JP3568058B2 - Cast polyester film and biaxially oriented polyester film - Google Patents

Cast polyester film and biaxially oriented polyester film Download PDF

Info

Publication number
JP3568058B2
JP3568058B2 JP05664195A JP5664195A JP3568058B2 JP 3568058 B2 JP3568058 B2 JP 3568058B2 JP 05664195 A JP05664195 A JP 05664195A JP 5664195 A JP5664195 A JP 5664195A JP 3568058 B2 JP3568058 B2 JP 3568058B2
Authority
JP
Japan
Prior art keywords
film
temperature
polyester film
die
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05664195A
Other languages
Japanese (ja)
Other versions
JPH08216248A (en
Inventor
明子 山本
勝也 豊田
克俊 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP05664195A priority Critical patent/JP3568058B2/en
Priority to US08/416,177 priority patent/US5654394A/en
Priority to DE69521732T priority patent/DE69521732T2/en
Priority to EP95302292A priority patent/EP0676269B1/en
Priority to TW084103357A priority patent/TW333546B/en
Priority to CN95105117A priority patent/CN1073920C/en
Priority to KR1019950008190A priority patent/KR100347345B1/en
Publication of JPH08216248A publication Critical patent/JPH08216248A/en
Application granted granted Critical
Publication of JP3568058B2 publication Critical patent/JP3568058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、磁気記録媒体用、コンデンサー用、包装用などとして好適なポリエステルフイルムに関し、とくにキャストフイルムおよびそれから製造される二軸配向フイルムに関する。
【0002】
【従来の技術】
ポリエステルフイルムは、その優れた熱安定性、寸法安定性及び機械特性から、磁気記録媒体用、コンデンサー用、包装用フイルム、プリンターリボンなど様々な工業用途で用いられている。特に、磁気記録媒体用などのベースフイルムとして、その有用性は周知である。近年、各用途において薄膜化が進み、フイルムの機械強度向上の要求が益々高まってきている。
【0003】
ポリエステルフイルムの機械強度を上げる手法として、延伸倍率を高めるため長手方向、幅方向に延伸した二軸延伸フイルムを更に長手方向に延伸する再縦延伸法や、再縦延伸後、更に再横延伸する方法、あるいは長手方向、幅方向に延伸した二軸延伸フイルムを長手方向、幅方向両方向に同時に再延伸したりする方法が知られている。また、最近では再縦、横延伸を必要とせず、縦延伸を2段以上に分けて延伸する縦多段延伸法(例えば、特開昭61−242824号公報)が提案されている。しかし、これらの方法では、延伸や熱処理工程が複雑化することによりフイルム破れやエッジロスの増大などの可能性が高まり、生産効率が低下するという問題がある、また、再縦延伸、再横延伸工程の設置、縦多段延伸のための装置改造などにより製造コストが上がるという問題もある。
【0004】
これに対し、延伸以前のキャスト段階から配向を付与する試みもなされている。ダイ内で結晶性熱可塑性樹脂の配向物を得る方法として、例えば特開昭53−11980号公報が挙げられるが、これはサーキュラーダイを用いて、ナイロンやポリプロピレンなど高結晶性の熱可塑性樹脂をダイ内で固化して配向物とするものである。さらに、ダイ内で配向物とした後二軸配向皮膜を得る方法として、特開昭53−19625号公報が挙げられるが、これはインフレーション法により高結晶性のポリプロピレンの二軸配向皮膜を得るものである。これら公報に記載されている方法は、本発明のようにフラットダイを用いてポリエステル樹脂を溶融状態で押し出す方式とは本質的に異なる。また、これら公報に記載されている方法では、押出機に高圧力を必要とするため、ダイ本体、口金への負荷が大きく、変形、耐久性低下の原因となる。
【0005】
Tダイ法により押し出し配向フイルムとする方法として、例えば特開平2−89617号公報、特開平3−222711号公報などに記載の方法があるが、これらは液晶ポリマの持つ易配向性を利用したものであり、本発明のようにダイランド部でポリマを低温化して押し出す方式とは構成および目的が異なる。また、液晶ポリマを用いることによりコストアップは免れず、本発明で適用されるポリエステルのような汎用性がないという問題も含んでいる。
【0006】
このように生産効率良く機械強度に優れたポリエステルフイルムを得るため、種々の改善がなされてきたが、ポリエステル樹脂を未延伸のキャストフイルムの状態で配向させることは、過去に例がない。
【0007】
【発明が解決しようとする課題】
本発明は、上記課題を解決し、延伸工程前のキャスト工程での改良により、機械強度に優れたポリエステルフイルムを提供することを目的とする。
【0008】
【課題を解決するための手段】
この目的に沿う本発明のキャストポリエステルフイルムは、複屈折Δnが0.3×10-3≦Δn≦10×10-3であることを特徴とするものからなる。さらに本発明に係る二軸配向ポリエステルフイルムは、このキャストフイルムを長手方向、幅方向に延伸してなる二軸配向ポリエステルフイルムである。
【0009】
本発明でいうキャストフイルムとは、フラットダイから溶融ポリマを押し出し、冷却ロール上で急冷固化したシート状フイルムをいう。
【0010】
本発明に適用されるポリエステルとは、ジオールとカルボン酸から縮重合により得られるエステル基を主鎖にもつポリマであり、ジカルボン酸としては、テレフタル酸、イソフタル酸、ジフェン酸、フタル酸、ナフタレンジカルボン酸、アジピン酸、セバチン酸、ダイマー酸、エイコ酸、ドデカンジオン酸などで代表されるものであり、また、ジオールとは、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ビスフェノールなどで代表されるものである。具体的には例えばポリエチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリエチレン−P−オキシベンゾエート、ポリ−1,4−シクロヘキシレンジメチレンテレフタレート、ポリエチレン−2,6−ナフタレンジカルボキシレートなどが挙げられる。もちろん、これらのポリエステルは、ホモポリマであってもコポリマであってもよく、共重合成分としては、例えばジエチレングリコール、ネオペンチルグリコール、ポリアルキレングリコールなどのジオール成分、アジピン酸、セバチン酸、フタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸などのジカルボン酸成分が挙げられる。液晶ポリエステルについては、前述のような理由から、本発明におけるポリエステルには含まれない。本発明の場合、特にポリエチレンテレフタレートが機械的強度、耐熱性、耐薬品性、耐久性、汎用性などの観点から好ましい。
【0011】
またこのポリエステルの中には、本発明の効果を阻害しない範囲であれば、公知の各種添加剤、例えば酸化防止剤、帯電防止剤、結晶化剤、無機粒子などが添加されていてもかまわない。
【0012】
本発明者らは鋭意研究の結果、示差走査熱量計(以下、DSCと称す)による測定の融解時の吸熱ピークの終了温度Tme以上の温度で押出した場合には無配向フイルムしか得られないポリエステル樹脂について、低温化して押出すことにより易配向性を示すことをつきとめた。本発明は、延伸前のキャストフイルムにおいてΔnが0.3×10-3〜10×10-3であることを必須とするものである。Δnが0.3×10-3未満であれば通常のキャストフイルムと比較して何の効果も得られない。またキャストフイルムの配向が高くなりすぎると結晶化度が上がり表面がざらつくという観点から、Δnの上限は10×10-3、より好ましくは5×10-3、さらに好ましくは3×10-3である。
【0013】
本発明のポリエステルフイルムは、キャストフイルムにおいて分子鎖の主軸が長手方向に配向していることを特徴とする。すなわち、キャストフイルムが長手方向に微配向していることにより、その後常法に従い二軸延伸するだけで強力化できることをつきとめた。
【0014】
本発明の二軸配向ポリエステルフイルムにおいては、前述のキャストフイルムを通常の二軸延伸した場合には、従来の強力化フイルムの製法と比較して装置が大幅に簡略化され、コスト的に有利である。機械強度としては長手方向、幅方向のうち少なくとも一方向のF−5値が14kg/mmであることが好ましく、さらに好ましくは15kg/mm以上である。キャストフイルムを上記の如く通常の二軸延伸後、再縦延伸および/または再横延伸して、さらなる強力化を行う場合、機械強度は、長手方向、幅方向のうち少なくとも一方向のF−5値が25kg/mmが好ましく、さらに好ましくは30kg/mmである。
【0015】
次に本発明フイルムの製造方法の一例について説明する。
まず、本発明に適用するポリエステルペレットを十分乾燥させた後、押出機に供給する。押出機内では、ポリエステル樹脂はDSCの溶解時の吸熱ピークの終了温度(Tme)以上に加熱して溶融状態にする必要がある。樹脂温度が溶解時の吸熱ピークの開始温度(Tmb)以下であれば樹脂は流動性がほとんどなく、押出できない。また、樹脂温度がTmbより高くてもTme未満であれば未溶融物が残るため、そのままではフイルタの目詰まり、成形後のフイルムの異物欠点等が生じるため好ましくない。従って、樹脂の加熱溶融は未溶融物のない完全な溶融状態にするためにTme以上、好ましくは(Tme+10℃)以上の温度で行う必要がある。
【0016】
従来のポリエステル樹脂の押出成形によるフイルムの製造方法では、押出機内において、融点以上に加熱溶融された樹脂は、フイルタ、ギヤポンプ等を連結するパイプ中を通りダイに送られる。ダイに送られた樹脂はダイで目的の形状に成形された後、押し出される。この押出の際の樹脂温度は、通常、融解終了温度(Tme)以上である。これに対し本発明では、樹脂をダイ内で融解終了温度(Tme)未満、降温結晶化開始温度(Tcb)以上に冷却して押し出す。高分子樹脂は溶融状態からTme未満に冷却しても短時間では固化しない、いわゆる過冷却の液相状態を保つことができる。本発明では、樹脂のもつこの特性を利用して溶融状態で押し出すため、ダイ内で樹脂を固化させない。そのため冷却は樹脂の降温結晶化開始温度(Tcb)以上までにとどめる必要がある。Tcbよりも低い温度では樹脂が結晶化し始め、押し出されたフイルムの表面荒れ、押出異常、流れむらを生じたり、経時で固化し、もはや押出不可能となるため好ましくない。
【0017】
冷却はダイのランド部で行われることが好ましい。もし冷却が、樹脂がダイに入る以前に行なわれると、粘度の上昇、流動性の悪化が生じてしまい、その結果、押出異常や流れ異常が生じたり、押出機、フイルタ、ギヤポンプに負荷をかけ、変形または寿命の低下を引き起こすので好ましくない。またダイ中でもランド部以前(ダイホッパ部)で冷却を行うことは、樹脂が目的の形に成形される過程であり、温度むら、流れ異常を生じる原因となるため、好ましくない。特にフラットダイは樹脂の流路長が幅方向で異なるため、冷却時間の違いから熱履歴が均一でなくなり、幅方向の温度むらが生じたりするため、成形性が悪化したり、厚みむらが悪くなる場合もあるため好ましくない。これに対し、冷却をダイのランド部で行うことは、樹脂が幅方向に拡大され、押出される形状に成形された後での冷却となり、均一な冷却が可能となる。ランド部はダイ中の最も間隙の狭い部分であり、熱交換効率が優れており好適である。また樹脂は冷却後、すぐに押し出されるため、粘度上昇に伴う濾圧上昇、押出異常も最小限に抑えることができる。このとき、ダイのランド部の入口と出口の断面積比は一定にする必要がある。ランド部の断面積比を小さくすることは、高押出圧力が必要となるため押出機に負荷がかかり、濾圧異常や押出異常を起すため好ましくない。
【0018】
本発明では、樹脂は冷却過渡状態でダイランド部より吐出することが好ましい。ここで冷却過渡状態とは、冷却過程で樹脂が定常温度に達していない状態をいう。もし、樹脂温度が定常状態に達した後にダイより押出した場合、ダイ内で樹脂が固化し通常の押出圧力ではもはや押出不可能となるため好ましくない。これに対し本発明では、樹脂はダイランド部入口で冷却開始された後ランド部を流れる間に徐々に冷却され、ランド部出口でちょうど目的温度まで達したと同時に押出されるため液相状態にあり、通常の押出圧力で容易に押出すことができる。
【0019】
本発明におけるポリエステル樹脂の融解終了温度(Tme)、降温結晶化開始温度(Tcb)はDSCによって決定される。DSCとは熱分析で通常用いられる示差走査熱量測定法のことであり、物質の融解、結晶化、相転移、熱分解等の状態変化に伴う吸熱、発熱を測定する方法である。DSCによってポリエステル樹脂の昇温時の融解温度、降温時の結晶化速度を測定する場合、公知の方法を用いることができるが、ここで注意する点は測定時の昇温、冷却速度である。実際の押出条件を想定すると、好適な昇・降温速度としては、通常10〜30℃/分である。
【0020】
ダイランド部から吐出したポリエステルシートを、20〜60℃の温度に制御しドラフト比10以上の速度で回転する冷却ドラム上でキャストすることにより、分子配向の主軸が長手方向であるキャストフイルムが得られる。ここで、ドラフト比とは、
ドラフト比=冷却ドラム引取り速度/ダイランド部出口でのポリマ吐出速度
で定義されるものである。このキャストフイルムの複屈折Δnは0.2×10−3〜10×10−3であることが必要である。
【0021】
次に該キャストフイルムをまず長手方向に延伸する。延伸温度は微配向構造が崩れないようガラス転移温度Tg−10℃〜Tg+20℃の温度範囲で延伸する。しかる後公知のステンターにより幅方向にポリマのTg以上の温度で2倍以上の延伸倍率で延伸する。その後ポリエステルの融点以下の温度で0.5〜60秒間熱固定を行い、巻取る。得られた二軸配向ポリエステルフイルムは、長手方向、幅方向のうち少なくとも一方向のF−5値が14kg/mm以上であることが好ましく、さらに好ましくは15kg/mm以上である。
【0022】
また、上記キャストフイルムを、通常の逐次二軸延伸した後、さらに公知の方法により再縦、再横延伸し、ポリエステルの融点以下の温度で熱固定することにより、さらに強力化したフイルムを得ることができる。このようにして得られた二軸配向ポリエステルフイルムは、長手方向、幅方向のうち少なくとも一方向のF−5値が25kg/mm以上であることが好ましく、さらに好ましくは30kg/mm以上である。
【0023】
[物性の測定方法]
(1)フイルムのF−5値
オリエンテック社製テンシロン型引張試験機に幅10mmのサンプルフイルムをチャック間長さ50mmとなるようにセットし、引張速度200mm/分で引張試験を行い、フイルムの5%伸張時の応力を測定し、これをF−5値とした。
【0024】
(2)複屈折
ベレックコンペンセータを装備した偏光顕微鏡により、フイルムのリタデーションRdを求めた。Rdをフイルムの厚みで割り、複屈折とした。
【0025】
(3)熱特性
マックサイエンス社製示差走査熱量計DSC3100を用いて、サンプル5mgを300℃で5分間溶融保持し、液体窒素で急冷固化した後、室温から昇温速度20℃/分で昇温した。この時観測される融解ピークの開始温度をTmb、ピーク温度をTm、ピーク終了温度をTmeとした。また、サンプル5mgを300℃で5分間溶融保持した後、降温速度20℃/分で降温した。この時観測される降温結晶化発熱ピークの開始温度をTcb、ピーク温度をTc、ピーク終了温度をTceとした。
【0026】
(4)キャストフイルムの表面性
キャストフイルムにおいて、表面が平滑で口金すじや傷などの表面欠点が全くなく、どのような用途にも使用可能なフイルムを◎、表面欠点がほとんどない十分使用可能なフイルムを○、ややざらつきがあり、用途を限定すれば使用可能なフイルムを△、表面欠点が多く、どのような用途でも使用には耐えかねるフイルムを×と評価した。
【0027】
【実施例】
実施例1〜4、比較例1、2
ポリエステル樹脂として、極限粘度0.65のポリエチレンテレフタレートを用いた。DSCを用いて熱特性を測定したところ、Tg:75℃、Tmb:240℃、Tm:255℃、Tme:268℃、Tcb:203℃、Tc:188℃、Tce:174℃であった。このポリエチレンテレフタレートのペレットを180℃で3時間真空乾燥して押出機(口径30mm)に供給し、290℃で溶融状態とし、成形用ダイに供給した。ダイはリップ間隙1mm、幅150mm、ランド長100mmのマニホールドダイを用いた。本ダイのランド部には、幅方向に直径7mmに空孔を複数あけ、ここに空気を通すことにより冷却可能な構造としてある。ダイホッパ部の温度は290℃とし、ランド部には25℃の冷却用空気を流量35000〜70000cm/分で通して冷却した。この状態で樹脂を押し出し、ダイから押し出されたフイルムを静電気を印加しながら表面温度25℃に保たれた冷却ロール上で急冷固化せしめてキャストフイルムを得た。このフイルムを二軸延伸装置により80℃で長手方向に3.2倍、幅方向に3倍延伸した後、200℃10秒間熱処理を施し、二軸配向フイルムを得た。
【0028】
表1に示したように、ポリマ温度230〜245℃の範囲で、ドラフト比18.0の条件で押出・キャストした実施例1〜4はキャストフイルムにおいて長手方向に微配向していた。延伸後の二軸配向フイルムはF−5値が14〜18kg/mmと高く機械特性の向上がみられた。ここで、MD、TDとはそれぞれフイルムの長手方向、幅方向のことである。
【0029】
他の条件は実施例1〜4と同様にして、ランド部出口でのポリマ温度をTcb以下の190℃とした比較例1はダイ内で樹脂が固化してしまい、押出不可能となった。
【0030】
また比較例2では、実施例1〜4において他の条件は同様にし、ダイでの冷却を行わなかった。ポリマ温度はランド部出口で286℃で、得られたキャストフイルムは無配向フイルムであった。これを二軸延伸して得られたフイルムは、長手方向のF−5値が10kg/mm、幅方向のF−5値が11kg/mmと強度は全く上がらなかった。
【0031】
実施例5、6、比較例3
実施例5、6は、実施例1〜4と同様のペレットを実施例1〜4と同様の方法で急冷固化、二軸延伸後、長手方向に150℃で1.7倍再縦延伸を行い、最後に200℃で熱固定を施した。
表2に示したように、実施例5、6はキャストフイルムにおいて長手方向に微配向していた。再縦延伸後の二軸配向フイルムは、長手方向のF−5値が26〜28kg/mmと非常に高い値を示した。
【0032】
比較例3は、比較例2で得られたキャストフイルムを、実施例5、6と同様の延伸、熱固定を施したものである。得られたフイルムは、長手方向のF−5値が17kg/mmと実施例5、6と比較して低くなった。
【0033】
実施例7、8、比較例4
実施例7、8は、実施例1〜4と同様のペレットを実施例1〜4と同様の方法で急冷固化、二軸延伸後、長手方向に150℃で1.1倍再縦延伸を行い、続いて幅方向に190℃で1.5倍再横延伸を行い、最後に200℃で熱固定を施した。
表2に示したように、実施例7、8はキャストフイルムにおいて長手方向に微配向していた。再横延伸後の二軸配向フイルムは、長手方向のF−5値が14〜13kg/mm、幅方向のF−5値が27〜25kg/mmと非常に高い値を示した。
【0034】
比較例4は、比較例2で得られたキャストフイルムを、実施例7、8と同様の延伸、熱固定を施したものである。得られたフイルムは、長手方向のF−5値が10kg/mm、幅方向のF−5値が15kg/mmと実施例7、8と比較して低かった。
【0035】
実施例9〜13、比較例5〜7
実施例1〜4と同様のペレット、押出機、延伸、熱固定装置を用いてキャストフイルムおよび二軸延伸フイルムを得た。このとき、ダイランド部出口でのポリマ温度は235℃で一定とし、冷却ロールの引取り速度によりドラフト比を変更した。
表3に示したように、実施例9〜13は、キャストフイルムの複屈折Δnが0.4×10−3、1.1×10−3、2.5×10−3、4.5×10−3、6.0×10−3と、長手方向に配向していた。また、フイルムの表面性、延伸性は良好であった。Δnは、ドラフト比にともなって大きくなった。
【0036】
さらにドラフト比を大きくしてΔnを12×10−3、20×10−3まで高めた比較例5、6は、フイルムの表面がざらつき、特に比較例7は使用に耐えられないほどであった。逆にダイから吐出したポリマを引取らずにそのまま冷却ロール上で冷却固化して得られた。比較例7は、無配向フイルムであった。
【0037】
【表1】

Figure 0003568058
【0038】
【表2】
Figure 0003568058
【0039】
【表3】
Figure 0003568058
【0040】
【発明の効果】
本発明のキャストポリエステルフイルムによれば、長手方向に配向しているため、機械強度の高い二軸延伸フイルムを収率良く、かつ設備的な改造などによるコストアップを招くことなく得ることが可能となる。
【0041】
また本発明の二軸配向ポリエステルフイルムは、従来の再縦延伸、縦多段延伸フイルムに匹敵する高い機械物性を備えており、また本発明フイルムを再縦延伸および/または再横延伸すれば、一層高い機械強度を有するフイルムとなる。[0001]
[Industrial applications]
The present invention relates to a polyester film suitable for use in magnetic recording media, capacitors, packaging, and the like, and more particularly, to a cast film and a biaxially oriented film produced therefrom.
[0002]
[Prior art]
Polyester films have been used in various industrial applications such as magnetic recording media, capacitors, packaging films, and printer ribbons because of their excellent thermal stability, dimensional stability, and mechanical properties. In particular, its usefulness as a base film for magnetic recording media is well known. In recent years, thinning has progressed in each application, and demands for improving mechanical strength of films have been increasing.
[0003]
As a method of increasing the mechanical strength of the polyester film, a re-longitudinal stretching method in which a biaxially stretched film stretched in the longitudinal direction and the width direction is further stretched in the longitudinal direction in order to increase the stretching ratio, or a further transverse stretching after the re-longitudinal stretching. There is known a method or a method in which a biaxially stretched film stretched in the longitudinal direction and the width direction is simultaneously re-stretched in both the longitudinal direction and the width direction. In recent years, a longitudinal multi-stage stretching method (for example, Japanese Patent Application Laid-Open No. 61-242824) has been proposed in which longitudinal stretching is divided into two or more stages and stretching is not required, and longitudinal and horizontal stretching is not required. However, in these methods, the drawback and the heat treatment process become complicated, which increases the possibility of film breakage and increase in edge loss, thereby reducing the production efficiency. There is also a problem that the production cost increases due to the installation of the device and the modification of the device for vertical multi-stage stretching.
[0004]
On the other hand, attempts have been made to provide orientation from the casting stage before stretching. As a method for obtaining an oriented product of a crystalline thermoplastic resin in a die, for example, JP-A-53-11980 is cited. This method uses a circular die to remove a highly crystalline thermoplastic resin such as nylon or polypropylene. It is solidified in a die to form an oriented product. Further, as a method for obtaining a biaxially oriented film after forming an oriented product in a die, Japanese Patent Application Laid-Open No. 53-19625 is cited, which obtains a biaxially oriented film of highly crystalline polypropylene by an inflation method. It is. The methods described in these publications are essentially different from the method of extruding a polyester resin in a molten state using a flat die as in the present invention. Further, in the methods described in these publications, a high pressure is required for the extruder, so that a large load is applied to the die body and the die, which causes deformation and reduced durability.
[0005]
As a method of forming an extruded alignment film by the T-die method, for example, there are methods described in JP-A-2-89617, JP-A-3-222711, etc. These methods use the easy alignment property of a liquid crystal polymer. However, the structure and the purpose are different from those in the method of extruding the polymer at a low temperature in the die land portion as in the present invention. Further, the use of a liquid crystal polymer inevitably increases the cost, and also has a problem that the liquid crystal polymer is not as versatile as the polyester used in the present invention.
[0006]
Various improvements have been made to obtain a polyester film excellent in mechanical strength with good production efficiency as described above. However, there has been no example in the past in which a polyester resin is oriented in a state of an undrawn cast film.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide a polyester film having excellent mechanical strength by improving a casting process before a stretching process.
[0008]
[Means for Solving the Problems]
The cast polyester film of the present invention for this purpose is characterized in that the birefringence Δn is 0.3 × 10 −3 ≦ Δn ≦ 10 × 10 −3 . Further, the biaxially oriented polyester film according to the present invention is a biaxially oriented polyester film obtained by stretching this cast film in the longitudinal and width directions.
[0009]
The cast film referred to in the present invention refers to a sheet film obtained by extruding a molten polymer from a flat die and quenching and solidifying it on a cooling roll.
[0010]
The polyester applied to the present invention is a polymer having an ester group obtained by condensation polymerization from a diol and a carboxylic acid in the main chain. Examples of the dicarboxylic acid include terephthalic acid, isophthalic acid, diphenic acid, phthalic acid, and naphthalenedicarboxylic acid. Acids, adipic acid, sebacic acid, dimer acid, eicoic acid, dodecanedioic acid, etc., and diols are represented by ethylene glycol, trimethylene glycol, tetramethylene glycol, bisphenol, etc. It is. Specifically, for example, polyethylene terephthalate, polytetramethylene terephthalate, polyethylene-P-oxybenzoate, poly-1,4-cyclohexylene dimethylene terephthalate, polyethylene 2,6-naphthalenedicarboxylate and the like can be mentioned. Of course, these polyesters may be homopolymers or copolymers. Examples of copolymerization components include diol components such as diethylene glycol, neopentyl glycol and polyalkylene glycol, adipic acid, sebacic acid, phthalic acid, and isophthalic acid. An acid and a dicarboxylic acid component such as 2,6-naphthalenedicarboxylic acid are exemplified. Liquid crystal polyester is not included in the polyester of the present invention for the reasons described above. In the case of the present invention, polyethylene terephthalate is particularly preferred from the viewpoint of mechanical strength, heat resistance, chemical resistance, durability, versatility and the like.
[0011]
In the polyester, various known additives such as an antioxidant, an antistatic agent, a crystallization agent, and inorganic particles may be added as long as the effects of the present invention are not impaired. .
[0012]
As a result of intensive studies, the present inventors have found that when extruded at a temperature equal to or higher than the end temperature Tme of an endothermic peak upon melting measured by a differential scanning calorimeter (hereinafter, referred to as DSC), only a non-oriented film can be obtained. It was found that the resin exhibited easy orientation by extrusion at a low temperature. In the present invention, it is essential that Δn in the cast film before stretching is 0.3 × 10 −3 to 10 × 10 −3 . If Δn is less than 0.3 × 10 −3 , no effect is obtained as compared with a normal cast film. From the viewpoint that the degree of crystallinity increases and the surface becomes rough when the orientation of the cast film is too high, the upper limit of Δn is 10 × 10 −3 , more preferably 5 × 10 −3 , and still more preferably 3 × 10 −3 . is there.
[0013]
The polyester film of the present invention is characterized in that the main axis of the molecular chain in the cast film is oriented in the longitudinal direction. That is, it has been found that since the cast film is finely oriented in the longitudinal direction, it can be strengthened only by subsequently biaxially stretching according to a conventional method.
[0014]
In the biaxially oriented polyester film of the present invention, when the above-mentioned cast film is subjected to normal biaxial stretching, the apparatus is greatly simplified as compared with the conventional method for producing a strengthened film, and the cost is advantageous. is there. As the mechanical strength, the F-5 value in at least one of the longitudinal direction and the width direction is preferably 14 kg / mm 2 , more preferably 15 kg / mm 2 or more. When the cast film is subjected to ordinary biaxial stretching as described above and then subjected to re-longitudinal stretching and / or re-lateral stretching to further strengthen the mechanical strength, the mechanical strength is F-5 in at least one of the longitudinal direction and the width direction. The value is preferably 25 kg / mm 2 , more preferably 30 kg / mm 2 .
[0015]
Next, an example of a method for producing the film of the present invention will be described.
First, the polyester pellets applied to the present invention are sufficiently dried, and then supplied to an extruder. In the extruder, the polyester resin needs to be heated to a temperature higher than the end temperature (Tme) of the endothermic peak at the time of dissolution of DSC to bring it into a molten state. If the resin temperature is lower than the start temperature (Tmb) of the endothermic peak at the time of dissolution, the resin has almost no fluidity and cannot be extruded. Even if the resin temperature is higher than Tmb, if the resin temperature is lower than Tme, unmelted material remains, which is not preferable because clogging of the filter and defects of foreign matter in the film after molding will occur. Therefore, it is necessary to heat and melt the resin at a temperature of Tme or more, preferably (Tme + 10 ° C.) or more, in order to obtain a completely molten state without unmelted material.
[0016]
In a conventional method for producing a film by extrusion molding of a polyester resin, in an extruder, a resin heated and melted to a melting point or higher is sent to a die through a pipe connecting a filter, a gear pump, and the like. The resin sent to the die is extruded after being formed into a desired shape by the die. The resin temperature during this extrusion is usually equal to or higher than the melting end temperature (Tme). On the other hand, in the present invention, the resin is cooled and extruded in the die to a temperature lower than the melting end temperature (Tme) and higher than the temperature-falling crystallization start temperature (Tcb). The polymer resin can maintain a so-called supercooled liquid phase state that does not solidify in a short time even when cooled from a molten state to less than Tme. In the present invention, the resin is extruded in a molten state by utilizing this property of the resin, so that the resin is not solidified in the die. Therefore, it is necessary to limit the cooling to a temperature equal to or higher than the temperature at which the resin begins to cool down and crystallize (Tcb). If the temperature is lower than Tcb, the resin starts to crystallize, causing the extruded film to have a rough surface, abnormal extrusion, uneven flow, or to solidify over time, which is not preferable because it can no longer be extruded.
[0017]
Cooling is preferably performed at the land of the die. If the cooling is performed before the resin enters the die, the viscosity will increase and the fluidity will deteriorate, resulting in extrusion or flow abnormalities, or load on the extruder, filter or gear pump. , Deformation or shortening of life is not preferred. Also, cooling in the die before the land portion (die hopper portion) is a process in which the resin is formed into a desired shape, and it is not preferable because it causes uneven temperature and abnormal flow. In particular, since the flow path length of the flat die is different in the width direction, the heat history is not uniform due to the difference in cooling time, and the temperature in the width direction is uneven, so that the moldability is deteriorated and the thickness unevenness is deteriorated. In some cases, this is not preferable. On the other hand, when cooling is performed at the land portion of the die, the resin is expanded after being expanded in the width direction and formed into an extruded shape, so that uniform cooling can be achieved. The land portion is the narrowest portion in the die, and is preferable because it has excellent heat exchange efficiency. In addition, since the resin is extruded immediately after cooling, an increase in filtration pressure and an abnormal extrusion due to an increase in viscosity can be minimized. At this time, the cross-sectional area ratio between the entrance and the exit of the land portion of the die needs to be constant. Decreasing the cross-sectional area ratio of the land portion is not preferable because a high extrusion pressure is required, which places a load on the extruder and causes abnormal filtration pressure and extrusion.
[0018]
In the present invention, it is preferable that the resin is discharged from the die land portion in a cooling transient state. Here, the cooling transient state refers to a state in which the resin has not reached a steady temperature during the cooling process. If the resin is extruded from the die after the resin temperature reaches a steady state, the resin is solidified in the die and cannot be extruded under normal extrusion pressure, which is not preferable. On the other hand, in the present invention, the resin is gradually cooled while flowing through the land after the cooling is started at the die land inlet, and is extruded at the land outlet just when the resin reaches the target temperature. It can be easily extruded at normal extrusion pressure.
[0019]
In the present invention, the melting end temperature (Tme) and the cooling crystallization start temperature (Tcb) of the polyester resin are determined by DSC. DSC is a differential scanning calorimetry method usually used in thermal analysis, and is a method for measuring endothermic and exothermic accompanying a state change such as melting, crystallization, phase transition, and thermal decomposition of a substance. When measuring the melting temperature of the polyester resin at the time of temperature rise and the crystallization rate at the time of temperature fall by DSC, known methods can be used, but the points to be noted here are the temperature rise and cooling rates at the time of measurement. Assuming actual extrusion conditions, a suitable heating / cooling rate is usually 10 to 30 ° C./min.
[0020]
By casting the polyester sheet discharged from the die land on a cooling drum rotating at a speed of at least 10 with a draft ratio controlled at a temperature of 20 to 60 ° C., a cast film having a main axis of molecular orientation in the longitudinal direction can be obtained. . Here, the draft ratio is
Draft ratio = cooling drum take-up speed / polymer discharge speed at die land exit. The birefringence Δn of this cast film needs to be 0.2 × 10 −3 to 10 × 10 −3 .
[0021]
Next, the cast film is first stretched in the longitudinal direction. Stretching is performed at a glass transition temperature of Tg−10 ° C. to Tg + 20 ° C. so that the finely oriented structure does not collapse. Thereafter, the film is stretched in the width direction at a temperature not lower than the Tg of the polymer at a draw ratio of 2 times or more by a known stenter. Thereafter, heat setting is performed at a temperature not higher than the melting point of the polyester for 0.5 to 60 seconds, and winding is performed. The obtained biaxially oriented polyester film preferably has an F-5 value in at least one of the longitudinal direction and the width direction of 14 kg / mm 2 or more, more preferably 15 kg / mm 2 or more.
[0022]
Further, after the cast film is subjected to ordinary sequential biaxial stretching, further re-longitudinal and transverse re-stretching by a known method, and heat-fixed at a temperature equal to or lower than the melting point of the polyester, to obtain a further strengthened film. Can be. The biaxially oriented polyester film thus obtained preferably has an F-5 value in at least one of the longitudinal direction and the width direction of at least 25 kg / mm 2 , more preferably at least 30 kg / mm 2 . is there.
[0023]
[Measurement method of physical properties]
(1) F-5 value of film A sample film having a width of 10 mm was set on a Tensilon type tensile tester manufactured by Orientec Co., Ltd. so as to have a chuck-to-chuck length of 50 mm, and a tensile test was performed at a tensile speed of 200 mm / min. The stress at the time of 5% elongation was measured, and this was defined as F-5 value.
[0024]
(2) The retardation Rd of the film was determined by a polarizing microscope equipped with a birefringent Berek compensator. Rd was divided by the thickness of the film to obtain a birefringence.
[0025]
(3) Thermal characteristics Using a differential scanning calorimeter DSC3100 manufactured by Mac Science, 5 mg of a sample was melted and held at 300 ° C. for 5 minutes, quenched and solidified with liquid nitrogen, and then heated from room temperature at a heating rate of 20 ° C./minute. did. The start temperature of the melting peak observed at this time was Tmb, the peak temperature was Tm, and the peak end temperature was Tme. After 5 mg of the sample was melted and held at 300 ° C. for 5 minutes, the temperature was lowered at a temperature lowering rate of 20 ° C./min. At this time, the start temperature of the exothermic peak of cooling crystallization observed was Tcb, the peak temperature was Tc, and the peak end temperature was Tce.
[0026]
(4) Surface properties of the cast film A cast film having a smooth surface and no surface defects such as die streaks or scratches, which can be used in any application, is fully usable with almost no surface defects. The film was evaluated as ○, the film was slightly rough, and was usable if the application was limited, and the film was evaluated as ×, and the film had many surface defects and could not be used in any application.
[0027]
【Example】
Examples 1 to 4, Comparative Examples 1 and 2
As the polyester resin, polyethylene terephthalate having an intrinsic viscosity of 0.65 was used. The thermal characteristics were measured using DSC. The results were Tg: 75 ° C, Tmb: 240 ° C, Tm: 255 ° C, Tme: 268 ° C, Tcb: 203 ° C, Tc: 188 ° C, and Tce: 174 ° C. The polyethylene terephthalate pellets were vacuum dried at 180 ° C. for 3 hours, supplied to an extruder (30 mm in diameter), melted at 290 ° C., and supplied to a molding die. The die used was a manifold die having a lip gap of 1 mm, a width of 150 mm, and a land length of 100 mm. The land portion of the die has a plurality of holes with a diameter of 7 mm in the width direction, and has a structure capable of cooling by passing air therethrough. The temperature of the die hopper was set to 290 ° C., and cooling air at 25 ° C. was passed through the land at a flow rate of 35,000 to 70000 cm 2 / min to cool. In this state, the resin was extruded, and the film extruded from the die was rapidly cooled and solidified on a cooling roll maintained at a surface temperature of 25 ° C. while applying static electricity to obtain a cast film. This film was stretched 3.2 times in the longitudinal direction and 3 times in the width direction at 80 ° C. by a biaxial stretching device, and then heat-treated at 200 ° C. for 10 seconds to obtain a biaxially oriented film.
[0028]
As shown in Table 1, Examples 1-4 which were extruded and cast at a polymer temperature of 230-245 ° C and a draft ratio of 18.0 had a fine orientation in the longitudinal direction in the cast film. The biaxially oriented film after stretching had an F-5 value as high as 14 to 18 kg / mm 2 and improved mechanical properties. Here, MD and TD are the longitudinal direction and the width direction of the film, respectively.
[0029]
The other conditions were the same as in Examples 1 to 4, and in Comparative Example 1 in which the polymer temperature at the land portion outlet was 190 ° C. or lower than Tcb, the resin was solidified in the die, and extrusion was impossible.
[0030]
In Comparative Example 2, other conditions were the same as in Examples 1 to 4, and cooling with a die was not performed. The polymer temperature was 286 ° C. at the exit of the land, and the resulting cast film was a non-oriented film. The film obtained by biaxially stretching this film had an F-5 value in the longitudinal direction of 10 kg / mm 2 and an F-5 value in the width direction of 11 kg / mm 2 , showing no increase in strength at all.
[0031]
Examples 5 and 6, Comparative Example 3
In Examples 5 and 6, the same pellets as in Examples 1 to 4 were quenched and solidified in the same manner as in Examples 1 to 4, and after biaxial stretching, re-stretched 1.7 times at 150 ° C. in the longitudinal direction. Finally, heat setting was performed at 200 ° C.
As shown in Table 2, Examples 5 and 6 were slightly oriented in the longitudinal direction in the cast film. The biaxially oriented film after the re-longitudinal stretching showed a very high F-5 value of 26 to 28 kg / mm 2 in the longitudinal direction.
[0032]
In Comparative Example 3, the cast film obtained in Comparative Example 2 was stretched and heat-set in the same manner as in Examples 5 and 6. The obtained film had an F-5 value in the longitudinal direction of 17 kg / mm 2 , which was lower than those of Examples 5 and 6.
[0033]
Examples 7 and 8, Comparative Example 4
In Examples 7 and 8, the same pellets as in Examples 1 to 4 were quenched and solidified in the same manner as in Examples 1 to 4, and after biaxial stretching, they were longitudinally stretched 1.1 times at 150 ° C. in the longitudinal direction. Subsequently, the film was re-laterally stretched 1.5 times at 190 ° C. in the width direction, and finally heat-set at 200 ° C.
As shown in Table 2, Examples 7 and 8 were finely oriented in the longitudinal direction in the cast film. The biaxially oriented film after re-transverse stretching showed extremely high F-5 values in the longitudinal direction, 14 to 13 kg / mm 2 , and F-5 values in the width direction, 27 to 25 kg / mm 2 .
[0034]
In Comparative Example 4, the cast film obtained in Comparative Example 2 was subjected to the same stretching and heat setting as in Examples 7 and 8. The obtained film had an F-5 value in the longitudinal direction of 10 kg / mm 2 and an F-5 value in the width direction of 15 kg / mm 2, which were lower than those of Examples 7 and 8.
[0035]
Examples 9 to 13 and Comparative Examples 5 to 7
A cast film and a biaxially stretched film were obtained by using the same pellets, extruder, stretching and heat setting apparatus as in Examples 1 to 4. At this time, the polymer temperature at the exit of the die land was fixed at 235 ° C., and the draft ratio was changed according to the take-up speed of the cooling roll.
As shown in Table 3, in Examples 9 to 13, the birefringence Δn of the cast film was 0.4 × 10 −3 , 1.1 × 10 −3 , 2.5 × 10 −3 , 4.5 ×. 10 -3, and 6.0 × 10 -3, were oriented in the longitudinal direction. Further, the surface properties and stretchability of the film were good. Δn increased with the draft ratio.
[0036]
Further, in Comparative Examples 5 and 6, in which the draft ratio was increased to increase Δn to 12 × 10 −3 and 20 × 10 −3 , the film surface was rough, and in particular, Comparative Example 7 was unusable. . Conversely, it was obtained by cooling and solidifying on a cooling roll as it was without taking off the polymer discharged from the die. Comparative Example 7 was a non-oriented film.
[0037]
[Table 1]
Figure 0003568058
[0038]
[Table 2]
Figure 0003568058
[0039]
[Table 3]
Figure 0003568058
[0040]
【The invention's effect】
According to the cast polyester film of the present invention, since it is oriented in the longitudinal direction, it is possible to obtain a biaxially stretched film having high mechanical strength in good yield, and without incurring an increase in cost due to equipment modification. Become.
[0041]
Further, the biaxially oriented polyester film of the present invention has high mechanical properties comparable to conventional re-longitudinal stretching and longitudinal multi-stage stretched films. The resulting film has high mechanical strength.

Claims (6)

複屈折Δnが
0.3×10-3≦Δn≦10×10-3
であることを特徴とするキャストポリエステルフイルム。
Birefringence Δn
0.3 × 10 −3 ≦ Δn ≦ 10 × 10 −3
A cast polyester film, characterized in that:
分子配向の主軸がフイルム長手方向である、請求項1に記載のキャストポリエステルフイルム。The cast polyester film according to claim 1, wherein the principal axis of the molecular orientation is the longitudinal direction of the film. 請求項1または2に記載のキャストポリエステルフイルムを長手方向、幅方向に延伸してなる二軸配向ポリエステルフイルム。A biaxially oriented polyester film obtained by stretching the cast polyester film according to claim 1 in the longitudinal direction and the width direction. 長手方向、幅方向のうち少なくとも一方向のF−5値が14kg/mm以上である、請求項3に記載の二軸配向ポリエステルフイルム。Longitudinally, at least in one direction of the F-5 value 14kg / mm 2 or more of the width direction, the biaxially oriented polyester film of claim 3. 請求項2または3に記載の二軸配向ポリエステルフイルムを、長手方向、幅方向のうち少なくとも一方向に再延伸してなる二軸配向ポリエステルフイルム。A biaxially oriented polyester film obtained by re-stretching the biaxially oriented polyester film according to claim 2 or 3 in at least one of a longitudinal direction and a width direction. 長手方向、幅方向のうち少なくとも一方向のF−5値が25kg/mm以上である、請求項5に記載の二軸配向ポリエステルフイルム。Longitudinally, at least in one direction of the F-5 value 25 kg / mm 2 or more of the width direction, the biaxially oriented polyester film of claim 5.
JP05664195A 1994-04-08 1995-02-20 Cast polyester film and biaxially oriented polyester film Expired - Lifetime JP3568058B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP05664195A JP3568058B2 (en) 1994-12-15 1995-02-20 Cast polyester film and biaxially oriented polyester film
US08/416,177 US5654394A (en) 1994-04-08 1995-04-04 Thermoplastic resin film
EP95302292A EP0676269B1 (en) 1994-04-08 1995-04-06 Thermoplastic resin film and process for producing the same
DE69521732T DE69521732T2 (en) 1994-04-08 1995-04-06 Thermoplastic polymer film and process for its manufacture
TW084103357A TW333546B (en) 1994-04-08 1995-04-08 Process for producing crystalline thermoplastic polyester resin film
CN95105117A CN1073920C (en) 1994-04-08 1995-04-08 Thermoplastic resin film and process for producing the same
KR1019950008190A KR100347345B1 (en) 1994-04-08 1995-04-08 Thermoplastic film and manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31219394 1994-12-15
JP6-312193 1994-12-15
JP05664195A JP3568058B2 (en) 1994-12-15 1995-02-20 Cast polyester film and biaxially oriented polyester film

Publications (2)

Publication Number Publication Date
JPH08216248A JPH08216248A (en) 1996-08-27
JP3568058B2 true JP3568058B2 (en) 2004-09-22

Family

ID=26397601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05664195A Expired - Lifetime JP3568058B2 (en) 1994-04-08 1995-02-20 Cast polyester film and biaxially oriented polyester film

Country Status (1)

Country Link
JP (1) JP3568058B2 (en)

Also Published As

Publication number Publication date
JPH08216248A (en) 1996-08-27

Similar Documents

Publication Publication Date Title
JPH11105131A (en) Manufacture of simultaneously biaxially oriented film
JP3568058B2 (en) Cast polyester film and biaxially oriented polyester film
JP2611415B2 (en) Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container
JPH09300429A (en) Production of polyester film
JPH0832499B2 (en) Heat resistant polyester film for transfer film
JP3582670B2 (en) Polyester film and method for producing the same
JPH0832498B2 (en) Polyester film for transfer film
JP3640282B2 (en) Method for producing biaxially stretched polyester film
JPH07196821A (en) Polyester film for deep drawing and similtaneous transfer printing
JP2692284B2 (en) Biaxially oriented polyester film for molding
JP2569471B2 (en) Method for producing toughened polyester film
JPH11254524A (en) Polyester film and its production
JP3582671B2 (en) Method for producing biaxially oriented polyester film
JPH08258118A (en) Cast polyester film and biaxially oriented polyester film
JPH1176716A (en) Method of filtering polyester, production of polyester film, and polyester film
JP3367129B2 (en) Method for producing polyester film
JP3876509B2 (en) Polyester film and method for producing the same
JP3077604B2 (en) Extrusion method of thermoplastic resin and biaxially oriented thermoplastic resin film
JP3988228B2 (en) Biaxially oriented polyester film
JPH09262895A (en) Thermoplastic resin film and manufacture thereof
JP2937149B2 (en) Polyester film stretching method
JPH11129327A (en) Biaxially drawn film
JPH10272672A (en) Polyester film and its manufacture
JP2005144839A (en) Polyester film for diffusion plate
JP3582677B2 (en) Biaxially oriented polyester film and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 10

EXPY Cancellation because of completion of term