the internal resistance of the battery.
[0019]
Examples of the compound for treatment include metal alkoxides of Co, Al or Mn. Of these, for example, in order to perform surface modification of the composite oxide particles with a Co alkoxide, the composite oxide particles to be treated are added to a surface treatment solution in which the Co alkoxide is dissolved, and after stirring, about one day. save. During storage, a bond of -O-Co-O is generated on the surface of the composite oxide particle, and a layer having a high Co concentration is formed. After storage, the supernatant is discarded and the remaining particles are washed several times with a solvent. Then, the particles are dried to obtain surface-modified composite oxide particles. The surface modification with Al alkoxide and Mn alkoxide is performed according to this.
[0020]
Further, the compound for treatment may be a compound containing Li, that is, a composite compound of Li and Mn, Al or Co.
[0021]
Note that it is desirable to use a compound containing Co as the treatment compound. This is because Al or Mn works in the direction of slightly reducing the capacity of the battery when dissolved in the composite oxide particles, but hardly reduces the capacity of the battery in the case of Co.
[0022]
In the composite oxide particles subjected to the surface modification as described above, the concentration of Co, Al, or Mn is higher on the particle surface than on the entire particle. That is, z / (x + z) on the surface (where x is the atomic composition ratio of Ni and z is the sum of the atomic composition ratios of Co, Al, and Mn) is D (s), and z / ( When (x + z) is D (b), the value of D (s) is larger than the value of D (b). In particular, when a compound containing Co is used as the treatment compound, the value of D (s) is desirably 1 ≧ D (s)> 0.3. When D (s) is 0.3 or less, it is not possible to sufficiently decrease the interfacial resistance of the composite oxide particles over time.
[0023]
Note that D (s) and D (b) are values obtained as follows.
[0024]
Measurement of D (s):
50 cc of 0.1 M HCl aqueous solution is weighed, 500 mg of powder is put into this HCl aqueous solution at room temperature, and immersed at room temperature 23 ° C. for 5 minutes. Thereby, the surface of the powder is dissolved by the acid. Next, the residual powder remaining without being dissolved is removed from the aqueous HCl solution. Then, only the aqueous HCl solution remaining as the supernatant is analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and the quantitative ratio of Ni and Co, Al, or Mn present in the solution is measured. Calculate z / (x + z) based on the quantity.
[0025]
Measurement of D (b):
500 mg of powder is put into a 1M aqueous HCl solution to dissolve the whole powder. Then, the aqueous HCl solution in which the powder is dissolved is analyzed by ICP-AES, and the quantitative ratio of Ni and Co, Al or Mn present in the solution is measured, and z / (x + z) is calculated based on the measured amount. calculate.
[0026]
The composite oxide particles subjected to the surface modification as described above are used for a positive electrode of a nonaqueous electrolyte secondary battery.
[0027]
To form a positive electrode from the composite oxide particles, the composite oxide particles, a conductive agent and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is compression-molded into a desired electrode shape. Here, as the conductive agent and the binder, any of those commonly used in this type of battery can be used.
[0028]
Further, the negative electrode and the non-aqueous electrolyte used in combination with the positive electrode may also be those used in this type of battery.
[0029]
For example, as the active material of the negative electrode, a material capable of doping and undoping lithium is used in addition to lithium metal such as lithium metal or a lithium-aluminum alloy. Materials capable of doping / dedoping lithium include, for example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, and organic polymer compound fired bodies (A phenol resin, a furan resin or the like, which is calcined at an appropriate temperature and carbonized), a carbonaceous material such as carbon fiber or activated carbon, or a polymer such as polyacetylene or polypyrrole can be used.
[0030]
To form a negative electrode using such a carbonaceous material or polymer, a negative electrode mixture is prepared by mixing these materials with a binder, and the negative electrode mixture is compression-molded into a desired electrode shape.
[0031]
On the other hand, examples of the non-aqueous solvent of the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 2-methyl Tetrahydrofuran, 3-methyl-1,3-dioxolan, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate and the like can be used. In particular, it is preferable to use cyclic carbonates such as propylene carbonate and vinylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate, from the viewpoint of voltage stability. These non-aqueous solvents may be used alone or in combination of two or more.
[0032]
As an electrolyte salt dissolved in the nonaqueous solvent, LiPF 6, LIBF 4, LiClO 4, LiAsF 6, LiBF 4, LiCF 3 SO 3, LiN (CF 3 SO 2) can be used 2 or the like, Ya Among especially LiPF 6 it is preferred to use LiBF 4.
[0033]
In this battery, a solid electrolyte may be used instead of the non-aqueous electrolyte.
[0034]
Further, the shape of the battery is not particularly limited, and may be various shapes such as a cylindrical shape, a square shape, a coin shape, and a button shape.
[0035]
【Example】
Hereinafter, examples of the present invention will be described based on experimental results.
[0036]
Example 1
A positive electrode active material was produced as follows.
[0037]
First, the following composite oxide particles and a surface treatment liquid were prepared.
[0038]
Composite oxide particles (object to be treated): CoO, NiO and LiOH.H 2 O are mixed so that Li: Ni: Co = 1: 0.8: 0.2 (molar ratio), LiNi 0.8 Co 0.2 O 2 powder surface treatment solution obtained by heat treatment at a temperature of 700 to 800 ° C. for 10 hours: Co isopropoxide [Co (OiC 3 H 7 ) 2 ] 1 g (equivalent to 5.6 × 10 −3 mol) was weighed, and a Co alkoxide solution dissolved in 100 cc of 2 -ethoxyethanol (C 2 H 5 OCH 2 CH 2 OH) was combined with the above surface treatment solution under a nitrogen atmosphere. 2 g of the oxide particles were charged, mixed and stirred, and then stored at room temperature for 24 hours. After storage, the supernatant was discarded, and the remaining particles were washed several times with 2-ethoxyethanol. After drying the particles, the particles were heated at a temperature of 300 to 800 ° C. in the atmosphere to obtain surface-modified composite oxide particles (positive electrode active material).
[0039]
D (s) and D (b) of the untreated composite oxide particles and the surface-treated composite oxide particles were measured by a dissolution test of 0.1 M HCl or 1 M HCl. Table 1 shows the results.
[0040]
[Table 1]
Figure 0003582161
[0041]
As shown in Table 1, the value of D (s) is larger in the surface-treated composite oxide particles than in the untreated composite oxide particles. From this, it was confirmed that the surface treatment increased the Co concentration on the surface of the composite oxide particles.
[0042]
Next, a coin-type battery was manufactured using the composite oxide particles whose surface was modified as described above as a positive electrode active material.
[0043]
7 parts by weight of graphite and 3 parts by weight of a fluoropolymer binder were added to 90 parts by weight of the composite oxide particles, and mixed with dimethylformamide (DMF) to prepare a positive electrode mixture. After sufficiently drying the positive electrode mixture to completely volatilize DMF as a solvent, about 60 mg of the solvent was weighed and molded under pressure to produce a disk-shaped positive electrode having a surface area of about 2 cm 2 . .
[0044]
On the other hand, the negative electrode was produced by punching a rolled Li metal into a disk shape.
[0045]
The amount of Li in the negative electrode is several hundred times the maximum charging capacity of the positive electrode, and does not limit the electrochemical performance of the positive electrode.
[0046]
The positive electrode and the negative electrode produced as described above were accommodated in a positive electrode can and a negative electrode can, respectively, and laminated with a separator interposed therebetween. Then, an electrolytic solution obtained by dissolving LiPF 6 in propylene carbonate (PC) was injected into the can, and the positive electrode can and the negative electrode can were caulked via a gasket and sealed to produce a coin-type battery. Then, the battery was charged until the OCV (open circuit voltage) became 4.2 V under the condition of a charge / discharge current density of 0.5 mA / cm 2 .
[0047]
Example 2
A positive electrode active material was produced in the same manner as in Example 1 except that Al (OCH 3 ) 3 was used as a metal alkoxide dissolved in the surface treatment solution of the composite oxide particles, to produce a coin-type battery. Then, the battery was charged until the OCV (open circuit voltage) became 4.2 V under the condition of a charge / discharge current density of 0.5 mA / cm 2 .
[0048]
Example 3
A positive electrode active material was produced in the same manner as in Example 1 except that Mn (OiC 3 H 7 ) 2 was used as a metal alkoxide dissolved in the surface treatment solution of the composite oxide particles, and a coin-type battery was manufactured. Produced. Then, the battery was charged until the OCV (open circuit voltage) became 4.2 V under the condition of a charge / discharge current density of 0.5 mA / cm 2 .
[0049]
Comparative Example 1
A coin-type battery was produced in the same manner as in Example 1, except that the composite oxide particles not subjected to the surface treatment were used as the positive electrode active material. Then, the battery was charged until the OCV (open circuit voltage) became 4.2 V under the condition of a charge / discharge current density of 0.5 mA / cm 2 .
[0050]
With respect to the battery manufactured as described above, the complex impedance was measured every 12 hours, and the interfacial polarization resistance on the positive electrode surface was estimated from the obtained Cole-Cole plot. The measurement conditions of the complex impedance are as follows.
[0051]
Model used for measurement: HP4192A Impedance Analyzer
Temperature: room temperature (23 ° C)
Frequency range: 0.5Hz to 1000Hz
Applied bias voltage: 4.2V
Maximum current: 10mA
FIG. 1 shows the time-dependent change of the interfacial polarization resistance determined every 12 hours. In FIG. 1, the vertical axis represents a value obtained by normalizing the interfacial polarization resistance R t after t hours from the start of the measurement by the interfacial polarization resistance R t = 0 at the start of the measurement.
[0052]
As can be seen from FIG. 1, the batteries of Examples 1 to 3 using the composite oxide particles surface-treated with the metal alkoxide of Co, Al or Mn for the positive electrode were obtained by using untreated composite oxide particles. Compared with the battery of Comparative Example 1 used for the positive electrode, the increase in interfacial polarization resistance on the positive electrode surface over time is suppressed.
[0053]
For this reason, treating the Ni-containing composite oxide particles with a compound containing Co, Al, and Mn makes it possible to reduce the interfacial polarization resistance between the composite oxide particles and the electrolyte in a non-aqueous electrolyte secondary battery. Has been found to be effective in making it difficult to increase.
[0054]
【The invention's effect】
As is clear from the above description, the cathode active material of the present invention is LiNi x MyO 2 (where M is at least one selected from Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, P, and B). X represents 0 <x ≦ 1 and y represents 0 ≦ y <1). The surface of the composite oxide particle represented by x is a metal alkoxide containing at least one of Co, Al and Mn. Since it has been coated with a coating , it has a high capacity, is inexpensive, and has little increase in interfacial polarization resistance with time. Therefore, by using such a positive electrode active material, a non-aqueous electrolyte secondary battery having a small internal resistance and efficiently using charging energy can be realized.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a change with time of interfacial polarization resistance on a positive electrode surface.

Claims (8)

LiNiMyO(但し、MはAl,Mn,Fe,Ni,Co,Cr,Ti,Zn,P,Bから選ばれる少なくとも一種の元素を表し、xは0<x≦1、yは0≦y<1である)で表される複合酸化物粒子の表面を、Co,Al,Mnの少なくともいずれかを含有する金属アルコキシドによって被覆処理してなることを特徴とする正極活物質。LiNi x MyO 2 (where M represents at least one element selected from Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, P and B, x is 0 <x ≦ 1, and y is 0 ≦ y <1) is obtained by coating the surface of the composite oxide particles represented by y <1) with a metal alkoxide containing at least one of Co, Al and Mn. 複合酸化物粒子の表面におけるz/(x+z)(但し、xはNiの原子組成比であり、zはCo,Al,Mnの原子組成比の合計である)をD(s)、複合酸化物粒子全体におけるz/(x+z)をD(b)としたときに、D(s)>D(b)なる条件を満たすことを特徴とする請求項1記載の正極活物質。Z / (x + z) (where x is the atomic composition ratio of Ni and z is the sum of the atomic composition ratios of Co, Al, and Mn) on the surface of the composite oxide particles is D (s), 2. The positive electrode active material according to claim 1, wherein when z / (x + z) in the whole particles is D (b), a condition of D (s)> D (b) is satisfied. 複合酸化物粒子の表面を被覆処理する金属アルコキシドは、Coを含有する金属アルコキシドであることを特徴とする請求項1記載の正極活物質。The positive electrode active material according to claim 1, wherein the metal alkoxide for coating the surface of the composite oxide particles is a metal alkoxide containing Co. D(s)が、1≧D(s)>0.3であることを特徴とする請求項2記載の正極活物質。3. The positive electrode active material according to claim 2, wherein D (s) satisfies 1 ≧ D (s)> 0.3. LiNiMyO(但し、MはAl,Mn,Fe,Ni,Co,Cr,Ti,Zn,P,Bから選ばれる少なくとも一種の元素を表し、xは0<x≦1、yは0≦y<1である)で表され、表面がCo,Al,Mnの少なくともいずれかを含有する金属アルコキシドによって被覆処理された複合酸化物粒子を正極活物質として用いることを特徴とする非水電解質二次電池。LiNi x MyO 2 (where M represents at least one element selected from Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, P, B, x is 0 <x ≦ 1, and y is 0 ≦ y <1), and using, as a positive electrode active material, a composite oxide particle having a surface coated with a metal alkoxide containing at least one of Co, Al, and Mn as a positive electrode active material. Next battery. 複合酸化物粒子の表面におけるz/(x+z)(但し、xはNiの原子組成比であり、zはCo,Al,Mnの原子組成比の合計である)をD(s)、複合酸化物粒子全体におけるz/(x+z)をD(b)としたときに、D(s)>D(b)なる条件を満たす正極活物質を用いたことを特徴とする請求項5記載の非水電解質二次電池。Z / (x + z) (where x is the atomic composition ratio of Ni and z is the sum of the atomic composition ratios of Co, Al, and Mn) on the surface of the composite oxide particles is D (s), 6. The non-aqueous electrolyte according to claim 5, wherein a positive electrode active material that satisfies a condition of D (s)> D (b) is used, where z / (x + z) in the whole particles is D (b). Rechargeable battery. 複合酸化物粒子の表面を被覆処理する金属アルコキシドは、Coを含有する金属アルコキシドであることを特徴とする請求項5記載の非水電解質二次電池。 Metal alkoxides of coating the surface of the composite oxide particles, the non-aqueous electrolyte secondary battery according to claim 5, characterized in that the metal alkoxide containing Co. D(s)が、1≧D(s)>0.3であることを特徴とする請求項6記載の非水電解質二次電池。7. The non-aqueous electrolyte secondary battery according to claim 6, wherein D (s) satisfies 1 ≧ D (s)> 0.3.
JP20608395A 1995-08-11 1995-08-11 Positive electrode active material and non-aqueous electrolyte secondary battery using the same Expired - Fee Related JP3582161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20608395A JP3582161B2 (en) 1995-08-11 1995-08-11 Positive electrode active material and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20608395A JP3582161B2 (en) 1995-08-11 1995-08-11 Positive electrode active material and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JPH0955210A JPH0955210A (en) 1997-02-25
JP3582161B2 true JP3582161B2 (en) 2004-10-27

Family

ID=16517546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20608395A Expired - Fee Related JP3582161B2 (en) 1995-08-11 1995-08-11 Positive electrode active material and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP3582161B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164313A1 (en) * 2018-02-23 2019-08-29 주식회사 엘지화학 Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6458487B1 (en) 1997-07-25 2002-10-01 Kabushiki Kaisha Toshiba Positive active material and non-aqueous secondary cell made by using the same
US6071649A (en) * 1997-10-31 2000-06-06 Motorola, Inc. Method for making a coated electrode material for an electrochemical cell
CN1146062C (en) 1998-02-10 2004-04-14 三星电管株式会社 Active material for positive electrode used in lithium secondary battery and method of manufacturing same
KR100309769B1 (en) * 1999-06-17 2001-11-01 김순택 Positive active material for lithium secondary battery and method of preparing the same
US6730435B1 (en) * 1999-10-26 2004-05-04 Sumitomo Chemical Company, Limited Active material for non-aqueous secondary battery, and non-aqueous secondary battery using the same
JP4383681B2 (en) 2000-02-28 2009-12-16 三星エスディアイ株式会社 Positive electrode active material for lithium secondary battery and method for producing the same
US6737195B2 (en) * 2000-03-13 2004-05-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
CN1263182C (en) 2000-09-25 2006-07-05 三星Sdi株式会社 Positive active material for rechargeable lithium cell and preparation process thereof
KR100696619B1 (en) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 A positive actvive material for a lithium secondary battery and a method of preparing the same
KR100560534B1 (en) * 2000-09-25 2006-03-15 삼성에스디아이 주식회사 A positive active material for a lithium secondary battery and a method of preparing the same
JP4384380B2 (en) * 2000-09-25 2009-12-16 三星エスディアイ株式会社 Method for producing positive electrode active material for lithium secondary battery
CN1278438C (en) 2000-09-25 2006-10-04 三星Sdi株式会社 Active positive electrode material for rechargeable Li battery and its prepn
US7138209B2 (en) 2000-10-09 2006-11-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
KR100709177B1 (en) * 2001-02-15 2007-04-18 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and method of preparing same
KR100489509B1 (en) 2001-03-22 2005-05-16 마쯔시다덴기산교 가부시키가이샤 Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7135251B2 (en) * 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
US6855461B2 (en) 2001-06-15 2005-02-15 Kureha Chemical Industry Co., Ltd. Cathode material for lithium rechargeable batteries
US6921609B2 (en) * 2001-06-15 2005-07-26 Kureha Chemical Industry Co., Ltd. Gradient cathode material for lithium rechargeable batteries
JP4510331B2 (en) * 2001-06-27 2010-07-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100542184B1 (en) 2001-07-19 2006-01-10 삼성에스디아이 주식회사 An active material for a battery and a method of preparing the same
JP5002872B2 (en) * 2001-08-09 2012-08-15 トヨタ自動車株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for producing positive electrode active material for lithium secondary battery
US6878487B2 (en) 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same
JP3827545B2 (en) 2001-09-13 2006-09-27 松下電器産業株式会社 Positive electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery
KR100420034B1 (en) * 2001-10-17 2004-02-25 삼성에스디아이 주식회사 A method of preparing a positive active material for a lithium secondary battery
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
KR100399650B1 (en) * 2001-10-27 2003-09-29 삼성에스디아이 주식회사 Positive active material for lithium-sulfur battery and method of preparing same
KR100437340B1 (en) 2002-05-13 2004-06-25 삼성에스디아이 주식회사 Method of preparing positive active material for rechargeable lithium battery
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP4554911B2 (en) 2003-11-07 2010-09-29 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100611940B1 (en) 2003-11-21 2006-08-11 주식회사 엘지화학 Electrochemical cell having an improved safety
JP2005243536A (en) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, and its manufacturing method
TWI290781B (en) 2004-09-02 2007-12-01 Lg Chemical Ltd Electrode active material with multi-element based oxide layers and preparation method thereof
US8187748B2 (en) 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2006068143A1 (en) 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte
JP2008521196A (en) * 2004-12-31 2008-06-19 アイユーシーエフ−エイチワイユー(インダストリー−ユニバーシティー コーオペレイション ファウンデーション ハンヤン ユニバーシティー) Positive electrode active material for lithium secondary battery having double layer structure, method for producing the same, and lithium secondary battery using the same
JP4942302B2 (en) * 2005-03-11 2012-05-30 三洋電機株式会社 Nonaqueous electrolyte secondary battery electrode and method for producing the same
JP4984478B2 (en) * 2005-10-04 2012-07-25 住友化学株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
KR100728160B1 (en) 2005-11-30 2007-06-13 삼성에스디아이 주식회사 Negatvie active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery compring same
KR100796687B1 (en) 2005-11-30 2008-01-21 삼성에스디아이 주식회사 Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same
KR100874557B1 (en) * 2005-12-20 2008-12-16 파나소닉 주식회사 Nonaqueous Electrolyte Secondary Battery
US7906239B2 (en) * 2006-03-06 2011-03-15 Sony Corporation Cathode active material, method for producing the same, and nonaqueous electrolyte secondary battery
US7811478B2 (en) 2006-03-15 2010-10-12 Sumitomo Chemical Company, Limited Positive-electrode active material powder
CN101490891B (en) 2006-05-22 2011-11-23 株式会社Lg化学 Secondary battery having electrode for improvement of stability during overcharge
JP2007317585A (en) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd Positive electrode active material for lithium secondary battery, and the lithium secondary cell using the same
KR100786779B1 (en) 2006-12-21 2007-12-18 주식회사 엘 앤 에프 Positive active material for lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP5137414B2 (en) 2007-02-20 2013-02-06 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material
JP2010080231A (en) * 2008-09-25 2010-04-08 Sanyo Electric Co Ltd Precursor for positive electrode active material, method of manufacturing the same, positive electrode active material, method of manufacturing positive electrode active material, and nonaqueous electrolyte secondary battery
KR101124492B1 (en) 2009-09-09 2012-03-16 한국과학기술연구원 Method of preparing positine active material for lithium battery
JP5149926B2 (en) * 2010-03-05 2013-02-20 株式会社日立製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, vehicle equipped with the same, and power storage system
JP5549437B2 (en) * 2010-07-08 2014-07-16 ソニー株式会社 Positive electrode active material, non-aqueous electrolyte battery, and method for producing positive electrode active material
JP2012028231A (en) * 2010-07-26 2012-02-09 Samsung Electronics Co Ltd Solid lithium ion secondary battery
JP5634362B2 (en) * 2011-09-15 2014-12-03 本田技研工業株式会社 Electrode active material and method for producing the same
TWI547002B (en) * 2012-06-11 2016-08-21 輔仁大學學校財團法人輔仁大學 Lithium nickel cobalt cathode material powder
CN111628157B (en) * 2020-06-30 2024-03-26 蜂巢能源科技有限公司 Positive electrode material, preparation method thereof and lithium ion battery
CN114243100A (en) * 2021-08-30 2022-03-25 上海大学 Positive electrode metal salt additive capable of being used for positive electrode interface film construction of solid electrolyte and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203834A (en) * 1992-12-31 1994-07-22 Masayuki Yoshio Manufacture of limo2@(3754/24)m=ni, co) and limn2o4 for lithium secondary battery positive electrode
JP3111791B2 (en) * 1994-02-21 2000-11-27 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH07245105A (en) * 1994-03-04 1995-09-19 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and positive electrode active material thereof
JPH07288127A (en) * 1994-04-18 1995-10-31 Fuji Photo Film Co Ltd Nonaqueous electrolyte battery
JP3195175B2 (en) * 1994-11-11 2001-08-06 株式会社東芝 Non-aqueous solvent secondary battery
JP3419119B2 (en) * 1994-11-15 2003-06-23 日本電池株式会社 Non-aqueous electrolyte secondary battery
JPH08162114A (en) * 1994-12-02 1996-06-21 Kaageo P-Shingu Res Lab:Kk Lithium secondary battery
JP3258841B2 (en) * 1994-12-16 2002-02-18 三洋電機株式会社 Lithium secondary battery
JPH08250120A (en) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd Lithium secondary battery
JPH08315823A (en) * 1995-03-10 1996-11-29 Tanaka Kagaku Kenkyusho:Kk Manufacture of lithium-containing positive electrode active material
JP3543437B2 (en) * 1995-07-24 2004-07-14 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery using this positive electrode active material
JPH0950810A (en) * 1995-08-08 1997-02-18 Mitsui Toatsu Chem Inc Electrode active material for non-aqueous electrolytic battery and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019164313A1 (en) * 2018-02-23 2019-08-29 주식회사 엘지화학 Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
US11831014B2 (en) 2018-02-23 2023-11-28 Lg Chem, Ltd. Positive electrode active material for secondary battery, method for preparing same, and lithium secondary battery including same

Also Published As

Publication number Publication date
JPH0955210A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
JP3582161B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
KR100542184B1 (en) An active material for a battery and a method of preparing the same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
US8586246B2 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
US20090200509A1 (en) Active material, electrode, and methods of manufacture thereof
JP2010135329A (en) Cathode and lithium battery adopting this
JP2002063940A (en) Nonaqueous electrolyte secondary battery
JP4879226B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP3436600B2 (en) Rechargeable battery
TW200301022A (en) Lithium ion secondary battery
JPH07211311A (en) Nonaqueous-electrolyte secondary battery
JPH09293508A (en) Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JP2974213B1 (en) Positive electrode active material for lithium secondary battery, method for producing the same and use thereof
JP3929548B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4910228B2 (en) Nonaqueous electrolyte secondary battery
JP3036674B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided therewith
JPH08213014A (en) Nonaqueous electrolyte secondary battery
KR20000071371A (en) Non-Aqueous Electrolyte Battery
JPH09199112A (en) Nonaqueous electrolyte secondary cell
JPH0896852A (en) Nonaqueous electrolytic secondary battery
JP4166295B2 (en) Non-aqueous electrolyte battery
JPH07183047A (en) Nonaqueous electrolyte secondary battery
JP2002063904A (en) Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JP2002203600A (en) Non-aqueous electrolytic solution secondary battery
KR100412523B1 (en) A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees