JP3533783B2 - Semiconductor substrate and semiconductor device manufacturing method - Google Patents

Semiconductor substrate and semiconductor device manufacturing method

Info

Publication number
JP3533783B2
JP3533783B2 JP27025795A JP27025795A JP3533783B2 JP 3533783 B2 JP3533783 B2 JP 3533783B2 JP 27025795 A JP27025795 A JP 27025795A JP 27025795 A JP27025795 A JP 27025795A JP 3533783 B2 JP3533783 B2 JP 3533783B2
Authority
JP
Japan
Prior art keywords
neutron
heat treatment
substrate
semiconductor
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27025795A
Other languages
Japanese (ja)
Other versions
JPH09115848A (en
Inventor
律夫 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP27025795A priority Critical patent/JP3533783B2/en
Publication of JPH09115848A publication Critical patent/JPH09115848A/en
Application granted granted Critical
Publication of JP3533783B2 publication Critical patent/JP3533783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電荷結合素子いわ
ゆるCCD(チャージ・カプルド・デバイス)型固体撮
像素子による半導体装置等に適用して好適な半導体基板
および半導体装置の各製造方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate suitable for application to a semiconductor device or the like using a charge-coupled device, a so-called CCD (charge coupled device) type solid-state imaging device, and a method of manufacturing the semiconductor device.

【0002】[0002]

【従来の技術】各種半導体装置においては、その半導体
素子が形成される半導体基板の特に半導体素子の動作領
域いわゆる活性領域に結晶欠陥や金属不純物汚染が存在
すると、素子の特性劣化、寿命の低下等を来すことから
極力回避されることが必要である。特に、電荷結合素子
いわゆるCCD(チャージ・カプルド・デバイス)によ
る固体撮像素子を構成する場合においては、この欠陥
や、金属不純物の存在は、暗電流の増加とか、撮像画像
にいわゆる白傷欠陥を発生させたりして画質の低下を来
し、更にゲート絶縁膜耐圧の低下を招来する。
2. Description of the Related Art In various semiconductor devices, if a crystal defect or metal impurity contamination is present in a semiconductor substrate on which the semiconductor element is formed, especially in an operation area of the semiconductor element, that is, an active area, the characteristics of the element are deteriorated and the life is shortened. It is necessary to be avoided as much as possible from coming. Particularly, in the case of forming a solid-state image pickup device using a charge-coupled device, so-called CCD (charge coupled device), this defect and the presence of metal impurities cause an increase in dark current and a so-called white defect in the captured image. As a result, the image quality is deteriorated and the breakdown voltage of the gate insulating film is further deteriorated.

【0003】一般に、半導体装置用のシリコン基板は、
CZ法(Czochralski 法)、MCZ法(Magnetic Field
Applied CZ 法) 、FZ法(Float Zone法)によって形
成され、集積回路用基板としてはCZ法、MCZ法が主
流であり、固体撮像装置用としてはMCZ法が主流であ
る。
Generally, silicon substrates for semiconductor devices are
CZ method (Czochralski method), MCZ method (Magnetic Field
Applied CZ method) and FZ method (Float Zone method). The CZ method and the MCZ method are the mainstream for the integrated circuit substrate, and the MCZ method is the mainstream for the solid-state imaging device.

【0004】また、抵抗率の制御技術としては、原材料
である多結晶シリコンにIII 族またはV族の元素を単体
または化合物として添加すドーパント添加法や、単結晶
シリコン中に約3%程度含まれているSi同位体(30
i)に熱中性子を照射させて 31Siに変え、更にβ崩壊
により31Pに変化することを利用したいわゆるNTD
(Neutron Transmutation Doping)法がある。このNT
D法はn型のみにしか利用できないという問題があるも
のの、ドーパント添加法に比し、極めてドーパント分布
が均一であり、かつ高抵抗(例えばMCZによるNTD
基板で100Ω・cm以上)の基板の制御性が良く、パ
ワーデバイスや固体撮像装置の半導体基板として用いら
れている。
Further, as a technique for controlling the resistivity, raw materials are used.
Element of group III or group V is added to polycrystalline silicon which is
Or a dopant addition method that is added as a compound or a single crystal
Si isotope (about 3% contained in silicon)30S
Irradiate i) with thermal neutrons 31Change to Si and further β decay
By31So-called NTD that utilizes the change to P
(Neutron Transmutation Doping) method. This NT
The D method has the problem that it can only be used for the n-type.
However, compared to the dopant addition method, the dopant distribution is extremely high.
Is uniform and has high resistance (for example, NTD by MCZ
The substrate has a good controllability of 100 Ω · cm or more.
It is used as a semiconductor substrate for power devices and solid-state imaging devices.
Has been.

【0005】また、NTD法に関しては、種々の提案が
なされている(例えば特開昭63−141322号公報
(以下参考資料1という)、特開平4−295093号
公報(以下参考資料2という)、特開平4−32122
2号公報(以下参考資料3という))。上記参考資料1
に開示の方法においては、高速中性子が1×1012個/
cm2 以上照射するものであり、熱中性子/高速中性子比
を30以下、酸素濃度を約0.5×1017atoms/cm3
上とするものである。また、上記参考資料2に開示の方
法においては、シリコン単結晶中の酸素濃度を重水炉照
射の場合0.90×1018cm-3以下、軽水炉照射の場合
0.50×10cm-3以下とするものである。更に、上記
参考資料3に開示の方法では、酸素濃度を2〜13×1
17cm-3とし、熱中性子/高速中性子比を30以下とす
るものであり、この中性子照射後のシリコン基板に対し
て900〜1,050℃、16時間以上の熱処理を行う
というものである。
Various proposals have been made for the NTD method (for example, JP-A-63-141322 (hereinafter referred to as Reference Material 1), JP-A-4-295093 (hereinafter referred to as Reference Material 2), JP-A-4-32122
Publication No. 2 (hereinafter referred to as Reference Material 3)). Reference material 1 above
In the method disclosed in, the number of fast neutrons is 1 × 10 12 /
Irradiation is performed with cm 2 or more, and the thermal neutron / fast neutron ratio is 30 or less, and the oxygen concentration is about 0.5 × 10 17 atoms / cm 3 or more. Further, in the above-described method disclosed in Reference 2, the oxygen concentration in the silicon single crystal below if 0.90 × 10 18 cm -3 of heavy water reactor irradiation, and if 0.50 × 10 cm -3 or less of a light water reactor irradiation To do. Furthermore, in the method disclosed in Reference Material 3 described above, the oxygen concentration is 2 to 13 × 1.
And 0 17 cm -3, are those of thermal neutrons / fast neutron ratio is 30 or less, 900~1,050 ℃, is that heat treatment is performed over 16 hours on the silicon substrate after the neutron irradiation .

【0006】[0006]

【発明が解決しようとする課題】上述した中性子照射を
適用する場合、効果的に結晶欠陥発生の低減化、重金属
不純物のゲッタリングをはかることができる。しかしな
がら、これらいづれの方法においても、必ずしも固体撮
像装置における白傷発生を確実に回避する程度に満足で
きるシリコン基板を得ることには問題がある。
When the above-mentioned neutron irradiation is applied, it is possible to effectively reduce the generation of crystal defects and gettering heavy metal impurities. However, with any of these methods, there is a problem in obtaining a silicon substrate that is satisfactory enough to reliably avoid the occurrence of white scratches in the solid-state imaging device.

【0007】本発明においては、種々の研究、考察を重
ねた結果、固体撮像装置等においても、より効果的に結
晶起因の欠陥や、不純物汚染等に関連した素子特性の改
善をはかることができるシリコン(Si)半導体基板お
よびこれによる半導体装置を得ることのできる半導体基
板および半導体装置の製造方法を提供する。
In the present invention, as a result of various studies and consideration, it is possible to more effectively improve element characteristics related to defects due to crystals, impurity contamination, etc. even in a solid-state imaging device or the like. Provided are a silicon (Si) semiconductor substrate, a semiconductor substrate capable of obtaining a semiconductor device using the same, and a method for manufacturing a semiconductor device.

【0008】[0008]

【課題を解決するための手段】本発明は、熱中性子/高
速中性子の存在比が、特に30より大で1,000未満
である中性子照射炉を用いて、酸素濃度が9×10 17 at
oms/cm 3 以上であるシリコン単結晶体に中性子照射を行
い、その後イントリンシック・ゲッタリング効果を得る
酸素外方拡散の熱処理を1,000℃以上で行い、更に
内部析出物形成の熱処理を800℃以下で行ってシリコ
ン基板による半導体基板を得る。
According to the present invention, a neutron irradiation furnace having a thermal neutron / fast neutron abundance ratio of more than 30 and less than 1,000 is used, and the oxygen concentration is 9 × 10 17 at.
Neutron irradiation is performed on a silicon single crystal body having an oms / cm 3 or more.
Then get an intrinsic gettering effect
Oxygen outward diffusion heat treatment is performed at 1,000 ℃ or higher,
A heat treatment for forming internal precipitates is performed at 800 ° C. or lower to obtain a semiconductor substrate made of a silicon substrate.

【0009】また、酸素濃度が9×10 17 atoms/cm 3
上であるシリコン単結晶体より成るシリコン基板に対
し、熱中性子/高速中性子の存在比が、30より大で
1,000未満である中性子照射炉を用いて中性子照射
を行う工程と、1,000℃以上の温度でイントリンシ
ック・ゲッタリング効果を得る酸素外方拡散の熱処理を
行う工程と、800℃以下の温度で内部析出物形成の熱
処理を行う工程とを有する。
The oxygen concentration is 9 × 10 17 atoms / cm 3 Since
For the silicon substrate made of the silicon single crystal above
However, if the abundance ratio of thermal neutrons / fast neutrons is greater than 30,
Neutron irradiation using a neutron irradiation furnace that is less than 1,000
And the process of performing the
Heat treatment of oxygen out-diffusion to obtain a gettering effect
Steps to perform and heat of internal precipitate formation at temperatures below 800 ° C
And a step of performing processing.

【0010】ここで、シリコン単結晶体とは、結晶成長
して得たいわゆるインゴット、もしくはこれより切り出
されたウエーハ状基板の結晶体を総称するものとする。
Here, the silicon single crystal is a generic term for a so-called ingot obtained by crystal growth or a crystal of a wafer-like substrate cut out from the ingot.

【0011】上述の本発明方法によれば、そのゲッタリ
ングのための熱処理を、上述したシリコン(Si)基板
によって半導体装置例えばCCD(電荷転送装置)構成
による撮像装置を構成する製造過程で伴う熱処理によっ
て確実に、そのゲッタリング効果を奏することが確認さ
れた。
According to the above-described method of the present invention, the heat treatment for gettering is accompanied with the heat treatment in the manufacturing process for forming an image pickup device having a semiconductor device such as a CCD (charge transfer device) with the above-mentioned silicon (Si) substrate. It was confirmed that the gettering effect was certainly exhibited by the above.

【0012】尚、本発明方法においては、熱中性子/高
速中性子比いわゆるCd比を30より大で1,000未
満とするものであるが、これは30以下では、シリコン
(Si)基板への中性子照射によるダメージが大きすぎ
て後の熱処理によっても回復できない残留欠陥となるこ
とを認めたことにより、また1,000以上では、ダメ
ージが少なすぎて半導体装置の製造過程での熱処理での
ゲッタリング効果が不充分となることを認めたことによ
る。
In the method of the present invention, the thermal neutron / fast neutron ratio, the so-called Cd ratio, is set to be greater than 30 and less than 1,000, but when it is 30 or less, neutrons to the silicon (Si) substrate are neutrons. By recognizing that the damage caused by irradiation is too large to be a residual defect that cannot be recovered by the subsequent heat treatment, and when it is 1,000 or more, the damage is too small and the gettering effect in the heat treatment in the semiconductor device manufacturing process is obtained. Is due to the admission that

【0013】[0013]

【発明の実施の形態】本発明製造方法の実施の形態を説
明する。この例では、CZ法もしくはMCZ法等によっ
てSi単結晶インゴットを成長させ、それを円柱状に切
削した単結晶体を、中性子照射炉中に配置していわゆる
NTDを行う。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the manufacturing method of the present invention will be described. In this example, a Si single crystal ingot is grown by the CZ method, the MCZ method, or the like, and the single crystal body obtained by cutting the Si single crystal ingot into a cylindrical shape is placed in a neutron irradiation furnace to perform so-called NTD.

【0014】この中性子には、熱中性子と運動エネルギ
ーを有する高速中性子が混在しているものであり、両者
の存在比(熱中性子/高速中性子比)は、照射炉固有の
値となる。本発明においては、この熱中性子/高速中性
子比を、30より大で、1,000未満とする。
Thermal neutrons and fast neutrons having kinetic energy are mixed in this neutron, and the abundance ratio (thermal neutron / fast neutron ratio) of both is a value peculiar to the irradiation furnace. In the present invention, this thermal neutron / fast neutron ratio is greater than 30 and less than 1,000.

【0015】一方、この中性子照射前におけるSi単結
晶体中の酸素濃度は、9×1017atoms/cm3 以上とし
た。この酸素濃度の選定は、例えば結晶成長におけるS
i融液を収容する石英るつぼからの酸素の取り込みの制
御によって行う。例えば、結晶引き上げの結晶種(核)
および(または)るつぼの相対的回転速度の制御、すな
わち熱対流、および強制対流の制御によって行うとか、
るつぼと加熱手段との相対的位置の選定、すなわち融液
表面温度の制御、るつぼの開口面積すなわち酸素の蒸発
面積の制御等によって行うことができ、また、MCZ法
によるときは、その印加磁界の選定によってSi融液の
粘性制御すなわち対流の制御によって行うことができ
る。
On the other hand, the oxygen concentration in the Si single crystal body before the neutron irradiation was set to 9 × 10 17 atoms / cm 3 or more. This oxygen concentration is selected by, for example, S in crystal growth.
i The oxygen uptake from the quartz crucible containing the melt is controlled. For example, a crystal seed (nucleus) for pulling a crystal
And / or control of the relative speed of rotation of the crucible, ie thermal convection and forced convection
The relative position of the crucible and the heating means can be selected, that is, the melt surface temperature can be controlled, the opening area of the crucible, that is, the oxygen evaporation area can be controlled, and when the MCZ method is used, the applied magnetic field Depending on the selection, the viscosity of the Si melt can be controlled, that is, the convection can be controlled.

【0016】このようにして、中性子照射すなわちNT
Dを行ったSi単結晶からSi基板を切り出す。その
後、IG(Intrinsic Gettering)に必要な酸素外方拡散
を、1,000℃以上熱処理温度例えば1,100℃で
1時間の熱処理によって行う。
In this way, neutron irradiation or NT
A Si substrate is cut out from the Si single crystal subjected to D. Thereafter, oxygen outward diffusion necessary for IG (Intrinsic Gettering) is performed by heat treatment at a heat treatment temperature of 1,000 ° C. or higher, for example, 1,100 ° C. for 1 hour.

【0017】その後、内部欠陥形成、すなわちFe、C
u等の重金属不純物のトラップとして作用させる内部析
出物形成の熱処理温度を800℃以下、好ましくは50
0℃〜700℃で行う。この熱処理は、初期の加熱が8
00℃以下であれば、その後において、800℃を越え
る温度に加熱される工程を経ても内部析出物形成の効果
に問題はない。この内部析出物形成の熱処理温度は、こ
のSi基板を用いて、半導体装置例えばCCD撮像装置
等を製造する製造過程での加熱工程で兼ねしめることが
できる。この加熱工程とは、半導体装置の製造工程にお
けるn型もしくはp型の不純物のイオン注入後の熱拡
散、SiO2 等のCVD(Chemical VaporDeposition)
工程や酸化工程、アニール工程等によって行うことがで
きる。
After that, internal defect formation, that is, Fe, C
The heat treatment temperature for forming the internal precipitate that acts as a trap for heavy metal impurities such as u is 800 ° C. or lower, preferably 50.
It is performed at 0 ° C to 700 ° C. In this heat treatment, the initial heating is 8
If the temperature is 00 ° C. or lower, there is no problem in the effect of forming the internal precipitate even after the subsequent step of heating to a temperature higher than 800 ° C. The heat treatment temperature for forming the internal precipitates can also be used in the heating step in the manufacturing process for manufacturing a semiconductor device such as a CCD image pickup device using the Si substrate. The heating process is thermal diffusion after ion implantation of n-type or p-type impurities in a semiconductor device manufacturing process, and CVD (Chemical Vapor Deposition) of SiO 2 or the like.
It can be performed by a process, an oxidation process, an annealing process, or the like.

【0018】本発明によるSi半導体基板によって半導
体装置、例えばCCD型固体撮像装置を構成する。
The Si semiconductor substrate according to the present invention constitutes a semiconductor device, for example, a CCD type solid-state image pickup device.

【0019】図1は、このCCD型固体撮像装置の一例
の要部の概略断面図を示す。この場合、上述した本発明
方法によって得たn型Si半導体基板1にp型の第1の
ウエル領域21を形成する。そして、この第1のウエル
領域21上に受光部22と、この受光部22によって受
光量に応じて発生させた電荷を転送するCCD構成によ
る垂直シフトレジスタ部23と、受光部22からシフト
レジスタ部23に電荷の読み出しを行う読み出しゲート
部24とが形成される。
FIG. 1 is a schematic sectional view of a main part of an example of this CCD type solid-state image pickup device. In this case, the p-type first well region 21 is formed on the n-type Si semiconductor substrate 1 obtained by the method of the present invention described above. Then, a light receiving portion 22 on the first well region 21, a vertical shift register portion 23 having a CCD structure for transferring electric charges generated by the light receiving portion 22 according to the amount of received light, and a shift register portion from the light receiving portion 22. A read gate portion 24 for reading charges is formed at 23.

【0020】受光部22は、p型ウエル領域21との間
にp−n接合を形成してフォトダイオードを形成するn
型の受光領域25と、これの上に形成されたp型の正電
荷蓄積領域26を形成する。この受光部22は、例えば
図1において紙面と直交する方向いわゆる垂直方向に複
数配列形成されるとともに、この複数個配列された受光
部の列が複数列平行配列されてなる。
The light-receiving portion 22 forms a pn junction with the p-type well region 21 to form a photodiode n.
A type light receiving region 25 and a p type positive charge storage region 26 formed thereon are formed. A plurality of the light receiving portions 22 are formed in a direction orthogonal to the paper surface in FIG. 1, that is, a so-called vertical direction, and a plurality of rows of the light receiving portions are arranged in parallel.

【0021】シフトレジスタ部23は、受光部22の各
列間に、各列に沿って形成される。シフトレジスタ部2
3は、p型の第2のウエル領域27が形成され、これの
上にn型の転送領域28が形成される。
The shift register section 23 is formed between each row of the light receiving sections 22 along each row. Shift register unit 2
3, a p-type second well region 27 is formed, and an n-type transfer region 28 is formed thereon.

【0022】半導体基板1上には全面的に例えば表面熱
酸化によって形成した光透過性のSiO2 絶縁膜29が
形成され、シフトレジスタ部23および読み出しゲート
部24上に跨がって絶縁膜29上に例えばSi3 4
よる絶縁膜31とSiO2 による絶縁膜32が積層され
てゲート絶縁膜13が形成され、これの上に転送電極3
0が形成される。
An optically transparent SiO 2 insulating film 29 formed by, for example, surface thermal oxidation is formed on the entire surface of the semiconductor substrate 1, and the insulating film 29 extends over the shift register section 23 and the read gate section 24. An insulating film 31 made of, for example, Si 3 N 4 and an insulating film 32 made of SiO 2 are laminated on the gate insulating film 13 to form the transfer electrode 3 thereon.
0 is formed.

【0023】そして、全面的に光透過性のPSG(リン
シリケートガラス)等の層間絶縁層33が形成され、受
光部22上を除いてAl膜等よりなる遮光膜34が形成
される。
Then, an interlayer insulating layer 33 such as light-transmissive PSG (phosphorus silicate glass) is formed on the entire surface, and a light shielding film 34 made of an Al film or the like is formed except on the light receiving portion 22.

【0024】各受光部間、シフトレジスタ部の外側等に
p型のチャネルストッパ領域35が形成される。
A p-type channel stopper region 35 is formed between the light receiving portions and outside the shift register portion.

【0025】上述の本発明方法によって作製したSi基
板およびこれによって作製したCCD撮像装置の特性を
評価した。 〔評価方法〕この場合、酸素濃度を、7.8〜10.9
×1017濃度の範囲で、それぞれ異なる濃度を有するノ
ンドープのSi単結晶体を、MCZ法で成長させた。こ
のときの抵抗率は、1,000Ω・cm以上であった。
この結晶を用いて熱中性子/高速中性子比が、それぞれ
450と1,000との2種の照射炉を用いてNTDを
行った。この中性子照射結晶の抵抗率は、1,100
℃、30分間の回復アニール後で、30〜80Ω・cm
であり、このようにしNTDを行ったSi単結晶からS
i基板に対し、1,100℃、2時間のウエット酸化を
行った後に測定した積層欠陥すなわちOSF(Oxidatio
n Induced Stacking Faults)は、すべてゼロであった。
The characteristics of the Si substrate manufactured by the above-described method of the present invention and the CCD image pickup device manufactured by the Si substrate were evaluated. [Evaluation method] In this case, the oxygen concentration is set to 7.8 to 10.9.
Non-doped Si single crystal bodies having different concentrations in the range of × 10 17 concentration were grown by the MCZ method. At this time, the resistivity was 1,000 Ω · cm or more.
Using this crystal, NTD was carried out using two types of irradiation furnaces having a thermal neutron / fast neutron ratio of 450 and 1,000, respectively. The resistivity of this neutron irradiated crystal is 1,100.
After recovery annealing at 30 ° C for 30 minutes, 30-80Ωcm
From the Si single crystal NTDed in this way
Stacking faults, i.e., OSF (Oxidatio) measured after performing wet oxidation at 1,100 ° C. for 2 hours on the i substrate.
n Induced Stacking Faults) were all zero.

【0026】また、このようにして得た5インチ径のS
i基板を用いて上述した構造のCCD撮像装置を作製し
た場合の白傷欠陥数の測定結果を、図2に示す。図2に
おいては、その白傷欠陥数は、規格化したものである。
The thus obtained S having a diameter of 5 inches is also used.
FIG. 2 shows the measurement results of the number of white defects in the case where the CCD image pickup device having the above-described structure was manufactured using the i substrate. In FIG. 2, the number of white defects is standardized.

【0027】図2によれば、酸素濃度が高いほど、特に
その濃度が9×1017atoms/cm3 以上で著しい低下が生
じている。また、その熱中性子/高速中性子比すなわち
Cd比は、1,000未満であれば、欠陥の減少を充分
図れることができることがわかる。つまり、Cd比が
1,000以上では、ダメージが少なすぎて、ゲッタリ
ング効果が不充分となり、酸素濃度の選定によっても充
分な欠陥発生の回避をはかられず、撮像装置を構成した
場合において、白点や、ダークの発生が大きくなり、ま
たゲート酸化膜の耐圧低下を来す。しかしながら、この
熱中性子/高速中性子比が、30以下では、運動エネル
ギーを有する高速中性子が多すぎることによって、単結
晶体に熱処理では回復がはかられない程度残留欠陥を生
じさせる程度のダメージを生じさせてしまうことが確認
された。
According to FIG. 2, as the oxygen concentration is higher, the concentration is remarkably lowered especially at 9 × 10 17 atoms / cm 3 or more. Further, it can be seen that if the thermal neutron / fast neutron ratio, that is, the Cd ratio is less than 1,000, the number of defects can be sufficiently reduced. That is, when the Cd ratio is 1,000 or more, the damage is too small, the gettering effect becomes insufficient, and even when the oxygen concentration is selected, sufficient defect generation cannot be avoided, and when the imaging device is configured, The occurrence of white spots and darkness increases, and the breakdown voltage of the gate oxide film decreases. However, when the thermal neutron / fast neutron ratio is 30 or less, too many fast neutrons having kinetic energy cause damage to the single crystal body to the extent that residual defects are generated to the extent that recovery cannot be achieved by heat treatment. It has been confirmed that it will be done.

【0028】尚、上述した固体撮像装置を構成する半導
体基板は、通常CZ法、MCZ法によって形成した単結
晶インゴットから切り出して構成されるが、FZ法等に
よって構成することもできる。
The semiconductor substrate constituting the above-mentioned solid-state image pickup device is usually formed by cutting out a single crystal ingot formed by the CZ method or MCZ method, but it may be formed by the FZ method or the like.

【0029】また、本発明方法は、上述の固体撮像装置
に限られるものではなく、MOSトランジスタ(絶縁ゲ
ート電界効果型トランジスタ)、バイポーラトランジス
タもしくはそれらの半導体集積回路を始めとして種々の
半導体装置を構成する半導体基板および半導体装置を得
る場合に適用できるものである。
The method of the present invention is not limited to the solid-state image pickup device described above, and various semiconductor devices including MOS transistors (insulated gate field effect transistors), bipolar transistors or semiconductor integrated circuits thereof can be formed. The present invention can be applied when obtaining a semiconductor substrate and a semiconductor device that are manufactured.

【0030】[0030]

【発明の効果】上述したように本発明によれば、金属不
純物濃度が低く、結晶欠陥を減少させた半導体Si基板
を構成できる。したがって、例えばCCD型固体撮像装
置に適用して、この結晶欠陥や、重金属不純物による、
白点、白傷の発生、ダーク等の撮像装置において致命的
欠陥の発生を効果的に改善でき、信頼性の向上、歩留り
の向上をはかることができるものである。
As described above, according to the present invention, a semiconductor Si substrate having a low metal impurity concentration and reduced crystal defects can be constructed. Therefore, for example, when applied to a CCD type solid-state imaging device, due to the crystal defects and heavy metal impurities,
It is possible to effectively improve the occurrence of a fatal defect in an image pickup device such as occurrence of white spots, white scratches, and darkness, and improve reliability and yield.

【0031】また、本発明によれば、内部析出物形成の
熱処理工程を800℃以下にできることから、この熱処
理を半導体装置の製造工程で伴う熱処理で行うことがで
き、製造工程の簡略化をはかることができるものであ
る。
Further, according to the present invention, since the heat treatment step for forming the internal precipitate can be set to 800 ° C. or lower, this heat treatment can be performed by the heat treatment involved in the semiconductor device manufacturing process, and the manufacturing process can be simplified. Is something that can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体基板および半導体装置の製
造方法を適用する半導体装置の一例の概略断面図であ
る。
FIG. 1 is a schematic cross-sectional view of an example of a semiconductor device to which a method for manufacturing a semiconductor substrate and a semiconductor device according to the present invention is applied.

【図2】本発明製造方法によって得た固体撮像装置の白
傷欠陥の測定結果を示す図である。
FIG. 2 is a diagram showing a measurement result of a white defect of a solid-state imaging device obtained by a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 22 受光部 23 シフトレジスタ部 1 Semiconductor substrate 22 Light receiving part 23 Shift register section

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/322 H01L 21/261 H01L 27/14 - 27/148 C30B 29/06 C30B 31/20 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/322 H01L 21/261 H01L 27/14-27/148 C30B 29/06 C30B 31/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱中性子/高速中性子の存在比が、30
より大で1,000未満である中性子照射炉を用いて
酸素濃度が9×10 17 atoms/cm 3 以上であるシリコン単
結晶体に中性子照射を行い、 その後イントリンシック・ゲッタリング効果を得る酸素
外方拡散の熱処理を1,000℃以上で行い、 更に内部析出物形成の熱処理を800℃以下で行って
リコン基板を得ることを特徴とする半導体基板の製造方
法。
1. The thermal neutron / fast neutron abundance ratio is 30.
With a neutron irradiation furnace that is greater than less than 1,000 ,
Oxygen concentration have rows neutron irradiation to the silicon single crystal is 9 × 10 17 atoms / cm 3 or more, the oxygen then obtain intrinsic gettering effect
A method of manufacturing a semiconductor substrate, wherein a heat treatment for outward diffusion is performed at 1,000 ° C. or higher, and a heat treatment for forming an internal precipitate is performed at 800 ° C. or lower to obtain a silicon substrate.
【請求項2】 酸素濃度が9×10 17 atoms/cm 3 以上で
あるシリコン単結晶体より成るシリコン基板に対し、
中性子/高速中性子の存在比が、30より大で1,00
0未満である中性子照射炉を用いて中性子照射を行う工
程と、1,000℃以上の温度で イントリンシック・ゲッタリ
ング効果を得る酸素外方拡散の熱処理を行う工程と、800℃以下の温度で 内部析出物形成の熱処理を行う
程とを有することを特徴とする半導体装置の製造方法。
2. The oxygen concentration is 9 × 10 17 atoms / cm 3 Above
The thermal neutron / fast neutron abundance ratio of greater than 30 and 1.00 for a silicon substrate composed of a certain silicon single crystal
And performing neutron irradiation with neutron irradiation furnace is less than 0, and performing heat treatment of outward diffusion of oxygen to obtain the intrinsic gettering effect at temperatures above 1,000 ° C., 800 ° C. below the temperature And a step of performing a heat treatment for forming an internal precipitate.
【請求項3】 上記シリコン基板に固体撮像素子を形成
することを特徴とする請求項記載の半導体装置の製造
方法。
3. The method of manufacturing a semiconductor device according to claim 2 , wherein a solid-state image sensor is formed on the silicon substrate.
JP27025795A 1995-10-18 1995-10-18 Semiconductor substrate and semiconductor device manufacturing method Expired - Fee Related JP3533783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27025795A JP3533783B2 (en) 1995-10-18 1995-10-18 Semiconductor substrate and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27025795A JP3533783B2 (en) 1995-10-18 1995-10-18 Semiconductor substrate and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH09115848A JPH09115848A (en) 1997-05-02
JP3533783B2 true JP3533783B2 (en) 2004-05-31

Family

ID=17483734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27025795A Expired - Fee Related JP3533783B2 (en) 1995-10-18 1995-10-18 Semiconductor substrate and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP3533783B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062213A (en) * 2002-01-14 2003-07-23 러셀 라이스트 존 A semiconductor detector for thermal neutrons based on pyrolytic boron nitride

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322712A (en) * 2004-05-07 2005-11-17 Toyota Motor Corp Semiconductor substrate, semiconductor device, and their manufacturing method
JP2008303078A (en) * 2007-06-05 2008-12-18 Japan Atomic Energy Agency Method for producing silicon thin film or isotopically enriched silicon thin film
JP5343371B2 (en) 2008-03-05 2013-11-13 株式会社Sumco Silicon substrate and manufacturing method thereof
EP3113224B1 (en) * 2015-06-12 2020-07-08 Canon Kabushiki Kaisha Imaging apparatus, method of manufacturing the same, and camera

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062213A (en) * 2002-01-14 2003-07-23 러셀 라이스트 존 A semiconductor detector for thermal neutrons based on pyrolytic boron nitride

Also Published As

Publication number Publication date
JPH09115848A (en) 1997-05-02

Similar Documents

Publication Publication Date Title
US6746939B2 (en) Production method for solid imaging device
Pankove et al. Neutralization of acceptors in silicon by atomic hydrogen
JP4650493B2 (en) Semiconductor substrate for solid-state imaging device and method for manufacturing the same
JPH0628311B2 (en) Buried channel charge coupled device fabrication method
JPH10223640A (en) Semiconductor substrate and its manufacture
JPH11204771A (en) Manufacture of semiconductor substrate and solid state imaging device
KR20090095494A (en) Silicon substrate and method of producing the same
JP2007273959A (en) Light-detecting device and manufacturing method therefor
JP3533783B2 (en) Semiconductor substrate and semiconductor device manufacturing method
TWI442478B (en) Silicon substrate manufacturing method
JP2998330B2 (en) SIMOX substrate and method of manufacturing the same
US20070205488A1 (en) Light-detecting device and manufacturing method thereof
JPH0614549B2 (en) Thin film transistor
JPH01245528A (en) Manufacture of solid-state image sensing device
JP2943369B2 (en) Semiconductor substrate manufacturing method
JPH10247731A (en) Semiconductor wafer, and manufacture thereof, and semiconductor integrated circuit device and manufacture thereof
JPH11288942A (en) Manufacture of semiconductor device
JPH08104592A (en) Production of semiconductor substrate for semiconductor device and semiconductor device
JPH0228373A (en) Manufacture of laminate type solid-state image sensor
JP2518378B2 (en) Method for manufacturing semiconductor device
JPH11162991A (en) Manufacture of semiconductor device
US20060019423A1 (en) Method for manufacturing solid-state image sensor
JPH0629382A (en) Semiconductor device and its production
JPH10209170A (en) Semiconductor wafer, its manufacture, semiconductor integrated circuit device, and its manufacture
JPH0434300B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040301

LAPS Cancellation because of no payment of annual fees