JPH01245528A - Manufacture of solid-state image sensing device - Google Patents

Manufacture of solid-state image sensing device

Info

Publication number
JPH01245528A
JPH01245528A JP63073897A JP7389788A JPH01245528A JP H01245528 A JPH01245528 A JP H01245528A JP 63073897 A JP63073897 A JP 63073897A JP 7389788 A JP7389788 A JP 7389788A JP H01245528 A JPH01245528 A JP H01245528A
Authority
JP
Japan
Prior art keywords
hydrogen
temperature
photoelectric conversion
dark current
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073897A
Other languages
Japanese (ja)
Inventor
Yasuo Ishihara
石原 保雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63073897A priority Critical patent/JPH01245528A/en
Publication of JPH01245528A publication Critical patent/JPH01245528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To sufficiently reduce the dark current of a solid image pick-up device using a p-n junction as a photoelectric conversion part by a method wherein said device is hydrogen pool processed at a specific temperature and then subjected to the final heat treatment in hydrogen atmosphere at the temperature not exceeding the hydrogen plasma processing temperature. CONSTITUTION:An n type photoelectric conversion part 11, a CCD resistor 13 and channel stopper regions 14 are formed on a p type semiconductor substrate 10 by selective diffusion process. Furthermore, an SiO2 insulating film 15, a gate electrode 16, a flattening insulating film 17, an aluminum film 18 and a cover glass film 19 are successively formed on said elements. An image pick-up device thus formed is processed in plasmic atmosphere at 350-500 deg.C for ground 10 minutes. Resultantly, the surface level density causing any dark current can be reduced. Finally, the whole body is alloy heat-treated to reinforce the contact between a metallic wiring and the substrate. The temperature of this final heat treatment shall be lowered by at least around 10 deg.C or more than the hydrogen plasma processing temperature so as to stabilize the hydrogen ion H<+> coupled in the interface 21.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は暗電流を低減させた固体撮像装置の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a solid-state imaging device with reduced dark current.

[従来の技術] 固体撮像装置は、小型、低消費電力及び高信頼性の特徴
を生して急速に発展している。固体撮像装置は、その信
号の取出し形態により、インターライン転送方式と呼ば
れる電荷転送撮像装置とMO3型撮像装置とに大別され
る。しかし、これらのいずれの形態においても、光電変
換部は通常基板半導体とp−n接合を形成した領域から
構成されている。
[Background Art] Solid-state imaging devices are rapidly developing due to their small size, low power consumption, and high reliability. Solid-state imaging devices are broadly classified into charge transfer imaging devices called interline transfer type imaging devices and MO3 type imaging devices, depending on the mode of signal extraction. However, in any of these forms, the photoelectric conversion section is usually composed of a region in which a pn junction is formed with the substrate semiconductor.

第3図は従来のインターライン転送方式による電荷転送
撮像装置における単位セルの断面模式図である。
FIG. 3 is a schematic cross-sectional view of a unit cell in a conventional charge transfer imaging device using an interline transfer method.

