JP2005049109A - Chemical analysis equipment - Google Patents

Chemical analysis equipment Download PDF

Info

Publication number
JP2005049109A
JP2005049109A JP2003203089A JP2003203089A JP2005049109A JP 2005049109 A JP2005049109 A JP 2005049109A JP 2003203089 A JP2003203089 A JP 2003203089A JP 2003203089 A JP2003203089 A JP 2003203089A JP 2005049109 A JP2005049109 A JP 2005049109A
Authority
JP
Japan
Prior art keywords
light
light shielding
reaction tube
shielding plate
shielding means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003203089A
Other languages
Japanese (ja)
Inventor
Hirotoshi Tawara
博寿 田原
Shoichi Kanayama
省一 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003203089A priority Critical patent/JP2005049109A/en
Publication of JP2005049109A publication Critical patent/JP2005049109A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide chemical analysis equipment capable of precisely measuring the degree of aggregation of particulates generated by a reaction, while suppressing an influence of scattered light. <P>SOLUTION: In the chemical analysis equipment, a reaction tube containing mixed liquid of a sample to be tested and a reagent is irradiated with light through a condenser lens condensing the light from a light source, and light passing through the reaction tube is spectrally divided by a diffraction grating, and the dispersed light is detected by a photo detector, and predetermined measurement items are carried out based on detected results. The chemical analysis apparatus has at least two light shielding means being disposed between the reaction tube and the diffraction grating, being separated from each other along the direction of the optical axis of the light passing through the reaction tube, and having a passage opening which allows a portion of the light being transmitted or scattered in the reaction tube to pass therethrough. The portion of the light has a prescribed extent around the optical axis. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液体中に含まれている成分を分析する化学分析装置に係り、特に、ヒトの血液や尿などの体液中に含まれる化学成分を自動的に分析する化学分析装置に関する。
【0002】
【従来の技術】
化学分析装置は、主に生化学検査項目を対象とし、反応管に分注した被検試料と測定項目に該当する試薬の混合液の反応によって生ずる色調の変化を、光の透過量を測定することにより、被検試料中の被測定物質又は酵素の濃度/活性を測定する。
【0003】
一方、免疫血清検査項目の多くは、免疫血清検査専用の分析装置(以下、免疫血清専用装置と呼ぶ。)によって測定される。免疫血清検査には免疫比濁法、ラテックス凝集法などが利用されるので、免疫血清専用装置は、被検試料と試薬の反応によって生じる凝集の変化を、散乱光を検出する光学系を用いて、被検試料中の被測定物質の濃度を測定する。
【0004】
また、免疫血清専用装置は、免疫血清検査項目専用の試薬の反応条件に合うように調整されているので、測定できる検査項目が限定されることが多い。
【0005】
最近は、検査における効率化とコスト削減が要求されており、できるだけ少ない化学分析装置で多くの項目が検査できることが望まれている。
【0006】
そのような状況下で、化学分析装置は、多項目を高速処理できるので、生化学検査項目だけではなく、免疫血清検査項目の測定もできることが求められるようになってきている。
【0007】
ところが、化学分析装置は、生化学検査項目の試薬と被検試料との反応では、光の透過量に比べて散乱光の量はきわめて少なく、散乱光を抑制する工夫がなされていない。したがって、化学分析装置で免疫血清検査項目のような反応によって生じる凝集の変化を測定する場合は、散乱光の影響が大きくなり、測定精度が低下するという問題がある。
【0008】
このような問題を解決するための方法として、化学分析装置に透過光を測定する光学ユニットと散乱光を測定する光学ユニットを組み合わせて測定する方法がある(例えば、特許文献1参照。)。
【0009】
【特許文献1】
特開2001−141654号公報(第2−4頁、図1−3)
【0010】
【発明が解決しようとする課題】
化学分析装置においては、反応によって生ずる色調の変化だけでなく、反応によって生ずる微粒子の凝集の変化も測定できることが求められている。
【0011】
しかしながら、光の透過量を測定する化学分析装置では、散乱光の影響を受けやすいため精度よく測ることができない。また、化学分析装置に、透過光と散乱光の両方を測定できる光学ユニットを組み込むと、光学ユニットが複雑になり、装置自体も大型になる問題がある。
【0012】
本発明は、上記問題点を解決するためになされたもので、反応によって生じる微粒子の凝集の変化を散乱光の影響を抑制して、透過光を利用して精度よく測定できる化学分析装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の化学分析装置は、被検試料と試薬の混合液が入った反応管に光源からの光を集光する集光レンズを介して照射し、前記反応管を透過した光を回折格子で分光し、分光した光を光検出器で検出し、その検出結果から所定の項目の測定を行う化学分析装置において、前記反応管と回折格子の間であって、前記反応管を透過する光の光軸方向へ離間して配置され、前記反応管内を透過もしくは散乱した光の内、前記光軸を中心とした所定の範囲の光を通過させる通過口を備えた少なくとも2つの遮光手段を有することを特徴とする。
【0014】
【発明の実施の形態】
以下に、本発明による化学分析装置の実施の形態を図1乃至図5を参照して説明する。
【0015】
図1は、本発明の実施の形態に係る化学分析装置の構成を示している。この化学分析装置は、被検試料に含まれる各種成分と反応する試薬を納めた複数の試薬ボトル7を収納した試薬庫2及び3と、円周上に複数の反応管4を配置した反応ディスク5と、被検試料が納められた被検試料容器17がセットされるディスクサンプラ6と、分注アーム8及び9とディスクリート用分注アーム10により反応管4に分注された試薬と被検試料の混合液を測定する測光ユニット13とを有している。
【0016】
試薬庫2及び3、反応ディスク5、ディスクサンプラ6は、それぞれ駆動装置により回動されるようになっている。測定に必要な試薬は、試薬庫2あるいは試薬庫3の試薬ラック1に収納されている試薬ボトル7から、それぞれ分注アーム8或いは分注アーム9を用いて反応ディスク5上の反応管4に分注される。
【0017】
また、ディスクサンプラ6上に配置されている被検試料容器17に納められた被検試料は、サンプリングアーム10を用いて反応ディスク5上の反応管4に分注される。
【0018】
被検試料と試薬が分注された反応管4は、反応ディスク5の回動により撹拌位置まで移動し、撹拌ユニット11により被検試料と試薬の混合液が撹拌される。その後、測光ユニット13が、測光位置まで移動した反応管4に光を照射して混合液の吸光度変化を測定することにより、被検試料の成分分析が行なわれる。
【0019】
そして、被検試料の成分分析を終了した反応管4内の被検試料と試薬の混合液は廃棄され、その後、反応管4は洗浄ユニット12により洗浄される。
【0020】
図2は、図1で示した測光ユニット13の上面図である。光源21から第1の集光レンズ23を介して反応管4に照射した光は、被検試料と試薬の混合液26を含む反応管4内を透過、もしくは散乱した後、第1の遮光板29a及び第2の遮光板29bを通過し、第2の集光レンズ28により集光されて、凹面回折格子31で分光された後、光検出器32によって検出される。
【0021】
タングステンハロゲンランプなどの光源21から照射された光は、熱線吸収フィルタ22により熱成分が除去された後、第1の集光レンズ23により集光される。
【0022】
第1の集光レンズ23により集光された光は、図1の反応ディスク5の側壁部に配置される光透過窓24を介して反応管4内の被検試料と試薬の混合液26に照射される。このとき、第1の集光レンズ23の反応管4側の光学的焦点位置は、反応管4内の被検試料と試薬の混合液26の位置になるように設定されている。
【0023】
また、前記試薬は、光透過性のものであれば特に制限はないが、例えば、抗原抗体反応に使用されるラテックス試薬などの液状試薬が挙げられる。
【0024】
反応管4内を透過、もしくは散乱した光は、図1の反応ディスク5の側壁部に配置される光透過窓25を通過して、第1の遮光板29a及び第2の遮光板29bで所定の範囲に絞り込まれる。
【0025】
第2の遮光板29bを通過した光は、第2の集光レンズ28により集光される。第2の集光レンズ28の一方の光学的焦点は、第1の集光レンズ23の反応管4側の光学的焦点位置、つまり反応管4内の被検試料と試薬の混合液26の位置に合致される。それにより、反応管4を透過した光を効果的に集光できる。なお、光透過窓25と第2の遮光板29bの間に配置されるシャッタ27は、被検試料の測定時には開放される。
【0026】
第2の集光レンズ28で集光された光は、第2の集光レンズ28の他方の光学焦点位置又はその近傍に配置された第3の遮光板30により絞り込まれた後、凹面回折格子31に照射される。第3の遮光板30の光が通過する穴は、第2の集光レンズ28から凹面回折格子31に照射される光が回折格子の有効範囲に入る大きさに設定される。
【0027】
凹面回折格子31は、入射した光を波長毎に回折し、回折した光は、光検出器32で波長成分毎に検出される。光検出器32は、波長選択性フィルタアレイ33と、フォトダイオードアレイ34とを有している。
【0028】
そして、光検出器32は、入射光の光量に応じた電気信号を発生する。この電気信号は信号収集部36で収集された後、信号処理部37で被検試料の算出処理に利用される。
【0029】
図3は、図2の測光ユニット13における第1の遮光板29a及び第2の遮光板29bを示す側面図である。第1の遮光板29a及び第2の遮光板29bは、同一のものがお互いに所定の間隔を空けて、且つ光軸35に対して垂直になるように配置される。
【0030】
第1の遮光板29a及び第2の遮光板29bに設けた光が通過する通過口は、いずれも光軸35との交点が、反応管4を透過した光が遮光板に投影される投影像と一致し、その遮光板と光軸35の交点を支点とした相似形になるように設けられている。また、第1の遮光板29a及び第2の遮光板29bの前記通過口は、反応管4を透過した光がそれらの遮光板に投影される投影像の外周部の所定の範囲が遮光されるようになっている。
【0031】
図3(a)は、反応管4内を透過、もしくは散乱した光の内、第1の遮光板29a及び第2の遮光板29bによって、角度が(θ1−θ2)の範囲の光が遮光されることを示している。
【0032】
そして、図3(b)は、反応管4内を散乱した光の内、第1の遮光板29aに対する角度がθ3の範囲の散乱光が、第1の遮光板29aの通過口を通過しても、第2の遮光板29bで遮光されることを示している。
【0033】
例えば、反応管4内で生じた散乱光40は、反応管内の粒子によって反射してから第1の遮光板29aに入射し、第1の遮光板29aに対してθ3よりも小さい角度θ4で第1の遮光板29aの通過口を通過しても、遮光板29bで遮光されて第2の集光レンズ28に到達しない。
【0034】
また、第2の遮光板29bの通過口を図3のものより小さくすることにより、角度がθ3よりも広い範囲の散乱光を抑制することができるようになる。
【0035】
更に、第2の遮光板29bを、図3に示した位置よりも図において右側に配置される第2の集光レンズ28側に配置することにより、角度が図3(a)のθ2の範囲よりも狭くできるので、第2の遮光板29bを通過する散乱光をより抑制できるようになる。
【0036】
次に、第1の遮光板29aを図2の光透過窓25とシャッター27の間に配置する場合には、角度が図3(b)のθ3の範囲よりも広くできるので、第2の遮光板29bを通過する散乱光を抑制できるようになる。
【0037】
このように、反応によって生じる微粒子の凝集の変化を透過光を利用して測定する場合、反応管4内を透過、もしくは散乱した光が、第1の遮光板29a及び遮光板29bの通過口を通過するのは、光軸35に対して平行な光と、平行に近い特定角度の散乱光のみに制限されて光検出器32に導かれるので、不要な散乱光の検出を抑制できて、測定精度の向上を図ることができる。
【0038】
図4は遮光板の切換手段を示す図で、第1の遮光板29a及び第2の遮光板が図3と異なる点は、遮光板水平移動機構駆動部38によって、第1の遮光板29a及び第2の遮光板29bが、光軸35に対して垂直方向に、水平移動できる移動手段を追加配置している点である。
【0039】
遮光板水平移動機構駆動部38は、例えば駆動モータや複数のギアで構成され、図示しない電源部から駆動モータへの印加電流を制御することにより、第1の遮光板29aまたは第2の遮光板29bを同時に、あるいは独立して水平移動の制御をすることができる。
【0040】
反応によって生ずる微粒子の凝集の変化を測定する場合は、第1の遮光板29a及び第2の遮光板29bの穴が光軸35上になるように配置し散乱光を抑制する。
【0041】
そして、反応によって生ずる色調の変化であって、反応管4を透過する光の透過量が少ない反応を測定する場合には、第1の遮光板29a、または第2の遮光板29bを図4の矢印の方向に移動し、反応管4を透過した光の遮光をやめることにより、光検出器32で受光できる光量を増やして信号強度を高めて精度よく測定するようにできる。
【0042】
図5は遮光量の調整手段を示す図で、第1の遮光板29a及び第2の遮光板が図3と異なる点は、遮光板光軸方向水平移動機構駆動部39によって、第1の遮光板29a及び第2の遮光板29bが、光軸35に対して並行に、水平移動できる移動手段を追加配置している点である。
【0043】
遮光板光軸方向水平移動機構駆動部39は、例えば駆動モータや複数のギアで構成され、図示しない電源部から駆動モータへの印加電流を制御することにより、第1の遮光板29aまたは第2の遮光板29bを同時に、あるいは独立して光軸35に対して並行に、水平移動の制御をすることができる。
【0044】
そして、反応管4内を透過、もしくは散乱する光の内、散乱光が光軸に対して平行に近い角度の光量が多い反応を測定する場合には、第2の遮光板29bを図5に示した位置よりも矢印の方向に移動させることにより、第2の遮光板29bを通過する散乱光をより抑制できるので、精度よく測定できるようになる。
【0045】
ところで、測定項目または試薬中に含まれる微粒子の特性により、反応によって生ずる微粒子の凝集の大きさが異なり、測定に使用される波長も項目ごとに任意に選択されるので、凝集の大きさと波長の長さの相互作用で生じる散乱光の散乱角度に対する強度分布は、測定項目ごとに異なってくる。
【0046】
したがって、測定項目と使用する試薬ごとに、強度分布に応じた散乱光を除去できるように遮光板の位置を求めて、予め適切な遮光板の配置を設定しておくことにより、測定項目ごとに遮光量を変更できるので、精度よく測定できるようになる。
【0047】
本発明は、上述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変形して実施することが可能である。例えば第1遮光板と第2の遮光板の間に、更に第3の遮光板を配置することにより、遮光板の通過口の端面における散乱光も抑制できるので、一層の性能向上を図ることができる。
【0048】
【発明の効果】
以上説明したように、本発明によれば、反応によって生ずる微粒子の凝集の変化を、散乱光を抑制して光の透過量で測定できるので、測定精度の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の化学分析装置の構成を示す図。
【図2】本発明の化学分析装置の測光ユニットの構成を示す上面図。
【図3】本発明の測光ユニットの遮光板を示す側面図。
【図4】本発明の切換手段を示す図。
【図5】本発明の遮光量調整手段を示す図。
【符号の説明】
4 反応管
13 測光ユニット
21 光源
23 第1の集光レンズ
26 被検試料と試薬の混合液
29a 第1の遮光板
29b 第2の遮光板
31 凹面回折格子
32 光検出器
35 光軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemical analyzer for analyzing components contained in a liquid, and more particularly to a chemical analyzer for automatically analyzing chemical components contained in body fluids such as human blood and urine.
[0002]
[Prior art]
The chemical analyzer mainly targets biochemical test items, and measures the amount of light transmitted by changing the color tone caused by the reaction of the sample mixture dispensed in the reaction tube and the reagent mixture corresponding to the measurement item. Thus, the concentration / activity of the substance to be measured or the enzyme in the test sample is measured.
[0003]
On the other hand, many of the immune serum test items are measured by an analyzer dedicated to immune serum tests (hereinafter referred to as an immune serum dedicated apparatus). Since immune turbidimetry, latex agglutination, etc. are used for immune serum tests, the immune serum dedicated device uses an optical system that detects scattered light to detect changes in aggregation caused by the reaction between the test sample and the reagent. The concentration of the substance to be measured in the test sample is measured.
[0004]
In addition, since the apparatus dedicated to immune serum is adjusted to meet the reaction conditions of reagents dedicated to immune serum test items, the test items that can be measured are often limited.
[0005]
Recently, efficiency and cost reduction in inspection are required, and it is desired that many items can be inspected with as few chemical analyzers as possible.
[0006]
Under such circumstances, since the chemical analyzer can process many items at high speed, it is required to be able to measure not only biochemical test items but also immune serum test items.
[0007]
However, in the chemical analyzer, the amount of scattered light is extremely small compared to the amount of transmitted light in the reaction between the reagent of the biochemical test item and the test sample, and no contrivance has been made to suppress the scattered light. Therefore, when measuring a change in agglutination caused by a reaction such as an immune serum test item using a chemical analyzer, there is a problem that the influence of scattered light increases and the measurement accuracy decreases.
[0008]
As a method for solving such a problem, there is a method in which a chemical analyzer is combined with an optical unit that measures transmitted light and an optical unit that measures scattered light (for example, see Patent Document 1).
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-141654 (page 2-4, FIG. 1-3)
[0010]
[Problems to be solved by the invention]
A chemical analyzer is required to be able to measure not only a change in color tone caused by a reaction but also a change in aggregation of fine particles caused by the reaction.
[0011]
However, chemical analyzers that measure the amount of transmitted light cannot be accurately measured because they are easily affected by scattered light. In addition, when an optical unit capable of measuring both transmitted light and scattered light is incorporated in a chemical analyzer, there is a problem that the optical unit becomes complicated and the apparatus itself becomes large.
[0012]
The present invention has been made to solve the above problems, and provides a chemical analyzer capable of accurately measuring changes in aggregation of fine particles caused by a reaction while suppressing the influence of scattered light and using transmitted light. The purpose is to do.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the chemical analyzer of the present invention irradiates a reaction tube containing a mixed solution of a test sample and a reagent through a condensing lens that collects light from a light source. In a chemical analysis apparatus that performs spectroscopic analysis of light transmitted through a diffraction grating, detects the split light with a photodetector, and measures a predetermined item from the detection result, between the reaction tube and the diffraction grating, A light passage that is spaced apart in the direction of the optical axis of light that passes through the reaction tube, and has a passage port that allows light in a predetermined range centering on the optical axis to pass through or scattered in the reaction tube. It has at least two light shielding means.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a chemical analyzer according to the present invention will be described below with reference to FIGS.
[0015]
FIG. 1 shows a configuration of a chemical analysis apparatus according to an embodiment of the present invention. This chemical analyzer includes a reagent disk 2 and 3 housing a plurality of reagent bottles 7 containing reagents that react with various components contained in a test sample, and a reaction disk having a plurality of reaction tubes 4 arranged on the circumference. 5, a disc sampler 6 in which a test sample container 17 containing a test sample is set, a reagent dispensed into the reaction tube 4 by the dispensing arms 8 and 9 and the discrete dispensing arm 10 and the test And a photometric unit 13 for measuring a mixed liquid of the sample.
[0016]
The reagent containers 2 and 3, the reaction disk 5, and the disk sampler 6 are each rotated by a driving device. Reagents necessary for the measurement are transferred from the reagent bottle 7 stored in the reagent rack 1 of the reagent storage 2 or the reagent storage 3 to the reaction tube 4 on the reaction disk 5 using the dispensing arm 8 or the dispensing arm 9, respectively. It is dispensed.
[0017]
Further, the test sample stored in the test sample container 17 arranged on the disk sampler 6 is dispensed into the reaction tube 4 on the reaction disk 5 using the sampling arm 10.
[0018]
The reaction tube 4 into which the test sample and the reagent are dispensed moves to the stirring position by the rotation of the reaction disk 5, and the mixed solution of the test sample and the reagent is stirred by the stirring unit 11. Thereafter, the photometric unit 13 irradiates light to the reaction tube 4 that has moved to the photometric position and measures the change in absorbance of the mixed solution, whereby the component analysis of the test sample is performed.
[0019]
Then, the mixed solution of the test sample and the reagent in the reaction tube 4 that has completed the component analysis of the test sample is discarded, and then the reaction tube 4 is cleaned by the cleaning unit 12.
[0020]
FIG. 2 is a top view of the photometric unit 13 shown in FIG. The light irradiated to the reaction tube 4 from the light source 21 through the first condenser lens 23 is transmitted through or scattered in the reaction tube 4 containing the sample liquid and the reagent mixture 26, and then the first light shielding plate. The light passes through 29 a and the second light shielding plate 29 b, is collected by the second condenser lens 28, is dispersed by the concave diffraction grating 31, and is then detected by the photodetector 32.
[0021]
The light emitted from the light source 21 such as a tungsten halogen lamp is condensed by the first condenser lens 23 after the heat component is removed by the heat ray absorption filter 22.
[0022]
The light condensed by the first condenser lens 23 is passed through the light transmission window 24 arranged on the side wall of the reaction disk 5 in FIG. Irradiated. At this time, the optical focal position of the first condenser lens 23 on the reaction tube 4 side is set so as to be the position of the mixed solution 26 of the test sample and the reagent in the reaction tube 4.
[0023]
The reagent is not particularly limited as long as it is light transmissive, and examples thereof include liquid reagents such as latex reagents used in antigen-antibody reactions.
[0024]
The light transmitted or scattered in the reaction tube 4 passes through the light transmission window 25 disposed on the side wall of the reaction disk 5 in FIG. 1, and is predetermined by the first light shielding plate 29a and the second light shielding plate 29b. It is narrowed down to the range.
[0025]
The light that has passed through the second light shielding plate 29 b is condensed by the second condenser lens 28. One optical focal point of the second condenser lens 28 is the optical focal position of the first condenser lens 23 on the reaction tube 4 side, that is, the position of the test sample / reagent mixed solution 26 in the reaction tube 4. Is matched. Thereby, the light transmitted through the reaction tube 4 can be effectively collected. The shutter 27 disposed between the light transmission window 25 and the second light shielding plate 29b is opened when measuring the test sample.
[0026]
The light condensed by the second condenser lens 28 is narrowed down by the third light shielding plate 30 disposed at or near the other optical focal position of the second condenser lens 28, and then the concave diffraction grating. 31 is irradiated. The hole through which the light from the third light shielding plate 30 passes is set to a size that allows the light irradiated from the second condenser lens 28 to the concave diffraction grating 31 to fall within the effective range of the diffraction grating.
[0027]
The concave diffraction grating 31 diffracts incident light for each wavelength, and the diffracted light is detected for each wavelength component by the photodetector 32. The photodetector 32 has a wavelength selective filter array 33 and a photodiode array 34.
[0028]
Then, the photodetector 32 generates an electrical signal corresponding to the amount of incident light. This electrical signal is collected by the signal collecting unit 36 and then used by the signal processing unit 37 for calculation processing of the test sample.
