JP3524419B2 - Absorbance measurement device - Google Patents

Absorbance measurement device

Info

Publication number
JP3524419B2
JP3524419B2 JP5959999A JP5959999A JP3524419B2 JP 3524419 B2 JP3524419 B2 JP 3524419B2 JP 5959999 A JP5959999 A JP 5959999A JP 5959999 A JP5959999 A JP 5959999A JP 3524419 B2 JP3524419 B2 JP 3524419B2
Authority
JP
Japan
Prior art keywords
nozzle
light
absorbance
center
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5959999A
Other languages
Japanese (ja)
Other versions
JP2000258341A (en
Inventor
共之 吉村
剛 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP5959999A priority Critical patent/JP3524419B2/en
Publication of JP2000258341A publication Critical patent/JP2000258341A/en
Application granted granted Critical
Publication of JP3524419B2 publication Critical patent/JP3524419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は吸光度測定装置に関
し、特に、分注用ノズルを利用して血清などの試料の生
化学分析のために吸光度測定を行う装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring absorbance, and more particularly to a device for measuring absorbance for biochemical analysis of a sample such as serum using a dispensing nozzle.

【0002】[0002]

【従来の技術】現在、血液検査等を行う臨床検査分野で
は、種々の装置において自動化が進み、迅速化、省力
化、低コスト化、信頼性の向上が図られてきた。この臨
床検査分野では、自動分注装置、自動分析装置、遠心分
離器、あるいはそれらを複合した臨床検査自動化システ
ム等のさまざまな自動化機器が使用されている。しかし
ながら、臨床検査によって分析しようとする血液試料の
中には、乳び、溶血、黄疸(高ビリルビン)等の共存妨
害物質の混入した異常血清に代表される異常検体が存在
する。異常検体の場合には、それら共存妨害物質の量に
よって測定値に影響を受ける分析法も少なくない。特
に、エンドポイント法を採用している分析法ではその影
響を受けやすい。この問題に対処する方法として、例え
ば特公昭61-18693号公報や特公昭61-18982号公報に開示
されているように、自動分析装置内で分析結果を補正す
ることによってその影響を除去して対処する方法が知ら
れている。さらに分析装置内で対処する方法の種々の問
題点、すなわちコストの増加、セルのコンタミネーショ
ン等の問題点を解決し、また補正のできない分析法にも
対処するために、分析装置の前段階で対処する方法が特
開平7-280814号公報や特開平10-19903号公報に開示され
ている。これらの方法では、遠心分離された血清を分注
する前の採血管内で、あるいは分注機によってディスポ
ーザブルチップ等の分注容器内に吸引した段階で、分光
手段によって乳び、溶血、黄疸等の度合いの測定を行っ
ている。
2. Description of the Related Art At present, in the field of clinical tests for blood tests and the like, automation has been promoted in various devices to speed up, save labor, reduce costs, and improve reliability. In this clinical examination field, various automation devices such as an automatic pipetting device, an automatic analyzer, a centrifuge, or a clinical examination automation system combining them are used. However, blood samples to be analyzed by clinical examination include abnormal samples represented by abnormal serum containing coexisting substances such as chyle, hemolysis, and jaundice (high bilirubin). In the case of abnormal samples, there are many analytical methods in which the measured values are affected by the amounts of these coexisting interfering substances. In particular, the analytical method adopting the end point method is susceptible to the influence. As a method for dealing with this problem, for example, as disclosed in JP-B-61-18693 and JP-B-61-18982, the influence is removed by correcting the analysis result in an automatic analyzer. There are known ways to deal with it. Furthermore, in order to solve various problems of the method to be dealt with in the analyzer, that is, problems such as increase in cost, cell contamination, etc. Methods for dealing with this are disclosed in Japanese Patent Laid-Open Nos. 7-280814 and 10-19903. In these methods, in a blood collection tube before dispensing the centrifuged serum, or at the stage of being sucked into a dispensing container such as a disposable chip by a dispenser, chyle, hemolysis, jaundice, etc. by a spectroscopic means. We are measuring the degree.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ように分析装置の前段階で血清等の光学特性を測定しよ
うとすると、次のような問題点がある。すなわち、分析
装置の前段階(検体の前処理段階)では、被測定物であ
る血清等の検体は、採血管や分注用のディスポーザブル
チップ等の断面が円形である円筒や円錐で代表される形
状の容器に入っているのが一般的であり、そのような容
器に入っている被検体の吸光度を前記容器の側面方向か
らの透過光量によって測定しようとすると、軸ずれや、
容器と被検体の断面方向の直径及び屈折率で決まる光の
屈折現象によって、正確な被検体の吸光度測定が困難で
あるという問題点があった。
However, when the optical characteristics of serum or the like are measured in the preceding stage of the analyzer as described above, there are the following problems. That is, in the pre-stage of the analyzer (pre-treatment stage of the sample), the sample such as serum to be measured is represented by a cylinder or a cone having a circular cross section such as a blood collection tube or a disposable tip for dispensing. It is generally contained in a container of a shape, and when the absorbance of the analyte contained in such a container is to be measured by the amount of transmitted light from the lateral direction of the container, an axis deviation or
There is a problem that it is difficult to accurately measure the absorbance of the object due to the refraction phenomenon of light that is determined by the diameter and the refractive index in the cross-sectional direction of the container and the object.

【0004】その問題点に関しては、その解決手段が特
開平10-19776号公報に記載されているが、前記公報に記
載されている手段では以下に示すような理由によって、
上記問題点を解決して吸光度を精度良く測定する手段と
しては不十分である。すなわち、前記公報では、前記形
状の容器内に入った被検体の吸光度を正確に計る手段と
して、前記形状の容器の直径より幅が広い光ビームを前
記容器の対称軸に直角な方向から照射し、その透過光量
の強度分布をCCDアレイ等の多素子型受光器で測定す
ることによって取得し、その強度分布の対称性等から、
強度分布の中心部分の受光光量を特定し、吸光度計算す
る方法が示されている。しかし、単純に前記容器の対称
軸に直角な方向に対する透過光量分布の中心での値を測
定する方法では、前記容器及び容器内の被検体によって
光が屈折することによって大きな測定誤差を生じかねな
い。この問題点について、図を用いて詳細に説明する。
Regarding the problem, a means for solving the problem is described in Japanese Patent Application Laid-Open No. 10-19776. However, the means described in the above-mentioned publication is for the following reason.
It is not sufficient as a means for solving the above problems and measuring the absorbance with high accuracy. That is, in the above-mentioned publication, as a means for accurately measuring the absorbance of a subject contained in the container of the shape, a light beam wider than the diameter of the container of the shape is irradiated from a direction perpendicular to the symmetry axis of the container. , The intensity distribution of the amount of transmitted light is obtained by measuring with a multi-element type light receiver such as a CCD array, and from the symmetry of the intensity distribution,
A method of specifying the amount of received light in the central portion of the intensity distribution and calculating the absorbance is shown. However, in the method of simply measuring the value at the center of the transmitted light amount distribution in the direction perpendicular to the symmetry axis of the container, a large measurement error may occur due to the refraction of light by the container and the subject in the container. . This problem will be described in detail with reference to the drawings.

【0005】図7は、外径12mm内径10mmのプラスティッ
ク製試験管(屈折率1.5)に屈折率1.33の液体が入って
いる場合に、容器側方から平行光を照射した場合の光線
追跡結果である。光が屈折することにより透過光量分布
の中心部分の強度は容器からの距離によって変化するこ
とが判る。この変化の仕方は容器と被検体の断面方向の
直径及び屈折率で決まる光の屈折現象によって影響を受
けるために、容器形状と材質すなわち屈折率及び被検液
の屈折率を定めて容器から受光器までの距離を正確に決
めないと、上述したような現象によって被検液の吸光度
測定に大きな誤差が生じかねない。
FIG. 7 shows the result of ray tracing when parallel light is radiated from the side of the container when a liquid having a refractive index of 1.33 is contained in a plastic test tube having an outer diameter of 12 mm and an inner diameter of 10 mm (refractive index 1.5). is there. It can be seen that the intensity of the central portion of the transmitted light amount distribution changes with the distance from the container due to the refraction of light. The way of this change is affected by the refraction phenomenon of light that is determined by the diameter and refractive index in the cross-sectional direction of the container and the subject.Therefore, the shape and material of the container, that is, the refractive index and the refractive index of the test liquid are determined and the light received from the container is determined. If the distance to the instrument is not accurately determined, a large error may occur in the absorbance measurement of the test liquid due to the phenomenon described above.

【0006】同様に、図8は、外径3mm内径2mmの分注用
プラスティック製ディスポーザブルチップ(屈折率1.
5)に屈折率1.33の液体が入っている場合に、容器側方
から平行光を照射した場合の光線追跡結果であるが、こ
の場合にも同様なことが生じていることが判る。一般
に、このようなプラスティック製ディスポーザブルチッ
プの場合は、チップに曲がりが生じていることが多いた
め、チップから受光器までの距離を正確に一定にして透
過光強度分布を測定することが困難であり、前記公報に
記載されている手段では正確にその容器内の被検液の吸
光度を測定することは困難であるといわざるを得ない。
Similarly, FIG. 8 shows a plastic disposable tip for dispensing (refractive index 1. mm, outer diameter 3 mm, inner diameter 2 mm).
This is the result of ray tracing when parallel light was radiated from the side of the container when a liquid with a refractive index of 1.33 was contained in 5). It can be seen that the same thing occurs in this case. In general, in the case of such a plastic disposable chip, since the chip is often bent, it is difficult to measure the transmitted light intensity distribution while keeping the distance from the chip to the light receiver accurately constant. It must be said that it is difficult to accurately measure the absorbance of the test liquid in the container by the means described in the above publication.

【0007】本発明は、上記従来の課題に鑑みなされた
ものであり、その目的は、吸光度を正確に測定すること
にある。
The present invention has been made in view of the above conventional problems, and an object thereof is to accurately measure the absorbance.

