JP3574555B2 - Fluid catalytic cracking of heavy oil - Google Patents

Fluid catalytic cracking of heavy oil Download PDF

Info

Publication number
JP3574555B2
JP3574555B2 JP32716897A JP32716897A JP3574555B2 JP 3574555 B2 JP3574555 B2 JP 3574555B2 JP 32716897 A JP32716897 A JP 32716897A JP 32716897 A JP32716897 A JP 32716897A JP 3574555 B2 JP3574555 B2 JP 3574555B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction zone
zone
inlet
catalytic cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32716897A
Other languages
Japanese (ja)
Other versions
JPH1143678A (en
Inventor
優一郎 藤山
倫明 足立
俊彰 奥原
駿一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Nippon Oil Corp filed Critical Petroleum Energy Center PEC
Priority to JP32716897A priority Critical patent/JP3574555B2/en
Publication of JPH1143678A publication Critical patent/JPH1143678A/en
Application granted granted Critical
Publication of JP3574555B2 publication Critical patent/JP3574555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は重質油の接触分解方法に関し、詳しくは重質油からエチレン、プロピレン、ブテン、ペンテン等の軽質オレフィンを高収率で得るための流動接触分解(FCC)方法に関する。
【0002】
【従来の技術】
通常の接触分解は、石油系炭化水素を触媒と接触させて分解し、主生成物としてのガソリンと、少量のLPGと分解軽油等を得、さらに触媒上に堆積した炭素質(コ−ク)を空気で燃焼除去して触媒を循環再使用するものである。
【0003】
しかしながら最近では、流動接触分解装置をガソリン製造装置としてではなく石油化学原料としての軽質オレフィン製造装置として利用していこうという動きがある。このような流動接触分解装置の利用法は、石油精製と石油化学工場が高度に結びついた精油所において特に経済的なメリットがある。また一方、環境問題への関心の高まりから、自動車ガソリン中のオレフィン、芳香族含有量の規制あるいは含酸素基材(MTBE等)添加の義務づけ等が施行され始めている。これによりFCCガソリン、接触改質ガソリンに替わる高オクタン価ガソリン基材としてアルキレート、MTBEの需要が増大することが予想される。従ってそれら基材の原料であるプロピレン、ブテンの増産が必要となる。
【0004】
重質油の流動接触分解により軽質オレフィンを製造する方法としては、例えば高温で反応を行う方法(米国特許第4,980,053号)等が挙げられる。
【0005】
しかしこれらの方法に共通する問題点として、反応帯域入口で原料油を加熱し、気化させるために、好ましい反応温度よりも高温の触媒を導入する必要があり、原料油が部分的に高温の触媒と接触して熱分解を併発してしまうこと、分解反応が吸熱反応であるため反応開始後温度が下がってしまうこと、高温での過酷度の高い反応であるため触媒上にコークが付着し、触媒が急激に劣化することなどがあった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、重質油の分解率を上げ、軽質分の熱分解、過分解による水素ガス、メタンガス、エタンガス等のドライガスの発生を抑制し、さらにエチレン、プロピレン、ブテン、ペンテン等の軽質オレフィンを高収率で得ることのできる重質油の流動接触分解法を提供することである。
【0007】
【課題を解決するための手段】
本発明者等は、高温における重質油の流動接触分解法において、重質成分の分解率を上げつつ熱分解の併発と、軽質分の過分解によるドライガスの発生を抑制し、軽質オレフィンを高収率で得ることを主眼に鋭意研究を行った。その結果、特定の触媒/油比、反応温度、接触時間を採用し、なおかつ触媒を反応帯域に対して多段階で導入して、反応帯域中の触媒活性および、温度を制御することによりその目的が達成できることを見いだし、本発明を完成するに至った。
【0008】
すなわち本発明の重質油の流動接触分解法は、下向流型反応帯域、分離帯域、ストリッピング帯域および触媒再生帯域を具備する流動接触分解装置を用いて重質油を接触分解するにあたり、
▲1▼ 重質油を該反応帯域入口の原料油導入部に供給し、かつ該触媒再生帯域からの再生触媒の一部を該反応帯域入口の触媒導入部に供給して、重質油と触媒粒子を接触させ、
更に該触媒再生帯域からの再生触媒の他の一部を、上記反応帯域入口の触媒導入部と反応帯域出口の間に設けられた少なくとも一カ所の触媒導入部に供給して、重質油と触媒粒子を接触させること、および
▲2▼ 該反応帯域における接触分解を、接触時間が0.1〜3.0秒、反応帯域出口部温度が530〜700℃、触媒/油比が10〜50wt/wtという条件下で行うことにより、
軽質オレフィンを製造することを特徴とする。
【0009】
また、本発明の別の態様の重質油の流動接触分解法は、下向流型反応帯域、分離帯域、ストリッピング帯域および触媒再生帯域を具備する流動接触分解装置を用いて重質油を接触分解するにあたり、
▲1▼ 重質油を該反応帯域入口の原料油導入部に供給し、かつ該触媒再生帯域からの再生触媒の一部を該反応帯域入口の触媒導入部に供給して、重質油と触媒粒子を接触させ、
更に該触媒再生帯域からの再生触媒の他の一部を、上記反応帯域入口の触媒導入部と反応帯域出口の間に設けられた少なくとも一カ所の触媒導入部に供給して、重質油と触媒粒子を接触させること、
▲2▼ 該反応帯域出口部直後にクエンチオイルあるいはクエンチガスを供給することにより、分解生成物、未反応物および触媒の混合物の温度を、反応帯域出口部温度に比べて1〜100℃低下させること、および
▲3▼ 該反応帯域における接触分解を、接触時間が0.1〜3.0秒、反応帯域出口部温度が530〜700℃、触媒/油比が10〜50wt/wtという条件下で行うことにより、
軽質オレフィンを製造することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
【0011】
本発明において、原料油として重質油が用いられる。重質油としては、減圧軽油、常圧残油、減圧残油および熱分解軽油、並びにこれらを水素化精製した重質油が例示できる。これらの重質油を単独で用いてもよいし、これら重質油の混合物あるいはこれら重質油に一部軽質油を混合したものも本発明でいう重質油に含まれる。
【0012】
本発明で使用する流動接触分解反応装置は、触媒再生帯域(再生塔)、下向流(ダウンフロー)形式反応帯域(反応塔)、分離帯域(分離器)およびストリッピング帯域を有する装置である。
【0013】
本発明でいう流動接触分解とは、前記した原料油を、流動状態に保持されている触媒と前記運転条件で連続的に接触させ、原料油を軽質オレフィンを主体とした軽質な炭化水素に分解することである。通常の流動接触分解では、触媒粒子と原料油が共に反応塔の管中を上昇するいわゆるライザ−クラッキングが採用される。しかし本発明においては、触媒/油比が通常の流動接触分解法に比べて極端に大きいため、触媒粒子と原料油が共に反応塔の管中を降下するダウンフロークラッキングを採用して逆混合を避けるということも特徴の一つである。
【0014】
通常の流動接触分解では、触媒再生帯域から反応帯域へ供給される触媒の全てが反応帯域入口の触媒導入部から供給される。しかし本発明では、触媒再生帯域からの再生触媒の一部を反応帯域入口の触媒導入部に供給して原料油と触媒粒子を接触させ、更に該触媒再生帯域からの再生触媒の他の一部を上記反応帯域入口の触媒導入部と該帯域出口の間に設けられた触媒導入部の少なくとも一カ所に供給する。上記反応帯域入口の触媒導入部と該帯域出口の間に設けられた触媒導入部は、反応帯域内の任意の箇所に設置することができる。反応帯域入口の触媒導入部と反応帯域出口の間に設ける触媒導入部の数は、1〜5とすることができる。
【0015】
本発明では、触媒再生帯域から供給される再生触媒のうち、反応帯域入口の触媒導入部に供給される触媒の割合は好ましくは20〜95重量%、より好ましくは40〜80重量%である。ここで原料油の加熱、気化が行われ、分解反応が開始される。
【0016】
反応帯域入口の触媒導入部と反応帯域出口の間の触媒導入部に供給される再生触媒の割合は好ましくは5〜80重量%、より好ましくは20〜60重量%である。反応帯域入口の触媒導入部と反応帯域出口の間の触媒導入部が複数ある場合は、各導入部に再生触媒を等量あるいは任意の量に分割して供給できる。この方法により、反応帯域内の全域にわたって重質油の高分解率に有利な高温が維持される。また通常の流動接触分解においては、単に反応温度を高温にするためにコーク生成量が増加し触媒が急速に劣化し、反応帯域の後段(下流)では分解反応が十分に起こらないという欠点があったが、本発明によれば反応帯域内の全域にわたって高活性な触媒を分布させることができる。
【0017】
本発明においてはこのように、反応帯域入口の触媒導入部と反応帯域出口の間の触媒導入部から再生触媒の一部を供給することが重要であるが、反応帯域にダウンフロー形式の反応管を採用しているため、触媒を重力のみあるいは少量の水蒸気等の移送気体とともに容易に反応管内に落とし込むことができる。このときダウンフロー形式であるが故に、導入された触媒により触媒と原料油の逆混合が起きることもなく、逆に導入された触媒により反応管の途中で触媒と原料油の再混合を促すことができるという利点がある。
【0018】
ダウンフロー形式反応帯域において、重質油を流動状態に保持されている触媒粒子によって接触分解して得られた生成物、未反応物および触媒からなる混合物は、次に分離帯域に送られる。
【0019】
反応帯域出口部の温度が530〜700℃と非常に高い場合、生成物、未反応物および触媒の混合物が反応帯域を出てからも分解反応が継続し、好ましい生成物である軽質オレフィンがさらに分解を受けてドライガスが発生する過分解と呼ばれる現象がおこる。そこで本発明では、接触分解により得られた生成物、未反応物および触媒の混合物を、サイクロン分離帯域によって精密に分離する前に、高速分離帯域に導入することができる。高速分離帯域とは、分離効率が低いかわりにガスの滞留時間が小さく、滞留時間分布も狭いものを指す。サイクロン分離帯域においてはガスの一部がサイクロン内に長く滞留し、ガスの滞留時間の分布が0.1〜1.0秒と広いのに対し、該高速分離帯域ではガスの滞留時間は0.3秒以下、好ましくは0.2秒以下であり、滞留時間分布が非常に狭いという特徴を持つ。本発明においては該高速分離帯域により、生成物、未反応物および触媒の混合物から、該触媒の90重量%、好ましくは95重量%が除去される。高速分離帯域としてはボックス型、Uベント型が例として挙げられる。
【0020】
上記混合物は最終的に1段以上のサイクロン分離帯域に導かれ、高速分離帯域で除去しきれなかった触媒が取り除かれる。
【0021】
一方、分離帯域において分解生成物および未反応物の混合物から分離された触媒は、触媒ストリッピング帯域に送られ、触媒粒子に付着した生成物、未反応物等の炭化水素類の大部分が除去される。炭素質および一部重質の炭化水素類が付着した触媒は該ストリッピング帯域から触媒再生帯域に送られる。触媒再生帯域においては、該炭素質等の付着した触媒の酸化処理が行われる。この酸化処理を受けた触媒が再生触媒であり、触媒上に沈着した炭素質および炭化水素類が減少されたものである。この再生触媒は前記反応帯域に連続的に循環される。
【0022】
本発明においては触媒再生帯域として、通常の流動接触分解装置で用いられる濃厚流動床型再生帯域を用いうる。触媒再生帯域は複数設置することができ、その場合、濃厚流動床型再生帯域の他に稀薄移動床の上昇管であるライザー型再生帯域を用いることができる。また複数の濃厚流動床型再生帯域とライザー型再生帯域を直列に組み合わせて用いることもでき、この場合、ストリッピング帯域と直結している再生帯域(第1再生帯域)がライザー型でそれ以降(第2再生帯域以降)が濃厚流動床型であること、あるいは最後段の再生帯域がライザー型でありそれ以前が濃厚流動床型であること、が好ましい。
【0023】
本発明においては通常、複数ある全ての再生帯域を通過した後の完全に再生された触媒を、分配して、反応帯域入口の触媒導入部と、該導入部と反応帯域出口の間に設けられた少なくとも一カ所の触媒導入部に供給する。該反応帯域入口の触媒導入部には、複数ある再生帯域の途中から抜き出した再生が十分でない触媒を供給することもできる。この場合、反応帯域入口の触媒導入部には、活性が低く、温度も低い触媒を導入することになり、その結果穏和な条件で原料油の加熱、気化、分解が行われ、ドライガス、コークなどの好ましくない副生成物の発生を抑えることができる。
【0024】
本発明でいう反応帯域出口温度とは、ダウンフロー形式流動床型反応帯域の出口部の温度のことであり、より具体的には、分解生成物、未反応物および触媒の混合物から該触媒が分離される前の該混合物の温度、あるいは該混合物が分離帯域の手前でクエンチオイルまたはクエンチガスにより冷却される場合はその冷却される前の該混合物の温度である。本発明において反応帯域出口温度は530〜700℃であり、好ましくは540〜650℃、より好ましくは550〜620℃である。530℃より低い温度では高い収率で軽質オレフィンを得ることができず、700℃より高い温度では熱分解が顕著になりドライガス発生量が多くなるため好ましくない。
【0025】
本発明でいう触媒/油比とは、触媒循環量(ton/h)と原料油供給速度(ton/h)の比であり、本発明において該触媒/油比は10〜50wt/wtであり、好ましくは15〜30wt/wtである。本発明では短い接触時間で接触分解反応を行うため、触媒/油比が10より小さい場合、接触分解反応が十分起こらず好ましくない。また触媒/油比が50より大きい場合、触媒循環量が大きく、それ故触媒再生帯域の温度が低くなり、触媒上に付着した炭素質が十分に燃焼しない、または触媒再生に必要な触媒滞留時間が長くなりすぎ好ましくない。
【0026】
本発明でいう接触時間とは、再生触媒と原料油が接触してから、分解生成物、未反応物および触媒の混合物から該触媒が分離されるまでの時間、あるいは分離帯域の手前で該混合物がクエンチオイルまたはクエンチガスにより冷却される場合はその冷却されるまでの時間を示す。本発明において接触時間は0.1〜3.0、好ましくは0.1〜2.0秒、より好ましくは0.3〜1.5、さらに好ましくは0.3〜1.0秒の範囲が選択される。接触時間が0.1秒より短い場合は、反応が十分進行する前に原料が反応帯域を出てしまうため好ましくない。接触時間が3.0秒より長いときは、分解反応に引き続いておきる水素移行反応、過分解により、軽質オレフィンが軽質パラフィン等に転化する割合が増加するので好ましくない。
【0027】
本発明でいう触媒再生帯域触媒濃厚層の温度(以下再生帯域温度と称する)とは、触媒再生帯域において濃厚状態で流動している触媒粒子が再生帯域を出る直前の温度を指す。本発明において、再生帯域温度は好ましくは650〜800℃であり、より好ましくは680〜740℃である。650℃より低い温度では触媒上に堆積した炭素質の燃焼が遅くなり、炭素質が十分に取り除かれず触媒活性を維持できない、もしくは炭素質を十分に除去するためには再生帯域内の触媒の滞留時間を非常に長くする必要があり、そのために再生帯域が大きくなりすぎ経済的に好ましくない。一方、800℃より高い温度では触媒が水熱劣化を受ける上、触媒が再生帯域から反応帯域に持ち込む熱量が大きくなりすぎ反応帯域の温度を好ましい温度に保てないため経済的に好ましくない。
【0028】
本発明では、さらに軽質オレフィンの過分解を抑制するために、反応帯域出口部分(出口部直後)にクエンチオイルまたはクエンチガスを供給することにより、分解生成物、未反応物および触媒の混合物を冷却する方法を用いることができる。クエンチオイルまたはクエンチガスを供給することにより、分解生成物、未反応物および触媒の混合物の温度を反応帯域出口温度に比べて1〜100゜C、好ましくは1〜50゜C、更に好ましくは1〜30゜C低下させる。クエンチオイルの供給量は、原料油に対して好ましくは1〜50重量%、より好ましくは2〜30重量%、さらに好ましくは3〜20重量%である。
【0029】
反応帯域とサイクロン分離帯域の間に高速分離帯域を設置した場合は、高速分離帯域とサイクロン分離帯域の間にもクエンチオイルまたはクエンチガスを供給することができる。
【0030】
前記のクエンチオイルとしては、通常、例えば灯油、直留軽油、減圧軽油等の常圧あるいは減圧石油蒸留留出油、常圧あるいは減圧石油蒸留残査物、石油蒸留留出油や石油蒸留残査物などの水素化処理油、石油蒸留留出油や石油蒸留残査物などの熱分解油、石油蒸留留出油や石油蒸留残査物などの接触分解油、またはこれらの混合物等が用いられる。また注入する温度、圧力で液体として存在できる炭化水素が好ましく用いられる。
【0031】
またクエンチオイルとしては、本発明の接触分解法により得られる分解生成物の一部をリサイクルしたものを使用することが好ましい。特に、本発明の接触分解法により得られた分解生成物を蒸留して得られた沸点300℃以上の残渣油分の一部をリサイクルして使用することが好ましい。この理由は、一般の流動接触分解法で用いられているクエンチによる大幅な温度の降下(通常、降下幅は180〜350℃で350℃以下に下げる)により反応を停止し、過分解を抑えるという方法では、本発明の高い触媒/油比のもとで大量の触媒を冷却するのには大量のクエンチオイルが必要となってしまうからである。かつこの方法では触媒を大幅に冷却してしまう結果、本発明の特徴である高温の反応帯域温度を保つのに必要な高い再生触媒温度を保つことが難しくなってしまうからである。これに対し本発明では、芳香族性の高い分解生成物の残渣油分の少量をクエンチオイルとして用いることによって、温度を余り下げずに水素移行反応、過分解を急速に減少させることができる。
【0032】
前記のクエンチガスとしては、水蒸気あるいは、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の炭素数1〜6のパラフィン系炭化水素およびこれらの混合物など、注入する温度、圧力で気体として存在できる物質が好ましく用いられる。
【0033】
本発明で用いる流動接触分解反応装置の操作条件のうち、上記以外については特に限定されないが、反応圧力1〜3kg/cm Gで好ましく運転される。
【0034】
本発明において使用する触媒並びにその調製法は特に限定されないが、通常、石油類の流動接触分解反応に用いられる触媒粒子が使用できる。特に活性成分としての超安定Y型ゼオライトとその支持母体であるマトリックスからなる触媒が好ましく用いられる。また前記超安定Y型ゼオライトに加えて結晶性アルミノシリケートあるいはシリコアルミノフォスフェートを含む触媒も好ましく用いることができる。
【0035】
触媒粒子のかさ密度は0.5〜1.0g/ml、平均粒径は50〜90μm、表面積は50〜350m /g、細孔容積は0.05〜0.5ml/gの範囲であるのが好ましい。
【0036】
【実施例】
次に本発明を実施例等に基づいて説明するが、本発明はこれら実施例に限定されるものではない。
【0037】
実施例1
断熱型のダウンフロー形式反応帯域および一つの触媒再生帯域を有するFCCパイロット装置を用い、中東系の脱硫VGOの流動接触分解を行った。触媒は、マトリックスであるアルミナに活性成分として超安定Y型ゼオライトを担持したものを、800℃で6時間、100%スチーミング処理により疑似平衡化させたものを使用した。装置規模はインベントリー(触媒量)2kg、原料油フィード量1kg/hであった。
【0038】
この装置の反応帯域入口の原料油導入部からは1kg/hの脱硫VGOを供給し、反応帯域入口の触媒導入部からは10kg/hの再生触媒を供給し、一方、反応帯域入口から反応帯域全長の1/2の長さだけ下流(下方)に設けた触媒導入部のノズルからは、少量の窒素ガスとともに2kg/hの再生触媒を供給した(触媒/油比=12wt/wt)。
【0039】
このとき再生帯域温度は740℃、反応帯域入口温度は610℃、反応帯域出口温度は600℃、反応帯域全長にわたる接触時間は0.5秒であった。このときの分解生成物収率を表1に示す。
【0040】
実施例2
実施例1と同じ装置、触媒、原料油を用い、同じ反応条件で接触分解を行い、分解生成物を蒸留して得られた沸点343℃以上の残渣油分のうち50g/hをリサイクルして反応帯域出口部直後に導入した。このため残渣油分導入後の分解生成物、未反応物および触媒の混合物の温度は、反応帯域出口温度より4℃低い596℃となった。このときの分解生成物収率を表1に示す。
【0041】
実施例3
反応帯域での接触時間を1.5秒とした他は、実施例1と同様に流動接触分解を行った。
【0042】
比較例1
実施例1と同じ装置、触媒、原料油を用い、反応帯域入口の触媒導入部のみから12kg/hの再生触媒を導入して分解反応を行った。このとき反応帯域入口温度は625℃であり、その他の反応条件は実施例1と同様であった。このときの分解物収率を表1に示す。
【0043】
比較例2
断熱型のアップフロー形式反応帯域(ライザー)および一つの触媒再生帯域を有するFCCパイロット装置を用い、実施例1と同じ触媒を用いて、実施例1と同じ脱硫VGOの分解を行った。装置規模は実施例1と同様とした。
【0044】
この装置の反応帯域入口の触媒導入部からは10kg/hの再生触媒を導入し、一方、反応帯域入口から反応帯域全長の1/2の長さだけ下流(上方)に設けた触媒導入部のノズルからは、少量の窒素ガスとともに2kg/hの再生触媒を導入した。なおその他の反応条件は実施例1と同様とした。このときの分解物収率を表1に示す。
【0045】
【表1】

Figure 0003574555
以上の結果から、等量の触媒を用いながらも、実施例1〜3の様に触媒を2段階に別けてダウンフロー形式の反応帯域に導入する方法が、最も高い軽質オレフィン収率を得られることがわかる。さらに実施例2の様に残渣油分をリサイクルすれば、より高い軽質オレフィン収率を得ることができる。
【0046】
これに対して、従来の流動接触分解方法と同様に触媒を1段階で導入した比較例1の場合は、反応帯域入口で高温となり熱分解が激しくなる結果、ドライガス、コーク収率が増加してしまう。
【0047】
また、アップフロー形式の反応帯域を用いた比較例2の場合には、下流の触媒導入点で触媒とガスの流れが乱れ、逆混合が激しくなりドライガス、コーク収率が増加してしまう。これは、逆混合により触媒の一部が反応帯域内に長く滞留したために劣化が進み、かつガスの滞留時間分布が広くなり一部のガスは滞留時間が小さくなり分解が進まず、一部のガスは滞留時間が大きくなり過分解が進んだためと思われる。
【0048】
【発明の効果】
以上説明した様に、本発明の重質油の流動接触分解法によれば、ドライガスの発生を抑制し、軽質オレフィンを高収率で得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalytic cracking method for heavy oil, and more particularly to a fluid catalytic cracking (FCC) method for obtaining light olefins such as ethylene, propylene, butene, and pentene from heavy oil in high yield.
[0002]
[Prior art]
In ordinary catalytic cracking, petroleum hydrocarbons are decomposed by contact with a catalyst to obtain gasoline as a main product, a small amount of LPG, cracked gas oil, etc., and carbonaceous (coke) deposited on the catalyst. Is burned and removed with air to recycle the catalyst.
[0003]
However, recently, there has been a movement to use a fluidized catalytic cracking device not as a gasoline production device but as a light olefin production device as a petrochemical raw material. The use of such a fluid catalytic cracker has particular economic advantages in refineries where petroleum refining and petrochemical plants are highly linked. On the other hand, due to increasing interest in environmental issues, regulations on the olefin content and aromatic content in automobile gasoline, and the requirement to add an oxygen-containing base material (MTBE, etc.) have begun to be enforced. This is expected to increase the demand for alkylate and MTBE as high-octane gasoline base materials to replace FCC gasoline and catalytic reforming gasoline. Therefore, it is necessary to increase the production of propylene and butene, which are the raw materials of these base materials.
[0004]
As a method for producing a light olefin by fluid catalytic cracking of heavy oil, for example, a method of conducting a reaction at a high temperature (US Pat. No. 4,980,053) and the like can be mentioned.
[0005]
However, a problem common to these methods is that it is necessary to introduce a catalyst having a temperature higher than a preferable reaction temperature in order to heat and vaporize the feed oil at the inlet of the reaction zone. Thermal decomposition occurs in contact with, the decomposition reaction is an endothermic reaction, the temperature decreases after the reaction starts, and the coke adheres to the catalyst because of the high temperature and severe reaction, In some cases, the catalyst deteriorated rapidly.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to increase the cracking rate of heavy oil, to suppress the generation of dry gas such as hydrogen gas, methane gas, and ethane gas due to thermal cracking and overcracking of light components, and to further reduce the generation of ethylene, propylene, butene, pentene, and the like. It is an object of the present invention to provide a fluid catalytic cracking method for heavy oil capable of obtaining a light olefin in a high yield.
[0007]
[Means for Solving the Problems]
In the fluid catalytic cracking method of heavy oil at high temperature, the present inventors have increased the cracking rate of heavy components while suppressing the simultaneous occurrence of thermal cracking and the generation of dry gas due to the overcracking of light components, thereby reducing light olefins. We worked diligently to obtain a high yield. As a result, by adopting a specific catalyst / oil ratio, reaction temperature, and contact time, and introducing the catalyst into the reaction zone in multiple stages, by controlling the catalyst activity and temperature in the reaction zone, Have been achieved, and the present invention has been completed.
[0008]
That is, the fluid catalytic cracking method of heavy oil of the present invention, when catalytic cracking of heavy oil using a fluidized catalytic cracking apparatus having a downward flow reaction zone, a separation zone, a stripping zone and a catalyst regeneration zone,
{Circle around (1)} Heavy oil is supplied to the feedstock inlet at the inlet of the reaction zone, and a part of the regenerated catalyst from the catalyst regeneration zone is supplied to the catalyst inlet at the inlet of the reaction zone. Contact the catalyst particles,
Further, another part of the regenerated catalyst from the catalyst regeneration zone is supplied to at least one catalyst introduction portion provided between the catalyst introduction portion at the reaction zone inlet and the reaction zone outlet, and the heavy oil and (2) catalytic cracking in the reaction zone, the contact time is 0.1 to 3.0 seconds, the temperature at the outlet of the reaction zone is 530 to 700 ° C., and the catalyst / oil ratio is 10 to 50 wt. / Wt under the condition
It is characterized by producing light olefins.
[0009]
Further, the fluid catalytic cracking method for heavy oil according to another aspect of the present invention comprises the steps of: converting heavy oil using a fluid catalytic cracking apparatus having a downward flow reaction zone, a separation zone, a stripping zone, and a catalyst regeneration zone. In catalytic cracking,
{Circle around (1)} Heavy oil is supplied to the feedstock inlet at the inlet of the reaction zone, and a part of the regenerated catalyst from the catalyst regeneration zone is supplied to the catalyst inlet at the inlet of the reaction zone. Contact the catalyst particles,
Further, another part of the regenerated catalyst from the catalyst regeneration zone is supplied to at least one catalyst introduction portion provided between the catalyst introduction portion at the reaction zone inlet and the reaction zone outlet, and the heavy oil and Contacting the catalyst particles,
{Circle around (2)} By supplying a quench oil or a quench gas immediately after the reaction zone outlet, the temperature of the mixture of the decomposition product, the unreacted product and the catalyst is lowered by 1 to 100 ° C. as compared with the reaction zone outlet temperature. And {circle around (3)} The catalytic cracking in the reaction zone is performed under the conditions of a contact time of 0.1 to 3.0 seconds, a reaction zone outlet temperature of 530 to 700 ° C., and a catalyst / oil ratio of 10 to 50 wt / wt. By doing in
It is characterized by producing light olefins.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
In the present invention, heavy oil is used as a feedstock oil. Examples of the heavy oil include a vacuum gas oil, a normal pressure residue, a vacuum residue, a pyrolysis gas oil, and a heavy oil obtained by hydrorefining these. These heavy oils may be used alone, or a mixture of these heavy oils or a mixture of these heavy oils and a partly light oil is also included in the heavy oils of the present invention.
[0012]
The fluid catalytic cracking reactor used in the present invention is a device having a catalyst regeneration zone (regeneration tower), a downflow type reaction zone (reaction tower), a separation zone (separator), and a stripping zone. .
[0013]
Fluid catalytic cracking as referred to in the present invention means that the raw material oil is continuously contacted with a catalyst maintained in a fluidized state under the above operating conditions, and the raw material oil is decomposed into light hydrocarbons mainly composed of light olefins. It is to be. In ordinary fluid catalytic cracking, so-called riser-cracking in which both catalyst particles and feed oil rise in the tube of the reaction tower is employed. However, in the present invention, since the catalyst / oil ratio is extremely large as compared with the ordinary fluid catalytic cracking method, the back mixing is carried out by employing a down flow cracking in which both the catalyst particles and the feed oil descend in the tube of the reaction tower. Avoiding is one of the features.
[0014]
In normal fluid catalytic cracking, all of the catalyst supplied from the catalyst regeneration zone to the reaction zone is supplied from the catalyst inlet at the reaction zone inlet. However, in the present invention, a part of the regenerated catalyst from the catalyst regeneration zone is supplied to the catalyst introduction portion at the inlet of the reaction zone to bring the feedstock into contact with the catalyst particles, and further another part of the regenerated catalyst from the catalyst regeneration zone. Is supplied to at least one of the catalyst introduction portions provided between the catalyst introduction portion at the entrance of the reaction zone and the zone exit. The catalyst introduction part provided between the catalyst introduction part at the entrance of the reaction zone and the exit of the zone can be installed at an arbitrary position in the reaction zone. The number of catalyst introduction portions provided between the catalyst introduction portion at the reaction zone inlet and the reaction zone outlet can be 1 to 5.
[0015]
In the present invention, of the regenerated catalyst supplied from the catalyst regeneration zone, the proportion of the catalyst supplied to the catalyst inlet at the inlet of the reaction zone is preferably 20 to 95% by weight, more preferably 40 to 80% by weight. Here, the raw oil is heated and vaporized to start a decomposition reaction.
[0016]
The proportion of the regenerated catalyst supplied to the catalyst inlet between the catalyst inlet at the inlet of the reaction zone and the outlet of the reaction zone is preferably 5 to 80% by weight, more preferably 20 to 60% by weight. When there are a plurality of catalyst introduction portions between the catalyst introduction portion at the reaction zone inlet and the reaction zone outlet, the regenerated catalyst can be supplied to each introduction portion in an equal amount or in an arbitrary amount. In this way, high temperatures are maintained throughout the reaction zone, favoring high cracking rates of heavy oil. In addition, in ordinary fluid catalytic cracking, the amount of coke produced simply increases the reaction temperature, and the catalyst deteriorates rapidly, and the cracking reaction does not sufficiently occur in the latter stage (downstream) of the reaction zone. However, according to the present invention, a highly active catalyst can be distributed throughout the reaction zone.
[0017]
As described above, in the present invention, it is important to supply a part of the regenerated catalyst from the catalyst introduction portion between the catalyst introduction portion at the reaction zone inlet and the reaction zone outlet. The catalyst can be easily dropped into the reaction tube only by gravity or with a small amount of transfer gas such as water vapor. At this time, because of the downflow type, the introduced catalyst does not cause reverse mixing of the catalyst and the base oil, and the introduced catalyst promotes remixing of the catalyst and the base oil in the middle of the reaction tube. There is an advantage that can be.
[0018]
In the downflow type reaction zone, the mixture of the product, unreacted product and catalyst obtained by catalytic cracking of the heavy oil by the catalyst particles kept in a fluid state is then sent to the separation zone.
[0019]
When the temperature at the reaction zone outlet is as high as 530 to 700 ° C., the decomposition reaction continues even after the product, the unreacted product, and the mixture of the catalyst have left the reaction zone, and the light olefin which is a preferable product is further reduced. A phenomenon called over-decomposition occurs in which dry gas is generated due to decomposition. Therefore, in the present invention, a mixture of a product, an unreacted product, and a catalyst obtained by catalytic cracking can be introduced into a high-speed separation zone before being precisely separated by a cyclone separation zone. The high-speed separation zone refers to a zone in which the retention time of the gas is small and the distribution of the retention time is narrow instead of the low separation efficiency. In the cyclone separation zone, a part of the gas stays long in the cyclone, and the distribution of the gas residence time is as wide as 0.1 to 1.0 second. It is 3 seconds or less, preferably 0.2 seconds or less, and is characterized by a very narrow residence time distribution. In the present invention, the high speed separation zone removes 90%, preferably 95%, by weight of the catalyst from the mixture of product, unreacted materials and catalyst. Examples of the high-speed separation zone include a box type and a U-vent type.
[0020]
The mixture is finally guided to one or more cyclone separation zones, and the catalyst that cannot be completely removed in the high-speed separation zone is removed.
[0021]
On the other hand, the catalyst separated from the mixture of decomposition products and unreacted products in the separation zone is sent to the catalyst stripping zone, and most of the hydrocarbons such as products and unreacted materials attached to the catalyst particles are removed. Is done. The catalyst to which carbonaceous and partially heavy hydrocarbons are attached is sent from the stripping zone to a catalyst regeneration zone. In the catalyst regeneration zone, an oxidation treatment of the catalyst to which the carbonaceous material or the like has adhered is performed. The catalyst that has undergone this oxidation treatment is a regenerated catalyst, in which carbonaceous materials and hydrocarbons deposited on the catalyst have been reduced. This regenerated catalyst is continuously circulated to the reaction zone.
[0022]
In the present invention, as the catalyst regeneration zone, a thick fluidized bed type regeneration zone used in an ordinary fluid catalytic cracking device can be used. A plurality of catalyst regeneration zones can be provided. In this case, a riser type regeneration zone which is a riser of a lean moving bed can be used in addition to a dense fluidized bed type regeneration zone. Also, a plurality of rich fluidized bed regeneration zones and a riser regeneration zone can be used in combination, and in this case, a regeneration zone (first regeneration zone) directly connected to the stripping zone is a riser type and a subsequent regeneration zone (first regeneration zone). It is preferable that the second regeneration zone and thereafter are of a thick fluidized bed type, or that the last regeneration zone is of a riser type and the preceding stage is of a thick fluidized bed type.
[0023]
In the present invention, usually, the completely regenerated catalyst after passing through all of the plurality of regeneration zones is distributed and provided to a catalyst inlet at the inlet of the reaction zone and provided between the inlet and the outlet of the reaction zone. To at least one catalyst inlet. The catalyst introduction section at the inlet of the reaction zone may be supplied with a catalyst which is extracted from the middle of a plurality of regeneration zones and is not sufficiently regenerated. In this case, a catalyst having low activity and low temperature is introduced into the catalyst introduction section at the inlet of the reaction zone. As a result, heating, vaporization, and decomposition of the feed oil are performed under mild conditions, and dry gas, coke And generation of undesirable by-products such as
[0024]
The reaction zone outlet temperature referred to in the present invention refers to the temperature at the outlet of a downflow type fluidized bed type reaction zone, and more specifically, the catalyst is formed from a mixture of decomposition products, unreacted materials and catalyst. The temperature of the mixture before it is separated, or the temperature of the mixture before it is cooled by quench oil or quench gas before the separation zone. In the present invention, the reaction zone outlet temperature is 530 to 700 ° C, preferably 540 to 650 ° C, and more preferably 550 to 620 ° C. If the temperature is lower than 530 ° C., a light olefin cannot be obtained in a high yield, and if the temperature is higher than 700 ° C., thermal decomposition becomes remarkable and the amount of dry gas generated is not preferable.
[0025]
The catalyst / oil ratio in the present invention is the ratio of the amount of circulated catalyst (ton / h) to the feed rate of the feed oil (ton / h). In the present invention, the catalyst / oil ratio is 10 to 50 wt / wt. , Preferably 15 to 30 wt / wt. In the present invention, since the catalytic cracking reaction is performed in a short contact time, if the catalyst / oil ratio is less than 10, the catalytic cracking reaction does not sufficiently occur, which is not preferable. If the catalyst / oil ratio is greater than 50, the amount of circulated catalyst is large, and therefore, the temperature of the catalyst regeneration zone is low, and the carbonaceous matter deposited on the catalyst is not sufficiently burned, or the catalyst residence time required for catalyst regeneration. Is too long.
[0026]
The contact time referred to in the present invention is a time from the contact of the regenerated catalyst with the raw material oil until the catalyst is separated from a mixture of decomposition products, unreacted materials and the catalyst, or the mixture before the separation zone. In the case where is cooled by quench oil or quench gas, it indicates the time until the cooling. In the present invention, the contact time ranges from 0.1 to 3.0, preferably from 0.1 to 2.0 seconds, more preferably from 0.3 to 1.5, and even more preferably from 0.3 to 1.0 second. Selected. If the contact time is shorter than 0.1 second, the raw material leaves the reaction zone before the reaction proceeds sufficiently, which is not preferable. If the contact time is longer than 3.0 seconds, the rate at which light olefins are converted to light paraffins or the like increases due to hydrogen transfer reaction or overcracking that follows the cracking reaction, which is not preferable.
[0027]
The temperature of the concentrated catalyst layer in the catalyst regeneration zone (hereinafter, referred to as regeneration zone temperature) in the present invention refers to the temperature immediately before the catalyst particles flowing in a rich state in the catalyst regeneration zone exit the regeneration zone. In the present invention, the temperature of the regeneration zone is preferably 650 to 800 ° C, more preferably 680 to 740 ° C. At a temperature lower than 650 ° C., the combustion of the carbonaceous material deposited on the catalyst becomes slow, and the carbonaceous material is not sufficiently removed to maintain the catalytic activity, or the catalyst remains in the regeneration zone in order to sufficiently remove the carbonaceous material. It is necessary to make the time very long, which results in an excessively large reproduction band, which is not economically preferable. On the other hand, if the temperature is higher than 800 ° C., the catalyst undergoes hydrothermal degradation, and the amount of heat that the catalyst brings from the regeneration zone to the reaction zone becomes too large, so that the temperature of the reaction zone cannot be maintained at a desirable temperature, which is not economically preferable.
[0028]
In the present invention, in order to further suppress the over-decomposition of light olefins, a mixture of decomposition products, unreacted materials and catalyst is cooled by supplying quench oil or quench gas to the reaction zone outlet (immediately after the outlet). Can be used. By supplying a quench oil or a quench gas, the temperature of the mixture of the decomposition products, unreacted products and the catalyst is 1 to 100 ° C, preferably 1 to 50 ° C, more preferably 1 to 100 ° C, as compared with the reaction zone outlet temperature.゜ 30 ° C. lower. The supply amount of the quench oil is preferably 1 to 50% by weight, more preferably 2 to 30% by weight, and still more preferably 3 to 20% by weight based on the feedstock oil.
[0029]
When a high-speed separation zone is provided between the reaction zone and the cyclone separation zone, quench oil or quench gas can be supplied also between the high-speed separation zone and the cyclone separation zone.
[0030]
Examples of the quench oil include, for example, kerosene, straight-run gas oil, vacuum gas oil or other normal pressure or reduced pressure petroleum distillate, normal or reduced pressure petroleum distillate residue, petroleum distillate or petroleum distillation residue. Oils, pyrolysis oils such as petroleum distillates and petroleum distillation residues, catalytic cracking oils such as petroleum distillates and petroleum distillation residues, and mixtures thereof. . Hydrocarbons that can exist as a liquid at the temperature and pressure at which they are injected are preferably used.
[0031]
As the quench oil, it is preferable to use one obtained by recycling a part of the decomposition product obtained by the catalytic cracking method of the present invention. In particular, it is preferable to recycle a part of the residual oil having a boiling point of 300 ° C. or higher obtained by distilling the decomposition product obtained by the catalytic cracking method of the present invention. The reason for this is that the reaction is stopped by a large temperature drop due to a quench used in a general fluid catalytic cracking method (usually, the drop width is reduced to 350 ° C. or less at 180 to 350 ° C.), and excessive decomposition is suppressed. The method requires a large amount of quench oil to cool a large amount of catalyst under the high catalyst / oil ratio of the present invention. Further, in this method, the catalyst is significantly cooled, and as a result, it becomes difficult to maintain a high regenerated catalyst temperature necessary for maintaining a high reaction zone temperature which is a feature of the present invention. On the other hand, in the present invention, by using a small amount of the residual oil of the decomposition product having a high aromaticity as the quench oil, the hydrogen transfer reaction and the overcracking can be rapidly reduced without lowering the temperature much.
[0032]
The quench gas may be present as a gas at a temperature and pressure to be injected, such as water vapor or a paraffinic hydrocarbon having 1 to 6 carbon atoms such as methane, ethane, propane, butane, pentane, hexane, and the like, and a mixture thereof. Substances are preferably used.
[0033]
Among the operating conditions of the fluid catalytic cracking reactor used in the present invention, there is no particular limitation except for the above, but the operation is preferably performed at a reaction pressure of 1 to 3 kg / cm 2 G.
[0034]
The catalyst used in the present invention and a method for preparing the same are not particularly limited, but catalyst particles used in a fluid catalytic cracking reaction of petroleum can be used. Particularly, a catalyst comprising an ultra-stable Y-type zeolite as an active ingredient and a matrix as a supporting base thereof is preferably used. Further, a catalyst containing crystalline aluminosilicate or silicoaluminophosphate in addition to the ultrastable Y-type zeolite can also be preferably used.
[0035]
The bulk density of the catalyst particles is 0.5 to 1.0 g / ml, the average particle size is 50 to 90 μm, the surface area is 50 to 350 m 2 / g, and the pore volume is 0.05 to 0.5 ml / g. Is preferred.
[0036]
【Example】
Next, the present invention will be described based on examples and the like, but the present invention is not limited to these examples.
[0037]
Example 1
Fluid catalytic cracking of a Middle Eastern desulfurized VGO was carried out using an FCC pilot apparatus having an adiabatic down-flow type reaction zone and one catalyst regeneration zone. The catalyst used was a matrix in which an ultra-stable Y-type zeolite was supported as an active component on alumina as a matrix, and which had been pseudo-equilibrated by a 100% steaming treatment at 800 ° C. for 6 hours. The equipment scale was 2 kg of inventory (amount of catalyst) and 1 kg / h of feedstock feed rate.
[0038]
1 kg / h of desulfurized VGO is supplied from the feedstock inlet at the inlet of the reaction zone and 10 kg / h of the regenerated catalyst is supplied from the catalyst inlet at the inlet of the reaction zone. A 2 kg / h regenerated catalyst was supplied together with a small amount of nitrogen gas from the nozzle of the catalyst introduction section provided downstream (downward) by の 長 of the total length (catalyst / oil ratio = 12 wt / wt).
[0039]
At this time, the temperature of the regeneration zone was 740 ° C., the temperature of the reaction zone inlet was 610 ° C., the temperature of the reaction zone outlet was 600 ° C., and the contact time over the entire length of the reaction zone was 0.5 seconds. Table 1 shows the decomposition product yield at this time.
[0040]
Example 2
Catalytic cracking was carried out under the same reaction conditions using the same apparatus, catalyst, and feed oil as in Example 1, and 50 g / h of the residual oil having a boiling point of 343 ° C. or higher obtained by distilling the cracked product was recycled and reacted. It was introduced immediately after the zone outlet. For this reason, the temperature of the mixture of the decomposition product, the unreacted product, and the catalyst after the introduction of the residual oil was 596 ° C., which was 4 ° C. lower than the reaction zone outlet temperature. Table 1 shows the decomposition product yield at this time.
[0041]
Example 3
Fluid catalytic cracking was carried out in the same manner as in Example 1, except that the contact time in the reaction zone was 1.5 seconds.
[0042]
Comparative Example 1
Using the same apparatus, catalyst and raw material oil as in Example 1, a decomposition reaction was carried out by introducing a regenerated catalyst of 12 kg / h only from the catalyst introduction portion at the inlet of the reaction zone. At this time, the reaction zone inlet temperature was 625 ° C., and the other reaction conditions were the same as in Example 1. Table 1 shows the decomposition product yield at this time.
[0043]
Comparative Example 2
Using the same catalyst as in Example 1, the same desulfurized VGO was decomposed using an FCC pilot apparatus having an adiabatic up-flow type reaction zone (riser) and one catalyst regeneration zone. The device scale was the same as in Example 1.
[0044]
10 kg / h of the regenerated catalyst is introduced from the catalyst introduction portion at the entrance of the reaction zone of this apparatus, while the catalyst introduction portion provided at the downstream (upper side) of the entire length of the reaction zone by 入口 of the total length of the reaction zone is introduced. From the nozzle, a 2 kg / h regenerated catalyst was introduced together with a small amount of nitrogen gas. The other reaction conditions were the same as in Example 1. Table 1 shows the decomposition product yield at this time.
[0045]
[Table 1]
Figure 0003574555
From the above results, the method in which the catalyst is divided into two stages and introduced into the reaction zone of the downflow type as in Examples 1 to 3 while using the same amount of catalyst can obtain the highest light olefin yield. You can see that. Further, if the residual oil is recycled as in Example 2, a higher light olefin yield can be obtained.
[0046]
On the other hand, in the case of Comparative Example 1 in which the catalyst was introduced in one stage as in the conventional fluid catalytic cracking method, the temperature became high at the inlet of the reaction zone and the thermal decomposition became intense, resulting in an increase in dry gas and coke yield. Would.
[0047]
Further, in the case of Comparative Example 2 using the upflow type reaction zone, the flow of the catalyst and the gas is disturbed at the downstream catalyst introduction point, the backmixing becomes severe, and the dry gas and coke yield increase. This is because degradation progressed because part of the catalyst stayed in the reaction zone for a long time due to back mixing, and the residence time distribution of the gas became wider, some gas became shorter in the residence time, and decomposition did not proceed, It is considered that the residence time of the gas was increased and the gas was over-decomposed.
[0048]
【The invention's effect】
As described above, according to the fluid catalytic cracking method for heavy oil of the present invention, the generation of dry gas can be suppressed, and a light olefin can be obtained in high yield.

Claims (5)

下向流型反応帯域、分離帯域、ストリッピング帯域および触媒再生帯域を具備する流動接触分解装置を用いて重質油を接触分解するにあたり、
▲1▼ 重質油を該反応帯域入口の原料油導入部に供給し、かつ該触媒再生帯域からの再生触媒の一部を該反応帯域入口の触媒導入部に供給して、重質油と触媒粒子を接触させ、
更に該触媒再生帯域からの再生触媒の他の一部を、上記反応帯域入口の触媒導入部と反応帯域出口の間に設けられた少なくとも一カ所の触媒導入部に供給して、重質油と触媒粒子を接触させること、および
▲2▼ 該反応帯域における接触分解を、接触時間が0.1〜3.0秒、反応帯域出口部温度が530〜700℃、触媒/油比が10〜50wt/wtという条件下で行うことにより、
軽質オレフィンを製造することを特徴とする重質油の流動接触分解法。
In catalytically cracking heavy oil using a fluidized catalytic cracking apparatus having a downward flow reaction zone, a separation zone, a stripping zone and a catalyst regeneration zone,
{Circle around (1)} Heavy oil is supplied to the feedstock inlet at the inlet of the reaction zone, and a part of the regenerated catalyst from the catalyst regeneration zone is supplied to the catalyst inlet at the inlet of the reaction zone. Contact the catalyst particles,
Further, another part of the regenerated catalyst from the catalyst regeneration zone is supplied to at least one catalyst introduction portion provided between the catalyst introduction portion at the reaction zone inlet and the reaction zone outlet, and the heavy oil and (2) catalytic cracking in the reaction zone, the contact time is 0.1 to 3.0 seconds, the temperature at the outlet of the reaction zone is 530 to 700 ° C., and the catalyst / oil ratio is 10 to 50 wt. / Wt under the condition
A fluid catalytic cracking method for heavy oil, which comprises producing light olefin.
下向流型反応帯域、分離帯域、ストリッピング帯域および触媒再生帯域を具備する流動接触分解装置を用いて重質油を接触分解するにあたり、
▲1▼ 重質油を該反応帯域入口の原料油導入部に供給し、かつ該触媒再生帯域からの再生触媒の一部を該反応帯域入口の触媒導入部に供給して、重質油と触媒粒子を接触させ、
更に該触媒再生帯域からの再生触媒の他の一部を、上記反応帯域入口の触媒導入部と反応帯域出口の間に設けられた少なくとも一カ所の触媒導入部に供給して、重質油と触媒粒子を接触させること、
▲2▼ 該反応帯域出口部直後にクエンチオイルあるいはクエンチガスを供給することにより、分解生成物、未反応物および触媒の混合物の温度を、反応帯域出口部温度に比べて1〜100℃低下させること、および
▲3▼ 該反応帯域における接触分解を、接触時間が0.1〜3.0秒、反応帯域出口部温度が530〜700℃、触媒/油比が10〜50wt/wtという条件下で行うことにより、
軽質オレフィンを製造することを特徴とする重質油の流動接触分解法。
In catalytically cracking heavy oil using a fluidized catalytic cracking apparatus having a downward flow reaction zone, a separation zone, a stripping zone and a catalyst regeneration zone,
{Circle around (1)} Heavy oil is supplied to the feedstock inlet at the inlet of the reaction zone, and a part of the regenerated catalyst from the catalyst regeneration zone is supplied to the catalyst inlet at the inlet of the reaction zone. Contact the catalyst particles,
Further, another part of the regenerated catalyst from the catalyst regeneration zone is supplied to at least one catalyst introduction portion provided between the catalyst introduction portion at the reaction zone inlet and the reaction zone outlet, and the heavy oil and Contacting the catalyst particles,
{Circle around (2)} By supplying a quench oil or a quench gas immediately after the reaction zone outlet, the temperature of the mixture of the decomposition product, the unreacted product and the catalyst is lowered by 1 to 100 ° C. as compared with the reaction zone outlet temperature. And {circle around (3)} The catalytic cracking in the reaction zone is performed under the conditions of a contact time of 0.1 to 3.0 seconds, a reaction zone outlet temperature of 530 to 700 ° C., and a catalyst / oil ratio of 10 to 50 wt / wt. By doing in
A fluid catalytic cracking method for heavy oil, which comprises producing light olefin.
前記触媒再生帯域が複数の触媒再生帯域からなり、
前記反応帯域入口の前記触媒導入部には、該触媒再生帯域の途中から抜き出した半再生触媒を供給し、
前記反応帯域入口の前記触媒導入部と前記反応帯域出口の間に設けられた前記触媒導入部には、全触媒再生帯域を通過した後の再生触媒を供給する
ことを特徴とする請求項1または2記載の重質油の流動接触分解法。
The catalyst regeneration zone comprises a plurality of catalyst regeneration zones,
To the catalyst introduction section at the entrance of the reaction zone, supply a semi-regenerated catalyst extracted from the middle of the catalyst regeneration zone,
The regenerated catalyst that has passed through the entire catalyst regeneration zone is supplied to the catalyst introduction portion provided between the catalyst introduction portion at the reaction zone inlet and the reaction zone outlet. 2. A fluid catalytic cracking method for heavy oil according to 2.
前記複数の触媒再生帯域のうち、一部がライザー型再生帯域であり、その他が濃厚流動床型再生帯域であることを特徴とする請求項3記載の重質油の流動接触分解法。The fluid catalytic cracking method for heavy oil according to claim 3, wherein a part of the plurality of catalyst regeneration zones is a riser type regeneration zone, and the other is a thick fluidized bed type regeneration zone. 前記クエンチオイルが、前記下向流型反応帯域で接触分解して得られた分解生成物を蒸留して得られる、沸点300℃以上の残渣油分であることを特徴とする請求項2記載の重質油の流動接触分解法。The heavy oil according to claim 2, wherein the quench oil is a residual oil having a boiling point of 300 ° C or more obtained by distilling a decomposition product obtained by catalytic cracking in the downflow type reaction zone. Fluid catalytic cracking of high quality oil.
JP32716897A 1996-11-15 1997-11-13 Fluid catalytic cracking of heavy oil Expired - Lifetime JP3574555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32716897A JP3574555B2 (en) 1996-11-15 1997-11-13 Fluid catalytic cracking of heavy oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31861796 1996-11-15
JP8-318617 1996-11-15
JP32716897A JP3574555B2 (en) 1996-11-15 1997-11-13 Fluid catalytic cracking of heavy oil

Publications (2)

Publication Number Publication Date
JPH1143678A JPH1143678A (en) 1999-02-16
JP3574555B2 true JP3574555B2 (en) 2004-10-06

Family

ID=26569438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32716897A Expired - Lifetime JP3574555B2 (en) 1996-11-15 1997-11-13 Fluid catalytic cracking of heavy oil

Country Status (1)

Country Link
JP (1) JP3574555B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435401B2 (en) 2009-01-06 2013-05-07 Process Innovators, Inc. Fluidized catalytic cracker with active stripper and methods using same
JP6234829B2 (en) * 2014-01-24 2017-11-22 Jxtgエネルギー株式会社 Fluid catalytic cracking of heavy oil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239692A (en) * 1985-08-13 1987-02-20 コンパニ−・フランセ−ズ・ド・ラフイナ−ジユ Method and apparatus for catalytic cracking of hydrocarbon charge by adjustment of reaction temperature
US4693808A (en) * 1986-06-16 1987-09-15 Shell Oil Company Downflow fluidized catalytic cranking reactor process and apparatus with quick catalyst separation means in the bottom thereof
CA2013626A1 (en) * 1989-05-16 1990-11-16 W. Benedict Johnson Method and apparatus for the fluid catalytic cracking of hydrocarbon feed employing a separable mixture of catalyst and sorbent particles
JP2786287B2 (en) * 1989-09-01 1998-08-13 トータル、ラフィナージュ、ディストリビュシオン、ソシエテ、アノニム Method and apparatus for steam cracking hydrocarbons in the fluid phase
FR2667609B1 (en) * 1990-10-03 1993-07-16 Inst Francais Du Petrole PROCESS AND DEVICE FOR CATALYTIC CRACKING IN DOWNFLOW BED.
AU668731B2 (en) * 1992-05-04 1996-05-16 Mobil Oil Corporation Fluidized catalytic cracking
CN1034586C (en) * 1993-11-05 1997-04-16 中国石油化工总公司 Catalytic conversion method of low-carbon olefines high-output
FR2715163B1 (en) * 1994-01-18 1996-04-05 Total Raffinage Distribution Process for catalytic cracking in a fluidized bed of a hydrocarbon feed, in particular a feed with a high content of basic nitrogen compounds.

Also Published As

Publication number Publication date
JPH1143678A (en) 1999-02-16

Similar Documents

Publication Publication Date Title
EP2737013B1 (en) Fluidized catalytic cracking of paraffinic naphtha in a downflow reactor
US5009769A (en) Process for catalytic cracking of hydrocarbons
TWI599400B (en) Fluid catalytic cracking process and apparatus for maximizing light olefins or middle distillates and light olefins
KR101526608B1 (en) Method for recovery and production of lighter hydrocarbon product stream from paraffinic naphtha feed stream in conjuction with fcc unit operations
KR100225222B1 (en) Process for fluid catalytic cracking of oils
KR100235837B1 (en) Process for fluid catalytic cracking of heavy fraction oils
WO2007071177A1 (en) Catalytic conversion method of increasing the yield of lower olefin
CN110540869B (en) Catalytic cracking method
JPS6384632A (en) Fluid catalytic cracking method
AU2012369895A1 (en) A process for catalytic conversion of low value hydrocarbon streams to light olefins
US5435906A (en) Process for catalytically cracking feedstocks paraffin rich comprising high and low concarbon components
US5082983A (en) Reduction of benzene content of reformate in a catalytic cracking unit
EP0382289B1 (en) Process for catalytic cracking of hydrocarbons
JP3996320B2 (en) Method for producing gasoline with a high content of isobutane and isoparaffin by conversion using a catalyst
US5215650A (en) Cooling exothermic regenerator with endothermic reactions
JPH07506389A (en) Fluid catalytic cracking
CN110540866B (en) Processing method of crude oil whole fraction
US7736491B2 (en) Process for the fluid catalytic cracking of mixed feedstocks of hydrocarbons from different sources
JP3574555B2 (en) Fluid catalytic cracking of heavy oil
EP1935965A1 (en) Process for catalytic cracking of petroleum hydrocarbons in a fluidized bed with maximum production of light olefins
US20070095724A1 (en) FCC process for the maximization of medium distillates
US20040140246A1 (en) Process for upgrading fcc product with additional reactor
US7943038B2 (en) Method for producing olefins using a doped catalyst
JP3724934B2 (en) Fluid catalytic cracking method of oil
JP3724932B2 (en) Fluid catalytic cracking method of oil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term