[0029]
FIG. 3 is a side view showing the first light shielding plate 29a and the second light shielding plate 29b in the photometric unit 13 of FIG. The first light-shielding plate 29a and the second light-shielding plate 29b are arranged so that the same one is spaced apart from each other by a predetermined distance and is perpendicular to the optical axis 35.
[0030]
Projected images in which light passing through the reaction tube 4 is projected onto the light shielding plate at the intersections with the optical axis 35 of the passages through which the light provided on the first light shielding plate 29a and the second light shielding plate 29b pass. And a similar shape with the intersection of the light shielding plate and the optical axis 35 as a fulcrum. Further, the passage openings of the first light shielding plate 29a and the second light shielding plate 29b are shielded from a predetermined range of the outer peripheral portion of the projected image where the light transmitted through the reaction tube 4 is projected onto the light shielding plates. It is like that.
[0031]
FIG. 3A shows that light in the range of (θ1-θ2) is shielded by the first light shielding plate 29a and the second light shielding plate 29b among the light transmitted or scattered in the reaction tube 4. Which indicates that.
[0032]
FIG. 3B shows that, among the light scattered in the reaction tube 4, scattered light having an angle of θ3 with respect to the first light shielding plate 29a passes through the passage opening of the first light shielding plate 29a. This also shows that the light is shielded by the second light shielding plate 29b.
[0033]
For example, the scattered light 40 generated in the reaction tube 4 is reflected by particles in the reaction tube and then enters the first light shielding plate 29a, and is reflected at an angle θ4 smaller than θ3 with respect to the first light shielding plate 29a. Even if it passes through the passage of one light shielding plate 29a, it is shielded by the light shielding plate 29b and does not reach the second condenser lens 28.
[0034]
Further, by making the passage opening of the second light shielding plate 29b smaller than that of FIG. 3, it is possible to suppress scattered light in a range where the angle is wider than θ3.
[0035]
Further, by arranging the second light shielding plate 29b on the second condenser lens 28 side which is arranged on the right side in the drawing from the position shown in FIG. 3, the angle is in the range of θ2 in FIG. Therefore, the scattered light passing through the second light shielding plate 29b can be further suppressed.
[0036]
Next, when the first light shielding plate 29a is disposed between the light transmission window 25 and the shutter 27 in FIG. 2, the angle can be made wider than the range of θ3 in FIG. Scattered light passing through the plate 29b can be suppressed.
[0037]
As described above, when the change in the aggregation of the fine particles caused by the reaction is measured using transmitted light, the light transmitted through or scattered in the reaction tube 4 passes through the passages of the first light shielding plate 29a and the light shielding plate 29b. Passing is limited to only light parallel to the optical axis 35 and scattered light having a specific angle close to parallel, and is guided to the photodetector 32, so that detection of unnecessary scattered light can be suppressed and measurement can be performed. The accuracy can be improved.
[0038]
FIG. 4 is a diagram showing a light shielding plate switching means. The first light shielding plate 29a and the second light shielding plate are different from FIG. 3 in that the first light shielding plate 29a and the second light shielding plate 29a and The second light shielding plate 29 b is additionally provided with a moving means that can move horizontally in the direction perpendicular to the optical axis 35.
[0039]
The light shielding plate horizontal movement mechanism drive unit 38 is constituted by, for example, a drive motor or a plurality of gears, and controls the current applied from the power supply unit (not shown) to the drive motor, thereby the first light shielding plate 29a or the second light shielding plate. It is possible to control the horizontal movement of 29b simultaneously or independently.
[0040]
When measuring the change in the aggregation of fine particles caused by the reaction, the scattered light is suppressed by arranging the holes of the first light shielding plate 29a and the second light shielding plate 29b on the optical axis 35.
[0041]
Then, in the case of measuring a reaction that is a change in color tone caused by the reaction and has a small amount of light transmitted through the reaction tube 4, the first light shielding plate 29a or the second light shielding plate 29b is arranged as shown in FIG. By moving in the direction of the arrow and stopping shielding the light transmitted through the reaction tube 4, the amount of light that can be received by the photodetector 32 can be increased to increase the signal intensity and measure accurately.
[0042]
FIG. 5 is a diagram showing a light shielding amount adjusting means. The first light shielding plate 29a and the second light shielding plate are different from those in FIG. 3 in that the light shielding plate optical axis direction horizontal movement mechanism drive unit 39 performs the first light shielding. The plate 29 a and the second light shielding plate 29 b are additionally provided with moving means that can move horizontally in parallel with the optical axis 35.
[0043]
The light shielding plate optical axis direction horizontal movement mechanism drive unit 39 is constituted by, for example, a drive motor or a plurality of gears, and controls the current applied from the power supply unit (not shown) to the drive motor, thereby allowing the first light shielding plate 29a or the second light shielding plate to move. The horizontal movement of the light shielding plates 29b can be controlled simultaneously or independently with respect to the optical axis 35.
[0044]
Then, in the case of measuring a reaction having a large amount of light having an angle close to parallel to the optical axis among the light transmitted or scattered through the reaction tube 4, the second light shielding plate 29b is shown in FIG. Since the scattered light passing through the second light-shielding plate 29b can be further suppressed by moving in the direction of the arrow from the position shown, measurement can be performed with high accuracy.
[0045]
By the way, the size of the aggregation of the fine particles generated by the reaction varies depending on the characteristics of the measurement item or the fine particles contained in the reagent, and the wavelength used for the measurement is arbitrarily selected for each item. The intensity distribution with respect to the scattering angle of the scattered light generated by the length interaction differs for each measurement item.
[0046]
Therefore, for each measurement item, determine the position of the light shielding plate so that scattered light corresponding to the intensity distribution can be removed for each measurement item and the reagent used, and set the appropriate light shielding plate arrangement in advance. Since the light shielding amount can be changed, it becomes possible to measure with high accuracy.
[0047]
The present invention is not limited to the above-described embodiments, and can be variously modified and implemented without departing from the scope of the invention. For example, by further disposing a third light shielding plate between the first light shielding plate and the second light shielding plate, the scattered light at the end face of the passage opening of the light shielding plate can be suppressed, so that further performance improvement can be achieved.
[0048]
【The invention's effect】
As described above, according to the present invention, the change in the aggregation of the fine particles caused by the reaction can be measured by the amount of transmitted light while suppressing the scattered light, so that the measurement accuracy can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a chemical analyzer according to an embodiment of the present invention.
FIG. 2 is a top view showing a configuration of a photometric unit of the chemical analyzer of the present invention.
FIG. 3 is a side view showing a light shielding plate of the photometric unit of the present invention.
FIG. 4 is a diagram showing switching means of the present invention.
FIG. 5 is a view showing a light shielding amount adjusting means of the present invention.
[Explanation of symbols]
4 reaction tube 13 photometric unit 21 light source 23 first condensing lens 26 mixed solution 29a of test sample and reagent first light shielding plate 29b second light shielding plate 31 concave diffraction grating 32 photodetector 35 optical axis

Claims (6)

被検試料と試薬の混合液が入った反応管に光源からの光を集光する集光レンズを介して照射し、前記反応管を透過した光を回折格子で分光し、分光した光を光検出器で検出し、その検出結果から所定の項目の測定を行う化学分析装置において、
前記反応管と回折格子の間であって、前記反応管を透過する光の光軸方向へ離間して配置され、前記反応管内を透過もしくは散乱した光の内、前記光軸を中心とした所定の範囲の光を通過させる通過口を備えた少なくとも2つの遮光手段を
有することを特徴とする化学分析装置。
The reaction tube containing the test sample and reagent mixture is irradiated through a condenser lens that collects the light from the light source, the light transmitted through the reaction tube is dispersed by a diffraction grating, and the dispersed light is emitted as light. In a chemical analyzer that detects with a detector and measures a predetermined item from the detection result,
Predetermined centering on the optical axis of light transmitted or scattered in the reaction tube between the reaction tube and the diffraction grating and spaced apart in the optical axis direction of the light transmitted through the reaction tube A chemical analysis apparatus comprising at least two light shielding means provided with a passage for allowing light in the range described above to pass therethrough.
前記少なくとも2つの遮光手段は、前記反応管内を透過もしくは散乱した光を最初に遮光する第1の遮光手段と、第1の遮光手段と離間して配置された第2の遮光手段であって、前記第2の遮光手段が、前記第1遮光手段を通過した光の内、前記光軸を中心とした所定の範囲の光を通過させ、この通過した光の一部を遮光する遮光手段であることを特徴とする請求項1に記載の化学分析装置。The at least two light shielding means are a first light shielding means for first shielding light transmitted or scattered in the reaction tube, and a second light shielding means arranged at a distance from the first light shielding means, The second light shielding means is a light shielding means for allowing light in a predetermined range centered on the optical axis to pass through the light passing through the first light shielding means and shielding a part of the light that has passed. The chemical analyzer according to claim 1. 前記通過口の形状は、前記反応管内を透過もしくは散乱した光が遮光板に投影される投影像と一致し、その遮光板と前記光軸との交点を支点とした相似形であることを特徴とする請求項1または請求項2に記載の化学分析装置。The shape of the passage opening is similar to a projection image in which light transmitted or scattered in the reaction tube is projected onto a light shielding plate, and has a similar shape with an intersection of the light shielding plate and the optical axis as a fulcrum. The chemical analyzer according to claim 1 or 2. 前記少なくとも2つの遮光手段は、前記光軸から退避するよう切換える切換手段を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の化学分析装置。The chemical analysis apparatus according to any one of claims 1 to 3, wherein the at least two light shielding means include switching means for switching to retract from the optical axis. 前記少なくとも2つの遮光手段は、前記反応管内を透過もしくは散乱した光の遮光量を調整する遮光量調整手段を有し、前記遮光量調整手段は前記第1の遮光手段と前記第2の遮光手段の間隔を調整するようにしたことを特徴とする請求項1乃至請求項3のいずれか1項に記載の化学分析装置。The at least two light shielding means include a light shielding amount adjusting means for adjusting a light shielding amount of light transmitted or scattered in the reaction tube, and the light shielding amount adjusting means includes the first light shielding means and the second light shielding means. The chemical analyzer according to any one of claims 1 to 3, wherein an interval between the two is adjusted. 前記混合液は、被検試料と試薬の反応によって微粒子の凝集が生じることを特徴とする請求項1乃至請求項5のいずれか1項に記載の化学分析装置。The chemical analysis apparatus according to any one of claims 1 to 5, wherein the liquid mixture causes aggregation of fine particles due to a reaction between a test sample and a reagent.
JP2003203089A 2003-07-29 2003-07-29 Chemical analysis equipment Pending JP2005049109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203089A JP2005049109A (en) 2003-07-29 2003-07-29 Chemical analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203089A JP2005049109A (en) 2003-07-29 2003-07-29 Chemical analysis equipment

Publications (1)

Publication Number Publication Date
JP2005049109A true JP2005049109A (en) 2005-02-24

Family

ID=34262583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203089A Pending JP2005049109A (en) 2003-07-29 2003-07-29 Chemical analysis equipment

Country Status (1)

Country Link
JP (1) JP2005049109A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992936A1 (en) 2007-05-16 2008-11-19 Hitachi High-Technologies Corporation Analyzing apparatus
JP2009186461A (en) * 2008-01-11 2009-08-20 Toshiba Corp Automatic analysis device and automatic analysis method
EP2541233A1 (en) * 2010-02-25 2013-01-02 Hitachi High-Technologies Corporation Automatic analysis device
JP2014115930A (en) * 2012-12-12 2014-06-26 Nippon Conlux Co Ltd Paper sheet identification device
US9651478B2 (en) 2011-01-12 2017-05-16 Toshiba Medical Systems Corporation Analyzer
CN112985912A (en) * 2021-03-19 2021-06-18 合肥工业大学 Sampling device for food detection

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992936A1 (en) 2007-05-16 2008-11-19 Hitachi High-Technologies Corporation Analyzing apparatus
JP2008286567A (en) * 2007-05-16 2008-11-27 Hitachi High-Technologies Corp Analyzer
US7978325B2 (en) 2007-05-16 2011-07-12 Hitachi High-Technologies Corporation Biochemical analyzer
JP2009186461A (en) * 2008-01-11 2009-08-20 Toshiba Corp Automatic analysis device and automatic analysis method
EP2541233A1 (en) * 2010-02-25 2013-01-02 Hitachi High-Technologies Corporation Automatic analysis device
EP2541233A4 (en) * 2010-02-25 2014-05-21 Hitachi High Tech Corp Automatic analysis device
US8858882B2 (en) 2010-02-25 2014-10-14 Hitachi High-Technologies Corporation Automatic analysis device
US9651478B2 (en) 2011-01-12 2017-05-16 Toshiba Medical Systems Corporation Analyzer
JP2014115930A (en) * 2012-12-12 2014-06-26 Nippon Conlux Co Ltd Paper sheet identification device
CN112985912A (en) * 2021-03-19 2021-06-18 合肥工业大学 Sampling device for food detection
CN112985912B (en) * 2021-03-19 2022-06-28 合肥工业大学 Sampling device for food detection

Similar Documents

Publication Publication Date Title
JP5260903B2 (en) Automatic analyzer
US8852511B2 (en) Automatic analyzer
JPS63286750A (en) Detector assembly
JP5984290B2 (en) Automatic analyzer
EP2759828A1 (en) Automated analyzer and analyzing method
EP2466292B1 (en) System for performing scattering and absorbance assays
JPWO2018016252A1 (en) Automatic analyzer and automatic analysis method
JPS59100862A (en) Automatic analyzer
EP2988111B1 (en) Analyzer and automatic analyzer
JP2008008794A (en) Analyzing device
JP5946776B2 (en) Automatic analyzer
JP5865713B2 (en) Automatic analyzer
JP2005049109A (en) Chemical analysis equipment
JP2008051822A (en) Chemical analyzer
JP6138564B2 (en) Automatic analyzer
JP2007017310A (en) Analyzer
US10684228B2 (en) System and method of nephelometric determination of an analyte
JP6437390B2 (en) Automatic analyzer
JP2003149157A (en) Chemical analysis device
WO2022270037A1 (en) Photometry device and analysis device
JP7348786B2 (en) automatic analyzer
JP2007085966A (en) Autoanalyzer
JP2015175667A (en) Automatic analysis apparatus
JP6657016B2 (en) Automatic analyzer
JP2016004042A (en) Scattering light measurement system including receptacle device for measurement cell and operation method of the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20050427

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20050620

Free format text: JAPANESE INTERMEDIATE CODE: A7424