JP3575519B2 - Injection molding machine and its injection control method - Google Patents

Injection molding machine and its injection control method Download PDF

Info

Publication number
JP3575519B2
JP3575519B2 JP06433698A JP6433698A JP3575519B2 JP 3575519 B2 JP3575519 B2 JP 3575519B2 JP 06433698 A JP06433698 A JP 06433698A JP 6433698 A JP6433698 A JP 6433698A JP 3575519 B2 JP3575519 B2 JP 3575519B2
Authority
JP
Japan
Prior art keywords
screw
mold
molten resin
injection
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06433698A
Other languages
Japanese (ja)
Other versions
JPH11245271A (en
Inventor
利一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Machinery and Metal Co Ltd
Original Assignee
Toyo Machinery and Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Machinery and Metal Co Ltd filed Critical Toyo Machinery and Metal Co Ltd
Priority to JP06433698A priority Critical patent/JP3575519B2/en
Publication of JPH11245271A publication Critical patent/JPH11245271A/en
Application granted granted Critical
Publication of JP3575519B2 publication Critical patent/JP3575519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は射出成形機の射出制御方法に関するものである。
【0002】
【従来の技術】
図1は電動式の射出成形機の要部の概略構造を示す断面図である。インラインスクリュ式射出成形機の運転は次のように行われる。回転用サーボモータ(11)を作動させスクリュ(4)を回転させると、原料樹脂(3)は原料供給ホッパ(16)より加熱筒(13)内に引き込まれる。引き込まれた原料樹脂(3)は加熱筒(13)の外周に巻着されているヒータ(14)によって加熱され、スクリュ(4)の回転による剪断とによって溶融混練され、可塑化されながら加熱筒(13)前端部、すなわちノズル(17)方向に送られて行く。このとき、スクリュ(4)は、反力を受けて図の右方向に後退する。
【0003】
金型(1)に接したノズル(17)部は前回の射出により形成されたキャビティ内の成形品により塞がれているため、スクリュ(4)の回転により前方に送られた溶融樹脂はスクリュ前方に貯溜していくことになる。そして、この前方に貯溜した溶融樹脂の増加により発生する樹脂圧のためにスクリュ(4)は次第に後退する。
【0004】
一般的にはスクリュ(4)の後退量(ストローク)を検出することにより、加熱筒(13)の前端側に溜まった溶融樹脂の量を計量する。溶融樹脂の計量により溶融樹脂量が成形に適した量であることがわかると、スクリュ(4)の回転を停止し、少し後退させて加熱筒(13)内の圧力を一旦下げる。これは、前回の射出により形成された成形品を取り出すために型開きする際に、加熱筒(13)内の溶融樹脂がノズル(17)より漏れ出すのを防止するためである。
【0005】
冷却が完了して型開きして成形品を取り出した後、型を閉じ、加熱筒内に貯溜した溶融樹脂を射出する。金型のキャビティ容積(成形品体積に相当)が、加熱筒に蓄えることのできる容積に近い場合は安定した成形はできなかった。現実的には、加熱筒に蓄え得る最大値(理論射出能力)の80%以上の成形品は射出成型することは非常に困難であった。
【0006】
このような場合はスクリュを大径化し容積を大きくすることにより対応することもできるが、装置のコスト等の点で問題がある。更に、スクリュを大径化すると射出圧力が低下するという弊害が生じる。
【0007】
更に射出容量が増加しても、投影面積の大きな成形品の場合は、型締め力が不足する事態となり、型締め装置の強力化が必要となるため、コストが更に上昇してしまう。
【0008】
又、高速で充填されるために空気の巻き込みが生じ、型内空気や樹脂から発生するガスの排出も不確実となりやすく、ヤケやボイド,シルバーの発生が生じやすい。
【0009】
従来の射出制御方法では所定量の溶融樹脂が加熱筒内に計量してから実際に射出するまでに、上記したような加熱筒内の減圧や金型の開閉等で時間を要する。そのため樹脂の流動性が低下しやすいという問題もある。
【0010】
【発明が解決しようとする課題】
そこで、射出成形するにあたり、加熱筒に蓄えられる溶融樹脂の容量以上の大きさの射出成形品を成形することができ、しかも加熱筒内での溶融樹脂のヤケや、成形品のシルバー等をなくすことのできる方法が求められている。
【0011】
【課題を解決するための手段】
本発明の請求項1記載の射出成形機の射出制御方法は、加熱筒の前端部が金型と接続された状態でスクリュの回転により金型のキャビティ内に溶融樹脂を充填していき、スクリュの背圧が予め設定された値となったときにスクリュを前進させて加熱筒内の溶融樹脂を金型のキャビティ内に射出充填させる工程へ移行させることを特徴とする。
【0012】
これによれば低速射出として、スクリュに適当な背圧を加えて回転させることにより充填させ、充填が適度に進んだ段階でスクリュを前進させ金型キャビティ内への充填,加圧を完了させ、保圧を加えることができる。
【0013】
適切な背圧を加えた状態でのスクリュ回転により金型キャビティへ溶融樹脂をある程度充填させるので、加熱筒の容積がキャビティの容積よりも小さくてもキャビティ内に溶融樹脂を満たすことができる。したがって、スクリュ径を必要以上に大きくすることもなく、設備費用も増大することもない。
【0014】
そして、溶融樹脂が加熱筒内に滞留している時間は短く、長時間の加熱による熱履歴の影響も少ない。更にスクリュの位置がほとんど変化しないで可塑化できるので、スクリュ回転量の違い,加熱筒に接触する加熱時間の違いによる可塑化・混練むらも発生しにくい。
【0015】
キャビティには強い圧力がかからずに充填されていくため、型締め力は過度に強くする必要はない。又、低速で充填されるために空気の巻き込みや剪断による内部応力も少なくでき、型内空気や樹脂から発生するガスの排出も確実となり、ヤケやボイド,シルバーの発生も大幅に減少すると共に、成形品の収縮による歪みも緩和される。
【0016】
更に、スクリュの回転停止と同時にスクリュ前進による射出圧を加え充填し、その後保圧へ進むようにしているので、溶融樹脂の流動性・圧力の伝達がよく、転写性の向上が図られる。
【0017】
請求項2記載の射出成形機の射出制御方法は、加熱筒の前端部が金型と接続された状態でスクリュの回転により金型のキャビティ内に溶融樹脂を充填していき、スクリュの後退速度が予め設定された値以上になったときにスクリュを前進させて加熱筒内の溶融樹脂を金型のキャビティ内に射出充填させる工程へ移行させることを特徴とする。
【0018】
スクリュの回転による低速充填からスクリュの前進による射出充填に切り替えるタイミングをスクリュの後退速度で制御する。その他は、基本的に上記請求項1の射出制御方法と同様の作用により、同様の効果が得られる。
【0020】
請求項3および4は前記方法を実施するための射出成形機である。
【0021】
【発明の実施の形態】
以下、本発明を好適な実施例を用いて説明する。
[実施例1]
本発明の射出制御方法は電動式の射出成形機でも、油圧式の射出成形機でも適用することができる。図1は電動式の射出成形機の要部の概略構造を示す断面図であり、射出機構部(a)と金型機構部(b)とに大別することができる。
【0022】
射出機構部(a)は、スクリュ(4)を回転及び前進・後退させるための駆動機構部(10)、スクリュ(4)を回転させる回転用サーボモータ(11)、スクリュ(4)を前進・後退させる射出用サーボモータ(12)、原料樹脂混練及び射出用のスクリュ(4)、スクリュ(4)が進退・回転可能収納されている加熱筒(13)、加熱筒(13)に巻設されたヒータ(14)、スクリュ(4)と駆動機構部(10)との間に配設され、スクリュ(4)に掛かる圧力を検出している射出用ロードセル(15)、原料供給ホッパ(16)並びに例えばロータリエンコーダのようなもので構成されている射出位置検出器とで構成されている。(17)は加熱筒(13)前端部のノズル部である。金型機構部(b)は2つの金型(1a),(1b)を有し、金型(1a),(1b)間にはキャビティ(2)が形成される。
【0023】
(8)は制御装置で、本射出成形機(A)全体の制御を司るものであり、その中の1つの機能として、射出用ロードセル(15)やロータリエンコーダからの信号その他各種センサからの信号を得て回転用サーボモータ(11)や射出用サーボモータ(12)の制御を行うようになっている。(9)はモニタ用のティスプレイであり、制御に必要な画面がオペレータの選択によって次々に表示するようになっている。
【0024】
図2は運転開始からの時間に伴う背圧の変化を示した図である。運転開始直後の初期段階では、キャビティ(2)内には樹脂が充填されていないので、加熱筒(13)内の溶融樹脂は大きな抵抗を受けることなくキャビティ(2)内に充填されていく。そのためスクリュ(4)に掛かる樹脂の圧力は小さい。そして、ある程度キャビティへの溶融樹脂の充填が進むとスクリュ(4)の背圧が上昇し始める。
【0025】
スクリュ(4)の背圧は射出用ロードセル(15)により検出される。適度に充填された際の背圧をあらかじめ設定しておき、背圧が所定の設定圧に達したことを検出した時に回転用サーボモータ(11)を停止し、射出用サーボモータ(12)を作動させることによりスクリュ(4)を前進させて加熱筒(13)のノズル(17)先端から溶融樹脂をキャビティ(2)に射出して充填を完了させる。そして、その状態で成形品がある程度固化するまで保圧を加えるのは従来と同様である。
【0026】
キャビティ(2)へスクリュ(4)の回転により溶融樹脂を充填し、適当な量となったことを検出して、スクリュ(4)前進による射出充填へ移行するように制御するので、加熱筒(13)の容量がキャビティ(2)の容積よりも小さくてもキャビティ(2)内を溶融樹脂で満たすことができ、適切な時点で射出圧(高圧)を加えることができる。
【0027】
そして、スクリュ(4)の回転による充填段階では、溶融樹脂は強い圧力を受けることなく充填されるので型締め力の強力化もほとんど必要なく、スクリュ径の拡大の必要もないため、設備費等を増大させることなく、大きな容積の成形品を射出成形することができる。
【0028】
又、スクリュ(4)の回転による充填段階では、溶融樹脂は加熱筒(13)内にとどまることなく連続的にキャビティ(2)に充填されていくため、長時間の加熱による熱履歴の影響もなく、ヤケ等の材料劣化が起こりにくい。そして、この時スクリュ位置の変化が少ない(スクリュ有効長がほぼ一定である)ために可塑化・混練が安定する。
【0029】
又、ゆっくりと充填されるため空気の巻き込みも少なく、型内残留空気や樹脂から発生するガスの抜けも良くなり、ヤケやボイド、シルバーが発生しにくくなるとともに溶融樹脂の充填密度も若干高くなり、成形品の収縮率が小さくなるため、歪みやソリも緩和される。更に、低速充填後の射出圧を加える時間も距離も短いため、充填完了時のサージ圧も小さくできるので溶融樹脂の内部応力が緩和され、ソリが軽減される。
【0030】
本発明に用いた射出成形機は、構造自体は自体は通常の射出成形機と変わらないので、設定(プログラム)を変更することにより通常の射出成形に用いることもできる。このことは下記の実施例2においても同様である。
【0031】
[実施例2]
実施例1では背圧の変化(増加)を検出してスクリュ前進による射出充填に切り替えたが、本実施例ではスクリュ前進による射出充填への切り替えをスクリュの後退速度の変化(増加)により制御している。すなわち、スクリュの後退速度が所定速度以上になったことを検出してスクリュ前進による射出充填に切り替えている。それ以外は実施例1と同様である。
【0032】
図3は運転開始からの時間に伴うスクリュ後退速度の変化を示した図である。初期の段階では溶融樹脂はキャビティ(2)に大きな抵抗を受けることなく次々と充填されていくので、スクリュ(4)には圧力があまりかからず、スクリュ(4)はほとんど後退しない。したがって、初期段階では後退速度は小さい。しかしキャビティ(2)への溶融樹脂の充填がある程度進むと、充填された溶融樹脂の金型内での流動抵抗が大きくなり背圧とのバランスで、加熱筒(13)前端部に溶融樹脂が貯溜し始める。
【0033】
これにより、スクリュには溶融樹脂の圧力がかかり、時間の経過と共に圧力は増加し、スクリュの後退速度も増加する。予め適当な充填量の時のスクリュ後退速度を求めておき、その速度を設定しておく。そして、スクリュ(4)の後退速度が設定値に達したときに、スクリュ前進による射出充填へと移行するよう制御する。
【0036】
背圧が高い場合には背圧によりスクリュの変位が少なくなるのでスクリュの後退速度や後退位置を検出するよりも、実施例1のように背圧を検出する方式の方が適用が容易である。反対に、背圧が低い場合にはスクリュの変位が大きく背圧の変化が少なくなるので実施例2のようにスクリュの後退速度を検出する方が適用が容易である。
【0037】
なお、スクリュ前進による射出充填への移行をタイマーで制御し、予め設定した時間の経過後に射出に切り替える方法も考えられるが、キャビティに溶融樹脂がある程度充填されるのに要する時間は一定ではなく、樹脂の材質や原料となる樹脂ベレットの形状や加熱筒の温度等により大きく変化し、不安定である。したがって、タイマーにより充填を射出に切り替えるようにすると、切り替えが早過ぎてキャビティに十分な量の樹脂が充填できず、製品にヒケや欠損部分(樹脂がまわっていない部分)を生じることがある。したがって、タイマーによる切り替えの制御は不適当である。
【0038】
又、上記の各実施例では図1に示したように駆動機構部(10)としてナット(10a)が固定されており、射出用サーボモータでネジ(10b)を回すことによりスクリュ(4)を押出すような例を示したが、図4に示すように駆動機構部としてネジ(10b)が固定され、ナット(10a)を射出用サーボモータで回転させてスクリュ(4)を押出すナット回転駆動方式の射出成形機に適応しても同様の効果が得られる。
【0039】
【発明の効果】
以上述べたように本発明により、射出成形するにあたり、加熱筒に蓄えられる溶融樹脂の容量以上の大きさの射出成形品を成形することができ、しかも加熱筒内での溶融樹脂のヤケやシルバー、成形品の欠陥をなくすことのできる射出成形機とその射出制御方法を提供することができた。
【図面の簡単な説明】
【図1】射出成形機の要部の概略構造を示す断面図。
【図2】運転開始からの時間に伴う背圧の変化を示した図。
【図3】運転開始からの時間に伴うスクリュ後退速度の変化を示した図。
【図4】ナット回転駆動方式の射出成形機の要部の概要を示した図。
【符号の説明】
(A) 射出成形機
(a)射出機構部
(b)金型機構部
(1) 金型
(2) 金型キャビティ
(3) 樹脂
(4) スクリュ
(8) 制御装置
(11) 回転用サーボモータ
(12) 射出用サーボモータ
(13) 加熱筒
(14) ヒータ
(15) 射出用ロードセル
(16) 原料供給ホッパ
(17) ノズル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an injection control method for an injection molding machine.
[0002]
[Prior art]
FIG. 1 is a sectional view showing a schematic structure of a main part of an electric injection molding machine. The operation of the in-line screw type injection molding machine is performed as follows. When the screw (4) is rotated by operating the rotation servomotor (11), the raw material resin (3) is drawn into the heating cylinder (13) from the raw material supply hopper (16). The drawn-in resin (3) is heated by a heater (14) wound around the outer periphery of a heating tube (13), melted and kneaded by the rotation of a screw (4), and plasticized while being heated. (13) It is fed toward the front end, that is, toward the nozzle (17). At this time, the screw (4) retreats to the right in the drawing due to the reaction force.
[0003]
Since the nozzle (17) in contact with the mold (1) is closed by the molded product in the cavity formed by the previous injection, the molten resin sent forward by the rotation of the screw (4) is not screwed. It will be stored forward. The screw (4) gradually retreats due to the resin pressure generated by the increase of the molten resin stored in front of the screw.
[0004]
Generally, the amount of molten resin accumulated on the front end side of the heating cylinder (13) is measured by detecting the retreat amount (stroke) of the screw (4). When the amount of the molten resin is found to be an amount suitable for molding by measuring the molten resin, the rotation of the screw (4) is stopped, and the screw (4) is slightly retracted to temporarily lower the pressure in the heating cylinder (13). This is to prevent the molten resin in the heating cylinder (13) from leaking from the nozzle (17) when the mold is opened to take out the molded product formed by the previous injection.
[0005]
After the cooling is completed, the mold is opened and the molded product is taken out, the mold is closed, and the molten resin stored in the heating cylinder is injected. When the cavity volume of the mold (corresponding to the molded product volume) was close to the volume that could be stored in the heating cylinder, stable molding could not be performed. In practice, it is very difficult to perform injection molding of a molded product having a maximum value (theoretical injection capacity) of 80% or more that can be stored in the heating cylinder.
[0006]
Such a case can be dealt with by increasing the diameter of the screw and increasing the volume, but there is a problem in terms of the cost of the apparatus and the like. Further, when the diameter of the screw is increased, the injection pressure is reduced.
[0007]
Even if the injection capacity is increased, in the case of a molded product having a large projected area, the mold clamping force becomes insufficient, and the mold clamping device needs to be strengthened, which further increases the cost.
[0008]
Further, since the filling is performed at a high speed, entrainment of air occurs, and the discharge of air generated from the air in the mold and the resin tends to be uncertain, and burns, voids, and silver tend to occur.
[0009]
In the conventional injection control method, it takes a long time from the time when a predetermined amount of the molten resin is measured into the heating cylinder to the time when the molten resin is actually injected, due to the pressure reduction in the heating cylinder, the opening and closing of the mold, and the like. Therefore, there is also a problem that the fluidity of the resin tends to decrease.
[0010]
[Problems to be solved by the invention]
Therefore, when performing injection molding, it is possible to mold an injection molded product having a size larger than the capacity of the molten resin stored in the heating cylinder, and to eliminate burnt of the molten resin in the heating cylinder and silver of the molded product. There is a need for a way to do that.
[0011]
[Means for Solving the Problems]
In the injection control method for an injection molding machine according to the present invention, the molten resin is filled into the cavity of the mold by rotating the screw while the front end of the heating cylinder is connected to the mold. When the back pressure reaches a preset value, the screw is advanced to shift to the step of injecting and filling the molten resin in the heating cylinder into the cavity of the mold.
[0012]
According to this, as a low-speed injection, the screw is filled by applying an appropriate back pressure to the screw and rotating the screw. When the filling has progressed appropriately, the screw is advanced to complete the filling and pressurization in the mold cavity, Holding pressure can be applied.
[0013]
Since the molten resin is filled into the mold cavity to some extent by the rotation of the screw while applying an appropriate back pressure, the cavity can be filled with the molten resin even if the volume of the heating cylinder is smaller than the volume of the cavity. Therefore, the screw diameter is not increased unnecessarily, and the equipment cost is not increased.
[0014]
The time during which the molten resin stays in the heating cylinder is short, and the influence of the heat history due to long-time heating is small. Furthermore, since plasticization can be performed with almost no change in the screw position, uneven plasticization and kneading due to differences in the screw rotation amount and differences in the heating time in contact with the heating cylinder hardly occur.
[0015]
Since the cavity is filled without applying a strong pressure, the mold clamping force does not need to be excessively increased. In addition, since the filling is performed at a low speed, the internal stress due to air entrainment and shearing can be reduced, the gas generated from the air and resin in the mold can be reliably discharged, and the generation of burns, voids, and silver is greatly reduced. The distortion due to shrinkage of the molded product is also reduced.
[0016]
Furthermore, since the injection pressure by the screw advance is added and filled at the same time as the screw rotation is stopped, and then the pressure is maintained, the fluidity and pressure of the molten resin are transmitted well, and the transfer property is improved.
[0017]
The injection control method for an injection molding machine according to claim 2, wherein the molten resin is filled into the cavity of the mold by rotating the screw while the front end of the heating cylinder is connected to the mold, and the retreat speed of the screw is increased. When the value becomes equal to or greater than a preset value, the screw is advanced to shift to a step of injecting and filling the molten resin in the heating cylinder into the cavity of the mold.
[0018]
The timing for switching from low-speed filling by screw rotation to injection filling by screw advancement is controlled by the screw retreat speed. Other than that, basically, the same effect can be obtained by the same operation as the injection control method of the first aspect.
[0020]
Claims 3 and 4 are injection molding machines for performing the method.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described using preferred embodiments.
[Example 1]
The injection control method of the present invention can be applied to both an electric injection molding machine and a hydraulic injection molding machine. FIG. 1 is a sectional view showing a schematic structure of a main part of an electric injection molding machine, which can be roughly classified into an injection mechanism (a) and a mold mechanism (b).
[0022]
The injection mechanism (a) includes a drive mechanism (10) for rotating and advancing and retreating the screw (4), a rotation servomotor (11) for rotating the screw (4), and advancing and moving the screw (4). Injection servo motor (12) for retreating, screw (4) for kneading and injecting raw resin, screw (4) wound around heating cylinder (13) containing retractable and rotatable housing, heating cylinder (13) A heater (14), an injection load cell (15) disposed between the screw (4) and the drive mechanism (10) and detecting a pressure applied to the screw (4), and a raw material supply hopper (16). And an injection position detector constituted by, for example, a rotary encoder. (17) is a nozzle portion at the front end of the heating tube (13). The mold mechanism (b) has two molds (1a) and (1b), and a cavity (2) is formed between the molds (1a) and (1b).
[0023]
(8) is a control device which controls the entirety of the injection molding machine (A). One of the functions is a signal from an injection load cell (15), a signal from a rotary encoder and other signals from various sensors. Then, the rotation servomotor (11) and the injection servomotor (12) are controlled. (9) is a display for monitoring, in which screens necessary for control are displayed one after another by selection of an operator.
[0024]
FIG. 2 is a diagram showing a change in back pressure with time from the start of operation. At the initial stage immediately after the start of the operation, the resin is not filled in the cavity (2), so the molten resin in the heating cylinder (13) is filled into the cavity (2) without receiving a large resistance. Therefore, the pressure of the resin applied to the screw (4) is small. When the cavity is filled with the molten resin to some extent, the back pressure of the screw (4) starts to increase.
[0025]
The back pressure of the screw (4) is detected by the injection load cell (15). The back pressure at the time of appropriate filling is set in advance, and when it is detected that the back pressure has reached a predetermined set pressure, the rotation servomotor (11) is stopped and the injection servomotor (12) is turned off. By operating the screw (4), the molten resin is injected from the tip of the nozzle (17) of the heating cylinder (13) into the cavity (2) to complete the filling. In this state, the holding pressure is applied until the molded product is solidified to some extent, as in the conventional case.
[0026]
The cavity (2) is filled with the molten resin by rotation of the screw (4), and when it is detected that the molten resin has reached an appropriate amount, control is made to shift to injection and filling by advancing the screw (4). Even if the volume of 13) is smaller than the volume of the cavity (2), the cavity (2) can be filled with the molten resin, and the injection pressure (high pressure) can be applied at an appropriate time.
[0027]
In the filling step by rotating the screw (4), the molten resin is filled without receiving a strong pressure, so that almost no increase in the mold clamping force is required, and there is no need to increase the screw diameter. A large volume molded article can be injection-molded without increasing the size.
[0028]
In addition, in the filling stage by rotating the screw (4), the molten resin is continuously filled into the cavity (2) without staying in the heating tube (13). And material deterioration such as burns is unlikely to occur. At this time, the change in the screw position is small (the screw effective length is almost constant), so that the plasticization and kneading are stabilized.
[0029]
In addition, since it is filled slowly, there is little air entrapment, the escape of residual air in the mold and gas generated from the resin are improved, and burns, voids and silver are less likely to occur, and the filling density of the molten resin is slightly higher. Since the shrinkage of the molded product is reduced, distortion and warpage are also reduced. Furthermore, since the time and distance for applying the injection pressure after the low-speed filling are short, the surge pressure at the completion of the filling can also be reduced, so that the internal stress of the molten resin is reduced, and the warpage is reduced.
[0030]
Since the structure of the injection molding machine used in the present invention is not different from that of a normal injection molding machine, it can be used for normal injection molding by changing settings (programs). This is also true Oite in Example 2 below.
[0031]
[Example 2]
In the first embodiment, a change (increase) in the back pressure is detected to switch to injection and filling by screw advance. In this embodiment, switching to injection and filling by screw advance is controlled by a change (increase) in the screw retreat speed. ing. That is, it is detected that the retreat speed of the screw has become equal to or higher than the predetermined speed, and the mode is switched to injection filling by screw advance. Other than that is the same as the first embodiment.
[0032]
FIG. 3 is a diagram showing a change in the screw retreat speed with time from the start of operation. In the initial stage, the molten resin is filled one after another without receiving a large resistance in the cavity (2), so that the screw (4) does not receive much pressure and the screw (4) hardly retreats. Therefore, the retreat speed is low in the initial stage. However, when the filling of the molten resin into the cavity (2) progresses to some extent, the flow resistance of the filled molten resin in the mold increases, and the molten resin fills the front end of the heating cylinder (13) in balance with the back pressure. Start storing.
[0033]
As a result, the pressure of the molten resin is applied to the screw, the pressure increases with time, and the retreat speed of the screw also increases. A screw retreat speed at an appropriate filling amount is obtained in advance, and the speed is set. Then, when the retreat speed of the screw (4) reaches the set value, the control is made so as to shift to injection filling by screw advance.
[0036]
When the back pressure is high, the displacement of the screw is reduced by the back pressure. Therefore, the method of detecting the back pressure as in the first embodiment is easier to apply than detecting the retreat speed or the retreat position of the screw. . On the other hand, when the back pressure is low, the displacement of the screw is large and the change in the back pressure is small. Therefore, it is easier to apply the detection of the screw retreat speed as in the second embodiment .
[0037]
Incidentally, a method of controlling the transition to injection filling by screw advancement with a timer and switching to injection after a preset time has elapsed may be considered, but the time required for filling the cavity with the molten resin to some extent is not constant, It changes greatly depending on the material of the resin, the shape of the resin bellet as a raw material, the temperature of the heating cylinder, and the like, and is unstable. Therefore, if the filling is switched to injection by the timer, the switching is too early to fill the cavity with a sufficient amount of the resin, and the product may have sink marks or missing portions (portions where the resin is not turned). Therefore, the switching control by the timer is inappropriate.
[0038]
In each of the above embodiments, a nut (10a) is fixed as the drive mechanism (10) as shown in FIG. 1, and the screw (4) is turned by turning the screw (10b) with the injection servomotor. An example of extrusion is shown, but as shown in FIG. 4, a screw (10b) is fixed as a drive mechanism, and a nut (10a) is rotated by an injection servomotor to extrude a screw (4). The same effect can be obtained even when applied to a drive type injection molding machine.
[0039]
【The invention's effect】
As described above, according to the present invention, when performing injection molding, it is possible to mold an injection molded product having a size equal to or larger than the capacity of the molten resin stored in the heating cylinder, and furthermore, the molten resin burnt or silver in the heating cylinder. Thus, an injection molding machine capable of eliminating defects in a molded product and an injection control method thereof can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a schematic structure of a main part of an injection molding machine.
FIG. 2 is a diagram showing a change in back pressure with time from the start of operation.
FIG. 3 is a diagram showing a change in screw retreat speed with time from the start of operation.
FIG. 4 is a diagram showing an outline of a main part of an injection molding machine of a nut rotation drive system.
[Explanation of symbols]
(A) Injection molding machine (a) Injection mechanism (b) Die mechanism (1) Die (2) Die cavity (3) Resin (4) Screw (8) Controller (11) Servo motor for rotation (12) Servo motor for injection (13) Heating cylinder (14) Heater (15) Load cell for injection (16) Material supply hopper (17) Nozzle

Claims (4)

加熱筒の前端部が金型と接続された状態でスクリュの回転により金型のキャビティ内に溶融樹脂を充填していき、スクリュの背圧が予め設定された値となったときにスクリュを前進させて加熱筒内の溶融樹脂を金型キャビティ内に射出充填させる工程に移行させる
ことを特徴とする射出成形機の射出制御方法。
With the front end of the heating tube connected to the mold, the screw rotates to fill the cavity of the mold with molten resin, and when the screw back pressure reaches a preset value, the screw moves forward. And then shifting to a step of injecting and filling the molten resin in the heating cylinder into the mold cavity.
加熱筒の前端部が金型と接続された状態でスクリュの回転により金型のキャビティ内に溶融樹脂を充填していき、スクリュの後退速度が予め設定された値以上になったときにスクリュを前進させて加熱筒内の溶融樹脂を金型キャビティ内に射出充填させる工程へ移行させる
ことを特徴とする射出成形機の射出制御方法。
With the front end of the heating cylinder connected to the mold, the screw rotates to fill the cavity of the mold with molten resin, and when the screw retreat speed exceeds a preset value, the screw is removed. An injection control method for an injection molding machine, wherein the process is advanced to a step of injecting and filling a molten resin in a heating cylinder into a mold cavity.
加熱筒の前端部が金型と接続された状態でスクリュの回転により金型のキャビティ内に溶融樹脂を充填していき、スクリュの背圧が予め設定された値となったときにスクリュを前進させて加熱筒内の溶融樹脂を金型キャビティ内に射出充填させる工程に移行させるようにサーボモータを制御する制御装置を備えた
ことを特徴とする射出成形機。
With the front end of the heating tube connected to the mold, the screw rotates to fill the cavity of the mold with molten resin, and when the screw back pressure reaches a preset value, the screw moves forward. An injection molding machine comprising a control device for controlling a servomotor so as to shift to a step of injecting and filling the molten resin in the heating cylinder into the mold cavity.
加熱筒の前端部が金型と接続された状態でスクリュの回転により金型のキャビティ内に溶融樹脂を充填していき、スクリュの後退速度が予め設定された値以上になったときにスクリュを前進させて加熱筒内の溶融樹脂を金型キャビティ内に射出充填させる工程へ移行させるようにサーボモータを制御する制御装置を備えた
ことを特徴とする射出成形機。
With the front end of the heating cylinder connected to the mold, the screw rotates to fill the cavity of the mold with molten resin, and when the screw retreat speed exceeds a preset value, the screw is removed. An injection molding machine comprising a control device for controlling a servomotor so as to advance to a step of injecting and filling a molten resin in a heating cylinder into a mold cavity by moving forward.
JP06433698A 1998-02-27 1998-02-27 Injection molding machine and its injection control method Expired - Fee Related JP3575519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06433698A JP3575519B2 (en) 1998-02-27 1998-02-27 Injection molding machine and its injection control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06433698A JP3575519B2 (en) 1998-02-27 1998-02-27 Injection molding machine and its injection control method

Publications (2)

Publication Number Publication Date
JPH11245271A JPH11245271A (en) 1999-09-14
JP3575519B2 true JP3575519B2 (en) 2004-10-13

Family

ID=13255308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06433698A Expired - Fee Related JP3575519B2 (en) 1998-02-27 1998-02-27 Injection molding machine and its injection control method

Country Status (1)

Country Link
JP (1) JP3575519B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036696A4 (en) * 2006-06-28 2012-02-29 Toyo Tire & Rubber Co Process for producing tire through volume extrusion

Also Published As

Publication number Publication date
JPH11245271A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP2000000858A (en) Decompression method in plasticizing and measuring steps of motor-driven injection molding machine
JP3062629B2 (en) Continuous plasticizing injection molding apparatus and injection molding method
JPH0825437A (en) Injection molding method and machine
JP3427170B2 (en) Injection molding machine
JP3575519B2 (en) Injection molding machine and its injection control method
WO2015104991A1 (en) Moulding machine
JP3268491B2 (en) Injection molding machine and injection molding method
JPH11240052A (en) Method for operating injection molding machine
JP3830335B2 (en) Screw control method for injection molding machine
JPH08207098A (en) Molding of resin material incorporating glass long fiber and device thereof
JP3278718B2 (en) Prevention method of stagnation of cushion resin in pre-plastic injection molding machine
JP3835894B2 (en) Resin change / color change method in injection molding machine
JP3605195B2 (en) Injection molding method and apparatus
JP3232550B2 (en) Control method of mold clamping pressure in injection compression molding
JPS62236714A (en) Extrusion molding
JP2004017450A (en) Injection equipment
JPH02178014A (en) Method and apparatus for changing over pressure in injection process
JP2002036293A (en) Automatic injection molding system
JP2004351894A (en) Injection molding machine
JP2004351895A (en) Injection molding machine
JP2004255793A (en) Method for injection molding, injection molding apparatus and program for injection molding
JP3359142B2 (en) Check ring opening and closing device in injection molding machine
JP3013232B2 (en) Safety device for injection molding machine
JP2002192569A (en) Material replacing device in mold, and material replacing method using the same
JP4736500B2 (en) Pre-plastic injection molding method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120716

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees