JP3489532B2 - Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same - Google Patents

Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same

Info

Publication number
JP3489532B2
JP3489532B2 JP2000080884A JP2000080884A JP3489532B2 JP 3489532 B2 JP3489532 B2 JP 3489532B2 JP 2000080884 A JP2000080884 A JP 2000080884A JP 2000080884 A JP2000080884 A JP 2000080884A JP 3489532 B2 JP3489532 B2 JP 3489532B2
Authority
JP
Japan
Prior art keywords
phase
steel sheet
content
plating film
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000080884A
Other languages
Japanese (ja)
Other versions
JP2001262308A (en
Inventor
保 土岐
浩史 竹林
一 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000080884A priority Critical patent/JP3489532B2/en
Publication of JP2001262308A publication Critical patent/JP2001262308A/en
Application granted granted Critical
Publication of JP3489532B2 publication Critical patent/JP3489532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、家電製
品、建築材料等の産業分野で用いられるプレス成形性に
優れた合金化溶融亜鉛めっき鋼板、およびその製造方法
に関する。
TECHNICAL FIELD The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent press formability, which is used in industrial fields such as automobiles, home electric appliances, and building materials, and a method for producing the same.

【0002】[0002]

【従来の技術】自動車車体、家電製品、建築物等の素材
として、安価で耐食性に優れる合金化溶融亜鉛めっき鋼
板が広く使用されている。
2. Description of the Related Art Alloyed hot-dip galvanized steel sheets which are inexpensive and have excellent corrosion resistance are widely used as materials for automobile bodies, home electric appliances, buildings and the like.

【0003】この合金化溶融亜鉛めっき鋼板は、母材鋼
板にめっき皮膜を形成した後合金化することによって複
合化した一種の複合材料であり、通常、連続的に溶融め
っきした鋼板を熱処理炉で 480〜 550℃の材料温度に 3
〜30秒加熱することによって母材鋼板表面にFe―Zn合金
めっき相を形成させ、製造される。その場合、母材鋼板
は溶融めっき前に連続炉で予熱され、水素(H2)と窒素(N
2)からなる還元雰囲気中で材料に応じた焼鈍条件で焼鈍
され、次いでめっき浴温近傍の温度まで冷却され、溶融
亜鉛めっき処理が施される。前記還元雰囲気の露点は、
高すぎると不めっきが生じる場合があるので−20℃以下
に調整される。自動車車体、家電製品、建築物等の素材
は、使用に供される際、プレス成形され、組み立てられ
た後、塗装が施されることが多く、そのため、合金化溶
融亜鉛めっき鋼板は、耐食性に加えて、プレス成形性、
塗装性または塗装下地としての化成処理性、溶接性また
は接着性などの諸性能が優れていることも重要とされて
いる。
This galvannealed steel sheet is a kind of composite material which is compounded by forming a coating film on a base steel sheet and then alloying it. Usually, a hot-dip galvanized steel sheet is continuously heated in a heat treatment furnace. 3 to material temperature of 480 ~ 550 ℃
It is produced by forming a Fe-Zn alloy plating phase on the surface of the base steel sheet by heating for ~ 30 seconds. In that case, the base steel sheet is preheated in a continuous furnace before hot dip coating, and hydrogen (H 2 ) and nitrogen (N
In the reducing atmosphere consisting of 2 ), it is annealed under the annealing conditions suitable for the material, then cooled to a temperature near the plating bath temperature, and subjected to hot dip galvanizing treatment. The dew point of the reducing atmosphere is
If it is too high, non-plating may occur, so it is adjusted to -20 ° C or lower. When used, materials such as automobile bodies, home appliances, and buildings are often press-molded, assembled, and then painted, so alloyed hot-dip galvanized steel sheets are highly corrosion resistant. In addition, press formability,
It is also important that various properties such as paintability or chemical conversion treatment as a paint base, weldability, and adhesiveness are excellent.

【0004】その中で、プレス成形性については次のよ
うな問題がある。すなわち、合金化溶融亜鉛めっき鋼板
をプレス成形する際、めっき皮膜の表層(めっき表層)
が、Fe含有量が比較的低い軟質な合金相(ζ相)の場
合、金型表面をめっき鋼板が摺動する際にめっき表層と
金型表面の凝着現象などにより摺動性が劣化し、めっき
皮膜の剥離(フレーキング)や鋼板のプレス割れ等が生
じる。また、めっき皮膜のFe含有量が高い場合には、母
材鋼板とめっき皮膜の界面近傍に硬質なΓ相、Γ 1
相、δ1c相が形成されるため、めっき皮膜の粉化(パウ
ダリング)が発生しやすくなる。この現象が発生する
と、金型にめっき皮膜の剥離片が付着し、押込み疵の原
因となる。
Among them, the press moldability is as follows.
I have a problem. That is, galvannealed steel sheet
Surface of plating film when press-molding (plating surface layer)
However, in the case of a soft alloy phase (ζ phase) with a relatively low Fe content,
When the plated steel plate slides on the mold surface,
Sliding property deteriorates due to adhesion phenomenon on the mold surface, and plating
Delamination of film (flaking) and press cracking of steel plate may occur.
Jijiru If the Fe content of the plating film is high, the
A hard Γ phase, Γ near the interface between the steel plate and the plating film 1  
Phase, δ1cAs a phase is formed, the plating film is powdered (powder).
Dulling) is likely to occur. This phenomenon occurs
When the peeled pieces of the plating film adhere to the mold,
Cause

【0005】このような問題点を解決するために、合金
化溶融亜鉛めっき皮膜を比較的硬軟のバランスがとれた
δ1 相が主体の合金相皮膜とするめっき鋼板が提案さ
れているが、厳しい成形加工が施される部位に使用され
る素材としては、十分なものとは言い難い。
In order to solve such a problem, a plated steel sheet has been proposed in which the alloyed hot-dip galvanized film is an alloy phase film mainly composed of a δ 1 phase with a relatively well-balanced hardness and softness. It is hard to say that this is a sufficient material to be used for the part to be molded.

【0006】また、特開昭61−223174号公報には、合金
化溶融亜鉛めっき鋼板の耐パウダリング性の改善手段と
して、鋼板を溶融亜鉛めっき浴を通過させた後、急速加
熱して鋼板温度を 550〜 700℃に昇温し、めっき表層に
液相が残存する状態から急冷し、さらに 450〜 530℃に
保持する方法が提案されている。しかし、この方法で
は、合金化完了後にζ相が残存しやすく、さらに合金化
度を高めてもめっき表層には柱状晶が残存し易くなるた
め、耐パウダリング性は改善できても摺動性は十分に改
善できるものではない。
Further, in Japanese Patent Laid-Open No. 223174/1986, as a means for improving the powdering resistance of alloyed hot dip galvanized steel sheet, the steel sheet is passed through a hot dip galvanizing bath and then rapidly heated to obtain the steel sheet temperature. A method has been proposed in which the temperature is raised to 550 to 700 ° C, the liquid phase remains on the surface of the plating, it is rapidly cooled, and then the temperature is maintained at 450 to 530 ° C. However, in this method, the ζ phase is likely to remain after the alloying is completed, and columnar crystals are likely to remain in the plating surface layer even if the alloying degree is further increased, so that the powdering resistance can be improved but the sliding property can be improved. Cannot be improved enough.

【0007】特許第 2512147号公報には、鋼板を溶融亜
鉛めっき浴に浸漬し、引き続き合金化処理を行う際の最
高到達温度を 450〜 525℃とし、合金化が完了した後、
350℃以下 250℃までの温度範囲を所定の冷却速度で通
過させることにより、耐パウダリング性に優れた合金化
溶融亜鉛めっき鋼板の製造方法が開示されている。しか
しながら、合金化処理の際の加熱温度が摺動性に悪いζ
相が出現し易い温度領域を含んでおり、また、たとえζ
相が消失したとしても、合金化完了後の加熱温度が 350
℃以下で、しかも規定されている保持時間では、到底摺
動性を改善できるものではない。さらに、特開平 1−27
2752号公報には、溶融亜鉛めっき後合金化処理を施した
合金化溶融亜鉛めっき鋼板を一旦冷却した後、 0≧7.47−T/93.7 − logt かつ、0≦9.62−T/92.3 − logt ただし、t:加熱時間(秒) T:加熱温度(℃) を満足する条件下で再加熱することにより耐パウダリン
グ性能を改善する方法が提案されている。しかし、実施
例で 400℃×24時間のデータが示されているが、インラ
インで処理することは生産効率を維持する上から不可能
であり、また、摺動性の改善効果については、一切触れ
られていない。
Japanese Patent No. 2512147 discloses that a steel sheet is immersed in a hot dip galvanizing bath, and the maximum temperature reached during subsequent alloying treatment is 450 to 525 ° C.
A method for producing an alloyed hot-dip galvanized steel sheet having excellent powdering resistance is disclosed by passing a temperature range from 350 ° C to 250 ° C at a predetermined cooling rate. However, the heating temperature at the time of alloying treatment is not good for slidability.
It includes a temperature region where phases are likely to appear, and
Even if the phases disappear, the heating temperature after alloying is 350
If the temperature is not more than 0 ° C. and the holding time is regulated, the slidability cannot be improved. Furthermore, JP-A 1-27
No. 2752 discloses that after the galvannealed steel sheet subjected to the alloying treatment after hot dip galvanizing is once cooled, 0 ≧ 7.47−T / 93.7−logt and 0 ≦ 9.62-T / 92.3−logt t: Heating time (second) T: A method of improving powdering resistance by reheating under conditions satisfying a heating temperature (° C) has been proposed. However, although data of 400 ° C. × 24 hours are shown in the examples, in-line treatment is impossible from the viewpoint of maintaining production efficiency, and the improvement effect of slidability is not mentioned at all. Has not been done.

【0008】[0008]

【発明が解決しようとする課題】合金化溶融亜鉛めっき
鋼板の摺動性を改善するには、軟質なζ相の生成を極力
低減し、比較的硬度の高いδ1 相をめっき表層に形成
させればよい。そのためには、ζ相が形成されない比較
的温度の高い条件( 500℃以上)で加熱して合金化を完
了させるか、低温加熱であっても、合金化度をめっき皮
膜中のFe含有量が13%以上になるような高合金化度に設
定すれば、めっき皮膜の最表層はδ1 相になることが
知られている。さらに、上記のめっき皮膜の最表層がδ
1 相になっためっき鋼板に継続して加熱処理を施す
と、構造的には同じδ1 相でありながら、Feの含有量
がさらに増加し、めっき表層が硬質化して、摺動性がよ
り一層改善されることが明らかとなった。
In order to improve the slidability of the galvannealed steel sheet, the formation of soft ζ phase is reduced as much as possible and the δ 1 phase having a relatively high hardness is formed on the plating surface layer. Just do it. For that purpose, the alloying is completed by heating under conditions of relatively high temperature (500 ° C or more) where the ζ phase is not formed, or even at low temperature heating, the degree of alloying depends on the Fe content in the plating film. It is known that if the alloying degree is set to 13% or more, the outermost layer of the plating film becomes the δ 1 phase. Furthermore, the outermost layer of the plating film is δ
When the heat treatment is continuously applied to the plated steel sheet that has become a single phase, the Fe content is further increased, the plating surface layer is hardened, and the slidability is more improved, even though the structurally the same δ 1 phase. It became clear that it would be further improved.

【0009】しかしながら、このような加熱処理は、め
っき皮膜中のFe含有量の増加により、耐パウダリング性
の低下につながる非常に硬質なδ1C 相、Γ1 相、Γ
相の成長を伴うため、実用化に至っていないのが現状で
ある。
However, such heat treatment leads to a decrease in powdering resistance due to an increase in Fe content in the plating film, which is a very hard δ 1C phase, Γ 1 phase, Γ 1 phase, and Γ 1 phase.
At present, it has not been put to practical use because it involves the growth of phases.

【0010】本発明は、このような状況に鑑みなされた
もので、耐パウダリング性を低下させずに摺動性を改善
したプレス成形性に優れた合金化溶融亜鉛めっき鋼板、
およびその製造方法を提供することを課題としている。
The present invention has been made in view of the above circumstances, and is an alloyed hot-dip galvanized steel sheet excellent in press formability with improved slidability without lowering powdering resistance,
And to provide a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】本発明者らは、δ1相の
表層近傍のFe含有量は増加させるが、合金化度の増大、
ならびにδ1c相、Γ1相、Γ相の成長を伴わない加熱処
理条件を検討した。その結果、以下の事実が判明した。
すなわち、ζ相が形成されない高温(500〜550℃)で加
熱処理して合金化を終え、その後、合金化度の増大およ
びδ1c相、Γ1相、Γ相の成長を伴わない 450℃以下の
温度範囲まで急冷する。この時点では、めっき表層はδ
1相でも、そのFe含有量はδ1相が取りうる下限に近い値
であるため、摺動性の改善効果は小さいが、この後、δ
1相中でFeとZnが容易に、時間で言えば 1〜30秒で相互
拡散できる温度範囲(350〜450℃)で保持することによ
り、δ1相の中でFeが濃度勾配にしたがって表層に拡散
し、δ1相の表層のFe含有量を高めることができる。こ
の処理によって、δ1c相、Γ1相、Γ相は生成せず、耐
パウダリング性を低下させずに、摺動性を大幅に改善す
ることができる。本発明は、上記の知見に基づきなされ
たもので、その要旨は、下記(1)の合金化溶融亜鉛め
っき鋼板、および(2)のその製造方法にある。(1)
めっき皮膜中の平均Fe含有量が 8.5〜13質量%で、めっ
き皮膜の最表層を形成するδ1相中のFe含有量が 8.0質
量%以上で、かつ母材鋼板との界面に形成されるΓ相の
厚さが 1.0μm以下であるプレス成形性に優れた合金化
溶融亜鉛めっき鋼板。(2)溶融亜鉛めっき後の鋼板に
500〜550℃で合金化処理を施してめっき皮膜中の平均 F
e 含有量を 8.5 13 質量%とした後、350〜450℃の温度
範囲まで20℃/s以上の冷却速度で冷却し、350〜450℃の
範囲内の温度 T℃で、3×10-7/{exp(-11330/(T+273))}
秒以上保持する上記(1)に記載のプレス成形性に優れ
た合金化溶融亜鉛めっき鋼板の製造方法。なお、上記
(1)において、「めっき皮膜の最表層を形成するδ1
相」と記載したが、めっき皮膜の最表層を形成するの
は、実際には大気中でめっき皮膜の表面に形成される酸
化物層である。しかし、酸化物層はめっき皮膜の構成の
如何にかかわらず形成され、その構成の違いによる特性
(例えば、摺動性)の違いに何ら影響を及ぼさないの
で、ここでは、上記のように酸化物層を除外して「めっ
き皮膜の最表層」と記した。
The present inventors increased the Fe content near the surface of the δ 1 phase, but increased the alloying degree,
In addition, heat treatment conditions without growth of δ 1c phase, Γ 1 phase, and Γ phase were examined. As a result, the following facts were revealed.
That is, the alloy is finished by heat treatment at a high temperature (500 to 550 ° C) where the ζ phase is not formed, and then 450 ° C or less without increasing the alloying degree and growing the δ 1c phase, Γ 1 phase, and Γ phase. Quench to the temperature range of. At this point, the plating surface layer is δ
Even in the 1 phase, the Fe content is close to the lower limit that the δ 1 phase can take, so the effect of improving the slidability is small.
By maintaining the temperature range (350 to 450 ° C) where Fe and Zn can easily diffuse in 1 phase in 1 to 30 seconds in terms of time, Fe can be distributed in the surface layer in the δ 1 phase according to the concentration gradient. The Fe content in the surface layer of the δ 1 phase can be increased. By this treatment, the δ 1c phase, the Γ 1 phase, and the Γ phase are not generated, and the slidability can be significantly improved without lowering the powdering resistance. The present invention has been made based on the above findings, and its gist resides in the following alloyed hot-dip galvanized steel sheet (1) and its manufacturing method (2). (1)
The average Fe content in the plating film is 8.5 to 13% by mass, the Fe content in the δ 1 phase forming the outermost layer of the plating film is 8.0% by mass or more, and it is formed at the interface with the base steel plate. An alloyed hot-dip galvanized steel sheet that has a Γ-phase thickness of 1.0 μm or less and has excellent press formability. (2) For hot dip galvanized steel sheet
Average F in plating film after alloying at 500-550 ℃
After a 8.5 to 13 wt% of the e content, cooled in the temperature range up to 20 ° C. / s or more cooling rate of 350 to 450 ° C., at a temperature T ° C. in the range of 350~450 ℃, 3 × 10 - 7 / {exp (-11330 / (T + 273))}
The method for producing an alloyed hot-dip galvanized steel sheet having excellent press formability according to the above (1), which holds for at least seconds. In addition, in the above (1), "δ 1 which forms the outermost layer of the plating film is formed.
Although described as “phase”, it is actually the oxide layer formed on the surface of the plating film in the atmosphere that forms the outermost layer of the plating film. However, since the oxide layer is formed regardless of the composition of the plating film and has no effect on the difference in characteristics (for example, slidability) due to the difference in the composition, here, the oxide layer is formed as described above. The layer was excluded and the description was given as "the outermost layer of the plating film".

【0012】[0012]

【発明の実施の形態】以下、上記本発明の合金化溶融亜
鉛めっき鋼板、およびその製造方法について詳細に説明
する。なお、めっき皮膜中のFe含有量の「%」およびめ
っき浴中のAlの濃度の「%」はいずれも「質量%」を意
味する。本発明の合金化溶融亜鉛めっき鋼板において、
めっき皮膜中の平均Fe含有量を8.5〜13%とするのは、
8.5%未満であれば、δ1 相中のFe含有量を 8.0%以
上に保持して優れた摺動性を確保することが困難とな
り、13%を超えると、耐パウダリング性に悪影響を及ぼ
すδ1C 相、Γ1 相、Γ相の成長を抑制できず、特に
Γ相の厚さを1μm 以下にすることが困難となるからで
ある。摺動性と耐パウダリング性の両立を考えた場合、
上記Fe含有量の範囲は、 9.0〜12%とするのが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The alloyed hot-dip galvanized steel sheet of the present invention and the method for producing the same will be described below in detail. In addition, "%" of Fe content in the plating film and "%" of Al concentration in the plating bath both mean "mass%". In the galvannealed steel sheet of the present invention,
The average Fe content in the plating film is 8.5-13%
If it is less than 8.5%, it becomes difficult to maintain the Fe content in the δ 1 phase at 8.0% or more to ensure excellent slidability, and if it exceeds 13%, it adversely affects the powdering resistance. This is because the growth of the δ 1C phase, the Γ 1 phase, and the Γ phase cannot be suppressed, and it is particularly difficult to reduce the thickness of the Γ phase to 1 μm or less. When considering both slidability and powdering resistance,
The range of the Fe content is preferably 9.0 to 12%.

【0013】めっき皮膜の最表層を形成するδ1 相中
のFe含有量が 8.0%以上であることとするのは、摺動性
を向上させるためである。
The Fe content in the δ 1 phase forming the outermost layer of the plating film is 8.0% or more in order to improve the slidability.

【0014】δ1 相におけるFe含有量は通常 7.4〜1
1.3%であるが、合金化処理の際、η相あるいはζ相が
消失する条件で合金化を完了し、その後の冷却過程で合
金化が進行しないように急速冷却した場合、めっき皮膜
の厚さ方向におけるFe含有量に著しい勾配が生じ、めっ
き表層にはδ1 相におけるFe含有量の下限である 7.4
%近傍のFeを含有する合金相(主としてδ1 相)が形
成され易くなる。この場合、めっき表層にζ相が残存し
ている場合に比較すると、摺動性の改善は認められるも
ののその効果は小さい。そのため、後述するように、 4
50℃以下まで急冷した後、 350〜 450℃で保持して表層
のδ1 相にFeを拡散させるのであるが、δ1 相中の
Fe含有量は 8.0%未満では、摺動性の著しい改善はみら
れない。したがって、δ1 相中のFe含有量が 8.0%以
上とする。好ましくは、8.5%以上である。本発明の合
金化溶融亜鉛めっき鋼板では、さらに、めっき皮膜の母
材鋼板に接する側に形成されるΓ相の厚さを 1.0μm 以
下とする。これは、硬度が高いΓ相が厚さ 1.0μm を超
えて形成されると、めっき皮膜の耐パウダリング性が著
しく低下するからで、好ましくは、 0.5μm以下であ
る。なお、上記のめっき皮膜中の平均Fe含有量、δ1
相中のFe含有量およびΓ相の厚さの測定方法について
は、後述する実施例で記載する。上記のめっき皮膜構成
を有する本発明の合金化溶融亜鉛めっき鋼板は、摺動性
に優れ、しかも良好な耐パウダリング性を有している。
この合金化溶融亜鉛めっき鋼板は、以下に述べる方法に
より製造することができる。まず、溶融亜鉛めっき後の
鋼板に 500〜550 ℃で合金化処理を施す。前記溶融亜鉛
めっき後の鋼板は、一般的に採用されている条件で溶融
亜鉛めっきが施されためっき鋼板であればよい。すなわ
ち、めっき浴中のAl濃度が0.08〜0.13%、浴温は 450〜
470℃、侵入板温は 450〜 480℃の範囲であれば特に問
題はない。また、めっき付着量は、一般に製品として用
いられている25〜70g/m2の範囲のものであればよい。こ
のめっき鋼板に合金化処理を施し、めっき皮膜中の平均
Fe含有量が 8.5〜13%になるようにするのであるが、こ
のときの温度(材料温度)が 500℃未満であれば、めっ
き表層にζ相が残存し易くなり、次に述べる工程(この
工程を、後段熱処理工程という)で、短時間でめっき皮
膜の最表層にδ1 相を形成させ、δ 1 相中のFe含有
量を 8.0%以上にすることは困難である。その上、場合
によっては、ζ相が残存してしまう危険性もある。ま
た、 550℃を超える温度で合金化した場合、めっき皮膜
中の平均Fe含有量を前記のように 8.5〜13%とし、なお
かつΓ相の厚さを 1.0μm以下に抑制することが困難と
なり、耐パウダリング性の低下を免れない。この合金化
処理の際の加熱手段は、輻射加熱、高周波誘導加熱、通
電加熱等の何れであってもよい。次いで、合金化処理後
のめっき鋼板を、 350〜 450℃の温度範囲まで20℃/s以
上の冷却速度で冷却する。この冷却後の温度が 450℃よ
りも高い場合、または上記温度範囲まで冷却しても、冷
却速度が20℃/s未満の場合は、合金化の進行を停止でき
ず、めっき皮膜中の平均Fe含有量が 8.5〜13%の範囲か
ら外れる。なお、冷却方法としては、風冷、ミスト冷
却、ロール冷却等、何れの方法を用いてもよい。その
後、 350〜450 ℃の範囲内の温度 T℃で、 3×10-7 /{e
xp(-11330/(T+273))}秒以上保持する。保持時間がこれ
より短ければ、δ1 相中のFe含有量を 8.0%以上にす
ることが困難となる。5×10-7 /{exp(-11330/(T+273))}
秒以上保持すれば、δ1 相中のFe含有量の勾配を小さ
くすることができ、好ましい。なお、保持時間の上限は
特に規定しない。しかし、保持時間が長すぎると生産効
率が低下するので、30秒以下とするのが好ましい。前記
の保持時間(秒)の下限を表す 3×10-7 /{exp(-11330/
(T+273))}の式は、一般に、拡散係数(D)が下記のよ
うにアレニウス型の式で表されることから、
Δ1   Fe content in the phase is usually 7.4-1
Although it is 1.3%, when alloying treatment, the η phase or ζ phase is
The alloying is completed under the condition that it disappears, and the alloy is mixed in the subsequent cooling process.
Plating film when rapidly cooled to prevent the progress of metallization
There is a significant gradient in the Fe content in the thickness direction of the
Δ on the surface1   The lower limit of the Fe content in the phase is 7.4
% Fe-containing alloy phase (mainly δ1   Phase)
It becomes easy to be made. In this case, the ζ phase remains on the plating surface layer.
When compared with the case where the
Its effect is small. Therefore, as described later, 4
After quenching to 50 ° C or less, keep at 350-450 ° C
Of δ1   Fe diffuses into the phase,1   In phase
When the Fe content is less than 8.0%, the slidability is not significantly improved.
I can't. Therefore, δ1   Fe content in the phase is 8.0% or less
To be on. It is preferably 8.5% or more. The invention
For galvanized galvanized steel sheets, the mother of the plating film is
The thickness of the Γ phase formed on the side in contact with the steel sheet is 1.0 μm or less.
Below. This is because the Γ phase with high hardness exceeds 1.0 μm in thickness.
Formed, the plating film's powdering resistance is outstanding.
Is 0.5 μm or less.
It The average Fe content in the above plating film, δ1   
The method of measuring the Fe content in the phase and the thickness of the Γ phase
Will be described in Examples below. Plating film composition above
The galvannealed steel sheet of the present invention having the
It also has excellent powdering resistance.
This alloyed hot dip galvanized steel sheet can be processed by the method described below.
Can be manufactured more. First, after hot dip galvanizing
The steel sheet is alloyed at 500-550 ° C. The molten zinc
Steel plate after plating melts under commonly adopted conditions
Any galvanized steel sheet may be used. Sanawa
The Al concentration in the plating bath is 0.08-0.13%, and the bath temperature is 450-
 470 ℃, intrusion plate temperature is in the range of 450-480 ℃
There is no title. In addition, the coating weight is generally used as a product.
25-70g / m2It may be in the range of. This
The plated steel sheet is alloyed and averaged in the plating film.
The Fe content should be 8.5 to 13%.
If the temperature (material temperature) at is less than 500 ℃,
The ζ-phase tends to remain on the surface layer of the
The process is called the latter heat treatment process)
Δ on the outermost layer of the film1   Form a phase, δ 1   Fe content in the phase
It is difficult to increase the amount to 8.0% or more. Besides, if
Depending on the situation, there is a risk that the ζ phase may remain. Well
Also, when alloyed at temperatures above 550 ° C, the plating film
The average Fe content in the above is 8.5 to 13%, and
Moreover, it is difficult to suppress the thickness of the Γ phase to 1.0 μm or less.
Therefore, the powdering resistance is unavoidable. This alloying
The heating means for the treatment is radiant heating, high frequency induction heating,
Any of electric heating or the like may be used. Then, after alloying treatment
Coated steel sheet up to a temperature range of 350 to 450 ° C at 20 ° C / s or less
Cool at the above cooling rate. The temperature after this cooling is 450 ° C.
If the temperature is higher than the
If the rejection rate is less than 20 ° C / s, the alloying process can be stopped.
The average Fe content in the plating film is in the range of 8.5 to 13%.
Come off. The cooling method is air cooling or mist cooling.
Any method such as cooling or roll cooling may be used. That
Then, at a temperature T ° C within the range of 350 to 450 ° C, 3 × 10-7 / {e
Hold for xp (-11330 / (T + 273))} seconds or more. Hold time is this
If shorter, δ1   Fe content in the phase should be 8.0% or more
Becomes difficult. 5 x 10-7 / {exp (-11330 / (T + 273))}
If held for more than a second, δ1   Small gradient of Fe content in phase
It is possible and preferable. The upper limit of holding time is
Not specified. However, if the holding time is too long
Since the rate decreases, it is preferably 30 seconds or less. The above
3 × 10 that represents the lower limit of the retention time (seconds) of-7 / (exp (-11330 /
(T + 273))}, the diffusion coefficient (D) is
Since it is expressed by the Arrhenius type equation,

【0015】[0015]

【数1】 めっき皮膜中を拡散するFeの量はD×t(時間) で近似で
き、このため所定の拡散Fe量を得るための時間は拡散係
数の逆数に比例した形をとるものとして導出したもので
ある。例えば、 350℃では23.7秒、 450℃では 1.9秒と
なる。後述する実施例で示した図2の曲線は、この式を
表している。上記本発明の方法によれば、耐パウダリン
グ性を低下させずに摺動性を改善したプレス成形性に優
れた合金化溶融亜鉛めっき鋼板を容易に製造することが
できる。
[Equation 1] The amount of Fe diffusing in the plating film can be approximated by D × t (time). Therefore, the time to obtain a given amount of diffusing Fe is derived as a form proportional to the reciprocal of the diffusion coefficient. . For example, it takes 23.7 seconds at 350 ° C and 1.9 seconds at 450 ° C. The curve in FIG. 2 shown in the examples described later represents this equation. According to the method of the present invention described above, it is possible to easily manufacture an alloyed hot-dip galvanized steel sheet having improved pressability and improved slidability without lowering the powdering resistance.

【0016】[0016]

【実施例】表1に示す化学組成を有する板厚0.7mm の鋼
板を母材鋼板(供試材)として使用し、縦型溶融亜鉛め
っき装置を用いて以下の条件でめっき処理を行った。
Example A steel sheet having a chemical composition shown in Table 1 and a thickness of 0.7 mm was used as a base steel sheet (test material), and plating treatment was performed under the following conditions using a vertical hot dip galvanizing apparatus.

【0017】[0017]

【表1】 まず、前記供試材を、75℃の水酸化ナトリウム水溶液
(10質量%)中で脱脂洗浄し、水素(20体積%)と窒素
の混合ガス雰囲気中で、 820℃×60秒の条件で焼鈍し
た。次いで、焼鈍後の供試材を浴温近傍まで冷却し、浴
中のAl濃度を0.07〜0.3質量%の範囲で変化させた、浴
温が 460℃の亜鉛めっき浴に浸漬してその両面に溶融亜
鉛めっきを施した。浸漬時間は 3秒とし、めっき浴から
引き上げた後、ワイピング方式によりめっき付着量(片
面当たりの付着量)が60g/m2 になるように調整し
た。得られた溶融亜鉛めっき鋼板に、高周波誘導加熱装
置を用い、種々のヒートパターンで合金化処理を施し
た。なお、合金化終了後の冷却は、風冷またはミスト冷
却により行い、風量およびミスト量を変化させて冷却速
度を調整した。また、合金化処理後、実際の製造に合わ
せ、圧下後の伸び率が 0.8%になるように調質圧延を施
した。合金化処理後の鋼板から各種の試験片を採取し、
以下に述べる方法で、外面および内面のめっき皮膜の組
成分析を行い、摩擦係数を測定し、耐パウダリング性を
評価した。 1)めっき皮膜の組成分析 合金化処理後の鋼板から直径25mmの試験片を切り出し、
0.5体積%のインヒビター(商品名:イビット 710N
(朝日化学製))を含有する10体積%の塩酸水溶液に浸
漬してめっき皮膜を溶解し、溶解しためっき皮膜量およ
びICP法(プラズマ発光分析法)による溶解液中のFe
の含有量の測定を行うとともに、めっき皮膜を溶解した
後の鋼板についてX線回折を行い、ζ相の存在の有無を
調査した。
[Table 1] First, the test material was degreased and washed in an aqueous sodium hydroxide solution (10% by mass) at 75 ° C, and then annealed in a mixed gas atmosphere of hydrogen (20% by volume) and nitrogen at 820 ° C for 60 seconds. did. Next, the annealed test material was cooled to near the bath temperature, and the Al concentration in the bath was changed in the range of 0.07 to 0.3 mass%. Hot-dip galvanized. Immersion time was set to 3 seconds, and after withdrawing from the plating bath, adjustment was performed by a wiping method so that the coating adhesion amount (adhesion amount per one surface) was 60 g / m 2 . The obtained hot-dip galvanized steel sheet was subjected to alloying treatment with various heat patterns using a high frequency induction heating device. The cooling after the alloying was performed by air cooling or mist cooling, and the cooling rate was adjusted by changing the air volume and the mist volume. After the alloying treatment, temper rolling was performed according to the actual production so that the elongation after reduction was 0.8%. Collecting various test pieces from the steel sheet after alloying treatment,
By the method described below, the composition of the plating film on the outer surface and the inner surface was analyzed, the friction coefficient was measured, and the powdering resistance was evaluated. 1) Composition analysis of plating film Cut a test piece with a diameter of 25 mm from the steel sheet after alloying treatment,
0.5 volume% inhibitor (Product name: IBIT 710N
(Manufactured by Asahi Chemical Co., Ltd.)) to dissolve the plating film by immersing it in a 10% by volume aqueous hydrochloric acid solution, and the amount of the dissolution film and Fe in the solution by ICP method (plasma emission analysis method).
Was measured, and X-ray diffraction was performed on the steel sheet after the plating film was dissolved to examine the presence or absence of the ζ phase.

【0018】X線回折積分強度の測定は理学電機製RU-2
00の装置により行い、線源にCoKα線を用い、試料の回
転速度: 2°/min、管球電圧:30KV、管球電流:100mA
、照射時間:30min の条件下でζ相の(021) 面のピー
ク強度を測定した。カウント数が 20/秒以下はノイズと
の識別が不可能となるので、「ζ相は存在せず」と判断
した。 2)δ1 相中のFe含有量の測定 溶融亜鉛めっき後の鋼板の断面を鏡面研磨した試料を対
象に、EDX(エネルギー分散型マイクロアナライザ
ー)を用いてδ1 相の断面にビームを照射し、δ1
相中のFe含有量の測定を行った。 3)Γ相の厚さの測定 めっき皮膜の断面のTEM(透過電子顕微鏡)解析によ
りΓ相の特徴である体心立方晶であることと格子定数
(0.9nm) を確認した上で、 5%硝酸アルコール(ナイタ
ル液)でエッチングしてΓ相を明確にし、その厚み方向
の長さをSEM(走査電子顕微鏡)観察することにより
測定した。 4)耐パウダリング性評価試験 合金化処理後の鋼板から直径60mmの円盤状の試験片を打
ち抜き、この試験片に防錆油として出光興産製のSKW92
(商品名)を2g/m2 の割合で塗油し、ポンチ直径:30m
m、ダイス直径:35.4mm、ダイス型半径:3R、ブランク
ホルダー圧:4900N(500kgf) で円筒絞り試験を行い、円
筒絞り前後の試験片の質量を測定して、その減量からめ
っき皮膜のパウダリング量を求めた。 4)摩擦係数測定試験 合金化処理後の鋼板から30mm×270mm の試験片を切り出
し、表面をエメリー紙(#600)でクロス方向に研磨した
後この試験片に防錆油として出光興産製のSKW92(商品
名) を2g/m2 の割合で塗油し、ブランクホルダー圧:73
50〜14700Pa (750〜1500kgf)、成形速度:60mm/minで高
面圧U成形試験を実施し、摩擦係数μを求めた。
The X-ray diffraction integrated intensity is measured by RU-2 manufactured by Rigaku Denki.
00 apparatus, using CoKα ray as the radiation source, sample rotation speed: 2 ° / min, tube voltage: 30KV, tube current: 100mA
The irradiation time was 30 min, and the peak intensity of the (021) plane of the ζ phase was measured. When the number of counts was 20 / sec or less, it was impossible to distinguish from noise, so it was judged that "zeta phase does not exist". 2) Measurement of Fe content in the δ 1 phase A sample of which the cross section of the steel sheet after hot dip galvanization was mirror-polished was irradiated with a beam on the δ 1 phase cross section using an EDX (energy dispersive microanalyzer). , Δ 1
The Fe content in the phase was measured. 3) Measurement of Γ phase thickness TEM (transmission electron microscope) analysis of the cross section of the plating film indicates that the Γ phase is a body-centered cubic crystal and has a lattice constant.
After confirming (0.9 nm), etching was performed with 5% nitric acid alcohol (nital solution) to clarify the Γ phase, and the length in the thickness direction was measured by SEM (scanning electron microscope) observation. 4) Powdering resistance evaluation test A disc-shaped test piece with a diameter of 60 mm was punched out from the steel sheet after the alloying treatment, and SKW92 manufactured by Idemitsu Kosan Co., Ltd. was used as rust preventive oil on this test piece.
(Product name) oiled at a rate of 2g / m 2 , punch diameter: 30m
m, die diameter: 35.4mm, die radius: 3R, blank holder pressure: 4900N (500kgf), perform a cylindrical drawing test, measure the mass of the test piece before and after the cylindrical drawing, and powder the plating film from the weight loss. The amount was calculated. 4) Friction coefficient measurement test A 30 mm x 270 mm test piece was cut out from the alloyed steel plate, the surface was polished in the cross direction with emery paper (# 600), and this test piece was used as rust-preventing oil SKW92 manufactured by Idemitsu Kosan. (Product name) is oiled at a rate of 2 g / m 2 and blank holder pressure: 73
A high surface pressure U molding test was carried out at 50 to 14700 Pa (750 to 1500 kgf) at a molding speed of 60 mm / min to determine the friction coefficient μ.

【0019】図1は、高面圧U成形試験装置の要部の構
成を示す部分断面図である。図示するように、ダイス3
上の試験片1をブランクホルダー2で押さえ圧(ブラン
クホルダー圧)P で押さえ、パンチ4で試験片1に荷重
F を加えて成形する。摩擦係数μは、dF/2dPから求めら
れる。めっき鋼板の外面の摩擦係数μが0.22以下であれ
ば、摺動性が良好と評価した。試験結果を表2に併せて
示す。なお、表2における「後段熱処理温度」および
「後段熱処理時間」とは、めっき後の鋼板の合金化処理
を終了して所定の冷却速度で冷却した後、特定の温度で
保持する際のその温度および時間をいう。また、パウダ
リング量は、試験片1個当たりの量である。
FIG. 1 is a partial cross-sectional view showing the structure of the main part of a high surface pressure U-molding tester. Dice 3 as shown
Press the upper test piece 1 with the blank holder 2 with the pressing pressure (blank holder pressure) P, and load the test piece 1 with the punch 4.
Add F and mold. The friction coefficient μ is calculated from dF / 2dP. If the friction coefficient μ of the outer surface of the plated steel sheet was 0.22 or less, the slidability was evaluated as good. The test results are also shown in Table 2. In Table 2, the “post-stage heat treatment temperature” and the “post-stage heat treatment time” mean the temperatures at which the steel sheet after plating is alloyed and cooled at a predetermined cooling rate and then held at a specific temperature. And time. The powdering amount is the amount per one test piece.

【0020】[0020]

【表2】 また、図2は、表2の No.9 〜No.19(後段熱処理温度
および時間を変化させた場合)の結果を後段熱処理温度
と後段熱処理時間を両軸にとって表したものである。○
印は摩擦係数が0.22以下で、摺動性が良好であった場
合、×印は摺動性よくなかったか、パウダリング量が多
く耐パウダリング性が悪かった場合である。
[Table 2] Further, FIG. 2 shows the results of Nos. 9 to 19 (when the post-stage heat treatment temperature and time are changed) in Table 2 with respect to the post-stage heat treatment temperature and the post-stage heat treatment time. ○
The mark indicates that the friction coefficient is 0.22 or less and the slidability is good, and the mark indicates that the slidability is not good or the powdering amount is large and the powdering resistance is poor.

【0021】これらの結果から明らかなように、本発明
で規定する条件を満たす合金化溶融亜鉛めっき鋼板は、
摩擦係数が小さく摺動性が改善された。しかも、パウダ
リング量が特に増加することはなかった。
As is clear from these results, the galvannealed steel sheet satisfying the conditions specified in the present invention is
The coefficient of friction was small and slidability was improved. Moreover, the amount of powdering did not increase particularly.

【0022】[0022]

【発明の効果】本発明のめっき鋼板または本発明の製造
方法によって得られるめっき鋼板は、耐パウダリング
性、摺動性ともに優れている。プレス性に優れた合金化
溶融亜鉛めっき鋼板を安定して得ることが可能であるの
で、産業上への寄与が大である。
The plated steel sheet of the present invention or the plated steel sheet obtained by the production method of the present invention is excellent in both powdering resistance and slidability. Since it is possible to stably obtain an alloyed hot-dip galvanized steel sheet having excellent pressability, it greatly contributes to industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】高面圧U成形試験に使用する試験装置の要部の
構成を示す部分断面図である。
FIG. 1 is a partial cross-sectional view showing a configuration of a main part of a test apparatus used for a high surface pressure U molding test.

【図2】実施例の結果で、本発明で規定する後段熱処理
条件を満たす範囲を示す図である。
FIG. 2 is a diagram showing a range of a result of an example, which satisfies a post-stage heat treatment condition defined by the present invention.

【符号の説明】[Explanation of symbols]

1:試験片 2:ブランクホルダー 3:ダイス 4:パンチ 1: Test piece 2: Blank holder 3: Dice 4: Punch

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−269625(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/00 - 2/40 C22C 38/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-11-269625 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 2/00-2/40 C22C 38 / 00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】めっき皮膜中の平均Fe含有量が 8.5〜13質
量%で、めっき皮膜の最表層を形成するδ1相中のFe含
有量が 8.0質量%以上で、かつ母材鋼板との界面に形成
されるΓ相の厚さが 1.0μm以下であることを特徴とす
るプレス成形性に優れた合金化溶融亜鉛めっき鋼板。
1. The average Fe content in the plating film is 8.5 to 13% by mass, the Fe content in the δ 1 phase forming the outermost layer of the plating film is 8.0% by mass or more, and the content of the base steel plate A galvannealed steel sheet with excellent press formability, characterized in that the thickness of the Γ phase formed at the interface is 1.0 μm or less.
【請求項2】溶融亜鉛めっき後の鋼板に 500〜550 ℃で
合金化処理を施してめっき皮膜中の平均 Fe 含有量を 8.5
13 質量%とした後、350〜450℃の温度範囲まで20℃/s
以上の冷却速度で冷却し、350〜450℃の範囲内の温度 T
℃で、3×10-7/{exp(-11330/(T+273))}秒以上保持する
ことを特徴とする請求項1に記載のプレス成形性に優れ
た合金化溶融亜鉛めっき鋼板の製造方法。
2. The hot-dip galvanized steel sheet is alloyed at 500 to 550 ° C. so that the average Fe content in the plating film is 8.5.
~ 13 % by mass , then 20 ℃ / s up to the temperature range of 350-450 ℃
Cool at the above cooling rate and keep the temperature T within the range of 350 to 450 ° C.
The alloyed hot-dip galvanized steel sheet excellent in press formability according to claim 1, characterized in that it is held at 3 ° C -7 / {exp (-11330 / (T + 273))} seconds or more at 0 ° C. Production method.
JP2000080884A 2000-03-22 2000-03-22 Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same Expired - Fee Related JP3489532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080884A JP3489532B2 (en) 2000-03-22 2000-03-22 Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080884A JP3489532B2 (en) 2000-03-22 2000-03-22 Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001262308A JP2001262308A (en) 2001-09-26
JP3489532B2 true JP3489532B2 (en) 2004-01-19

Family

ID=18597914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080884A Expired - Fee Related JP3489532B2 (en) 2000-03-22 2000-03-22 Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3489532B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014940B2 (en) * 2007-09-27 2012-08-29 新日本製鐵株式会社 Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2001262308A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
CA2605486C (en) Hot dip galvannealed steel sheet and method of production of the same
KR100675565B1 (en) Steel sheet plated by hot dipping with alloyed zinc with excellent adhesion and process for producing the same
KR101727424B1 (en) Galvannealed steel plate and method for manufacturing same
WO2010089910A1 (en) Galvannealed steel sheet and process for production thereof
EP2631320B1 (en) Metal-coated steel sheet and hot-dip galvanized steel sheet
JP2004323970A (en) High strength hot dip galvanized steel sheet, and its production method
JP4551268B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
JPWO2011081043A1 (en) Manufacturing method of hot press-formed member
JP5020526B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same
JP3397150B2 (en) Hot-dip galvanized steel sheet
JP2005256042A (en) Galvannealed steel sheet, and method for manufacturing the same
JP3489532B2 (en) Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same
CN115443350B (en) Al-plated hot stamped steel
CN114761602B (en) Aluminum-based alloy-plated steel sheet excellent in workability and corrosion resistance, and method for producing same
JPH11269625A (en) Hot dip galvannealed steel sheet and its production
JP3149801B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3239831B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
CN114829666A (en) Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and method for producing same
JP4508378B2 (en) Manufacturing method of galvannealed steel sheet with excellent press formability
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP3449244B2 (en) Manufacturing method of galvannealed steel sheet
JP3598943B2 (en) Alloyed hot-dip galvanized steel sheet with excellent slidability
JP3201312B2 (en) Galvannealed steel sheet with excellent press formability
JPH0978229A (en) Production of zinc-magnesium alloy plated steel sheet
JP4600951B2 (en) Alloyed hot-dip galvanized steel sheet excellent in workability and its manufacturing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3489532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees