JP3565272B2 - Negative electrode material for Li secondary battery, negative electrode using the same - Google Patents

Negative electrode material for Li secondary battery, negative electrode using the same Download PDF

Info

Publication number
JP3565272B2
JP3565272B2 JP2001367254A JP2001367254A JP3565272B2 JP 3565272 B2 JP3565272 B2 JP 3565272B2 JP 2001367254 A JP2001367254 A JP 2001367254A JP 2001367254 A JP2001367254 A JP 2001367254A JP 3565272 B2 JP3565272 B2 JP 3565272B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
layer
secondary battery
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001367254A
Other languages
Japanese (ja)
Other versions
JP2003168425A (en
Inventor
公一 芦澤
次雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Foil Manufacturing Co Ltd
Original Assignee
Nippon Foil Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Foil Manufacturing Co Ltd filed Critical Nippon Foil Manufacturing Co Ltd
Priority to JP2001367254A priority Critical patent/JP3565272B2/en
Publication of JP2003168425A publication Critical patent/JP2003168425A/en
Application granted granted Critical
Publication of JP3565272B2 publication Critical patent/JP3565272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、Liイオン電池,ゲル電解質型Liポリマ電池,真性電解質型Liポリマ電池などLi二次電池用の新規な負極材料とそれを用いた容量密度の高い負極に関する。
【0002】
【従来の技術】
ノートパソコンや携帯電話などの各種電気・電子機器の電源としてLi二次電池が広く用いられているが、これら電気・電子機器に対する小型化・軽量化の要求が強まっていることに伴って、Li二次電池に対しても、小型化と高容量化の要求が強まっている。
【0003】
ところで、現行のLi二次電池の負極は、その殆どが、黒鉛などの炭素材料を例えばフッ素系の結着剤と混合して成るペーストを、Cu箔,Ni箔,ステンレス鋼の箔のような金属集電体に塗工して製造されたものである。
負極材料として用いられる炭素材料は、例えば黒鉛の場合、その結晶構造は、炭素原子の共有結合によって形成された六員環構造が平面的に広がって1つの平面層を構成し、この層がファン・デア・ワールスの力によって所定の間隔を置いて積層した層状構造になっている。そして、上記した層間距離は、理論的には0.3354nmになっている。
【0004】
このような結晶構造の黒鉛をLi二次電池の負極材料として使用した場合、充電時にあっては、電解質や正極から供給され、そのイオン半径が約0.1nm程度であるLiイオンが、上記した黒鉛結晶の層間に侵入し、そこに、例えばLiCの形態で吸蔵される。そして、放電時にあっては、上記した吸蔵LiはLiイオンとなって層間から電解質へ放出される。充放電時に供給・放出される電子は集電体で集電される。
【0005】
黒鉛の場合、その層状構造における層間距離はLiイオンの半径に対して適切な大きさであり、また層間引力は比較的弱いファン・デア・ワールス力であるため、上記したLiイオンの吸蔵・放出に伴う層状構造の膨張,収縮に対する耐性が良好である。そのため、充放電サイクルを多数回反復しても、層状構造の崩壊という問題は起こりづらく、長期に亘って負極材料としての機能を維持する。
【0006】
このようなことから、現行のLi二次電池の負極材料としては、殆ど、黒鉛を代表例とする炭素材料が使用されている。
しかしながら、他方では、炭素材料は、その容量密度(LiC:理論容量372mAh/g)が必ずしも高い値であるとはいえず、最近の高容量化の要求に対しては充分に対応できないという問題がある。
【0007】
そのため、炭素材料に比べて容量密度が高い金属系の材料で負極材料を製造する研究が従来から行われている。
例えば、金属Liは、その容量密度(Li:理論容量3860mAh/g)が最も高い材料である。しかしながら、この金属Liの場合、充電時にデンドライトとなって負極に析出するが、現在までのところ、このデンドライト析出を抑制するなどの問題が未解決の状態にある。そのため、いまだ実用化の目途は立っていない。
【0008】
また、容量密度が高い材料としては、Al(LiAl:理論容量993mAh/g)やSn(Li4.4Sn:理論容量994mAh/g)などが知られている。例えば、特開2001−68094号公報では、Snの負極材料が開示されている。これらの金属系材料は、炭素材料に比べると確かに容量密度が2.6倍強と高いとはいえ、その結晶構造は炭素材料のような層状構造ではない。そのため、充放電サイクルを多数回反復しているうちに、Liイオンの吸蔵・放出に伴う結晶構造の膨張・収縮によって、比較的短時間で、当該結晶構造が次第に崩壊し、粉粒体になって集電体から脱落して電解質中に分散し、電池劣化を招くという問題が発生する。
【0009】
【発明が解決しようとする課題】
本発明は、Li二次電池における従来から知られている負極材料に関する上記した問題を解決することができる新規な負極材料とそれを用いた負極の提供を目的とする。
具体的には、金属または合金であるため、炭素材料の場合に比べて容量密度は高く、しかし金属または合金であるにもかかわらず、炭素材料の場合と同等の充放電サイクル寿命を有している負極材料とそれを用いた負極の提供を目的とする。
【0010】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、Liイオンを吸蔵・放出する金属または合金から成る活性層と、Liイオンを吸蔵・放出しない金属または合金から成る集電層とが、交互に積層されている積層構造体を基本単位として含むことを特徴とする、Li二次電池用の負極材料が提供される。
【0011】
また、本発明においては、上記した負極材料の粉末と結着剤との混合物が、集電体の片面または両面に塗工されていることを特徴とする、Li二次電池用の負極が提供される。
【0012】
【発明の実施の形態】
最初に、本発明の負極材料の開発を可能にした材料の設計思想について説明する。
1)炭素材料の層状構造において、電気化学的にLiイオンの吸蔵・放出が起こる場は、炭素原子の共有結合で形成されている平面層の間に位置する層間である。平面層それ自体では電気化学的なLiイオンの吸蔵・放出は起こらない。
【0013】
すなわち、炭素材料の場合、Liイオンを吸蔵・放出する場と、Liイオンの吸蔵・放出をしない場(平面層)とが交互に積層した層状構造になっている。このことにより、Liイオンの吸蔵・放出に伴う層状構造の膨張・収縮が緩和され、それが良好な充放電サイクル寿命として発現する。
しかしながら、一方では、炭素材料の容量密度はそれ程高くないという問題がある。
【0014】
2)ところで、高い容量密度を得ようとする場合には、AlやSnのように、Liイオンを吸蔵・放出する金属材料を用いることが有利である。
しかしながら、金属材料の場合、一般に、単独でその結晶構造を炭素材料のような前記した機能を有する層状構造にすることは事実上不可能である。仮に、炭素材料のような層状構造、すなわち、Liイオンを吸蔵・放出する場とLiイオンを吸蔵・放出しない場が交互に積層されている層状構造を金属材料で形成することができれば、その材料は、容量密度は高く、しかも炭素材料のように充放電サイクル寿命特性が良好な材料として機能し得るものと考えられる。
【0015】
3)ところで、金属材料には、電気化学的にLiイオンを吸蔵・放出しない、すなわちLiと合金化しない材料も存在する。
したがって、電気化学的にLiイオンを吸蔵・放出する金属材料の薄層と、電気化学的にLiイオンを吸蔵・放出しない金属材料の薄層とを交互に積層すれば、得られる積層構造体は、炭素材料の場合と同じような機能を発揮するのではないかと考えられる。しかも、その積層構造体の場合、Liイオンを吸蔵・放出する層は金属材料で構成されているので、容量密度は炭素材料の場合に比べて高くなるはずである。
【0016】
また、Liイオンの吸蔵に伴う膨張・収縮により、Liイオンを吸蔵・放出する金属材料が粉粒化した場合であっても、その薄層は、Liイオンを吸蔵・放出しない、すなわち、膨張・収縮に伴う粉粒化を起こさない別の金属材料の薄層で挟み込まれているので、発生した粉粒体が電解質に分散して電池劣化を招くという事態は抑制されるものと考えられる。
【0017】
以上の着想と考察に基づき、本発明者は、上記した両薄層を構成する金属材料の種類と互いの組み合わせ、両薄層の厚み、また上記積層構造体の形成方法などにつき鋭意研究を重ねた結果、上記した構成の負極材料と、それを用いた負極を開発することに成功した。
まず、本発明の負極材料について詳細に説明する。
【0018】
本発明の負極材料の基本単位である積層構造体の1例A0を図1に示す。
この積層構造体A0は、Liイオンを吸蔵・放出する金属材料から成る層1と、Liイオンを吸蔵・放出しない金属材料から成る層2とを交互に積層した構造になっている。そして、図における最下層と最上層は、いずれも、Liイオンを吸蔵・放出しない金属材料の層2で構成されている。
【0019】
なお層1は、Liイオンを吸蔵・放出することにより全体の電池反応を可能にする活性な層という意味で、以後、活性層といい、また層2は、Liイオンを吸蔵・放出しないが導電性を備えており、そして活性層1で生成した電子を集電する層という意味で、以後、集電層という。
この積層構造体Aを負極材料として使用した場合、充電時には、各活性層1にLiイオンが吸蔵される。そして、放電時には、活性層1から、そこに吸蔵されていたLiイオンが放出され、そのときに各活性層1に供給または生成した電子は、各活性層それ自体で導電するだけではなく、各活性層1に隣接する集電層2で集電される。
【0020】
上記した充放電サイクルが反復する過程で、活性層1の膨張・収縮によって当該活性層を構成する金属材料の粉粒化が起こる。しかしながら、積層構造体Aでは、活性層1はその両面に積層されている集電層2で挟み込まれており、かつ集電層2は充放電サイクルの過程で粉粒化せずに金属薄層のままの状態にあるので、活性層1の粉粒化が起こってもその粉粒体が電解質に分散するという事態は、集電層2が1種の防護壁となることによって抑制される。
【0021】
この積層構造体A0において、活性層1を構成する金属材料としては、Liイオンを吸蔵・放出するものであれば何であってもよく、格別限定されるものではなく、例えば、Sn,Zn,Ag,Alなどの金属や、Cu−Sn合金などをあげることができる。
また、集電層2を構成する金属材料はLiイオンを吸蔵・放出しないものであればよく、例えば、Cu,Ni,Fe,ステンレス鋼などをあげることができる。
【0022】
活性層1の厚みが100μmを超えると、Liイオンの吸蔵・放出が反復する過程で粉粒化が起こりやすくなるので、厚みの上限は100μm以下に設定することが好ましい。10nm〜10μmであることが実用的である。
一方、集電層2の厚みは格別限定されるものではないが、負極材料としての強度確保という点では厚い方が有効である。しかし、容量密度の点からいえばできるだけ薄い方が有利である。電池の要求特性や用いる金属材料の種類によって厚みは適宜に設定されるが、概ね、0.1nm〜100μm程度であればよい。好ましくは、10nm〜100μmである。
【0023】
また、積層構造体Aにおける活性層1と集電層2の層数は格別限定されるものではない。しかし、上記した説明からも明らかなように、1つの活性層とその両面に積層された2つの集電層を最小単位としていなければならない。
この積層構造体Aは、例えば、真空蒸着法,圧延箔の積層法,電気めっき法などを適用して製造することができる。
【0024】
例えば真空蒸着法の場合、薄いCu箔を全体の集電体として用意し、このCu箔の上に、PVD法やCVD法により、Sn層(活性層),Cu層(集電層)を交互に所望の層数だけ積層し、最後に集電層であるCu層を積層して目的とする積層構造体Aを製造することができる。
圧延箔の積層法を適用する場合も、Cu箔とSn箔を交互に積層し、最後にCu層を積層したのち全体をプレス成形して密着させることによって製造することができる。
【0025】
しかしながら、上記した方法は、各層の厚みを薄くして、しかも積層する層数を多くする場合には多大の工数が必要である。その点からいえば、電気めっき法は少ない工数で積層構造の形成が可能であるが、活性層と集電層の金属材料の種類が異なるため、各層の反復形成にはやはり多大な工数が必要となる。
このようなことからすると、積層構造体Aの製造に際しては、パルスめっき法を適用することが好適である。1種類の電解液で活性層と集電層を交互に連続的に積層することができるからである。
【0026】
例えば、活性層をCu−Sn合金で形成し、集電層をCu層で形成する場合、電解液として硫酸,硫酸銅,硫酸すずを主成分とする水溶液を用い、作用極(カソード)にステンレス鋼,Ti,Cuなどを用い、対極(アノード)に鉛を用い、一定時間ごとに通電電流や通電電位を切り替えることにより、カソード上にCuめっき層とCu−Sn合金めっき層を交互に積層することができる。その場合、それぞれのめっき時間を適宜に選定することにより、めっき層の厚みを任意に変化させることができる。
【0027】
また、電解銅箔の製造時に使用している電解ドラム(Tiやステンレス鋼など)をカソードとし、Pbなどの不溶性電極をアノードとして組み合わせ、上記したパルスめっき法を適用すれば、本発明の積層構造体を連続して製造することができる。
ところで、図1で示した積層構造体Aの場合、最下層と最上層はいずれもLiイオンを吸蔵しない集電層である。したがって、この積層構造体Aの周囲に電解質が存在していたとしても、Liイオンはこの積層構造体Aの厚み方向からは活性層に吸蔵されないし、したがって活性層から放出されることはない。
【0028】
Liイオンの活性層への吸蔵と活性層からの放出、換言すれば、電解質と活性層との間のLiイオンの授受反応は、活性層が表出している箇所、すなわち、図1の積層構造体Aの4つの側面でのみ進行する。そのため、図1で示した積層構造体Aのままでは、活性層は有効に活用されていないことになる。
そこで、この積層構造体Aを負極材料として実用化するためには、活性層と電解質との接触面積を広げて両者間におけるLiイオンの授受反応を促進することが必要である。
【0029】
そのために、本発明においては、積層構造体Aに次のような処置が施されたのち、負極材料として実使用される。
第1の処置は、積層構造体Aの厚み方向に、例えばニードルパンチング加工,エキスパンド加工,エンボス加工などの手段を講じて積層体の内部にまで至る多数の微小クラックを形成する処置である。このような処置を施すことにより、微小クラッチから積層構造体Aの内部にまで電解質が侵入して活性層における電解質との接触面積が実効的に増加する。
【0030】
第2の処置は、積層構造体Aを粉砕して粉末化する処置である。この処置により、現行の炭素材料の場合と同じように、表出する活性層の面積は増加して電解質との接触面積は著しく増加する。
これら処置のうち、後者の粉砕処置は、作業が簡便であり、また活性層と電解質との接触面積は大幅に増量するという点で有効である。
【0031】
本発明の負極は、上記した負極材料と例えばフッ素系樹脂の結着剤を所定の量比で混合し、その混合物を例えばCu箔の集電体に塗工して製造される。
その場合、上記した負極材料(積層構造体)の金属材料は易酸化性であるため、その表面酸化を防ぐために、実使用に先立ち、例えばクロム酸溶液に浸漬したのち水洗して、表面に防錆皮膜を形成しておくことが好ましい。
【0032】
【実施例】
1)負極材料の製造
下記の条件でパルスめっきを行った。
電解液:HSO 1mol/L,SnSO 1mol/L,CuSO 0.1mol/L,液温40℃、
作用極(カソード):縦22cm,幅35cm,厚み1mmのTi板(有効面積は500cm)、
対極(アノード):縦22cm,幅35cm,厚み5mmのPb板(不溶性電極)、
パルス通電の態様:パルス通電時間はT(1秒),T(5秒)の2種類とし、パルス時間Tのときの電流密度は1A/dm,パルス時間Tのときの電流密度は5A/dmに設定。
【0033】
そして、上記パルス通電を120回反復。
上記したパルスめっきを行ったのち、Ti板から析出物を剥離した。面積が約500cmで厚みが10μm(平均値)のシートが得られた。
このシートの断面を走査電顕で観察したところ、シートは層状構造になっていて、パルス通電T時の層はいずれも厚み約3nmであり、パルス通電T時の層はいずれも厚み約80nmであった。
【0034】
また、シートからサンプルを採取し、その表面からEPMA分析を行ったところ、パルス通電T時の層はほとんど純銅から成り、パルス通電T時の層はCu−Sn合金から成り、そのSn含有率は約60質量%であった。
ついで、シートをカッタミルで粗粉砕し、更に振動ミルで粉砕して平均粒径3μmの粉末にした。その後、この粉末を濃度5%のクロム酸溶液に1分間浸漬し、水洗後乾燥して本発明の負極材料とした。
【0035】
2)Liイオン二次電池の組み立て
上記した粉末とフッ素系結着剤を重量比9:1で混合し、その混合物を、幅60mm,長さ600mmの圧延銅箔の両面にそれぞれ厚み40μmで塗工して本発明の負極を製造した。なお、上記塗膜におけるSnの割合は、約50質量%であった。
【0036】
一方、コバルト酸リチウム,フッ素系結着剤,黒鉛粉末を重量比8:1:1で混合し、その混合物を、幅60mm,長さ600mm,厚み20μmのアルミ箔の両面にそれぞれ厚み160μmで塗工して正極を製造した。
ついで、負極と正極の間にポリプロピレン製のセパレータを挟み込み、全体を渦巻状に巻回して直径18mm,高さ65mmの円柱極板を成形した。
【0037】
その円柱極板をステンレス鋼製の有底円筒容器に収容し、更に、電解質がLiBFで、溶媒がエチレンカーボネートとジメチルカーボネートの非水混合液である電解液を注入し、正・負極端子を取り出したのち封口して、電池容量2000mAhの円筒型Liイオン二次電池を組み立てた。
比較のために、負極材料が黒鉛粉末であり、負極の塗工厚みが100μm,正極の塗工厚みが100μmであったことを除いては実施例と同様の仕様で円筒型Liイオン二次電池を組み立てた。この電池を比較例1とする。
【0038】
また、負極材料が平均粒径3μmのCu−Sn合金粉末(Sn含有量は約55質量%)であったことを除いては、実施例と同様の仕様で円筒型Liイオン二次電池を組み立てた。この電池を比較例2とする。
3)特性
これら3種類の電池につき、電流2.0A(1C)で1時間の定電流充電を行ったのち、電池電圧4.2Vの定電圧充電を1.5時間行い、また放電は0.4A(0.2C)で行い、端子電圧が2.5Vにまで低下した時点で放電を停止する充放電サイクルを反復した。
【0039】
そして、5サイクル後の電池容量を測定し、また電池容量が初期容量の70%未満になるまでのサイクル数を計測し、その値を電池劣化までのサイクル数とした。そして、上記サイクル数が800サイクルを超える場合は、電池性能は良好であるとして充放電サイクル試験を停止した。
以上の結果を表1に示す。
【0040】
【表1】

Figure 0003565272
【0041】
表1から明らかなように、本発明の負極材料を用いた実施例の電池は、現行の黒鉛材料を負極材料とする比較例1の電池に比べて、その電池容量は50%以上増加しており、しかもそのサイクル寿命は略同等である。
また、Cu−Sn合金を負極材料とする比較例2の電池は、比較例1の電池に比べてその電池容量が75%以上増加しているとはいえ、そのサイクル寿命は極度に劣化している。
【0042】
【発明の効果】
以上の説明で明らかなように、本発明の負極材料は、現行の黒鉛材料を用いた場合と対比して、電池容量の大幅な増加を可能にし、同時に略同等のサイクル寿命特性を保障している。
したがって、高容量化,小型化が強く求められているLi二次電池用の負極材料として有用であり、その工業的価値は極めて大である。
【図面の簡単な説明】
【図1】本発明の負極材料の1例を示す概略図である。
【符号の説明】
積層構造体
1 Liイオンを吸蔵・放出する金属材料の層(活性層)
2 Liイオンを吸蔵・放出しない金属材料の層(集電層)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel negative electrode material for a Li secondary battery such as a Li ion battery, a gel electrolyte type Li polymer battery, and an intrinsic electrolyte type Li polymer battery, and a negative electrode having a high capacity density using the same.
[0002]
[Prior art]
Li secondary batteries are widely used as power sources for various electric and electronic devices such as notebook personal computers and mobile phones. With the increasing demand for miniaturization and weight reduction of these electric and electronic devices, Li There is an increasing demand for secondary batteries to be smaller and have higher capacity.
[0003]
By the way, most of the current negative electrodes of Li secondary batteries use a paste made by mixing a carbon material such as graphite with a fluorine-based binder, for example, such as Cu foil, Ni foil, or stainless steel foil. It is manufactured by coating a metal current collector.
When the carbon material used as the negative electrode material is, for example, graphite, its crystal structure has a six-membered ring structure formed by the covalent bond of carbon atoms that spreads out in a plane to form one plane layer, and this layer is a fan layer. -It has a layered structure that is laminated at predetermined intervals by the force of Der Waals. The above-mentioned interlayer distance is theoretically 0.3354 nm.
[0004]
When graphite having such a crystal structure is used as a negative electrode material of a Li secondary battery, during charging, Li ions supplied from an electrolyte or a positive electrode and having an ionic radius of about 0.1 nm are described above. It penetrates between the layers of graphite crystals and is occluded therein, for example in the form of LiC 6 . At the time of discharge, the occluded Li becomes Li ions and is released from the interlayer to the electrolyte. Electrons supplied / emitted during charging / discharging are collected by the current collector.
[0005]
In the case of graphite, the interlayer distance in the layered structure is appropriate for the radius of Li ions, and the interlayer attraction is a relatively weak van der Waals force. Good resistance to the expansion and contraction of the layered structure accompanying this. Therefore, even if the charge / discharge cycle is repeated many times, the problem of collapse of the layered structure is unlikely to occur, and the function as a negative electrode material is maintained for a long time.
[0006]
For this reason, as the negative electrode material of the current Li secondary battery, a carbon material typified by graphite is almost used.
However, on the other hand, the capacity density (LiC 6 : theoretical capacity 372 mAh / g) of the carbon material is not always a high value, and it is not possible to sufficiently respond to recent demands for high capacity. There is.
[0007]
For this reason, researches for producing a negative electrode material using a metal-based material having a higher capacity density than a carbon material have been conventionally performed.
For example, metal Li is a material having the highest capacity density (Li: theoretical capacity of 3860 mAh / g). However, in the case of this metallic Li, it becomes dendrite during charging and precipitates on the negative electrode. However, up to now, problems such as suppression of the dendrite precipitation have not been solved. For this reason, there is no prospect of commercialization yet.
[0008]
Further, as a material having a high capacity density, Al (LiAl: theoretical capacity 993 mAh / g) and Sn (Li 4.4 Sn: theoretical capacity 994 mAh / g) are known. For example, Japanese Patent Application Laid-Open No. 2001-68094 discloses a negative electrode material of Sn. Although these metal-based materials certainly have a higher capacity density than 2.6 times as high as carbon materials, their crystal structures are not layered structures like carbon materials. Therefore, while the charge / discharge cycle is repeated many times, the crystal structure gradually collapses in a relatively short time due to expansion and contraction of the crystal structure accompanying occlusion and release of Li ions, and the powder becomes a granular material. This causes the battery to fall off from the current collector and be dispersed in the electrolyte, thereby causing battery deterioration.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a novel negative electrode material capable of solving the above-described problems relating to a conventionally known negative electrode material in a Li secondary battery, and a negative electrode using the same.
Specifically, since it is a metal or an alloy, its capacity density is higher than that of a carbon material, but it has the same charge / discharge cycle life as that of a carbon material despite being a metal or an alloy. To provide a negative electrode material and a negative electrode using the same.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, an active layer made of a metal or an alloy that occludes / releases Li ions and a current collecting layer made of a metal or an alloy that does not occlude / release Li ions are alternately provided. There is provided a negative electrode material for a Li secondary battery, comprising a laminated structure as a basic unit.
[0011]
Further, in the present invention, there is provided a negative electrode for a Li secondary battery, wherein a mixture of the above-described powder of the negative electrode material and a binder is coated on one or both surfaces of a current collector. Is done.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a description will be given of a material design concept that enabled the development of the negative electrode material of the present invention.
1) In the layered structure of the carbon material, the field where the Li ions are occluded and released electrochemically is between the layers located between the planar layers formed by the covalent bonds of carbon atoms. The planar layer itself does not occlude or release electrochemical Li ions.
[0013]
That is, the carbon material has a layered structure in which a field for storing and releasing Li ions and a field for storing and releasing Li ions (flat layer) are alternately stacked. This alleviates the expansion and contraction of the layered structure accompanying the occlusion and release of Li ions, which manifests as a good charge / discharge cycle life.
However, on the other hand, there is a problem that the capacity density of the carbon material is not so high.
[0014]
2) By the way, when it is intended to obtain a high capacity density, it is advantageous to use a metal material such as Al or Sn that occludes and releases Li ions.
However, in the case of a metal material, generally, it is practically impossible to make the crystal structure alone into a layered structure having the above-described function like a carbon material. If a layered structure such as a carbon material, that is, a layered structure in which a field that occludes / releases Li ions and a field that does not occlude / release Li ions can be formed of a metal material, if that material is used, It is considered that can function as a material having a high capacity density and good charge / discharge cycle life characteristics like a carbon material.
[0015]
3) Meanwhile, some metal materials do not electrochemically occlude and release Li ions, that is, do not alloy with Li.
Therefore, if a thin layer of a metal material that occludes and releases Li ions electrochemically and a thin layer of a metal material that does not occlude and release Li ions electrochemically are alternately laminated, the resulting laminated structure is However, it is thought that the same function as in the case of the carbon material is exhibited. In addition, in the case of the laminated structure, since the layer for occluding and releasing Li ions is made of a metal material, the capacity density should be higher than that of the carbon material.
[0016]
Further, even when the metal material that occludes / releases Li ions is pulverized due to expansion / contraction caused by occlusion of Li ions, the thin layer does not occlude / release Li ions, that is, expansion / contraction. Since it is sandwiched by a thin layer of another metal material that does not cause granulation due to shrinkage, it is considered that the situation where the generated granules are dispersed in the electrolyte and battery deterioration is caused is suppressed.
[0017]
Based on the above ideas and considerations, the present inventor has conducted intensive studies on the types and combinations of the metal materials constituting the above-mentioned thin layers, the thickness of the two thin layers, the method of forming the above-mentioned laminated structure, and the like. As a result, the inventors succeeded in developing a negative electrode material having the above-described configuration and a negative electrode using the same.
First, the negative electrode material of the present invention will be described in detail.
[0018]
An example A 0 of the stacked structure which is a basic unit of the negative electrode material of the present invention shown in FIG.
This laminated structure A 0 has a structure in which layers 1 made of a metal material that occludes and releases Li ions and layers 2 made of a metal material that does not occlude and release Li ions are alternately stacked. Each of the lowermost layer and the uppermost layer in FIG. 1 is composed of a metal material layer 2 that does not occlude or release Li ions.
[0019]
The layer 1 is an active layer capable of absorbing and releasing Li ions to enable the whole battery reaction, and is hereinafter referred to as an active layer. The layer 2 does not occlude or release Li ions but is conductive. In the following, it is referred to as a current collecting layer in the sense that it has a property and collects electrons generated in the active layer 1.
Using this layered structure A 0 as the negative electrode material, at the time of charging, Li ions are inserted in the active layer 1. At the time of discharging, the Li ions occluded therein are released from the active layer 1, and the electrons supplied or generated to each active layer 1 at that time not only conduct each active layer itself, but also conduct each electron. The current is collected by the current collecting layer 2 adjacent to the active layer 1.
[0020]
In the course of the repetition of the above-described charge / discharge cycle, the metal material forming the active layer is pulverized due to expansion and contraction of the active layer 1. However, in the laminated structure A0 , the active layer 1 is sandwiched between the current collecting layers 2 stacked on both sides thereof, and the current collecting layer 2 does not become powdery during the charging / discharging cycle, and becomes thin metal. Since the active layer 1 is in the state of a layer, even if the active layer 1 is granulated, the situation in which the granules are dispersed in the electrolyte is suppressed by the current collecting layer 2 serving as a kind of protective wall. .
[0021]
In the laminated structure A 0 , the metal material constituting the active layer 1 is not particularly limited as long as it can absorb and release Li ions, and is not particularly limited. For example, Sn, Zn, Ag, metal or the like Al, etc. Cu-Sn alloy and the like.
The metal material constituting the collector layer 2 may be any as long as it does not absorbing and desorbing Li ions, for example, can be exemplified Cu, Ni, Fe, a etc. stainless steel.
[0022]
When Thickness of the active layer 1 is more than 100 [mu] m, since absorption and desorption of Li ions is likely to occur particulate reduction in the process of repeating, the upper limit of the thickness is preferably set to 100 [mu] m or less. It is practical that the thickness is 10 nm to 10 μm.
On the other hand, the thickness of the current collecting layer 2 is not particularly limited, but a thicker one is more effective in securing strength as a negative electrode material. However, from the viewpoint of the capacity density, it is advantageous to be as thin as possible. The thickness is appropriately set depending on the required characteristics of the battery and the type of the metal material to be used, but it may be about 0.1 nm to 100 μm. Preferably, it is 10 nm to 100 μm.
[0023]
Further, the number of layers of the active layer 1 and the collector layer 2 in the laminated structure A 0 is not to be particularly limited. However, as is clear from the above description, one active layer and two current collecting layers laminated on both surfaces thereof must be the minimum unit.
The layered structure A 0, for example, a vacuum deposition method, can be produced by applying lamination of rolled foil, electroplating method, or the like.
[0024]
For example, in the case of the vacuum deposition method, a thin Cu foil is prepared as an entire current collector, and an Sn layer (active layer) and a Cu layer (current collecting layer) are alternately formed on the Cu foil by a PVD method or a CVD method. desired only layer number are stacked, and finally it is possible to produce a layered structure a 0 of interest by laminating a Cu layer as a current collector layer.
Also when the rolled foil laminating method is applied, it can be manufactured by alternately laminating Cu foils and Sn foils, finally laminating a Cu layer, and then press-molding the whole to make it adhere.
[0025]
However, the above method requires a large number of man-hours when the thickness of each layer is reduced and the number of layers to be laminated is increased. In that regard, the electroplating method can form a laminated structure with a small number of man-hours. However, since the types of metal materials of the active layer and the current collecting layer are different, repeated formation of each layer still requires a great deal of man-hours. It becomes.
With this reason, the production of the layered structure A 0, it is preferable to apply the pulse plating. This is because the active layer and the current collecting layer can be alternately and continuously laminated with one type of electrolyte.
[0026]
For example, when the active layer is formed of a Cu—Sn alloy and the current collecting layer is formed of a Cu layer, an aqueous solution mainly containing sulfuric acid, copper sulfate, and tin sulfate is used as an electrolytic solution, and a stainless steel is used as a working electrode (cathode). By using steel, Ti, Cu, etc., and using lead for the counter electrode (anode), and by switching the conduction current and conduction potential at regular intervals, a Cu plating layer and a Cu—Sn alloy plating layer are alternately laminated on the cathode. be able to. In that case, the thickness of the plating layer can be arbitrarily changed by appropriately selecting the respective plating times.
[0027]
Further, if the above-described pulse plating method is applied by combining an electrolytic drum (Ti, stainless steel, or the like) used in the production of an electrolytic copper foil as a cathode and an insoluble electrode such as Pb as an anode, the laminated structure of the present invention can be obtained. The body can be manufactured continuously.
In the case of the laminated structure A 0 shown in FIG. 1, a collector layer both the bottom and top layers it does not occlude Li ion. Therefore, even if an electrolyte exists around the laminated structure A 0 , Li ions are not occluded in the active layer from the thickness direction of the laminated structure A 0 , and therefore, are not released from the active layer. Absent.
[0028]
The occlusion of Li ions into the active layer and the release from the active layer, in other words, the transfer of Li ions between the electrolyte and the active layer, depends on the location where the active layer is exposed, that is, the laminated structure of FIG. only it proceeds in four sides of the body a 0. Therefore, while the multilayer structure A 0 shown in FIG. 1 will be the active layer is not effectively utilized.
Therefore, in order to commercialize this layered structure A 0 as the negative electrode material, it is necessary to promote the exchange reaction of Li ions between them to expand the contact area between the active layer and the electrolyte.
[0029]
Therefore, in the present invention, after such as the following treatment was applied to the layered structure A 0, it is actually used as a negative electrode material.
The first treatment in the thickness direction of the laminated structure A 0, for example, needle punching, expanding process, a treatment for forming a large number of fine cracks leading to the inside of the laminate or take other actions embossing. By performing such treatment, the contact area with the electrolyte in the active layer electrolyte from the small clutch to the inside of the laminated structure A 0 intrudes increases effectively.
[0030]
The second treatment is a treatment for powdered by grinding the laminated structure A 0. This measure increases the exposed area of the active layer and significantly increases the contact area with the electrolyte, as in the case of current carbon materials.
Among these treatments, the latter one is effective in that the operation is simple and the contact area between the active layer and the electrolyte is greatly increased.
[0031]
The negative electrode of the present invention is manufactured by mixing the above-described negative electrode material and a binder of, for example, a fluororesin in a predetermined quantitative ratio, and applying the mixture to a current collector, for example, of a Cu foil.
In this case, since the metal material of the above-described negative electrode material (laminated structure) is easily oxidizable, it is immersed in, for example, a chromic acid solution and then washed with water to prevent the surface from being oxidized. It is preferable to form a rust film.
[0032]
【Example】
1) Production of negative electrode material Pulse plating was performed under the following conditions.
Electrolyte solution: H 2 SO 4 1 mol / L, SnSO 4 1 mol / L, CuSO 4 0.1 mol / L, liquid temperature 40 ° C.
Working electrode (cathode): Ti plate (length: 22 cm, width: 35 cm, thickness: 1 mm) (effective area: 500 cm 2 )
Counter electrode (anode): Pb plate (insoluble electrode) 22 cm long, 35 cm wide and 5 mm thick,
Pulse energization mode: Two types of pulse energization times, T 1 (1 second) and T 2 (5 seconds), current density at pulse time T 1 is 1 A / dm 2 , current at pulse time T 2 Density set at 5 A / dm 2 .
[0033]
Then, the above pulse application is repeated 120 times.
After performing the above-described pulse plating, the precipitate was separated from the Ti plate. A sheet having an area of about 500 cm 2 and a thickness of 10 μm (average value) was obtained.
Observation of the cross section of the sheet in the scanning electron microscope, the sheet have become layered structure, about 3nm thickness Any layer o'clock pulsed current T 1, both the pulse current T 2 o'clock layer about thick It was 80 nm.
[0034]
Further, samples were taken from the sheet and was subjected to EPMA analysis from the surface, a layer of at pulsed current T 1 Most made of pure copper, a layer of at pulsed current T 2 are made of the Cu-Sn alloy, the Sn content The rate was about 60% by mass.
Then, the sheet was roughly pulverized by a cutter mill and further pulverized by a vibration mill to obtain a powder having an average particle diameter of 3 μm. Thereafter, this powder was immersed in a chromic acid solution having a concentration of 5% for 1 minute, washed with water and dried to obtain a negative electrode material of the present invention.
[0035]
2) Assembly of Li-ion secondary battery The above-mentioned powder and the fluorine-based binder were mixed at a weight ratio of 9: 1, and the mixture was applied to both sides of a rolled copper foil having a width of 60 mm and a length of 600 mm with a thickness of 40 μm each. The negative electrode of the present invention was manufactured. In addition, the ratio of Sn in the said coating film was about 50 mass%.
[0036]
On the other hand, lithium cobaltate, a fluorine-based binder, and graphite powder were mixed at a weight ratio of 8: 1: 1, and the mixture was coated on both surfaces of an aluminum foil having a width of 60 mm, a length of 600 mm, and a thickness of 20 μm with a thickness of 160 μm each. A positive electrode was manufactured.
Next, a polypropylene separator was sandwiched between the negative electrode and the positive electrode, and the whole was spirally wound to form a cylindrical electrode plate having a diameter of 18 mm and a height of 65 mm.
[0037]
The cylindrical electrode plate is housed in a stainless steel bottomed cylindrical container, and the electrolyte is LiBF 4 and the solvent is a non-aqueous mixed solution of ethylene carbonate and dimethyl carbonate. After being taken out and sealed, a cylindrical Li-ion secondary battery having a battery capacity of 2000 mAh was assembled.
For comparison, a cylindrical Li-ion secondary battery having the same specifications as in the example except that the negative electrode material was graphite powder, the coating thickness of the negative electrode was 100 μm, and the coating thickness of the positive electrode was 100 μm. Was assembled. This battery is referred to as Comparative Example 1.
[0038]
A cylindrical Li-ion secondary battery was assembled in the same manner as in Example except that the negative electrode material was a Cu—Sn alloy powder having an average particle size of 3 μm (Sn content was about 55% by mass). Was. This battery is referred to as Comparative Example 2.
3) Characteristics These three types of batteries were charged at a constant current of 2.0 A (1 C) for one hour, then charged at a constant voltage of 4.2 V for 1.5 hours, and discharged at a constant voltage of 0.1 V. The charge / discharge cycle was repeated at 4 A (0.2 C), in which the discharge was stopped when the terminal voltage dropped to 2.5 V.
[0039]
Then, the battery capacity after 5 cycles was measured, the number of cycles until the battery capacity became less than 70% of the initial capacity was measured, and the value was defined as the number of cycles until battery deterioration. When the number of cycles exceeded 800, the charge / discharge cycle test was stopped because the battery performance was good.
Table 1 shows the above results.
[0040]
[Table 1]
Figure 0003565272
[0041]
As is clear from Table 1, the battery of the example using the negative electrode material of the present invention had a battery capacity increased by 50% or more as compared with the battery of Comparative Example 1 using the current graphite material as the negative electrode material. And their cycle life is almost the same.
Also, the battery of Comparative Example 2 using a Cu—Sn alloy as the negative electrode material has a battery capacity increased by 75% or more as compared with the battery of Comparative Example 1, but its cycle life is extremely deteriorated. I have.
[0042]
【The invention's effect】
As is clear from the above description, the negative electrode material of the present invention enables a significant increase in battery capacity as compared with the case where the current graphite material is used, and at the same time, guarantees substantially the same cycle life characteristics. I have.
Therefore, it is useful as a negative electrode material for a Li secondary battery, which is required to have a high capacity and a small size, and its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one example of a negative electrode material of the present invention.
[Explanation of symbols]
A 0 laminated structure 1 Layer (active layer) of metal material that occludes and releases Li ions
2 Layer of metal material that does not occlude or release Li ions (current collecting layer)

Claims (8)

Liイオンを吸蔵・放出する金属または合金から成る活性層と、Liイオンを吸蔵・放出しない金属または合金から成る集電層とが、交互に積層されている積層構造体を基本単位として含むことを特徴とする、Li二次電池用の負極材料。An active layer composed of a metal or an alloy that occludes / releases Li ions, and a current collector layer composed of a metal or an alloy that does not occlude / release Li ions, include as a basic unit a laminated structure that is alternately laminated. Characteristic negative electrode material for Li secondary batteries. 前記積層構造体の最外層は前記集電層になっている請求項1のLi二次電池用の負極材料。The negative electrode material for a Li secondary battery according to claim 1, wherein the outermost layer of the multilayer structure is the current collecting layer. 前記活性層の厚みが10nm〜100μmであり、前記集電層の厚みが0.1nm〜100μmである、請求項1のLi二次電池用の負極材料。The negative electrode material for a Li secondary battery according to claim 1, wherein the thickness of the active layer is 10 nm to 100 μm, and the thickness of the current collecting layer is 0.1 nm to 100 μm. 前記活性層を構成する金属または合金が、Sn,Zn,Ag,Al,Cu−Sn合金である、請求項1〜3のいずれかのLi二次電池用の負極材料。Metal or alloy constituting the active layer, Sn, Zn, a Ag, Al, Cu-Sn alloy, the negative electrode material for one of Li secondary battery according to claim 1 to 3. 前記集電層を構成する金属または合金が、Cu,Ni,Fe,ステンレス鋼である、請求項1〜4のいずれかのLi二次電池用の負極材料。The negative electrode material for a Li secondary battery according to any one of claims 1 to 4, wherein the metal or alloy forming the current collecting layer is Cu, Ni, Fe, or stainless steel . 前記積層構造体は、パルスめっき法で製造されている、請求項1〜5のいずれかのLi二次電池用の負極材料。The negative electrode material for a Li secondary battery according to any one of claims 1 to 5, wherein the laminated structure is manufactured by a pulse plating method. 前記積層構造体の厚み方向には、複数個の亀裂が形成されている、請求項1〜6のいずれかのLi二次電池用の負極材料。The negative electrode material for a Li secondary battery according to any one of claims 1 to 6, wherein a plurality of cracks are formed in a thickness direction of the laminated structure. 請求項1〜6のいずれかの負極材料の粉末と結着剤との混合物が、集電体の片面または両面に塗工されていることを特徴とする、Li二次電池用の負極。A negative electrode for a Li secondary battery, wherein a mixture of the powder of the negative electrode material according to any one of claims 1 to 6 and a binder is applied to one or both surfaces of a current collector.
JP2001367254A 2001-11-30 2001-11-30 Negative electrode material for Li secondary battery, negative electrode using the same Expired - Fee Related JP3565272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367254A JP3565272B2 (en) 2001-11-30 2001-11-30 Negative electrode material for Li secondary battery, negative electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367254A JP3565272B2 (en) 2001-11-30 2001-11-30 Negative electrode material for Li secondary battery, negative electrode using the same

Publications (2)

Publication Number Publication Date
JP2003168425A JP2003168425A (en) 2003-06-13
JP3565272B2 true JP3565272B2 (en) 2004-09-15

Family

ID=19177032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367254A Expired - Fee Related JP3565272B2 (en) 2001-11-30 2001-11-30 Negative electrode material for Li secondary battery, negative electrode using the same

Country Status (1)

Country Link
JP (1) JP3565272B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3755502B2 (en) * 2002-09-11 2006-03-15 ソニー株式会社 Non-aqueous electrolyte battery
JP3764470B1 (en) * 2004-09-09 2006-04-05 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery
US7838154B2 (en) 2004-09-09 2010-11-23 Mitsui Mining & Smelting Co., Ltd. Negative electrode for nonaqueous secondary battery
JP4891555B2 (en) * 2005-03-14 2012-03-07 三井金属鉱業株式会社 Method for producing non-aqueous electrolyte secondary battery
JP4877475B2 (en) * 2005-11-17 2012-02-15 ソニー株式会社 Negative electrode and battery
JP5237642B2 (en) * 2005-12-27 2013-07-17 パナソニック株式会社 Electrode for lithium secondary battery and lithium secondary battery using the same
JP4967392B2 (en) * 2006-03-16 2012-07-04 パナソニック株式会社 Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2015049965A (en) * 2013-08-30 2015-03-16 三菱自動車工業株式会社 Electrode for secondary battery

Also Published As

Publication number Publication date
JP2003168425A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP5039956B2 (en) Negative electrode active material, negative electrode and lithium secondary battery
JP3935067B2 (en) Secondary battery negative electrode and secondary battery using the same
KR101191487B1 (en) Battery
JP4609048B2 (en) Negative electrode for secondary battery and secondary battery
JP3191752B2 (en) Nickel-hydrogen secondary battery and method for manufacturing electrode thereof
WO2002025757A1 (en) Electrode for lithium secondary cell and lithium secondary cell
JPH11242954A (en) Electrode structural body, secondary battery, and their manufacture
JP3664253B2 (en) Secondary battery negative electrode and secondary battery using the same
JP3669646B2 (en) Nonaqueous electrolyte secondary battery
JP5761098B2 (en) Active material and lithium ion secondary battery using the same
US20110151322A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JP2006236684A (en) Negative electrode, battery, and their manufacturing methods
JP3565272B2 (en) Negative electrode material for Li secondary battery, negative electrode using the same
JPWO2022038670A5 (en)
JP2006236685A (en) Negative electrode, battery, and their manufacturing method
JP3707617B2 (en) Negative electrode and battery using the same
JP5098144B2 (en) Negative electrode and battery
JP2007299801A (en) Energy storing element
US7524585B2 (en) Anode and battery using it
JP6926910B2 (en) Rechargeable battery
JP2006172777A (en) Lithium secondary battery
JP2006155960A (en) Negative electrode and battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP2006059714A (en) Negative electrode and battery
WO2022264499A1 (en) Bipolar electrode and power storage device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040601

R150 Certificate of patent or registration of utility model

Ref document number: 3565272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees