JP3578335B2 - 電力用半導体装置 - Google Patents

電力用半導体装置 Download PDF

Info

Publication number
JP3578335B2
JP3578335B2 JP2000353257A JP2000353257A JP3578335B2 JP 3578335 B2 JP3578335 B2 JP 3578335B2 JP 2000353257 A JP2000353257 A JP 2000353257A JP 2000353257 A JP2000353257 A JP 2000353257A JP 3578335 B2 JP3578335 B2 JP 3578335B2
Authority
JP
Japan
Prior art keywords
heat sink
semiconductor module
power semiconductor
semiconductor device
holding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000353257A
Other languages
English (en)
Other versions
JP2002083915A (ja
Inventor
靖之 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000353257A priority Critical patent/JP3578335B2/ja
Priority to EP01109620.3A priority patent/EP1148547B8/en
Priority to EP10006258.7A priority patent/EP2234154B1/en
Priority to EP10006259.5A priority patent/EP2244289B1/en
Priority to EP06022504.2A priority patent/EP1742265B1/en
Priority to US09/837,382 priority patent/US6542365B2/en
Publication of JP2002083915A publication Critical patent/JP2002083915A/ja
Priority to US10/314,139 priority patent/US6845012B2/en
Priority to US10/756,340 priority patent/US7027302B2/en
Priority to US10/946,210 priority patent/US7106592B2/en
Application granted granted Critical
Publication of JP3578335B2 publication Critical patent/JP3578335B2/ja
Priority to US11/325,331 priority patent/US7250674B2/en
Priority to US11/452,328 priority patent/US7248478B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力用半導体装置に関し、特に少なくともヒートシンク及び半導体モジュールを有する電力用半導体装置に関する。
【0002】
【従来の技術】
ハイブリッド車、燃料電池車、純二次電池車など電力を用いて走行する電気自動車では、構成が堅牢、簡素で制御が容易な交流モータを用いるために、直流電力と交流電力との間で双方向変換するインバータ装置特に三相インバータ装置が採用されている。ここで、モータの用途は走行に限らず、発電、エンジン始動、A/Cコンプレッサなどの補機駆動などがあり、用途に応じて複数のモータを積む場合もある。その場合はインバータも複数積むことになる。
【0003】
特開平11ー346480号公報は、ヒートシンクに半田接合された絶縁基板と、この絶縁基板上に接合された半導体素子とを有する半導体スイッチングモジュールを含むインバータ装置を提案している。
【0004】
【発明が解決しようとする課題】
しかしながら、半導体スイッチングモジュールの絶縁基板をヒートシンクに半田接合してなる上記公報記載のインバータ装置は、電気自動車用などの大熱容量のヒートシンクを用いる場合、絶縁基板の半田付けに半田溶融用の加熱炉を必要とするため生産性が低下するという不具合がある他、絶縁基板(通常はメタライズされたAlN)と近似する熱膨張率をもつAlーSiC、Cu/Moなどの高価な材料でヒートシンクを構成する必要があるため実用性に問題があった。また、絶縁基板が半田接合されたヒートシンクはリサイクル性に劣るという問題を内包していた。
【0005】
本発明は上記問題点に鑑みなされたものであり、ヒートシンク材料の選択範囲が広く、製造が容易なために実用性に優れ、その上、リサイクル性に優れるにもかかわらず、優れた放熱特性を実現可能な電力用半導体装置を提供することをその目的としている。
【0006】
【課題を解決するための手段】
各発明の電力用半導体装置は、電力用半導体素子チップを挟んで金属放熱板が両面に配設されてなる半導体モジュールと、前記半導体モジュールの前記金属放熱板に接して配置されたヒートシンクと、前記半導体モジュールの反ヒートシンク側の前記金属放熱板を付勢して前記半導体モジュールのヒートシンク側の前記金属放熱板を前記ヒートシンクの表面に押しつけるとともに前記反ヒートシンク側の前記金属放熱板から吸熱する良熱伝導性の付勢保持部材とを備えることを特徴としている。
【0007】
本構成によれば、付勢保持部材が、両面放熱型の半導体モジュールをヒートシンクに押しつけて保持する構成を採用しているので、半導体モジュールとヒートシンクとの間の良好な接触を実現でき、半導体モジュールからヒートシンクへ良好に放熱することができる。同時に、半導体モジュールと付勢保持部材との間の良好な接触を実現することができるので、半導体モジュールから付勢保持部材へ良好に放熱することができる。すなわち、付勢保持部材により半導体モジュールをヒートシンクに押し付ける構造により、半導体モジュールの両主面の放熱を良好に確保することができる。
【0008】
また、半導体モジュールをヒートシンクに固定するのに半田接合を採用していないので、組み付け工程が簡素となり、熱ストレス(いわゆる温度膨張率差に起因して生じる力)により半田接合の信頼性が低下することがない。
【0009】
本構成において、付勢保持部材は熱伝導性向上のために金属製とされることが好ましいが、それに限定されるものではない。また、付勢保持部材は、半導体モジュールの反ヒートシンク側の金属放熱板に直接接触させることが好ましいが、中間部材を介在させてもよい。電気伝導性を有する付勢保持部材と半導体モジュールの反ヒートシンク側の金属放熱板とを電気伝導可能に接触させることもでき、この場合は、付勢保持部材を配線部材として機能させることもできる。
【0010】
好適には、前記付勢保持部材は、前記ヒートシンクに固定されることを特徴としている。本構成によれば、付勢保持部材の固定が簡単容易とすることができるので、全体構造を簡素化することができる上、付勢保持部材からヒートシンクへ放熱することができるので、ヒートシンク自体は単なる伝熱部材とすることができ、ヒートシンクの冷却を簡素かつ容易に実現することができる。
【0011】
発明1では更に、前記付勢保持部材は、前記半導体モジュールを押圧付勢する梁部と、前記梁部の両端からヒートシンク側に突出する少なくとも一対の脚部とを有することを特徴としている。これにより、半導体モジュールを接触圧が均等分散できる両端挟圧構造で保持できるので、半導体モジュールと付勢保持部材及びヒートシンクとの接触面において局部的に応力が集中することがなく、接触面各部の熱抵抗を均一に低減することができる。
【0012】
好適には、前記付勢保持部材の前記脚部のうち、前記半導体モジュールの厚さに等しい部分の熱膨張率は、前記電力用半導体素子チップの両側の前記金属放熱板及び前記電力用半導体素子チップの平均熱膨張率に所定誤差範囲内で一致することを特徴としている。本構成によれば、付勢保持部材の脚部とそれに隣接する半導体モジュールとが、半導体モジュールの厚さ方向において許容可能な所定誤差範囲(この明細書は1%未満とする)に設定しているので、両者の熱膨張率の差に基づく熱ストレスを使用温度範囲内で許容範囲内に保つことができ、この熱ストレスにより電力用半導体素子チップが破損するのを防止することができるという優れた効果を奏することができる。
【0013】
なお、電力用半導体素子チップよりも金属放熱板の方が通常は熱膨張率が大きいので、付勢保持部材の少なくとも脚部は、電力用半導体素子チップの熱膨張率と金属放熱板の熱膨張率との中間の熱膨張率をもつ。この種の熱膨張率(線膨張率)の調整は、金属放熱板や脚部を構成する素材及びその厚さ(半導体モジュールの厚さ方向長)の組み合わせにより容易に実施することができる。
【0014】
また、金属放熱板の部位における半導体モジュールの厚さはできるだけ薄い方が、上記熱膨張率差による脚部と半導体モジュールとの膨張距離の差が小さくなり好都合である。
【0015】
好適には、前記付勢保持部材と前記ヒートシンクとの間に介設される軟質かつ良熱伝導性の軟質伝熱部材を有することを特徴としている。この種の軟質伝熱部材としてはたとえば半田などを挙げることができる。本構成によれば、付勢保持部材をヒートシンクに固定するに際し、両者の接触面を上記軟質伝熱部材の塑性変形によりなじませることができ、両者間の熱抵抗を低減することができる。
【0016】
好適には、前記付勢保持部材と前記ヒートシンクとの間に介設される薄肉の絶縁部材を有することを特徴としている。本構成によれば、半導体モジュールのヒートシンク側の金属放熱板をヒートシンク電位から独立に設定することができる。
【0017】
好適には、前記半導体モジュールの前記反ヒートシンク側の金属放熱板と前記付勢保持部材との間、及び、前記半導体モジュールの前記ヒートシンク側の金属放熱板と前記付勢保持部材との間に介設される薄肉の絶縁部材を有することを特徴としている。本構成によれば、付勢保持部材が電気伝導性であっても付勢保持部材と半導体モジュールの反ヒートシンク側の金属放熱板との間、及び、前記半導体モジュールの前記ヒートシンク側の金属放熱板と前記付勢保持部材との間に電気絶縁を確保することができる。
【0018】
好適には、前記ヒートシンクは、内部に冷却流体通路を有し、前記付勢保持部材は、前記ヒートシンクの前記冷却流体通路に連通する内部冷却通路を有することを特徴としている。
これにより、簡素な構造で半導体モジュールの両側から流体冷却することができる。
【0019】
好適には、前記半導体モジュール上に重ねられた回路部品を有し、前記付勢保持部材は、前記半導体モジュール及び回路部品をまとめて前記ヒートシンクに押し付けることを特徴としている。これにより、高密度実装を簡素な組み付け構造で実施することができる。また、この回路部品を半導体モジュールの反ヒートシンク側のヒートシンクマスとして機能させることもできる。
【0020】
好適には、前記半導体モジュールの反ヒートシンク側の前記金属放熱板は、前記回路部品の端子に直接接することを特徴としている。これにより、配線構造を簡素化することができるとともに、両者間の配線距離が短く、配線抵抗及び配線インダクタンスの悪影響を防止することができる。
【0021】
好適には、前記付勢保持部材の前記脚部のうち、前記半導体モジュール及び前記回路部品の厚さの合計に等しい部分の熱膨張率は、前記電力用半導体素子チップの両側の前記金属放熱板、前記電力用半導体素子チップ及び前記回路部品の前記厚さ方向の平均熱膨張率に所定誤差範囲内で一致することを特徴としている。これにより、請求項4と同様に、所定の押圧力を確保して熱抵抗を低減できるとともに、電力用半導体素子チップに作用する熱ストレスを軽減することができる。
【0022】
好適には、前記半導体モジュールの反ヒートシンク側の前記金属放熱板と前記回路部品の端子との間に端子部材が介設されることを特徴としている。本構成によれば、金属放熱板と回路部品と端子部材とを、金属放熱板及び回路部品の保持と同時に実現することができ、簡素で高密度の回路構造を実現することができる。
【0023】
好適には、前記半導体モジュールは、インバータ回路の一部又は全部を構成し、前記回路部品は前記インバータ回路の正負直流端子間に並列接続される平滑コンデンサからなり、前記端子部材は、直流電源接続用のブスバーからなることを特徴としている。これにより、インバータ回路装置で問題となるインバータ回路と平滑コンデンサとの間の配線インダクタンスによる大サージ電圧が発生するという問題を解決することができ、平滑コンデンサを小型軽量化することができる。
【0024】
好適には、前記付勢保持部材の前記脚部のうち、前記半導体モジュール、端子部材及び前記回路部品の厚さの合計に等しい部分の熱膨張率は、前記電力用半導体素子チップの両側の前記金属放熱板、前記電力用半導体素子チップ、前記端子部材及び前記回路部品の前記厚さ方向の平均熱膨張率に所定誤差範囲内で一致することを特徴としている。
これにより、上記と同様に、所定の押圧力を確保して熱抵抗を低減できるとともに、電力用半導体素子チップに作用する熱ストレスを軽減することができる。
【0025】
好適には、前記付勢保持部材は、互いに近接して配設された複数の前記半導体モジュールを一括付勢保持することを特徴としている。これにより、部品点数及び組み付け工数を低減することができる。
【0026】
好適には、前記付勢保持部材の前記脚部は、湾曲形状を有し、前記半導体モジュールの厚さ方向の弾性率が前記付勢保持部材の素材の弾性率より増大されていることを特徴としている。これにより、半導体モジュールとヒートシンク又は付勢保持部材との熱的又は電気的結合性能を悪化させることなく、脚部と半導体モジュールとの厚さ方向への熱膨張率差に起因する熱ストレスを格段に低減することができる。
【0027】
発明2では更に、前記ヒートシンクは、前記半導体モジュールの両側に隣接して突出する側壁部を有し、前記付勢保持部材は、金属薄板により形成されるとともに両端部が前記側壁部に固定されることを特徴としている。
【0028】
本構成によれば、付勢保持部材の構造を簡素化することができる上、付勢保持部材が、半導体モジュール100の厚さ方向に弾性変形容易な金属薄板からなるので、上記熱ストレスの吸収が容易となる。
【0038】
発明では更に、同相の上、下のアームをなす一対の前記半導体モジュールが隣接配置されるとともに6個の半導体モジュールが各アームをなす三相インバータ回路を有し、前記電力用半導体素子チップの一対の主面の一方は、第一の前記金属放熱板を兼ねる第一の主電極端子に接続される領域と、信号端子に接続される領域とを有し、前記一対の主面の他方は、第二の前記金属放熱板を兼ねる第二の主電極端子に接続される領域とを有し、前記両主電極端子は、前記半導体モジュールの互いに平行な二辺の互いに対角をなす一半部から個別に前記半導体モジュールの側方へ突出し、前記信号端子は、前記二辺の互いに対角をなす他半部の一方から前記半導体モジュールの側方へ突出することを特徴としている。
【0039】
MOSトランジスタモジュールを例とし、第一の主電極端子をソース電極端子、第二の主電極端子をドレイン電極端子と呼称して、更に説明する。
【0040】
本構成によれば、ソース電極端子とドレイン電極端子を互いに平行な二辺の互いに対角となる一対の一半部から半導体モジュールの側方へ互いに逆むきに突出させる。これにより、ソース電極端子とドレイン電極端子とは、互いに点対称(回転対称)の位置をもつ。そして信号端子は上記二辺の互いに対角となる一対の他半部の一方から半導体モジュールの側方へ突出させる。
【0041】
これにより、同相の上下アームをなす一対の半導体モジュールは、一方のアームをなす半導体モジュールのソース電極端子と、他方のアームをなす半導体モジュールのソース電極端子とを互い違いに挟んで配置できるので、高密度に配置することができる。もちろん、両半導体モジュールのドレイン電極端子同士を互い違いに噛みあわせてもよい。また、これら6個の半導体モジュールを一種類の半導体モジュールで構成することができ、部品点数を減らすことができ、保守管理が容易となる。
【0042】
発明では更に、前記付勢保持部材の両端部は、前記ヒートシンクに圧入されて固定されていることを特徴としている。
【0043】
これにより、付勢保持部材とヒートシンクとの結合が容易となり、両者間の熱抵抗が低減されるので、半導体モジュールの冷却効果を向上することができる。
【0044】
好適には、前記付勢保持部材の両端部は、前記ヒートシンク内の冷却液通路に露出していることを特徴としているので、一層の冷却効果向上を図ることができる。
【0045】
【発明の実施の形態】
本発明の好適な態様を以下の実施例を参照して説明する。
【0046】
【実施例】
本発明の電力用半導体装置の実施例を図面を参照して説明する。
(全体構成)
図1は、電気自動車の走行モータ駆動制御用の三相インバータ回路装置の回路図である。
【0047】
21は電池(直流電源)、22〜27はそれぞれ、その寄生ダイオ−ドをフライホイールダイオ−ドとして利用するNMOSトランジスタからなる半導体素子である。
【0048】
半導体素子22は、U相上アームを構成し、半導体素子23はU相下アームを構成し、半導体素子24はV相上アームを構成し、半導体素子25はV相下アームを構成し、半導体素子26はW相上アームを構成し、半導体素子27はW相下アームを構成しており、それぞれ半導体モジュール100〜600として個別に実装されている。
【0049】
101はU相上アームの正の直流電源端子(ドレイン側)、102はU相上アームの交流出力端子(ソース側)、201はU相下アームの交流出力端子(ドレイン側)、202はU相下アームの負の直流端子(ソース側)である。301はV相上アームの正の直流電源端子(ドレイン側)、302はV相上アームの交流出力端子(ソース側)、401はV相下アームの交流出力端子(ドレイン側)、402はV相下アームの負の直流端子(ソース側)である。501はW相上アームの正の直流電源端子(ドレイン側)、502はW相上アームの交流出力端子(ソース側)、601はW相下アームの交流出力端子(ドレイン側)、602はW相下アームの負の直流端子(ソース側)である。
【0050】
各正の直流電源端子101、301、501は、平滑コンデンサ28の正極端子とともに電池21の正極端子に接続され、各負の直流電源端子202、402、602は、平滑コンデンサ28の負極端子ともに電池21の負極端子に接続されている。U相交流出力端子102、201は接続点103で接続され、V相交流出力端子302、401は接続点303で接続され、W相交流出力端子502、601は接続点503で接続されて三相交流モータ29の電機子巻線(図示せず)に給電している。
【0051】
30はコントローラであり、各半導体素子のゲート電極に制御電圧を出力するとともに、各半導体素子の温度検出などを行っている。上記三相インバータ回路及び平滑コンデンサ28の動作自体は周知であり、更に詳細な説明を省略する。(半導体モジュール)
U相上アームの半導体モジュール100を図2(a)、図2(b)を参照して以下に説明する。図2(a)は分解斜視図、図2(b)は全体斜視図を示す。
【0052】
105は、正の直流電源端子101を有する金属伝熱板、106は交流出力端子102を有する金属伝熱板、108は半導体素子(電力用半導体素子チップ)22の信号端子(制御電極端子ともいう)である。信号端子108は、NMOSトランジスタのゲート電極制御用の端子や、半導体素子22の内部モニタ用の信号端子を含み、図2では5本設けられている。
【0053】
半導体素子22は金属伝熱板105上にハンダ付けされ、金属伝熱板106が半導体素子22の上面にハンダ付けされている。これらは、金属伝熱板105、106の外主面を露出させ、端子101、102、108を突出させた状態で樹脂109により封止されて半導体モジュール100を構成している。
【0054】
この実施例では特に、信号端子108と正の直流電源端子(ドレイン電極端子ともいう)101とを、長方形の半導体モジュール100の同一の辺(特にここでは長辺)上に配置している。信号端子108はこの辺の一半側に配置され、正の直流電源端子(ドレイン電極端子)101はこの辺の他半側に配置されている。交流出力端子(ソース電極端子ともいう)102は、端子108、101をもつ辺の対辺の信号端子108側の半部に配置されている。
【0055】
ここで、半導体モジュール100における半導体素子(NMOSトランジスタ)22のジャンクション部からドレイン側の金属伝熱板105までの熱抵抗をR1とし、半導体素子22のジャンクション部からソース側の金属伝熱板106までの熱抵抗をR2とし、仮に両金属伝熱板105、106の厚さは等しいとした場合、R1<R2となる。
【0056】
理由は、半導体素子22のドレイン領域側の主面は、その全面にわたって金属伝熱板105と接合されているのに対し、半導体素子22のソース領域側の主面は、各信号端子108とワイヤボンディング接続するための三次元スペースを確保するために、この三次元スペースを避けてソース側の金属伝熱板106の一部を半導体素子22に向けて突出させる必要があるため、半導体素子22のソース領域側の主面から上記三次元スペースを差し引いた残部しか金属伝熱板106と接合できないためである。 他の上アームの半導体モジュール300、500については全く同じ構成である。下アームの半導体モジュール200、400、600も上アームの半導体モジュール100、300、500と全く同じ構成である。ただし、上アームの半導体モジュールの正の直流電源端子を、下アームの半導体モジュールでは交流出力端子に置換し、上アームの半導体モジュールの交流出力端子を、下アームの半導体モジュールでは負の直流電源端子に読み替えれば良い。
【0057】
なお、半導体素子22としてIGBTを採用する場合は、別途のフライホイールダイオ−ドが必要となるが、これは図2(a)において半導体素子22の左側に並置して構成すれば良い。この場合、フライホイールダイオ−ドのカソード側を正の直流電源端子101を有する金属伝熱板105に向けた形で実装することになる。
【0058】
(半導体モジュール)
図3は半導体モジュール200を示す。
【0059】
205は、交流出力端子201を有する金属放熱板、206は負の直流電源端子202を有する金属放熱板、208は半導体素子23の制御電極端子、209はモールド樹脂である。
【0060】
図4、図5に半導体モジュール200を用いたインバータ装置を示す。図5にその側面図を示す。図4はU相部分の部分平面図であり、図5は図4のA視側面図である。
【0061】
ヒートシンク110は、内部に冷却流路が形成された水冷構造の金属板からなり、たとえばアルミダイカスト法により形成されている。ヒートシンク110は、水冷に限らず例えば自動車用エアコンの冷媒を封止できるだけの強度と気密性とを兼ね備えたAlの押し出しまたは引き抜きで形成された偏平状のチューブでも構わないし、周知の沸騰冷却型冷媒槽としても良い。
【0062】
100及び200は半導体モジュール(以下、カード型半導体モジュールともいう)、112は固定部材(本発明でいう付勢保持部材)である。一対の固定部材112は、スクリュ113によりヒートシンク110に半導体モジュール100,200の上から取り外し可能に固定されており、半導体モジュール100,200を個別にヒートシンク110の上面へ押し付けている。
【0063】
平滑コンデンサ28は、半導体モジュール100,200に隣接してヒートシンク11上にその底面が接触する姿勢で固定されている。111+は、正の直流入力バスバー、111−は、負の直流入力バスバーであり、半導体モジュール100及び200の直流入力端子101、201と平滑コンデンサ28の正および負の電極を兼ねている。
【0064】
1111は、正、負の直流入力バスバー111+、111−を電気的に絶縁するために介設されたインシュレータである。121はU相の交流出力バスバーであり、半導体モジュール100、200の交流出力端子102、201と3相交流モータ29とを接続している。V相、W相についてもU相と同様であるので説明は省略する。
【0065】
コントローラ30は、ここでは図示していないが、半導体モジュール100、200の上方にヒートシンク110と平行に配置され、各半導体モジュール100、200の制御電極端子108、208などと接続されている。
【0066】
半導体モジュール100、200とヒートシンク110との接触面115、半導体モジュール100、200と固定部材112との接触面116には、熱伝導性が良くかつ電気絶縁可能な部材、例えばシリコン系の絶縁放熱シートが挟設されているが、この絶縁放熱シートを、セラミックなどの絶縁基板とその両面の放熱グリスで置換することも可能である。 また、固定部材112とヒートシンク110の接触面117にも、熱伝導性が良いシリコン系の放熱シートや熱伝導性グリスなどが介設されている。固定部材が樹脂などの絶縁部材であれば、接触面116にはさむ熱伝導部材は電気絶縁性を必要としない。
【0067】
上記実施例によれば、半導体モジュール100はヒートシンク110に半田接合を用いることなく安定に保持されるので、半田寿命を考えなくても良く、装置全体の長寿命化が可能となる。また、半田接合を用いないためにヒートシンク110にAlーSiCなどの高価な材料を用いる必要がなく、装置全体を低価格とできる。
【0068】
また、ヒートシンク110の大熱容量にも無関係に組みつけを簡素製造設備で実現することができる。また、機械的に取り外し可能なように構成しているので、リサイクル性に優れ、交換も容易である。
【0069】
更に、固定部材112を良熱伝導性の金属材料例えばCuやアルミ製とすることにより、半導体モジュール内部の半導体素子を両面からヒートシンク110に放熱することが可能となり、片面から放熱する場合に比べて、放熱性能を大幅に向上できる。その結果、半導体素子を小型化することも可能となり、装置の小型、低価格化が可能となる。固定部材112は、半導体モジュール毎に1個用意しても良いし、複数の半導体モジュールを1個の固定部材で固定しても構わない。
【0070】
(固定部材)
固定部材112について図6を参照して更に説明する。図6はこの装置の要部側面図である。
【0071】
固定部材112は、半導体モジュールを押圧付勢する梁部1121と、梁部1121の両端からヒートシンク110側に突出する一対の脚部1122とを有している。両脚部1122には半導体モジュール100の厚さ方向に貫通する孔(図示せず)が設けられており、この孔を通じてスクリュ113をヒートシンク110に締結することにより、固定部材112はヒートシンク110に固定され、半導体モジュール100がヒートシンク110と固定部材112の梁部1121とで挟圧されている。
【0072】
120は、半導体モジュール100のヒートシンク側の金属放熱板(図示せず)とヒートシンク110の上面との間、並びに、半導体モジュール100の反ヒートシンク側の金属放熱板(図示せず)と固定部材112の梁部1121の下面との間に介設される絶縁熱伝導部材である。121は、固定部材112の脚部1122の下面とヒートシンク110の上面との間に介設される熱伝導部材である。この実施例では、熱伝導部材121は、軟質かつ良熱伝導性を有する素材により構成され、絶縁熱伝導部材120より軟質とされている。
【0073】
このようにすれば、スクリュー113で固定部材120をヒートシンク110に締め込んだとき、硬度のある熱伝導部材120にて半導体モジュール100をヒートシンク110に強く押し当てることができ、半導体モジュール100の下側面からヒートシンク110に良好に放熱させることができる。また、熱伝導部材121に絶縁熱伝導部材120より軟質の素材を用いているので、絶縁熱伝導部材120が脚部1122の下面及びヒートシンク110の上面によくなじみ、熱抵抗を低減することができる。
【0074】
絶縁熱伝導部材120としてはたとえば窒化アルミニウムや高硬度シリコンゴムシートを採用することができ、熱伝導部材121としてはたとえば半田や熱伝導グリスやグラファイトシートを採用することができる。なお、熱伝導部材121として、電気絶縁性を有する材料たとえば低硬度シリコンゴムシートを採用してもよい。スクリュー113は金属製としてもよく電気絶縁性を有する樹脂製としてもよい。
【0075】
(変形態様)
上記実施例では、絶縁熱伝導部材120を半導体モジュール100と固定部材112の梁部1121との間に挟んだが、熱伝導部材121を電気絶縁性を有する絶縁熱伝導部材に変更し、絶縁熱伝導部材120を電気伝導性を有する伝導部材としてもよい。また、半導体モジュール100と固定部材112の梁部1121とを直接接触させても良い。スクリュー113は樹脂製のものが用いられる。このようにすれば、固定部材112を、半導体モジュール100の反ヒートシンク側の金属放熱板に接続される配線部材又は端子として用いることができる。
【0076】
【実施例2】
他の実施例を図6を参照して以下に説明する。
【0077】
この実施例では、固定部材112の脚部1122と熱伝導部材121との平均熱膨張率km1は、一対の金属放熱面間の半導体モジュール100と2つの絶縁熱伝導部材120との平均熱膨張率km2と一致(誤差1%以内)に設定される。なお、この明細書でいう複数の部材A,Bの平均熱膨張率kmとは、次の式で規定されるものとする。
【0078】
km=(k1・t1+k2・t2)/(t1+t2)
k1は部材Aの熱膨張率(線膨張率)、t1は部材Aの厚さ、k2は部材Bの熱膨張率(線膨張率)、t2は部材Bの厚さである。
【0079】
このようにすれば、半導体モジュール100と脚部1122との熱膨張率の差に起因する熱ストレスを解消することができ、経時的信頼性を向上することができる。なお、上記熱膨張率の差は最高使用温度又は最低使用温度で半導体モジュールの各部に悪影響が生じない範囲であれば許容される。
【0080】
(変形態様)
なお、この平均膨張率を一致させる設定において、固定部材112の脚部1122と熱伝導部材121と半導体モジュール100と2つの絶縁熱伝導部材120とは、それぞれ温度が異なるため、それぞれの厚さ方向の膨張量は異なる。この各部品間の温度差による膨張量差を補償するために、膨張量が最も大きくなっる最高使用温度において、上記固定部材112の脚部1122と熱伝導部材121との厚さ方向膨張量の合計が、半導体モジュール100と2つの絶縁熱伝導部材120との厚さ方向膨張量の合計に一致するように、
脚部1122などの材質などを選定することができる。
その他、半導体モジュール100の各使用温度において、上記膨張量の差が許容範囲となるように脚部1122などの材質などを選定することができる。
【0081】
【実施例3】
他の実施例を図7を参照して以下に説明する。
【0082】
この実施例では、ヒートシンク110の内部にはメイン冷却流体通路Mが形成され、冷却流体が流れている。固定部材112にもサブ冷却流体通路Sが形成され、固定部材112のサブ冷却流体通路Sの両端開口はヒートシンク110のメイン冷却流体通路Mと連通し、両通路M、Sは実質的に直列又は並列に連結されている。これにより、半導体モジュール100を更に良好に冷却することができる。
【0083】
300はパッキンであり、このパッキン300は固定部材112と半導体モジュール100との半導体モジュール100の厚さ方向の熱膨張率差による熱ストレスを弾性的に吸収する機能も奏することができる。
120は、半導体モジュール100の金属放熱板とヒートシンク110及び固定部材112とを電気絶縁する絶縁熱伝導部材である。
【0084】
なお、この実施例では、固定部材に冷却流体を長すように説明したが、固定部材をヒートパイプで構成し、ヒートシンクに固定するよう構成してもよい。
【0085】
【実施例4】
他の実施例を図8を参照して以下に説明する。
【0086】
この実施例では、半導体モジュール100、200上にブスバー101、202を介して他の回路部品(この実施例では平滑コンデンサ)が重ねて配設され、固定部材112は平滑コンデンサ28を介して半導体モジュール100、200をヒートシンク110に押し付けている。
【0087】
このようにすれば、回路実装密度を向上でき、インバータ回路を構成する半導体モジュール100とその一対の直流端間のスイッチングサージ電圧を吸収する平滑コンデンサ28との間の配線距離を短縮することができ、配線抵抗による電力損失、発熱も低減することができる。また、平滑コンデンサ28及びブスバー101、202は、半導体モジュール100のヒートシンク機能ももつことができる。
【0088】
半導体モジュール100、200の反ヒートシンク側の金属放熱板はインバータ回路の+直流端又はー直流端を構成しており、半導体モジュール100、200のヒートシンク側の金属放熱板(図示せず)は交流出力端を構成し、一つの固定部材112により2つの半導体モジュール100、200を挟圧している。
【0089】
ブスバー101、202は平滑コンデンサ28の+直流端子281及びー入力端子282が嵌入する凹部cを有する。これにより、平滑コンデンサ28の横ずれを防止することができ、平滑コンデンサ実装時の位置合わせが容易となる。なお、この凹部cの側面は底が狭くなるテーパー面として、平滑コンデンサ28の両直流端子281、282の嵌入、位置合わせが容易となっている。平滑コンデンサ28はそれぞれ複数の+直流端子281、ー直流端子282をもつことができ、この場合には、これらと嵌合する上記凹部cは複数設けられる。
【0090】
(変形態様)
更に、この実施例では、半導体モジュール100、200と平滑コンデンサ28とブスバー101、202との半導体モジュール100の厚さ方向の平均膨張率km3は、固定部材112の脚部1122の厚さ方向の平均膨張率km4に一致するように、脚部1122の素材などが選定される。
【0091】
なお、平均膨張率km3、km4は、前述の式の思想と同様に、構成する複数の部材の単位温度上昇当たりの膨張量の合計を、これら複数の部材の厚さ方向の距離の合計で割算した値として定義される。もしくは、上述の変形態様と同様に、半導体モジュール100、200の所定温度(通常は最高使用温度)における温度分布を加味して実際の各部の厚さ方向膨張量を設け、脚部1122側と半導体モジュール100、200側とで厚さ方向膨張量の一致を図ってもよい。どちらにせよ、これにより、本構成の挟圧式半導体モジュール固定方式における大きな問題である熱ストレス問題を実用可能なレベルに解決することができる。
【0092】
【実施例5】
他の実施例を図8を参照して以下に説明する。
【0093】
この実施例は、図8に示す実施例4の二階建て回路構造において、ブスバー101、202を半導体モジュール100の反ヒートシンク側の金属放熱板としたものである。したがって、この実施例では、半導体モジュール100、200の反ヒートシンク側の金属放熱板101、202が、平滑コンデンサ28の+直流端子281及びー入力端子282が嵌入する凹部cを有する。これにより、平滑コンデンサ28の横ずれを防止することができ、平滑コンデンサ実装時の位置合わせが容易となる。他の効果は実施例4と同じである。
【0094】
(変形態様)
更に、この実施例では、半導体モジュール100、200と平滑コンデンサ28との半導体モジュール100の厚さ方向の平均膨張率km5は、固定部材112の脚部1122の厚さ方向の平均膨張率km6に一致するように、脚部1122の素材などが選定される。なお、平均膨張率km5、km6は、説明を省略するが前述の式の思想により算出される。また、上述の変形態様と同様に、半導体モジュール100、200の所定温度(通常は最高使用温度)における温度分布を加味して実際の各部の厚さ方向膨張量を設け、脚部1122側と半導体モジュール100、200側とで厚さ方向膨張量の一致を図ってもよい。どちらにせよ、これにより、本構成の挟圧式半導体モジュール固定方式における大きな問題である熱ストレス問題を実用可能なレベルに解決することができる。
【0095】
【実施例6】
他の実施例を図9を参照して以下に説明する。
【0096】
この実施例では、固定部材112は、梁部1121が半導体モジュール100の厚さ方向へ向けて特に大きい弾性率を有する湾曲形状の弾性変形部1123を有する。このようにすれば、既述した半導体モジュール100と脚部1122との半導体モジュール100の厚さ方向への熱膨張率差に起因する熱ストレスを格段に低減することができる。
【0097】
【実施例7】
他の実施例を図10を参照して以下に説明する。
【0098】
この実施例では、ヒートシンク110は、半導体モジュール100の両側に突出する一対の側壁部111をもち、固定部材112は金属薄板により形成されて両端部が側壁部に樹脂製のスクリュー113で固定されている。
【0099】
本構成によれば、固定部材112が半導体モジュール100の厚さ方向へ容易に弾性変形することができるので、上記熱ストレスを良好に吸収することができ、更に、半導体モジュール100の反ヒートシンク側の金属放熱板とヒートシンク110との間の放熱距離が短くなるので、固定部材112を薄肉化するにもかかわらず、放熱性の低下を抑止することができる。
【0100】
【実施例8】
他の実施例を図11を参照して以下に説明する。
【0101】
この実施例では、半導体モジュール100の反ヒートシンク側の金属放熱板106は凹凸部1061をもち、この凹凸構成は固定部材112の梁部1121の凹凸部11211と嵌合している。半導体モジュール100のヒートシンク側の金属放熱板(図示せず)及び固定部材112の脚部1122はそれぞれ電気絶縁性の絶縁熱伝導部材を通じてヒートシンク110に密着している。スクリュー113は樹脂製である。凹凸部の側面は嵌合位置決めが容易なテーパ面となっている。これにより、半導体モジュール100に対する固定部材112の位置決めが容易となり、半導体モジュール100の横ずれを防止することができ、半導体モジュール100と固定部材112との間の熱抵抗を低減することができる。固定部材112は半導体モジュール100の反ヒートシンク側の金属放熱板106の端子を兼ねることもできる。
【0102】
なお、半導体モジュール100のヒートシンク側の金属放熱板とヒートシンク110との接触にもこの凹凸嵌合構造を用いることができる。ただし、この場合には、半導体モジュール100のヒートシンク側の金属放熱板はヒートシンクと同一電位(通常は接地電位)とされることが好ましい。
【0103】
【実施例9】
他の実施例を図12を参照して以下に説明する。
【0104】
この実施例では、ヒートシンク110は半導体モジュール100の樹脂モールド部109に接して半導体モジュール100の横ずれを規制するストッパ1101が設けられている。これにより、電気自動車のような高振動環境においても半導体モジュールがヒートシンク又は付勢保持部材に対して横ずれすることがなく、信頼性を向上することができる。また、このストッパ1101の側面をテーパ面(斜面)としているので、半導体モジュール100の位置決めが容易となる。
【0105】
(変形態様)
上記変形態様では、ヒートシンク110にストッパを設けたが、固定部材112にストッパを設けて半導体モジュール100の横ずれを防止してもよい。この場合、ストッパの側面をテーパ面(斜面)とすることにより、半導体モジュール100の位置決めが容易となる。
【0106】
【実施例10】
本発明のインバータ装置の他の実施例を図13、図14を参照して説明する。図13はU相部分の部分平面図であり、図14は図13のA視側面図である。
【0107】
ヒートシンク110は、内部に冷却流路が形成された水冷構造の金属板からなり、たとえば、ダイカスト法などで形成されている。100はカード型半導体モジュールである。カード型半導体モジュール100の構造は実施例1で説明したとおりである。
【0108】
カード型半導体モジュール(半導体モジュールともいう)100は、固定部材(付勢保持部材)112の上からスクリュ113を締結することにより取り外し可能に固定されており、固定部材(付勢保持部材)112は半導体モジュール100をヒートシンク110の上面へ押し付けている。下アームの半導体モジュール200は、半導体モジュール100と全く同一構成の半導体モジュールであり、図13において半導体モジュール100に対し水平に180度回転させた状態で、半導体モジュール100と同じくヒートシンク110に押し付けられるように固定されている。
【0109】
平滑コンデンサ28は、半導体モジュール100、200に隣接してヒートシンク110上にその底面を接触させるように固定されている。111+は正の直流入力バスバー、111−は負の直流入力バスバーであり、半導体モジュール100及び200の直流入力端子101、202と平滑コンデンサ28の正および負とそれぞれ電極を接続している。1111は正と負の直流入力バスバ111+と111−を電気的に絶縁するために挟んでいるインシュレータである。また、121はU相の交流出力バスバーであり、半導体モジュール100、200の交流出力端子102、201と3相交流モータ29を接続している。V相、W相についてもU相と同様であるので説明は省略する。
【0110】
コントローラ30は、ここでは図示していないが、半導体モジュールの上方にヒートシンクと略平行に配置され、各半導体モジュールの信号電極108や208などと接続されている。
【0111】
半導体モジュール100、200とヒートシンク110の接触面115、半導体モジュール100、200と付勢保持部材112の接触面116は、熱伝導性が良くかつ電気絶縁可能な部材、例えばシリコン系の放熱シートを挟んでいる。また、付勢保持部材112とヒートシンク110の接触面117にも熱伝導性の良い部材、例えばシリコン系の放熱シート、グリスなどを挟んでいる。付勢保持部材が熱伝導性の良い樹脂などの絶縁部材であれば、接触面116にはさむ熱伝導部材に電気絶縁性は必要ない。コンデンサの底面とヒートシンクの接触面についても同様に熱伝導性の良い部材を挟んでも良い。
【0112】
図13ではU相しか図示していないが、V相、W相もこの図の横に同様構成で並置することで簡単に三相インバータを構成できる。
【0113】
その他の構成は実施例1と同じである。この実施例によれば、次に作用効果を奏することができる。
【0114】
まず、半導体モジュール100〜600の2つの主面のうち、熱抵抗の小さいドレイン領域側の主面を冷却性能の高いヒートシンク110へ向けて押し付ける姿勢で、半導体モジュール100〜600をヒートシンク110に実装しているため、放熱性が向上し、半導体素子の一層の冷却性向上を図ることができる。
【0115】
次に、図2、図13に示すように、半導体モジュール100のドレイン電極端子(正の直流電源端子)101を、そのソース電極端子(交流出力端子)102と長方形の平行二辺の対角方向の一対の一半部に略回転対称に配置し、信号端子108をこの平行二辺の対角方向の一対の他半部の一方(図2では、ドレイン電極端子101側の辺の他半部)に配置しているので、三相インバータの6つのアームのスイッチング素子を1種類のカードモジュールによって無理なく高密度に配置することができ、インバータをコンパクト化することができる。
【0116】
図13を参照して更に詳しく説明すると、U相の上アームの半導体モジュール100と下アームの半導体モジュール200とは、半導体モジュール100に対して半導体モジュール200を同一平面にて180度回転させて半導体モジュール100に隣接させれば実現することができる。この半導体モジュール100,200のペアの互いに対面する互いに平行な一対の長辺では、図13中下半分に半導体モジュール100から端子102が突出し、図13中上半分に半導体モジュール200から端子202が突出している。これらはソース電極端子である。これら端子102,202は重ならないので、両半導体モジュール100,200間の距離を短縮することができ、高密度実装できるわけである。これらは、他の相の半導体モジュール300と400のペア、500と600のペアでも同じである。
【0117】
また、正の直流入力バスバー111+と負の直流入力バスバー111−とを、半導体モジュール100の正の直流電源端子101、負の直流電源端子202まで互いに重ねて延設することができるので、両バスバー111+、111−間の配線インダクタンスを相互誘導効果により低減できる。その結果、半導体素子22、23のスイッチングに応じてバスバー111+、111−に重畳するサージ電圧を低減することができる。
【0118】
次に、この実施例では、図15に示すように、ヒートシンク110の内部に水冷冷却流路150が設けられている。120は例えばシリコン系の電気絶縁性が高い良熱伝導部材である。付勢保持部材112の脚部1122の先端には、柱状の突部1123が突設されており、突部1123は、ヒートシンク110の上面に開口されて水冷冷却流路150に達する孔に圧入されている。
【0119】
水冷冷却流路150内に突出する突部1123の先端の長さを長くすることで、水冷冷却流路150の冷却水がこの突部1123を良好に冷却することができる。その結果、ヒートシンク110と付勢保持部材112との間の熱抵抗を小さくできる。また、スクリュ113を省略することもできる。ただしこの場合は機械的に取り外し可能である特徴は失われる。
【0120】
また、図16に示すように、突部1123の先端を水冷冷却流路150内に突出しない長さに設定しても良い。この場合、図5に比べて若干ヒートシンク110と付勢保持部材112間の熱抵抗は増加するが、圧入部の隙間から冷却水が漏出する可能性も排除できる利点がある。 その他、付勢保持部材112の両側の突部1123間を連通する冷却水通路を、付勢保持部材112内に設けても良い。このようにすれば、冷却水は半導体モジュール100の両側を流れることができ、優れた冷却効果を実現することができる。
【図面の簡単な説明】
【図1】本発明の電力用半導体装置を適用した電気自動車の走行モータ駆動制御用の三相インバータ回路装置の回路図である。
【図2】(a)は図1に示す半導体モジュールの分解斜視図である。(b)は図1に示す半導体モジュールの斜視図である。
【図3】図1に示す半導体モジュールの斜視図である。
【図4】図1に示すインバータ回路装置の要部平面図である。
【図5】図4に示すインバータ回路装置の側面図である。
【図6】図1に示す半導体モジュールの挟圧固定構造を示す側面図である。
【図7】本発明の他実施例としての実施例3の半導体モジュール挟圧固定構造を示す側面図である。
【図8】本発明の他実施例としての実施例4の半導体モジュール挟圧固定構造を示す側面図である。
【図9】本発明の他実施例としての実施例6の半導体モジュール挟圧固定構造を示す側面図である。
【図10】本発明の他実施例としての実施例7の半導体モジュール挟圧固定構造を示す側面図である。
【図11】本発明の他実施例としての実施例8の半導体モジュール挟圧固定構造を示す側面図である。
【図12】本発明の他実施例としての実施例9の半導体モジュール挟圧固定構造の一部を示す側面図である。
【図13】本発明の他実施例としての実施例10のインバータ回路装置の要部平面図である。
【図14】図13に示すインバータ回路装置の側面図である。
【図15】図13に示す半導体モジュールの挟圧固定構造を示す側面図である。
【図16】図15の変形態様を示す側面図である。
【符号の説明】
100 半導体モジュール
110 ヒートシンク
112 固定部材(付勢保持部材)
200 半導体モジュール

Claims (18)

  1. 電力用半導体素子チップを挟んで金属放熱板が両面に配設されてなる半導体モジュールと、
    前記半導体モジュールの前記金属放熱板に接して配置されたヒートシンクと、
    前記半導体モジュールの反ヒートシンク側の前記金属放熱板を付勢して前記半導体モジュールのヒートシンク側の前記金属放熱板を前記ヒートシンクの表面に押しつけるとともに前記反ヒートシンク側の前記金属放熱板から吸熱する良熱伝導性の付勢保持部材と、
    を備え、
    前記付勢保持部材は、前記半導体モジュールを押圧付勢する梁部と、前記梁部の両端からヒートシンク側に突出する少なくとも一対の脚部とを有することを特徴とする電力用半導体装置。
  2. 請求項1記載の電力用半導体装置において、
    前記付勢保持部材の前記脚部のうち、前記半導体モジュールの厚さに等しい部分の熱膨張率は、前記電力用半導体素子チップの両側の前記金属放熱板及び前記電力用半導体素子チップの平均熱膨張率に所定誤差範囲内で一致することを特徴とする電力用半導体装置。
  3. 請求項1又は2記載の電力用半導体装置において、
    前記付勢保持部材と前記ヒートシンクとの間に介設される軟質かつ良熱伝導性の軟質伝熱部材を有することを特徴とする電力用半導体装置。
  4. 請求項1乃至3のいずれか記載の電力用半導体装置において、
    前記付勢保持部材と前記ヒートシンクとの間に介設される薄肉の絶縁部材を有することを特徴とする電力用半導体装置。
  5. 請求項1乃至4のいずれか記載の電力用半導体装置において、
    前記半導体モジュールの前記反ヒートシンク側の金属放熱板と前記付勢保持部材との間、及び、前記半導体モジュールの前記ヒートシンク側の金属放熱板と前記ヒートシンクとの間に介設される薄肉の絶縁部材を有することを特徴とする電力用半導体装置。
  6. 請求項1乃至5のいずれか記載の電力用半導体装置において、
    前記ヒートシンクは、内部に冷却流体通路を有し、
    前記付勢保持部材は、前記ヒートシンクの前記冷却流体通路に連通する内部冷却通路を有することを特徴とする電力用半導体装置。
  7. 請求項1記載の電力用半導体装置において、
    前記半導体モジュール上に重ねられた回路部品を有し、
    前記付勢保持部材は、前記半導体モジュール及び回路部品をまとめて前記ヒートシンクに押し付けることを特徴とする電力用半導体装置。
  8. 請求項7記載の電力用半導体装置において、
    前記半導体モジュールの反ヒートシンク側の前記金属放熱板は、前記回路部品の端子に直接接することを特徴とする電力用半導体装置。
  9. 請求項7又は8記載の電力用半導体装置において、
    前記付勢保持部材の前記脚部のうち、前記半導体モジュール及び前記回路部品の厚さの合計に等しい部分の熱膨張率は、前記電力用半導体素子チップの両側の前記金属放熱板、前記電力用半導体素子チップ及び前記回路部品の前記厚さ方向の平均熱膨張率に所定誤差範囲内で一致することを特徴とする電力用半導体装置。
  10. 請求項7記載の電力用半導体装置において、
    前記半導体モジュールの反ヒートシンク側の前記金属放熱板と前記回路部品の端子との間に端子部材が介設されることを特徴とする電力用半導体装置。
  11. 請求項10記載の電力用半導体装置において、
    前記半導体モジュールは、インバータ回路の一部又は全部を構成し、
    前記回路部品は前記インバータ回路の正負直流端子間に並列接続される平滑コンデンサからなり、
    前記端子部材は、直流電源接続用のブスバーからなることを特徴とする電力用半導体装置。
  12. 請求項10又は11記載の電力用半導体装置において、
    前記付勢保持部材の前記脚部のうち、前記半導体モジュール、端子部材及び前記回路部品の厚さの合計に等しい部分の熱膨張率は、前記電力用半導体素子チップの両側の前記金属放熱板、前記電力用半導体素子チップ、前記端子部材及び前記回路部品の前記厚さ方向の平均熱膨張率に所定誤差範囲内で一致することを特徴とする電力用半導体装置。
  13. 請求項1記載の電力用半導体装置において、
    前記付勢保持部材は、互いに近接して配設された複数の前記半導体モジュールを一括付勢保持することを特徴とする電力用半導体装置。
  14. 請求項1記載の電力用半導体装置において、
    前記付勢保持部材の前記脚部は、湾曲形状を有し、前記半導体モジュールの厚さ方向の弾性率が前記付勢保持部材の素材の弾性率より増大されていることを特徴とする電力用半導体装置。
  15. 電力用半導体素子チップを挟んで金属放熱板が両面に配設されてなる半導体モジュールと、
    前記半導体モジュールの前記金属放熱板に接して配置されたヒートシンクと、
    前記半導体モジュールの反ヒートシンク側の前記金属放熱板を付勢して前記半導体モジュールのヒートシンク側の前記金属放熱板を前記ヒートシンクの表面に押しつけるとともに前記反ヒートシンク側の前記金属放熱板から吸熱する良熱伝導性の付勢保持部材と、
    を備え、
    前記ヒートシンクは、前記半導体モジュールの両側に隣接して突出する側壁部を有し、前記付勢保持部材は、金属薄板により形成されるとともに両端部が前記側壁部に固定されることを特徴とする電力用半導体装置
  16. 電力用半導体素子チップを挟んで金属放熱板が両面に配設されてなる半導体モジュールと、
    前記半導体モジュールの前記金属放熱板に接して配置されたヒートシンクと、
    前記半導体モジュールの反ヒートシンク側の前記金属放熱板を付勢して前記半導体モジュールのヒートシンク側の前記金属放熱板を前記ヒートシンクの表面に押しつけるとともに前記反ヒートシンク側の前記金属放熱板から吸熱する良熱伝導性の付勢保持部材と、
    を備え、
    同相の上、下のアームをなす一対の前記半導体モジュールが隣接配置されるとともに6個の半導体モジュールが各アームをなす三相インバータ回路を有し、
    前記電力用半導体素子チップの一対の主面の一方は、第一の前記金属放熱板を兼ねる第一の主電極端子に接続される領域と、信号端子に接続される領域とを有し、前記一対の主面の他方は、第二の前記金属放熱板を兼ねる第二の主電極端子に接続される領域とを有し、
    前記両主電極端子は、前記半導体モジュールの互いに平行な二辺の互いに対角をなす一半部から個別に前記半導体モジュールの側方へ突出し、前記信号端子は、前記二辺の互いに対角をなす他半部の一方から前記半導体モジュールの側方へ突出することを特徴とする電力用半導体装置。
  17. 電力用半導体素子チップを挟んで金属放熱板が両面に配設されてなる半導体モジュールと、
    前記半導体モジュールの前記金属放熱板に接して配置されたヒートシンクと、
    前記半導体モジュールの反ヒートシンク側の前記金属放熱板を付勢して前記半導体モジュールのヒートシンク側の前記金属放熱板を前記ヒートシンクの表面に押しつけるとともに前記反ヒートシンク側の前記金属放熱板から吸熱する良熱伝導性の付勢保持部材と、
    を備え、
    前記付勢保持部材の両端部は、前記ヒートシンクに圧入されて固定されていることを特徴とする電力用半導体装置。
  18. 請求項17記載の電力用半導体装置において、
    前記付勢保持部材の両端部は、前記ヒートシンク内の冷却液通路に露出していることを特徴とする電力用半導体装置。
JP2000353257A 2000-04-19 2000-11-20 電力用半導体装置 Expired - Lifetime JP3578335B2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000353257A JP3578335B2 (ja) 2000-06-29 2000-11-20 電力用半導体装置
EP01109620.3A EP1148547B8 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP10006258.7A EP2234154B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP10006259.5A EP2244289B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
EP06022504.2A EP1742265B1 (en) 2000-04-19 2001-04-18 Coolant cooled type semiconductor device
US09/837,382 US6542365B2 (en) 2000-04-19 2001-04-19 Coolant cooled type semiconductor device
US10/314,139 US6845012B2 (en) 2000-04-19 2002-12-09 Coolant cooled type semiconductor device
US10/756,340 US7027302B2 (en) 2000-04-19 2004-01-14 Coolant cooled type semiconductor device
US10/946,210 US7106592B2 (en) 2000-04-19 2004-09-22 Coolant cooled type semiconductor device
US11/325,331 US7250674B2 (en) 2000-04-19 2006-01-05 Coolant cooled type semiconductor device
US11/452,328 US7248478B2 (en) 2000-04-19 2006-06-14 Coolant cooled type semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-195887 2000-06-29
JP2000195887 2000-06-29
JP2000353257A JP3578335B2 (ja) 2000-06-29 2000-11-20 電力用半導体装置

Publications (2)

Publication Number Publication Date
JP2002083915A JP2002083915A (ja) 2002-03-22
JP3578335B2 true JP3578335B2 (ja) 2004-10-20

Family

ID=26594953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353257A Expired - Lifetime JP3578335B2 (ja) 2000-04-19 2000-11-20 電力用半導体装置

Country Status (1)

Country Link
JP (1) JP3578335B2 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005217072A (ja) 2004-01-28 2005-08-11 Renesas Technology Corp 半導体装置
JP2006156979A (ja) * 2004-10-27 2006-06-15 Brother Ind Ltd 電子部品搭載基板、電子部品搭載基板用の伝熱部材、及び、液体噴射ヘッド
JP4396628B2 (ja) * 2005-12-26 2010-01-13 株式会社デンソー バスバー接続型電子回路装置及びその組み付け方法
JP4694514B2 (ja) 2007-02-08 2011-06-08 トヨタ自動車株式会社 半導体素子の冷却構造
JP2008270528A (ja) * 2007-04-20 2008-11-06 Ihi Corp 半導体モジュールの構造
JP4400662B2 (ja) 2007-09-12 2010-01-20 株式会社デンソー 電子回路部品実装構造
JP4800290B2 (ja) * 2007-12-10 2011-10-26 ルネサスエレクトロニクス株式会社 半導体装置
JP5549517B2 (ja) * 2010-10-06 2014-07-16 株式会社デンソー 電力変換装置
KR101454142B1 (ko) 2011-02-10 2014-10-22 도요타 지도샤(주) 전력 변환 장치
KR102030855B1 (ko) * 2011-05-03 2019-10-10 비쉐이 데일 일렉트로닉스, 엘엘씨 전기소자용 히트 스프레더
JP2013070026A (ja) 2011-09-08 2013-04-18 Rohm Co Ltd 半導体装置、半導体装置の製造方法、半導体装置の実装構造、およびパワー用半導体装置
JP5528415B2 (ja) * 2011-11-21 2014-06-25 三菱電機株式会社 半導体装置
JP6138500B2 (ja) * 2013-01-30 2017-05-31 株式会社 日立パワーデバイス パワー半導体装置
JP6060747B2 (ja) * 2013-03-13 2017-01-18 株式会社デンソー 電力変換装置
WO2014192298A1 (ja) * 2013-05-30 2014-12-04 富士電機株式会社 半導体装置
JP6265260B2 (ja) * 2014-02-28 2018-01-24 株式会社村田製作所 電源モジュール
JP2016007108A (ja) * 2014-06-20 2016-01-14 三菱電機株式会社 制御部一体型回転電機
JP6458444B2 (ja) 2014-10-21 2019-01-30 株式会社デンソー 電力変換装置
US9978670B2 (en) 2014-11-27 2018-05-22 Mitsubishi Electric Corporation Semiconductor module and semiconductor driving device
US11367669B2 (en) 2016-11-21 2022-06-21 Rohm Co., Ltd. Power module and fabrication method of the same, graphite plate, and power supply equipment
JP7025181B2 (ja) * 2016-11-21 2022-02-24 ローム株式会社 パワーモジュールおよびその製造方法、グラファイトプレート、および電源装置
JP6368763B2 (ja) * 2016-12-05 2018-08-01 日立オートモティブシステムズ株式会社 電力変換装置
JP6636996B2 (ja) * 2017-07-11 2020-01-29 ファナック株式会社 Ldモジュール冷却装置及びレーザ装置
JP6852649B2 (ja) * 2017-10-24 2021-03-31 株式会社オートネットワーク技術研究所 回路構成体及び回路構成体の製造方法
DE102018110361A1 (de) * 2018-04-30 2019-10-31 Hanon Systems Montagebaugruppe mit bedrahteten elektronischen Leistungsbauteilen und deren Zusammenbau mit einem Motorgehäuse
JP2020072101A (ja) * 2018-10-29 2020-05-07 京セラ株式会社 パワーユニット、パワーユニットの製造方法、パワーユニットを有する電気装置及びヒートシンク

Also Published As

Publication number Publication date
JP2002083915A (ja) 2002-03-22

Similar Documents

Publication Publication Date Title
JP3578335B2 (ja) 電力用半導体装置
JP5350456B2 (ja) 電力変換装置
US7106592B2 (en) Coolant cooled type semiconductor device
US7019395B2 (en) Double-sided cooling type semiconductor module
US7687901B2 (en) Heat dissipating fins opposite semiconductor elements
JP4857017B2 (ja) 電力変換装置
US20050012206A1 (en) Semiconductor unit with cooling system
US8604608B2 (en) Semiconductor module
JP7187992B2 (ja) 半導体モジュールおよび車両
WO2005119896A1 (ja) インバータ装置
JP2004128099A (ja) 水冷インバータ
US11864323B2 (en) Driver board assemblies and methods of forming a driver board assembly
JPWO2015194023A1 (ja) パワーモジュール装置及び電力変換装置
US6295201B1 (en) Bus bar having embedded switching device
JP4595175B2 (ja) 間接冷却型回路装置
JP2021082804A (ja) 半導体モジュール
JP2015053775A (ja) 半導体電力変換装置
KR102063726B1 (ko) 모터 일체형 인버터 패키지 및 이에 적용되는 일체형 인버터
WO2023017570A1 (ja) 半導体装置及びインバータユニット
US20240206134A1 (en) Power electronic arrangement for an electric machine and motor vehicle
JP2013004850A (ja) 半導体装置及びその製造方法
CN117501819A (zh) 电气设备

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040708

R150 Certificate of patent or registration of utility model

Ref document number: 3578335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term