p型半導体基板10の主面には光電変換部11が形成さ
れており、この光電変換部11は基板半導体とは異なる
n型領域からなり、前記p型半導体基板10とでp−n
接合を構成する。また、p型半導体基板10の主面には
、トランスファゲート領域12を挾んで前記光電変換部
11と対向する位置にn型領域からなる垂直埋込みチャ
ネルのCCDレジスタ13が配置されている。更に、光
電変換部11及びCCDレジスタ13の周囲には基板不
純物濃度より高い不純物層からなるチャネルストップ領
域14が形成されている。これらが形成されたp型半導
体基板10の上面には、熱酸化5i02膜等の絶縁膜1
5が形成され、更に、トランスファゲート12とCCD
レジスタ13上には上記絶縁膜15を介してゲート電f
i16が配置されている。そして、その全面は、リン及
びボロン等が混合された平坦化絶縁膜17により覆われ
ている。更に、光電変換部11を除いた平坦化絶縁81
7の上には配線用の金属膜として、例えば、アルミニウ
ム膜18が形成されている。アルミニウム膜18は遮光
手段としても機能し、その上にはカバーガラス膜(図示
せず)が形成されている。
A photoelectric conversion section 11 is formed on the main surface of the p-type semiconductor substrate 10, and this photoelectric conversion section 11 is composed of an n-type region different from the substrate semiconductor, and forms a p-n region with the p-type semiconductor substrate 10.
Configure the junction. Further, on the main surface of the p-type semiconductor substrate 10, a vertical buried channel CCD register 13 made of an n-type region is arranged at a position facing the photoelectric conversion section 11 with the transfer gate region 12 in between. Further, a channel stop region 14 made of an impurity layer having a higher impurity concentration than the substrate is formed around the photoelectric conversion section 11 and the CCD register 13. On the upper surface of the p-type semiconductor substrate 10 on which these are formed, there is an insulating film 1 such as a thermally oxidized 5i02 film.
5 is formed, and furthermore, a transfer gate 12 and a CCD
A gate voltage f is provided on the resistor 13 via the insulating film 15.
i16 is located. The entire surface is covered with a planarizing insulating film 17 containing a mixture of phosphorus, boron, and the like. Furthermore, the planarized insulation 81 excluding the photoelectric conversion section 11
For example, an aluminum film 18 is formed on the wiring layer 7 as a metal film for wiring. The aluminum film 18 also functions as a light shielding means, and a cover glass film (not shown) is formed thereon.

このように構成された電荷転送撮像装置は、p型半導体
基板10と光電変換部11とで構成されるp−n接合部
を逆バイアス状態にし、ここに光が照射されることによ
って生じた信号電荷をCCDレジスタ13によって垂直
方向に転送することにより、撮像信号を読出すように動
作をする。
The charge transfer imaging device configured as described above puts the p-n junction composed of the p-type semiconductor substrate 10 and the photoelectric conversion section 11 in a reverse bias state, and detects the signal generated by irradiating the p-n junction with light. By vertically transferring charges by the CCD register 13, the image pickup signal is read out.

[発明が解決しようとする課題] しかしながら、このような固体撮像装置においては、光
電変換部11の暗電流は、撮像装置の低照度撮像レベル
の限界を決めたり、信号対雑音比(S/N比)を決める
重要な特性であり、その低減が望まれている。p−n接
合の暗電流を低減させるには、基板半導体界面に露出し
ているp −rl接合部空乏層の表面再結合速度を減少
させることが必要である。この表面再結合速度は、基板
半導体界面の未結合シリコンボンドにより生ずる表面準
位に依存する。そこで、従来、この表面準位密度を減少
させる方法として金属配線と基板とのコンタクト強化の
ためのアロイ処理と呼ばれる最終熱処理を水素雰囲気で
行うことが提案されている。
[Problems to be Solved by the Invention] However, in such a solid-state imaging device, the dark current of the photoelectric conversion unit 11 determines the limit of the low-light imaging level of the imaging device, and the signal-to-noise ratio (S/N This is an important characteristic that determines the ratio (ratio), and its reduction is desired. To reduce the p-n junction dark current, it is necessary to reduce the surface recombination rate of the p-rl junction depletion layer exposed at the substrate-semiconductor interface. This surface recombination rate depends on the surface states created by unbonded silicon bonds at the substrate-semiconductor interface. Therefore, conventionally, as a method of reducing this surface state density, it has been proposed to perform a final heat treatment called an alloy treatment in a hydrogen atmosphere to strengthen the contact between the metal wiring and the substrate.

これにより、前述した基板界面の未結合シリコンボンド
と水素とを結合させ、暗電流の原因となる表面準位密度
の低減を図っていた。
This causes the aforementioned unbonded silicon bonds at the substrate interface to bond with hydrogen, thereby reducing the surface state density that causes dark current.

しかしながら、このような方法によっても、光電変換部
の暗電流は1O−12A/cutが限界であり、その低
減が望まれていた。
However, even with such a method, the dark current of the photoelectric conversion section is limited to 10-12 A/cut, and reduction thereof has been desired.

本発明はかかる問題点に鑑みてなされたものであって、
p−n接合からなる光電変換部の暗電流を更に低減する
ことが可能な固体撮像装置の製造方法を提供することを
目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a method for manufacturing a solid-state imaging device that can further reduce the dark current of a photoelectric conversion section consisting of a pn junction.

[課題を解決するための手段1 本発明は、p−n接合領域を光電変換部とする固体撮像
装置の各部を形成した後、最終熱処理工程の前に350
乃至500℃の温度で水素プール処理を行い、その後、
水素プラズマ処理温度以下の水素雰囲気で最終熱処理を
行うようにしている。
[Means for Solving the Problems 1] In the present invention, after forming each part of a solid-state imaging device in which a pn junction region is a photoelectric conversion part, and before a final heat treatment process,
Hydrogen pool treatment is performed at a temperature of 500℃ to 500℃, and then
The final heat treatment is performed in a hydrogen atmosphere below the hydrogen plasma treatment temperature.

[作用] 固体撮像装置の各部を形成した後、水素プラズマ処理を
行うと、水素プラズマ中のH+イオンが基板表面と絶縁
膜との界面において、未結合シリコンボンドと極めて良
好に結合する。そして、その後の最終熱処理は水素プラ
ズマ処理温度以下で行われるため、上記結合された水素
イオンが安定化される。これにより基板の表面準位密度
が十分に低減され、暗電流の発生を大幅に抑制すること
ができる。
[Operation] When hydrogen plasma treatment is performed after forming each part of the solid-state imaging device, H+ ions in the hydrogen plasma are extremely well bonded to unbonded silicon bonds at the interface between the substrate surface and the insulating film. Then, since the subsequent final heat treatment is performed at a temperature lower than the hydrogen plasma treatment temperature, the bonded hydrogen ions are stabilized. As a result, the surface state density of the substrate is sufficiently reduced, and the generation of dark current can be significantly suppressed.

し実施例] 以下、本発明をインターライン転送方式による電荷転送
撮像装置に適用した実施例について説明する。
Embodiment] Hereinafter, an embodiment in which the present invention is applied to a charge transfer imaging device using an interline transfer method will be described.

本実施例に係る電荷転送撮像装置の製造方法は、第1図
にその工程図を示すように、各部の形成工程(ステップ
Sl)と、水素プラズマ処理(ステップS2)と、水素
アロイ処理(ステップS3)とにより構成される。
As shown in the process diagram in FIG. 1, the method for manufacturing the charge transfer imaging device according to this embodiment includes a forming step (step S1) of each part, a hydrogen plasma treatment (step S2), and a hydrogen alloy treatment (step S2). S3).

各部の形成工程(ステップSL)は、第2図に示すよう
に、先ず、p型半導体基板10に選択拡散によりn型の
光電変換部11及びCCDレジスタ13と、チャネルス
トップ領域14とを形成し、更に、その上に5i02の
絶縁膜15、ゲート電極16、平坦化絶縁膜17、アル
ミニウム膜18、及びカバーガラス膜19を順次形成す
ることにより行われる。
In the forming process (step SL) of each part, as shown in FIG. 2, first, an n-type photoelectric conversion part 11, a CCD register 13, and a channel stop region 14 are formed on a p-type semiconductor substrate 10 by selective diffusion. Further, the insulating film 15 of 5i02, the gate electrode 16, the planarizing insulating film 17, the aluminum film 18, and the cover glass film 19 are sequentially formed thereon.

次に、水素プラズマ処理(ステップS2)では、上記の
工程により形成された撮像装置を、350乃至500℃
のプラズマ雰囲気で10分以上処理する。これにより、
水素プラズマ中のH+イオン20(第2図)は、p−n
接合のn型領域である光電変換部11と、その上部に覆
われている絶縁膜15との界面21において、未結合の
シリコン及び酸素と良好に結合する。この結果、暗電流
発生の基になる表面準位密度を低減さ瞳ることかできる
Next, in hydrogen plasma treatment (step S2), the imaging device formed by the above steps is heated at 350 to 500°C.
Treat for 10 minutes or more in a plasma atmosphere. This results in
H+ ions 20 (Fig. 2) in hydrogen plasma are p-n
At the interface 21 between the photoelectric conversion part 11, which is the n-type region of the junction, and the insulating film 15 covered thereon, it is well bonded to unbonded silicon and oxygen. As a result, the surface state density, which is the basis of dark current generation, can be reduced.

最後に金属配線と基板とのコンタクトを強化するための
アロイ熱処理(ステップS3)を行う。
Finally, alloy heat treatment (step S3) is performed to strengthen the contact between the metal wiring and the substrate.

この最終熱処理の温度は上述した界面21で結合してい
る水素イオンH+を安定化させるため、水素プラズマ処
理温度より少なくとも10℃以上低い温度で行う。
The temperature of this final heat treatment is at least 10° C. lower than the hydrogen plasma treatment temperature in order to stabilize the hydrogen ions H+ bonded at the interface 21 mentioned above.

この製造方法により、p−n接合を光電変換部とする撮
像装置の暗電流を大幅に低減することができる。
With this manufacturing method, it is possible to significantly reduce the dark current of an imaging device that uses a pn junction as a photoelectric conversion section.

なお、上記実施例では、電荷転送撮像装置を例にとって
説明したが、本発明はMO3型撮像装置にも適用可能で
あることはいうまでもない。
Although the above embodiments have been described using a charge transfer imaging device as an example, it goes without saying that the present invention is also applicable to an MO3 type imaging device.

[発明の効果] 以上説明したように、本発明によれば、高温で゛水素プ
ラズマ処理を行っているので、界面の未結合シリコンボ
ンドに水素を良好に結合させることができ、その結果p
−n接合を形成している半導体基板主面と基板主面を覆
う絶縁層との界面の表面準位を大幅に低減させることが
できる。このため、本発明はp−n接合を光電変換部と
する固体撮像装置の暗電流を十分に低減することができ
るという効果を奏する。
[Effects of the Invention] As explained above, according to the present invention, since hydrogen plasma treatment is performed at high temperature, hydrogen can be bonded well to unbonded silicon bonds at the interface, and as a result, p
The surface level at the interface between the main surface of the semiconductor substrate forming the -n junction and the insulating layer covering the main surface of the substrate can be significantly reduced. Therefore, the present invention has the effect of being able to sufficiently reduce the dark current of a solid-state imaging device that uses a pn junction as a photoelectric conversion section.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る電荷転送撮像装置の製造
工程図、第2図は同製造工程における水素プラズマ処理
の様子を示ず上記撮像装置のセル断面図、第3図は従来
の電荷転送撮像装置のセル要部断面図である。 10;p型半導体基板、11;光電変換部(n領域>、
12;)ランスファゲート領域、13;CCDレジスタ
、14:チャネルストップ領域、15;絶縁膜(Si0
2 )−16;ゲート電極、17;平坦化絶縁膜、18
;アルミニウム膜、20;水素プラズマ、21;界面
FIG. 1 is a manufacturing process diagram of a charge transfer imaging device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a cell of the imaging device without showing the state of hydrogen plasma treatment in the same manufacturing process, and FIG. 3 is a diagram of a conventional charge transfer imaging device. FIG. 2 is a sectional view of a main part of a cell of a charge transfer imaging device. 10; p-type semiconductor substrate, 11; photoelectric conversion section (n region>,
12;) Transfer gate region, 13; CCD register, 14: Channel stop region, 15; Insulating film (Si0
2)-16; Gate electrode, 17; Flattening insulating film, 18
; Aluminum film, 20; Hydrogen plasma, 21; Interface

Claims (1)

【特許請求の範囲】[Claims] (1)p−n接合領域を光電変換部とする固体撮像装置
の各部を形成した後、350乃至500℃の温度範囲で
水素プラズマ処理を行い、その後前記水素プラズマ処理
温度以下の温度の水素雰囲気で最終熱処理を行うことを
特徴とする固体撮像装置の製造方法。
(1) After forming each part of a solid-state imaging device with a p-n junction region as a photoelectric conversion part, hydrogen plasma treatment is performed in a temperature range of 350 to 500°C, and then a hydrogen atmosphere at a temperature below the hydrogen plasma treatment temperature 1. A method for manufacturing a solid-state imaging device, characterized by performing final heat treatment at.
JP63073897A 1988-03-28 1988-03-28 Manufacture of solid-state image sensing device Pending JPH01245528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63073897A JPH01245528A (en) 1988-03-28 1988-03-28 Manufacture of solid-state image sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073897A JPH01245528A (en) 1988-03-28 1988-03-28 Manufacture of solid-state image sensing device

Publications (1)

Publication Number Publication Date
JPH01245528A true JPH01245528A (en) 1989-09-29

Family

ID=13531456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073897A Pending JPH01245528A (en) 1988-03-28 1988-03-28 Manufacture of solid-state image sensing device

Country Status (1)

Country Link
JP (1) JPH01245528A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225959A (en) * 1990-01-31 1991-10-04 Sharp Corp Manufacture of solid-state image sensing element
KR20030040865A (en) * 2001-11-16 2003-05-23 주식회사 하이닉스반도체 Method of image sensor for reducing dark current
KR100399955B1 (en) * 2001-11-19 2003-09-29 주식회사 하이닉스반도체 Method of image sensor for reducing dark current
JP2008172056A (en) * 2007-01-12 2008-07-24 Sharp Corp Semiconductor device and its manufacturing method
CN101901821A (en) * 2009-05-28 2010-12-01 索尼公司 Methods of making semiconductor devices
US7892877B2 (en) 2006-08-08 2011-02-22 Samsung Electronics Co., Ltd. Method of manufacturing image sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03225959A (en) * 1990-01-31 1991-10-04 Sharp Corp Manufacture of solid-state image sensing element
KR20030040865A (en) * 2001-11-16 2003-05-23 주식회사 하이닉스반도체 Method of image sensor for reducing dark current
KR100399955B1 (en) * 2001-11-19 2003-09-29 주식회사 하이닉스반도체 Method of image sensor for reducing dark current
US7892877B2 (en) 2006-08-08 2011-02-22 Samsung Electronics Co., Ltd. Method of manufacturing image sensor
JP2008172056A (en) * 2007-01-12 2008-07-24 Sharp Corp Semiconductor device and its manufacturing method
CN101901821A (en) * 2009-05-28 2010-12-01 索尼公司 Methods of making semiconductor devices

Similar Documents

Publication Publication Date Title
TWI431768B (en) Method for manufacturing solid-state image device
US5476808A (en) Method of making CCD solid state image sensing device
JP2006019360A (en) Solid-state image pickup device and its manufacturing method
JPH08288496A (en) Solid-state image pickup device and its manufacture
JPH05206434A (en) Solid state image sensor and fabrication thereof
US5288656A (en) Method of manufacturing a CCD solid state image sensing device
JPH07162024A (en) Semiconductor ultraviolet sensor
WO2006006392A1 (en) Solid-state image pickup device, manufacturing method thereof and camera using the solid-state image pickup device
JPH01245528A (en) Manufacture of solid-state image sensing device
JPH01274468A (en) Manufacture of solid-state image sensing device
US7387952B2 (en) Semiconductor substrate for solid-state image pickup device and producing method therefor
JPH01152761A (en) Manufacture of solid-state image sensing device
JP2003224256A (en) Photoelectric conversion device, solid-state image pickup device, and manufacturing method for the same
JP2526512B2 (en) Method of manufacturing solid-state imaging device
JP2004047985A (en) Solid state imaging device
JPH05275674A (en) Solid-state image sensing device and manufacture thereof
KR20040008683A (en) A fabricating method of image sensor with decreased dark signal
JP2002190587A (en) Method of manufacturing solid-state image pickup device
JPH07106543A (en) Manufacture of solid-state image sensing device
KR20060000900A (en) Fabricating method of image sensor with deuterium annealing
JPH06338605A (en) Solid-state image pick-up device and manufacture thereof
JPH05251680A (en) Manufacture of solid state image sensing element
JP3772920B2 (en) Manufacturing method of light receiving part of solid-state imaging device
JP3772920B6 (en) Manufacturing method of light receiving part of solid-state imaging device
JPS607766A (en) Manufacture of solid-state image pick-up element