【0008】[0008]

【課題を解決するための手段】(1)上記目的を達成す
るために、本発明は、試料を内部に収容する光学的透明
性をもった分注用のディスポーザブルチップとしての
ズルと、ノズル軸と直交する方向に沿って光ビームを形
成し、かつ、ノズル軸の中心位置で光ビームを集束させ
て焦点を設定し、前記ノズルを透過した光を受光する
計測ユニットと、前記光ビーム及び前記ノズル軸と直交
する方向に、前記ノズル及び前記光計測ユニットの一方
を他方に対して相対的に移動走査させる走査機構と、前
記移動走査に伴って前記光計測ユニットにより受光デー
タの随時測定を行うことによって取得される受光分布に
基づいて、前記光ビームが前記ノズル中心を通過した瞬
間の受光データを判別する中心判別手段と、前記判別さ
れた受光データに基づいて吸光度演算を行う演算手段
と、を含むことを特徴とする。
(1) In order to achieve the above-mentioned object, the present invention is a disposable chip for dispensing that has a sample inside and has optical transparency. A light beam is formed along the nozzle and a direction orthogonal to the nozzle axis, and the light beam is focused at the center position of the nozzle axis.
And a light measurement unit that receives light that has passed through the nozzle, and one of the nozzle and the light measurement unit relative to the other in the direction orthogonal to the light beam and the nozzle axis. A scanning mechanism for moving and scanning, and a light receiving data by the optical measuring unit along with the moving and scanning.
Based on the received light distribution is obtained by performing time to time measurement of data, instantaneous which the light beam has passed through the nozzle center
A center discriminating means for discriminating reception data between, the determination of
Calculating means for calculating the absorbance based on the received light reception data.

【0009】上記構成によれば、ノズルに対して光ビー
ムを横切らせて、その時取得された受光分布に基づいて
ノズル中心の受光データが特定される。特に、ノズル軸
の中心位置で光ビームが集束されるので、図7や図8に
示した屈折の影響を低減出来る。よって、吸光度の高精
度測定が可能となる。
According to the above arrangement, the light beam is made to cross the nozzle, and the light reception data at the center of the nozzle is specified based on the light reception distribution acquired at that time. In particular, since the light beam is focused at the center position of the nozzle axis, the influence of refraction shown in FIGS. 7 and 8 can be reduced. Therefore, it is possible to measure the absorbance with high accuracy.

【0010】(2)望ましくは、前記中心判別手段は、
前記受光分布に基づいて、前記光ビームが前記ノズルの
一方側端及び他方側端を通過した通過タイミングを特定
する手段と、前記通過タイミングと前記移動走査の運動
情報とから、前記光ビームがノズル中心に位置した中心
タイミングを特定する手段と、前記中心タイミングで取
得された受光データを特定する手段と、を含むことを特
徴とする。ここで、望ましくは、前記移動走査は一定速
度で行われる。
(2) Preferably, the center discriminating means is
Based on the received light distribution, the light beam is emitted from the nozzle based on the means for specifying the passage timing when the light beam has passed through the one end and the other end of the nozzle, and the passage timing and the movement information of the moving scan. It is characterized by including means for specifying a central timing located at the center and means for specifying the received light data acquired at the central timing. Here, preferably, the moving scan is performed at a constant speed.

【0011】(3)望ましくは、前記光計測ユニット
は、受光される光を各波長ごとの成分に弁別する波長分
離手段と、分離された波長ごとの受光センサと、を含
む。また、望ましくは、互いに並行に設けられ、複数の
測定光ビームを形成する複数の光計測ユニットが設けら
れる。更に、望ましくは、前記ノズルは分注用のディス
ポーザブルチップである。
(3) Preferably, the optical measuring unit includes a wavelength separating means for discriminating the received light into components for each wavelength, and a light receiving sensor for each separated wavelength. Further, preferably, a plurality of optical measurement units which are provided in parallel with each other and form a plurality of measurement light beams are provided. Further preferably, the nozzle is a disposable tip for dispensing.

【0012】複数の波長での測定が必要な場合、白色光
を照射し、試料透過後に各波長ごとに成分を弁別すれば
測定時間を短縮できる。また、ノズルの相対的な移動の
方向に複数の計測ユニットを配置しておけば、1回の走
査で複数波長について測定を行え、特に波長弁別などが
不要という利点がある。
When measurement at a plurality of wavelengths is required, the measurement time can be shortened by irradiating white light and discriminating the components for each wavelength after passing through the sample. Further, if a plurality of measurement units are arranged in the relative movement direction of the nozzles, it is possible to perform measurement for a plurality of wavelengths by one scanning, and there is an advantage that wavelength discrimination is not necessary.

【0013】(4)上記のように、採血管や分注用のデ
ィスポーザブルチップ等の断面が円形である円筒や円錐
で代表される形状の容器に入っている検体の吸光度を正
確に測定する手段として、容器に対してその軸と直交す
る方向に光ビームを移動させながら透過光量を測定する
ことによって、光が容器の中心軸を通過した瞬間の透過
率データすなわち光が容器の断面の中心を通過した瞬間
の透過率データを求めることが可能となり、容器内の試
料の吸光度を正確に測定できる。
(4) A means for accurately measuring the absorbance of a sample contained in a container having a shape such as a cylinder or a cone having a circular cross section such as a blood collection tube or a disposable tip for dispensing as described above. As a result, by measuring the amount of transmitted light while moving the light beam in the direction orthogonal to the axis with respect to the container, the transmittance data at the moment when the light passes through the central axis of the container, that is, the light passes through the center of the cross section of the container. It becomes possible to obtain the transmittance data at the moment of passing, and the absorbance of the sample in the container can be accurately measured.

【0014】また、光ビームと容器を相対的に移動させ
ながら取得した透過光量の時系列データから、光が容器
の対称軸を通過した瞬間のデータを特定する手段とし
て、透過光量の減衰によって知ることのできる容器と光
が交差を開始した時刻、透過光量が元のレベルに復帰す
ることによって知ることのできる容器と光の交差が終了
した時刻、及び、光と容器を相対移動させる制御速度・
加速度とから知ることのできる交差開始時刻から交差終
了時刻までに起こった前記相対移動量の中点での時刻の
透過率データとして特定することを可能とした。
Further, as a means for specifying the data at the moment when the light passes through the symmetry axis of the container from the time series data of the transmitted light amount acquired while moving the light beam and the container relatively, it is known by the attenuation of the transmitted light amount. The time when the container and the light that can be crossed started, the time when the crossing of the container and the light that can be known by the amount of transmitted light returning to the original level ended, and the control speed that relatively moves the light and the container
It is possible to specify it as the transmittance data at the time point at the midpoint of the relative movement amount that occurs from the intersection start time to the intersection end time, which can be known from the acceleration.

【0015】簡単には光と容器を相対移動させる制御を
等速移動として交差開始時刻から交差終了時刻の中点と
なる時刻を用いることによって特定することができる。
さらに交差の開始、終了する時刻を知る手段としては、
透過光量の時間に対する微分変化量を用いて、微分変化
量が0から負の値に変化すること、また微分変化量が正
の値から0に変化することを用いてそれぞれ知ることも
可能である。
In a simple manner, the control for relatively moving the light and the container can be specified by using the time which is the midpoint of the intersection start time to the intersection end time as the constant speed movement.
Furthermore, as a means to know the time when the intersection starts and ends,
It is also possible to know that the differential change amount changes from 0 to a negative value and the differential change amount changes from a positive value to 0 by using the differential change amount of the transmitted light amount with respect to time. .

【0016】前記手段によって例えば検体検査分野にお
いて、試験管のような検体容器や自動分注機等で用いら
れる分注チップのような細径の円筒あるいは円錐形の容
器内にある試料の吸光度を正確に測定することができ、
血清の分注工程等の分析装置に送られる前段階で血清の
乳び、溶血、黄疸等の異常を正確に判断することがで
き、迅速に再採血等の措置をとることができる。
By the above-mentioned means, for example, in the field of sample inspection, the absorbance of a sample in a sample container such as a test tube or a thin cylindrical or conical container such as a dispensing tip used in an automatic dispenser can be measured. Can be measured accurately,
Abnormalities such as chyle, hemolysis, and jaundice of the serum can be accurately determined before the blood is sent to an analyzer such as a serum dispensing step, and quick recollection can be taken.

【0017】[0017]

【発明の実施の形態】以下、本発明の好適な実施形態を
図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明に係る吸光度測定方法を自
動分注装置に応用した場合の一例を模式的に表したもの
である。図1中の符号2は、シリンジポンプの駆動系を
示し、符号4はシリンジポンプ3の動きをノズル7に伝
えるためのテフロンチューブ等の配管系を示す。符号7
は、光学的に透明・半透明なディスポーザブルチップ等
の分注容器(ノズル)であり、アーム5と駆動系6によ
って例えばX−Y−Z方向に自在に移動することがで
き、これらはコンピュータ等のコントロール部1によっ
て制御されている。さらに、符号8は、ノズル7内の検
体9を分析するための吸光度測定ユニットを示す。ノズ
ル7は、その中心軸(ノズル軸)と直交する方向に移動
走査される。その場合、アーム5と駆動系6が利用され
る。その移動走査に当たって、随時吸光スペクトルが測
定される。図1の場合、移動走査する方向は、紙面に垂
直な方向となる。吸光度測定ユニット8によって得られ
た経時的なデータ(受光した光量の1次元分布)は、コ
ンピュータ等のコントロール部1によって解析され、そ
のデータ中において、吸光度測定ユニット8から照射さ
れる光ビームがノズル7の中心軸にちょうど一致した瞬
間のデータが特定され、その瞬間のデータを用いてノズ
ル7内に吸引されている検体9の吸光度が算出される。
このようにして得られた検体9の正確な吸光度から、検
体9が正常検体か、あるいは乳び、溶血、黄疸等の異常
検体であるかが判断される。正常であれば、ノズル7を
アーム5によって移動し、例えば、反応容器等の容器1
1に対して、シリンジポンプ3の作用によって規定量吐
出される。その一方、異常であると判断された場合は、
あらかじめ決められた処理に基づき、例えば、再検査用
の検体を残しておくための容器12に吐出したり、ある
いは、そのまま元の検体容器10に全量吐出し、次の動
作に移るということが行われる。吸光度測定ユニット8
によって得られたデータあるいはそのデータからコンピ
ュータ等のコントロール部1によって解析・算出された
乳び、溶血、黄疸等の濃度値、正常・異常の判定結果等
は、必要に応じて コンピュータ等のコントロール部1
から外部の例えば自動分析装置に伝送される。
FIG. 1 schematically shows an example of applying the absorbance measuring method according to the present invention to an automatic dispensing apparatus. Reference numeral 2 in FIG. 1 indicates a drive system of the syringe pump, and reference numeral 4 indicates a piping system such as a Teflon tube for transmitting the movement of the syringe pump 3 to the nozzle 7. Code 7
Is a dispensing container (nozzle) such as an optically transparent / translucent disposable chip, which can be freely moved in the X-Y-Z directions by the arm 5 and the drive system 6, and these can be moved by a computer or the like. It is controlled by the control unit 1. Further, reference numeral 8 indicates an absorbance measuring unit for analyzing the sample 9 in the nozzle 7. The nozzle 7 is moved and scanned in a direction orthogonal to its central axis (nozzle axis). In that case, the arm 5 and the drive system 6 are used. Upon the moving scan, the absorption spectrum is measured at any time. In the case of FIG. 1, the moving and scanning direction is perpendicular to the paper surface. Data over time (one-dimensional distribution of the amount of received light) obtained by the absorbance measuring unit 8 is analyzed by the control unit 1 such as a computer, and in the data, the light beam emitted from the absorbance measuring unit 8 is the nozzle. The data at the moment that exactly coincides with the central axis of 7 is specified, and the absorbance of the sample 9 sucked into the nozzle 7 is calculated using the data at that moment.
From the accurate absorbance of the sample 9 thus obtained, it is determined whether the sample 9 is a normal sample or an abnormal sample such as chyle, hemolysis, jaundice. If normal, the nozzle 7 is moved by the arm 5 and, for example, the container 1 such as the reaction container
A predetermined amount is discharged by the action of the syringe pump 3 with respect to 1. On the other hand, if it is determined to be abnormal,
Based on a predetermined process, for example, the sample 12 for re-examination may be discharged to the container 12 or the whole sample may be discharged as it is to the original sample container 10 and the next operation may be performed. Be seen. Absorbance measurement unit 8
If necessary, the data obtained by or the concentration value such as chyle, hemolysis, jaundice, etc., which is analyzed and calculated by the control unit 1 such as a computer from the data, the judgment result of normality / abnormality, etc., are controlled by the computer or the like. 1
From the outside to, for example, an automatic analyzer.

【0019】上記の構成では、ノズルの移動経路上かつ
ノズル中心軸が通過する位置に、光ビームの焦点が設定
されているため、図7や図8に示した屈折の影響を極力
排除できる。
In the above arrangement, the focus of the light beam is set on the movement path of the nozzle and at the position where the central axis of the nozzle passes, so that the influence of refraction shown in FIGS. 7 and 8 can be eliminated as much as possible.

【0020】上記の吸光度測定ユニット8の具体的構成
例を、図2〜図3に基づいて説明する。
A specific configuration example of the above-described absorbance measuring unit 8 will be described with reference to FIGS.

【0021】図2は、ハロゲンランプ等の白色光源22
を用い、透過光を回折格子25によって分光する場合
で、光源22を出た光がノズル7の中に収容された検体
9を通過するように、特に軸中心で集束するようにレン
ズ23が設けられ、透過してきた光がレンズ24によっ
て回折格子25に導かれる。回折格子25で回折したそ
れぞれの波長の光成分は、フォトダイオードアレイ26
のそれぞれのチャンネルで同時に受光することができ、
必要な波長の分光透過率が同時に取得される。
FIG. 2 shows a white light source 22 such as a halogen lamp.
When the transmitted light is dispersed by the diffraction grating 25, the lens 23 is provided so that the light emitted from the light source 22 passes through the sample 9 housed in the nozzle 7, and particularly focused at the axial center. The transmitted light is guided to the diffraction grating 25 by the lens 24. The light components of the respective wavelengths diffracted by the diffraction grating 25 are input to the photodiode array 26.
Can receive light simultaneously on each channel of
The spectral transmittance of the required wavelength is acquired at the same time.

【0022】図3は、2つの異なる発光波長を持つLE
D等の単色光源50、51を用いた場合で、単色光源5
0、51から照射された2つの波長の光は、色分解ミラ
ー28によって光軸を合わされ、レンズ27によってノ
ズル7の中に吸引された検体9にフォーカスされる。検
体9を透過した光は、レンズ29によって集光され、色
分解ミラー30によって再び2つの波長成分に分解さ
れ、それぞれが受光器であるフォトダイオード31、3
2に導かれる。このようにして2つの波長に対応する分
光透過率を同時に測定することができ、2波長測光によ
る検体9の吸光度が瞬時に測定できる。
FIG. 3 shows an LE with two different emission wavelengths.
When the monochromatic light sources 50 and 51 such as D are used, the monochromatic light source 5
The light beams of two wavelengths emitted from 0 and 51 have their optical axes aligned with each other by the color separation mirror 28, and are focused on the sample 9 sucked into the nozzle 7 by the lens 27. The light transmitted through the specimen 9 is condensed by the lens 29, decomposed again into two wavelength components by the color separation mirror 30, and the photodiodes 31 and 3 are light receivers.
Guided to 2. In this way, the spectral transmittances corresponding to the two wavelengths can be measured at the same time, and the absorbance of the sample 9 can be instantaneously measured by the two-wavelength photometry.

【0023】図4には、例えば6つの吸光度測定ユニッ
トからなる多連ユニット33が示されている。それらの
吸光度測定ユニットは、ノズル7の移動走査方向に沿っ
て並べて配置される。なお、図中には1つの吸光度測定
ユニットが示されている。
FIG. 4 shows a multiple unit 33 composed of, for example, six absorbance measuring units. These absorbance measuring units are arranged side by side along the moving scanning direction of the nozzle 7. Note that one absorbance measuring unit is shown in the figure.

【0024】単色光源としてLED34が設けられ、そ
こからの光がレンズ36によってノズル7の中に収容さ
れた検体9に集光される。検体9を透過した光はレンズ
38によって集光され、干渉フィルタ40によって光と
しての単色度を向上させ、受光器であるフォトダイオー
ド42によりその透過光量が測定されている。このよう
な1波長の吸光度測定ユニットを必要な波長の数だけ並
列に配して、各光ビームに対してノズル7を順次通過さ
せることによって、一連の走査で必要な波長の吸光度を
全て測定することができる。
The LED 34 is provided as a monochromatic light source, and the light from the LED 34 is condensed by the lens 36 on the specimen 9 contained in the nozzle 7. The light transmitted through the specimen 9 is condensed by the lens 38, the monochromaticity as light is improved by the interference filter 40, and the transmitted light amount is measured by the photodiode 42 which is a light receiver. By arranging such one-wavelength absorbance measuring units in parallel by the required number of wavelengths and sequentially passing each light beam through the nozzle 7, the absorbances of the required wavelengths are all measured in a series of scans. be able to.

【0025】各図に示すように、ノズル7としては、金
属製のノズル基部に光学的に透明なディスポーザブルチ
ップを装着したものとして構成することもできる。
As shown in each of the drawings, the nozzle 7 may be constructed by mounting an optically transparent disposable chip on a nozzle base made of metal.

【0026】図5には、本発明を分注容器(分注チッ
プ)に適用し、分注チップの移送機構を利用して本発明
による吸光度測定を可能とした場合を示しており、ノズ
ル7の移動走査を行わせる機構が例示されている。ノズ
ル7の上部であるノズルヘッド43は、アーム44に支
持され、そのアーム44の基端はモータ46によって回
転駆動される回転部材45に連結されている。モータ4
6が回転すると、アーム44の回転に伴ってノズル7が
回転し、その結果、光ビームを横切ることになる。
FIG. 5 shows a case where the present invention is applied to a dispensing container (dispensing tip) and the absorbance measurement according to the present invention can be carried out by utilizing the transfer mechanism of the dispensing tip, and the nozzle 7 is used. The mechanism for performing the moving scan of is illustrated. The nozzle head 43, which is the upper portion of the nozzle 7, is supported by an arm 44, and the base end of the arm 44 is connected to a rotating member 45 that is rotationally driven by a motor 46. Motor 4
The rotation of 6 causes the nozzle 7 to rotate with the rotation of the arm 44 and, consequently, traverses the light beam.

【0027】図6には、ノズル移動走査時に取得される
透過光量の時間的変化を表す波形の1例が示されてい
る。これは、光ビームとノズルとの相対移動速度が等速
度の場合であり、ビームとノズル容器の交差が開始した
時刻t1と終了した時刻t3の間の時間の中点でビーム
が容器の中心を通過したタイミングt2が特定できる。
もちろん、厳密には実際の容器形状のわずかな対称性の
ずれによって多少の誤差が発生するが、移動平均等によ
る信号処理や波形の対称性による中心位置の特定手段の
採用等によって対処できる。さらに移動速度が等速度で
ない場合にも、交差を開始した時刻における初速度、交
差を終了するまでの間の加速度等を移動走査機構の制御
装置から知ることにより、光ビームがノズル容器の中心
位置となる時刻を特定することができ、このような場合
にも上記原理を十分適用可能である。
FIG. 6 shows an example of a waveform representing a temporal change in the amount of transmitted light acquired during scanning for moving the nozzle. This is the case where the relative moving speed between the light beam and the nozzle is constant, and the beam moves to the center of the container at the midpoint between the time t1 when the intersection of the beam and the nozzle container starts and the time t3 when the intersection of the container and the nozzle ends. The passing timing t2 can be specified.
Strictly speaking, a slight error occurs due to a slight deviation of the symmetry of the actual container shape, but it can be dealt with by the signal processing such as moving average or the center position specifying means based on the symmetry of the waveform. Further, even when the moving speed is not uniform, the light beam can be detected from the central position of the nozzle container by knowing the initial speed at the time when the intersection starts and the acceleration until the end of the intersection from the controller of the moving scanning mechanism. It is possible to specify the time at which the above becomes, and even in such a case, the above principle can be sufficiently applied.

【0028】以上説明したように、上記の実施形態によ
れば、例えば検体検査分野において自動分注機等で用い
られる分注チップのような細径の円筒あるいは円錐形の
容(ノズル)器内にある試料の吸光度を正確に測定する
ことができ、さらに自動分注機等に備えられているノズ
ル移送機構を移動走査機構として利用できる。その場
合、分注時におけるノズルの搬送に伴って、吸光度測定
を行えばわざわざ測定のために処理工程を止める必要が
無いため、処理時間を圧迫することなく、検体の正常・
異常の判断、乳び、溶血、黄疸等の共存妨害物質濃度の
測定等が迅速に行うことができ、検査の信頼性、迅速性
が向上する。
As described above, according to the above embodiment, for example, in a small-diameter cylindrical or conical container (nozzle) such as a dispensing tip used in an automatic dispensing machine or the like in the field of specimen inspection. The absorbance of the sample can be accurately measured, and the nozzle transfer mechanism provided in the automatic pipetting machine or the like can be used as the moving scanning mechanism. In that case, if the absorbance measurement is performed along with the transportation of the nozzle during dispensing, it is not necessary to bother to stop the processing step for the measurement, so the processing time is not stressed and the sample
It is possible to quickly determine the abnormality and measure the concentration of coexisting interfering substances such as chyle, hemolysis, and jaundice, which improves the reliability and speed of the test.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
吸光度を正確に測定することが可能となる。
As described above, according to the present invention,
It is possible to measure the absorbance accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る吸光度測定装置の全体構成を示
す概念図である。
FIG. 1 is a conceptual diagram showing an overall configuration of an absorbance measuring device according to the present invention.

【図2】 吸光度測定ユニットの一例を示す図である。FIG. 2 is a diagram showing an example of an absorbance measurement unit.

【図3】 吸光度測定ユニットの他の例を示す図であ
る。
FIG. 3 is a diagram showing another example of the absorbance measurement unit.

【図4】 吸光度測定ユニットの他の例を示す図であ
る。
FIG. 4 is a diagram showing another example of the absorbance measurement unit.

【図5】 ノズルの移動走査機構の例を示す図である。FIG. 5 is a diagram showing an example of a moving scanning mechanism of a nozzle.

【図6】 ノズルの移動走査に伴って取得される経時的
な受光分布を示す図である。
FIG. 6 is a diagram showing a time-dependent received light distribution acquired along with a moving scan of a nozzle.

【図7】 ノズルの断面を示す図であって、そのノズル
に光が透過する場合における屈折変化を表す図である。
FIG. 7 is a diagram showing a cross section of a nozzle, which is a diagram showing a change in refraction when light is transmitted through the nozzle.

【図8】 ノズルの断面を示す図であって、そのノズル
に光が透過する場合における屈折変化を表す図である。
FIG. 8 is a view showing a cross section of a nozzle, showing a refraction change when light is transmitted through the nozzle.

【符号の説明】[Explanation of symbols]

1 コントロール部、7 ノズル、8 吸光度測定ユニ
ット、9 検体(試料)、20 発光器、21 受光
器。
1 control part, 7 nozzles, 8 absorbance measurement unit, 9 samples (sample), 20 light emitter, 21 light receiver.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI // G01N 33/49 G01N 35/06 A (56)参考文献 特開 平2−95241(JP,A) 特開 平10−19776(JP,A) 特開 昭59−107223(JP,A) 特開 平10−19903(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 PATOLIS─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification symbol FI // G01N 33/49 G01N 35/06 A (56) References JP-A-2-95241 (JP, A) JP-A-10- 19776 (JP, A) JP 59-107223 (JP, A) JP 10-19903 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 21/00-21 / 61 PATOLIS

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料を内部に収容する光学的透明性をも
った分注用のディスポーザブルチップとしてのノズル
と、 ノズル軸と直交する方向に沿って光ビームを形成し、か
つ、ノズル軸の中心位置で光ビームを集束させて焦点を
設定し、前記ノズルを透過した光を受光する光計測ユニ
ットと、 前記光ビーム及び前記ノズル軸と直交する方向に、前記
ノズル及び前記光計測ユニットの一方を他方に対して相
対的に移動走査させる走査機構と、 前記移動走査に伴って前記光計測ユニットにより受光デ
ータの随時測定を行うことによって取得される受光分布
に基づいて、前記光ビームが前記ノズル中心を通過した
瞬間の受光データを判別する中心判別手段と、 前記判別された受光データに基づいて吸光度演算を行う
演算手段と、 を含むことを特徴とする吸光度測定装置。
1. A nozzle as a disposable tip for dispensing that has a sample inside and has optical transparency, a light beam is formed along a direction orthogonal to the nozzle axis, and the center of the nozzle axis is formed. Focus the light beam at a position
An optical measurement unit that is set and receives light that has passed through the nozzle, and one of the nozzle and the optical measurement unit is moved and scanned relative to the other in a direction orthogonal to the light beam and the nozzle axis. The scanning mechanism and the light receiving unit by the optical measuring unit in association with the moving scanning.
The light beam has passed through the center of the nozzle based on the received light distribution obtained by performing the occasional measurement of the data .
An absorbance measuring device comprising: a center discriminating means for discriminating instantaneous received light data; and a computing means for computing an absorbance based on the discriminated received light data.
【請求項2】 請求項1記載の装置において、 前記中心判別手段は、 前記受光分布に基づいて、前記光ビームが前記ノズルの
一方側端及び他方側端を通過した通過タイミングを特定
する手段と、 前記通過タイミングと前記移動走査の運動情報とから、
前記光ビームがノズル中心に位置した中心タイミングを
特定する手段と、 前記中心タイミングで取得された受光データを特定する
手段と、 を含むことを特徴とする吸光度測定装置。
2. The apparatus according to claim 1, wherein the center discriminating unit specifies a passage timing at which the light beam has passed one end and the other end of the nozzle, based on the received light distribution. From the passage timing and the motion information of the moving scan,
An absorbance measuring device comprising: a unit that identifies a center timing at which the light beam is located at the center of the nozzle; and a unit that identifies light reception data acquired at the center timing.
【請求項3】 請求項2記載の装置において、 前記移動走査は一定速度で行われることを特徴とする吸
光度測定装置。
3. The absorbance measuring apparatus according to claim 2, wherein the moving scanning is performed at a constant speed.
【請求項4】 請求項1記載の装置において、 前記光計測ユニットは、受光される光を各波長ごとの成
分に弁別する波長分離手段と、分離された波長ごとの受
光センサと、を含むことを特徴とする吸光度測定装置。
4. The apparatus according to claim 1, wherein the optical measurement unit includes wavelength separating means for discriminating the received light into components for each wavelength, and a light receiving sensor for each separated wavelength. An absorbance measuring device characterized by:
【請求項5】 請求項1記載の装置において、 互いに並行に設けられ、複数の測定光ビームを形成する
複数の光計測ユニットが設けられたことを特徴とする吸
光度測定装置。
5. The absorbance measuring device according to claim 1, further comprising a plurality of optical measurement units which are provided in parallel with each other and form a plurality of measurement light beams.
JP5959999A 1999-03-08 1999-03-08 Absorbance measurement device Expired - Fee Related JP3524419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5959999A JP3524419B2 (en) 1999-03-08 1999-03-08 Absorbance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5959999A JP3524419B2 (en) 1999-03-08 1999-03-08 Absorbance measurement device

Publications (2)

Publication Number Publication Date
JP2000258341A JP2000258341A (en) 2000-09-22
JP3524419B2 true JP3524419B2 (en) 2004-05-10

Family

ID=13117888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5959999A Expired - Fee Related JP3524419B2 (en) 1999-03-08 1999-03-08 Absorbance measurement device

Country Status (1)

Country Link
JP (1) JP3524419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210004033A (en) * 2019-07-03 2021-01-13 세메스 주식회사 Nozzle inspection device and method using light wavelength

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763160B2 (en) * 2001-06-18 2011-08-31 日立アロカメディカル株式会社 Dispensing pass / fail judgment device
JP4260115B2 (en) 2003-03-24 2009-04-30 日立ソフトウエアエンジニアリング株式会社 Absorbance reader, absorbance reader control method, and absorbance calculation program
JP4632670B2 (en) * 2004-01-21 2011-02-16 シスメックス株式会社 Turbidity detection optical device and turbidity detection device using the same
GB0523231D0 (en) * 2005-11-15 2005-12-21 Redfern Jonathan Liquid photometer using disposable pipette tip vessel
JP2008020381A (en) * 2006-07-14 2008-01-31 Aloka Co Ltd Absorbance measuring instrument
JP4983123B2 (en) * 2006-07-14 2012-07-25 和光純薬工業株式会社 Liquid state detection method and analyzer
JP2008281392A (en) * 2007-05-09 2008-11-20 Olympus Corp Photometric apparatus and automatic analysis apparatus
JP2008281394A (en) * 2007-05-09 2008-11-20 Olympus Corp Automatic analysis apparatus
EP3756767B1 (en) 2007-10-02 2024-05-01 Labrador Diagnostics LLC Modular point-of-care devices and uses thereof
JP2009250720A (en) * 2008-04-03 2009-10-29 Olympus Corp Autoanalyzer and method for analyzing liquid sample
TWI690594B (en) 2011-01-21 2020-04-11 美商賽瑞諾斯Ip有限責任公司 Systems and methods for sample use maximization
US9395240B2 (en) 2011-05-04 2016-07-19 Siemens Healthcare Diagnostics Inc. Methods, systems, and apparatus for biological sample illumination at multiple wavelengths
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US20140170735A1 (en) 2011-09-25 2014-06-19 Elizabeth A. Holmes Systems and methods for multi-analysis
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US8840838B2 (en) 2011-09-25 2014-09-23 Theranos, Inc. Centrifuge configurations
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US8475739B2 (en) 2011-09-25 2013-07-02 Theranos, Inc. Systems and methods for fluid handling
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210004033A (en) * 2019-07-03 2021-01-13 세메스 주식회사 Nozzle inspection device and method using light wavelength
KR102217878B1 (en) 2019-07-03 2021-02-18 세메스 주식회사 Nozzle inspection device and method using light wavelength

Also Published As

Publication number Publication date
JP2000258341A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
JP3524419B2 (en) Absorbance measurement device
JP3994143B2 (en) Pre-test differentiation method and apparatus for rapid spectrophotometry of specimens for hematology analyzers
EP1149277B1 (en) Device and method for preliminary testing a neat serum sample in a primary collection tube
JP4791625B2 (en) Spectrophotometric / turbidimetric detection unit
JP6005683B2 (en) Method and apparatus for determining interfering substances and physical dimensions in liquid samples and containers analyzed by a clinical analyzer
US5478750A (en) Methods for photometric analysis
EP1632762B1 (en) Optical detection apparatus for multi-channel multi-color measurement and multi-channel sample analyzer employing the same
JP2007322324A (en) Analyzer
US6522398B2 (en) Apparatus for measuring hematocrit
EP2466292B1 (en) System for performing scattering and absorbance assays
JPH02269938A (en) Analysis apparatus
WO2008151159A2 (en) Through-container optical evaluation system
JP5946776B2 (en) Automatic analyzer
JP2003021594A (en) Specimen examination device
US7961324B2 (en) Wavelength identification method and analyzer
US5120979A (en) Apparatus and method for analysis of a sample medium in a gap between a tube and a float
JP2005049109A (en) Chemical analysis equipment
US20240003923A1 (en) Calibration and validation of cuvettes in automated chemical analyzers
JP2002181702A (en) Specimen inspection device
Bonini et al. Selectivity and random-access in automatic analysers
US20050006594A1 (en) Simple systems for accurately detecting and measuring only fluorescent radiation from a sample in a plastic test tube
JP2015175667A (en) Automatic analysis apparatus
JP2000009740A (en) Blood text device and dispensation device
JP2003021593A (en) Specimen examination device
JPH0257864B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees