JP3483282B2 - Method for producing ultrafine titanium dioxide composite oxide - Google Patents

Method for producing ultrafine titanium dioxide composite oxide

Info

Publication number
JP3483282B2
JP3483282B2 JP30611893A JP30611893A JP3483282B2 JP 3483282 B2 JP3483282 B2 JP 3483282B2 JP 30611893 A JP30611893 A JP 30611893A JP 30611893 A JP30611893 A JP 30611893A JP 3483282 B2 JP3483282 B2 JP 3483282B2
Authority
JP
Japan
Prior art keywords
titanium
silicon
aluminum
composite oxide
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30611893A
Other languages
Japanese (ja)
Other versions
JPH07138020A (en
Inventor
好明 井上
一博 川嵜
誠二 横田
信二郎 元木
勇治 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neturen Co Ltd
Original Assignee
Neturen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neturen Co Ltd filed Critical Neturen Co Ltd
Priority to JP30611893A priority Critical patent/JP3483282B2/en
Publication of JPH07138020A publication Critical patent/JPH07138020A/en
Application granted granted Critical
Publication of JP3483282B2 publication Critical patent/JP3483282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超微粒子二酸化チタン
複合化酸化物、特に純水や弱酸性溶液にも優れた分散性
を有するチタン・ケイ素またはチタン・アルミニウム等
の超微粒子複合化酸化物からなる二酸化チタン複合化酸
化物製造方法に関する。
TECHNICAL FIELD The present invention relates to an ultrafine particle composite oxide of titanium dioxide, particularly an ultrafine particle composite oxide of titanium / silicon or titanium / aluminum which has excellent dispersibility in pure water or a weakly acidic solution. the method for producing a titanium dioxide composite oxide composed of.

【0002】[0002]

【従来の技術】従来、酸化チタン粉末は、その紫外線遮
蔽力あるいは、高屈折率を有する特質により、化粧料基
剤に配合して紫外線遮蔽効果を持つ化粧料の製造や、化
学繊維の原料樹脂に混合して紡糸して紫外線遮蔽効果を
有する衣料の製造やプラスチックに配合又はコートして
紫外線遮蔽材の製造や、あるいは白色顔料として各種塗
料等に広く用いられている。
2. Description of the Related Art Conventionally, titanium oxide powder is blended with a cosmetic base to produce a cosmetic having an ultraviolet shielding effect or a raw material resin for a chemical fiber due to its ultraviolet shielding power or its characteristic of having a high refractive index. It is widely used in various applications such as manufacturing of clothing having an ultraviolet ray shielding effect, mixing with or coating with plastics, production of an ultraviolet ray shielding material by mixing or coating with a plastic, or white pigment.

【0003】しかし、酸化チタン粒子は、水中での等電
点が約pH6なので、純水あるいはや弱酸性溶液には分
散性が悪いという問題がある。酸あるいはアルカリ試薬
で溶液のpHを等電点から遠ざければ、分散性は良くな
るが、酸・アルカリを使用することは、環境上の問題、
各種用途への使用上の制約、また後で中和しなければな
らないという手間、及び人体への悪影響等、好ましくな
い問題が発生する。そのため、近時純水、弱酸性溶液、
あるいは弱アルカリ性溶液で十分な分散性を有するもの
が求められている。
However, since titanium oxide particles have an isoelectric point of about pH 6 in water, there is a problem that they have poor dispersibility in pure water or a slightly acidic solution. If the pH of the solution is moved away from the isoelectric point with an acid or alkali reagent, the dispersibility will be better, but the use of acid / alkali causes environmental problems,
There are unfavorable problems such as restrictions on use for various purposes, time and effort to be neutralized later, and adverse effects on the human body. Therefore, recently pure water, weakly acidic solution,
Alternatively, a weak alkaline solution having sufficient dispersibility is required.

【0004】この解決策として、例えば二酸化チタン粒
子を、酸化ケイ素、酸化アルミニウム等の金属酸化物ま
たはその水和物およびそれらの組合せによって表面処理
(コーティング)するようにしたものが提案されている
(特開昭55ー154317号公報、特開昭61ー28
1018号公報)。その場合、酸化チタン粉末の粒径が
0.01〜10μm程度小さくなると、粒子同志が凝集
を起こしてしまい、表面処理が均一にできなくなるとい
う問題があるが、該問題の解決策として撹拌方法を改良
した方法が提案されている(特開平3ー265668号
公報)。
As a solution to this problem, there has been proposed, for example, one in which titanium dioxide particles are surface-treated (coated) with a metal oxide such as silicon oxide or aluminum oxide or a hydrate thereof or a combination thereof ( JP-A-55-154317 and JP-A-61-28
No. 1018). In that case, when the particle size of the titanium oxide powder is reduced to about 0.01 to 10 μm, there is a problem that the particles are agglomerated with each other and the surface treatment cannot be performed uniformly. An improved method has been proposed (JP-A-3-265668).

【0005】しかし、従来提案されているいずれの方法
でも、酸化チタン粉末の均一な表面処理は困難であり、
特に粒径が小さくなると困難であり、不完全な表面処理
の結果、分散性の改良が不十分だったり、各種用途での
配合処理中等で表面処理層が剥離し凝集を起すという問
題があり、未だ上記問題を完全に解決するに至っていな
い。
However, it is difficult to uniformly surface-treat the titanium oxide powder by any of the conventionally proposed methods.
Especially when the particle size is small, it is difficult, as a result of incomplete surface treatment, there is a problem that the improvement of dispersibility is insufficient, or the surface treatment layer peels off and agglomerates during compounding treatment for various applications, The above problem has not been completely solved yet.

【0006】また、分散性を改良する他の方策として、
水和酸化チタンおよび水和酸化ケイ素等の混合ゾルまた
はゲルを過酸化水素で溶解したものを加水分解して複合
ゾルの形態にすることが提案されているが、その製造方
法は複雑であり、加熱冷却を繰り返すので、製造に非常
に長時間を要すという問題があった。
As another measure for improving the dispersibility,
It is proposed to hydrolyze a mixed sol or gel of hydrated titanium oxide and hydrated silicon oxide with hydrogen peroxide to form a composite sol, but its production method is complicated, Since heating and cooling are repeated, there is a problem that the manufacturing takes a very long time.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記した従
来の酸化チタン粒子の分散性改良策の有する各種の問題
を一挙に解決しようとするものであり、水等の中性、弱
酸性溶液にも優れた分散性を有し、且つ従来のような表
面層の剥離等の変質がなく長期間安定性があり、しかも
超微粒子状であり、さらにその製造工程も単純で短時間
に容易に製造することができる易分散性の超微粒子二酸
化チタン複合化酸化物製造方法を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention is intended to solve all the various problems that the above-mentioned conventional measures for improving the dispersibility of titanium oxide particles have at once. It also has excellent dispersibility, has no deterioration such as peeling of the surface layer and has long-term stability, and is in the form of ultrafine particles. Moreover, its manufacturing process is simple and easy in a short time. An object of the present invention is to provide a method for producing an easily dispersible ultrafine particle titanium dioxide composite oxide that can be produced.

【0008】[0008]

【課題を解決するための手段】本発明者は、超微粒子を
研究する過程で、熱プラズマの高温下でチタンとケイ
素、又はチタンとアルミニュウムを同時に溶融させさら
に蒸発させて気相化させることにより、チタンとケイ素
が、又はチタンとアルミニュウムが複合化した超微粒子
の従来にない複合酸化物が得られ、該超微粒子二酸化チ
タン複合化酸化物は等電点のpH値が弱酸性域からず
れ、純水あるいは弱酸性水又は弱アルカリ性水で容易に
分散することを見出し、本発明に到達したものである。
Means for Solving the Problems In the process of studying ultrafine particles, the present inventor has made it possible to simultaneously melt titanium and silicon or titanium and aluminum under high temperature of thermal plasma and further vaporize them to vaporize them. , Titanium and silicon, or titanium and aluminum complexed ultrafine particles unprecedented complex oxide is obtained, the ultrafine titanium dioxide complex oxide has a pH value of the isoelectric point deviated from the weakly acidic range, The inventors of the present invention have found that they can be easily dispersed in pure water, weakly acidic water or weakly alkaline water, and have reached the present invention.

【0009】 即ち、本発明は、ケイ素/チタン(重量
比)が0.0008〜0.0864であるチタン・ケイ素
超微粒子二酸化チタン複合化酸化物、またはアルミニウ
ム/チタン(重量比)が0.0009〜0.0980であ
チタン・アルミニウム超微粒子二酸化チタン複合化酸
化物として得られる超微粒子二酸化チタン複合化酸化物
得ることによって、前記問題点を解決することができ
たものである。
That is, according to the present invention, titanium / silicon ultrafine particles titanium dioxide composite oxide having a silicon / titanium (weight ratio) of 0.0008 to 0.0864 or aluminum / titanium (weight ratio) of 0.0009. ~0.0980 der
Thus to obtain a titanium-aluminum obtained as ultrafine titanium dioxide composite oxide ultrafine titanium dioxide composite oxide that is what was possible to solve the above problems.

【0010】本発明の超微粒子二酸化チタン複合化酸化
物は、ケイ素/チタン(重量比)が0.0008〜0.0
864、望ましくは0.0039〜0.041であるチタ
ン・ケイ素系原料粗粒子、またはアルミニウム/チタン
(重量比)が0.0009〜0.0980望ましくは0.
0044〜0.046であるチタン・アルミニウム系原
料粗粒子を高温化で溶融蒸発させて気相化させることに
より、チタン・ケイ素またはチタン・アルミニウムの超
微粒子複合化酸化物を生成させて捕集することにより、
製造することができる。
The ultrafine titanium dioxide composite oxide of the present invention has a silicon / titanium (weight ratio) of 0.0008 to 0.0.
864, preferably 0.0039 to 0.041 titanium-silicon raw material coarse particles, or aluminum / titanium (weight ratio) 0.0009 to 0.0980, preferably 0.09.
The titanium / aluminum-based raw material coarse particles of 0044 to 0.046 are melt-evaporated at a high temperature to be vaporized to form an ultrafine particle composite oxide of titanium / silicon or titanium / aluminum and collected. By
It can be manufactured.

【0011】出発原料の前記チタン・ケイ素系原料粗粒
子またはチタン・アルミニウム系原料粗粒子としては、
金属チタン粉末と酸化ケイ素粉末の混合物、あるいは金
属チタン粉末と酸化アルミニウム粉末の混合物、酸化チ
タン粉末と酸化ケイ素粉末の混合物、酸化チタン粉末と
酸化アルミニウム粉末の混合物、又は酸化チタン粉末と
金属ケイ素粉末の混合物、酸化チタン粉末と金属アルミ
ニウム粉末の混合物等いずれの形態でも採用することが
できる。
The titanium / silicon-based raw material coarse particles or the titanium / aluminum-based raw material coarse particles as the starting materials are as follows:
Metal titanium powder and silicon oxide powder mixture, or metal titanium powder and aluminum oxide powder mixture, titanium oxide powder and silicon oxide powder mixture, titanium oxide powder and aluminum oxide powder mixture, or titanium oxide powder and metal silicon powder of Any form such as a mixture or a mixture of titanium oxide powder and metallic aluminum powder can be adopted.

【0012】これらの出発原料は、高周波誘導熱プラズ
マや直流熱プラズマ又は高温燃焼炎の摂氏3000℃以
上の高温部にキャリアガスにより供給することにより、
瞬時にして溶融蒸発して気相化する。気相化して酸化さ
れ且つ高温域での冷却過程による液相反応により、新し
いチタン・ケイ素またはチタン・アルミニウムの超微粒
子複合化酸化物を形成する。チタン・ケイ素またはチタ
ン・アルミニウムの超微粒子複合化酸化物は、出発原料
が酸化チタン又は酸化ケイ素あるいは酸化アルミニウム
等酸化物であれば出発原料自身を溶融蒸発させることに
より、又は出発原料が金属チタンや金属ケイ素あるいは
金属アルミニウムであれば酸素ガス中で溶融蒸発させる
ことにより得られる。
These starting materials are supplied by a carrier gas to a high-temperature induction thermal plasma, a direct-current thermal plasma, or a high-temperature combustion flame at a high temperature of 3000 ° C. or higher, by a carrier gas.
It instantly melts and evaporates and becomes a gas phase. A new ultrafine particle composite oxide of titanium / silicon or titanium / aluminum is formed by a liquid phase reaction which is vaporized and oxidized and is cooled in a high temperature range. The ultrafine particle composite oxide of titanium / silicon or titanium / aluminum can be obtained by melting and evaporating the starting material itself if the starting material is an oxide such as titanium oxide, silicon oxide, or aluminum oxide, or if the starting material is metallic titanium or Metallic silicon or metallic aluminum can be obtained by melt evaporation in oxygen gas.

【0013】このようにして得られたチタン・ケイ素ま
たはチタン・アルミニウムの超微粒子複合化酸化物は、
粒径が0.01μm〜0.3μmの範囲で平均粒径が0.
1μm程度の白色状超微粒子粉末を呈している。そし
て、等電点は、ケイ素を複合化したものが、pH4とな
り、pH4.5以上で分散性が優れ、アルミニウムを複
合化したものが、pH7.5となりpH7以下で分散性
が優れている。
The ultrafine particle composite oxide of titanium / silicon or titanium / aluminum thus obtained is
The average particle size is in the range of 0.01 μm to 0.3 μm.
It exhibits a white-like ultrafine particle powder of about 1 μm. Regarding the isoelectric point, the composite of silicon has a pH of 4 and has excellent dispersibility at pH 4.5 or higher, and the composite of aluminum has a pH of 7.5 and excellent dispersibility at pH 7 or lower.

【0014】上記方法によって得られるチタン・ケイ素
またはチタン・アルミニウムの超微粒子複合化酸化物で
ある超微粒子二酸化チタン複合化酸化物は、ケイ素/チ
タン(重量比)が0.0008〜0.0864、望ましく
は0.0039〜0.041、又はアルミニウム/チタン
(重量比)が0.0009〜0.0980、望ましくは
0.0044〜0.046の範囲のものが分散性に優れて
いる。ケイ素/チタン(重量比)が0.0008未満、
又はアルミニウム/チタン(重量比)が0.0009未
満では等電点の変化が少なく、分散性の向上に顕著な効
果を著わさなかった。また、ケイ素/チタン(重量比)
が0.0864以上、又はアルミニウム/チタン(重量
比)が0.0980以上では等電点の変化は、飽和に達
しており不必要である。ケイ素/チタン(重量比)が
0.0039〜0.041の範囲、及びアルミニウム/チ
タン(重量比)が0.0044〜0.046の範囲のもの
が、最も等電点の変化が大きく望ましい。
The ultrafine particle titanium dioxide composite oxide, which is the ultrafine particle composite oxide of titanium / silicon or titanium / aluminum obtained by the above method, has a silicon / titanium (weight ratio) of 0.0008 to 0.0864, Desirably, 0.0039 to 0.041, or aluminum / titanium (weight ratio) in the range of 0.0009 to 0.0980, preferably 0.0044 to 0.046 is excellent in dispersibility. Silicon / titanium (weight ratio) is less than 0.0008,
Alternatively, when the aluminum / titanium (weight ratio) is less than 0.0009, the change in isoelectric point was small, and the effect of improving dispersibility was not remarkable. Also, silicon / titanium (weight ratio)
Is 0.0864 or more, or aluminum / titanium (weight ratio) is 0.0980 or more, the change in isoelectric point is saturated and unnecessary. The silicon / titanium (weight ratio) in the range of 0.0039 to 0.041 and the aluminum / titanium (weight ratio) in the range of 0.0044 to 0.046 have the largest changes in the isoelectric point and are desirable.

【0015】また、超微粒子二酸化チタン複合化酸化物
の粒径は、等電点変化には影響を与えないが、紫外線遮
蔽性、沈降安定性に大きな効果を持つので、0.01μ
m〜0.3μmの範囲、好ましくは0.1μm以下程度が
望ましい。
The particle size of the ultrafine titanium dioxide composite oxide does not affect the isoelectric point change, but has a great effect on the ultraviolet shielding property and the sedimentation stability.
The range of m to 0.3 μm, preferably about 0.1 μm or less is desirable.

【0016】[0016]

【実施例】以下、本発明に係るチタン・ケイ素またはチ
タン・アルミニウムの超微粒子二酸化チタン複合化酸化
物及びその製造方法の実施例について説明する。図1
は、その製造装置の実施例を示している。図において、
1は反応容器、2は該反応容器の開口上部に取付けられ
た高周波プラズマトーチ、3はその高周波電源、4は該
高周波電源に接続された加熱コイル、5は反応容器1と
プラズマトーチ開端面との間の原料供給部6に原料粉末
を供給する原料フィーダ、7は捕集器、8は該捕集器の
捕集筒、9は該捕集筒内に設けられたフィルタ、10は
前記反応容器と前記捕集筒間に設けられた導管、11は
ガスポンプである。
EXAMPLES Examples of titanium / silicon or titanium / aluminum ultrafine titanium dioxide composite oxides and a method for producing the same according to the present invention will be described below. Figure 1
Shows an example of the manufacturing apparatus. In the figure,
Reference numeral 1 is a reaction vessel, 2 is a high frequency plasma torch attached to an upper opening of the reaction vessel, 3 is a high frequency power source thereof, 4 is a heating coil connected to the high frequency power source, 5 is a reaction vessel 1 and a plasma torch open end surface. , A raw material feeder for supplying the raw material powder to the raw material supply section 6, a reference numeral 7 indicates a collector, a reference numeral 8 indicates a collection cylinder of the collector, a reference numeral 9 indicates a filter provided in the collection cylinder, and a reference numeral 10 indicates the reaction. A conduit 11 provided between the container and the collecting cylinder is a gas pump.

【0017】前記高周波プラズマトーチ2にアルゴンガ
ス、窒素ガスや酸素ガス、又はこれらの混合ガスがコア
ガス源12より供給されると、加熱コイル4により付与
される高周波エネルギーにより、高温の熱プラズマ化さ
れてプラズマフレームPFが生成される。原料フィーダ
5に収容された原料粗粒子は、キャリアガス源から供給
されるArガス等のキャリアガスにのせられて原料フィ
ーダから原料供給部6に供給されて高温プラズマフレー
ムと接触する。
When argon gas, nitrogen gas, oxygen gas, or a mixed gas thereof is supplied to the high-frequency plasma torch 2 from the core gas source 12, the high-frequency energy imparted by the heating coil 4 produces high-temperature thermal plasma. Plasma frame PF is generated. The raw material coarse particles accommodated in the raw material feeder 5 are placed on a carrier gas such as Ar gas supplied from a carrier gas source, supplied from the raw material feeder to the raw material supply unit 6, and contact with the high temperature plasma flame.

【0018】原料粗粒子は、高温プラズマフレームに接
することによって瞬時に溶解蒸発して気相化し、反応容
器1内の雰囲気ガスと反応して雰囲気ガス中で凝縮して
高純度の超微粒子となって雰囲気ガスともども煙霧状と
なって捕集筒内に移動され、フイルター9に捕捉されて
捕集筒8の下部に集積させるようになっている。
The raw material coarse particles are instantly dissolved and vaporized by contacting with a high temperature plasma flame to become a gas phase, and react with the atmospheric gas in the reaction vessel 1 to condense in the atmospheric gas to become high-purity ultrafine particles. As a result, the atmosphere gas and the atmosphere gas are converted into a mist and are moved into the collecting cylinder, and are captured by the filter 9 and accumulated in the lower portion of the collecting cylinder 8.

【0019】なお、捕集筒のフィルター内部に連通して
雰囲気ガスを排出するエアーポンプ11の吐出側の管路
は分岐し、一方は管路P2を介して排出口へ接続され、
他方は管路P3を介して反応容器1に導通され、リサイ
クルガスを反応容器内に供給するようになっている。
The pipe line on the discharge side of the air pump 11 communicating with the inside of the filter of the collection cylinder and discharging the atmospheric gas is branched, and one of them is connected to the discharge port through the pipe line P2.
The other is connected to the reaction vessel 1 through a pipe P3, and recycle gas is supplied into the reaction vessel.

【0020】図2は、直流熱プラズマを用いた本発明に
係るチタン・ケイ素またはチタン・アルミニウムの超微
粒子二酸化チタン複合化酸化物の製造装置の他の実施例
であり、熱プラズマ発生装置が直流熱プラズマ発生装置
である点を除いて、他の構成は図1の前記装置とほぼ同
様である。従って、同様な部分は前記実施例と同一符号
を用い、相違する構成のみを説明する。
FIG. 2 shows another embodiment of the apparatus for producing a titanium oxide / titanium / aluminum ultrafine titanium dioxide composite oxide according to the present invention using direct current thermal plasma, in which the thermal plasma generator is direct current. Except for the fact that it is a thermal plasma generator, other configurations are almost the same as the above-mentioned apparatus of FIG. Therefore, the same parts are denoted by the same reference numerals as those in the above-described embodiment, and only different configurations will be described.

【0021】図中、21は反応容器であり、該反応容器
の上部開口部に一対の直流プラズマトーチ22、23が
設けられている。各直流プラズマトーチ22、23に
は、それぞれDC電源24、25が接続されていると共
に、プラズマ形成ガス源26が連結されている。プラズ
マ形成ガスとしては、アルゴンガスと窒素ガス又は酸素
ガス等の混合ガスが使用ができ、原料粗粒子の種類によ
り選定される。前記プラズマトーチ22、23に原料フ
ィーダ27、28が直接連結され、生成される直流熱プ
ラズマに原料粗粒子29を供給するようになっている。
原料粗粒子のキャリアガスとして、本実施例ではキャリ
アガス源30から供給されるアルゴンガスを用いている
が、それに限るものではない。また、本実施例では、直
流プラズマトーチが2つ設けられているが、勿論一つで
も可能である。なお、31、32はガスポンプである。
In the figure, 21 is a reaction vessel, and a pair of DC plasma torches 22 and 23 are provided at the upper opening of the reaction vessel. DC power supplies 24 and 25 are connected to the DC plasma torches 22 and 23, respectively, and a plasma forming gas source 26 is connected thereto. As the plasma forming gas, a mixed gas of argon gas and nitrogen gas or oxygen gas can be used, and is selected depending on the type of raw material coarse particles. Raw material feeders 27 and 28 are directly connected to the plasma torches 22 and 23, and raw material coarse particles 29 are supplied to the generated DC thermal plasma.
In this embodiment, argon gas supplied from the carrier gas source 30 is used as the carrier gas for the raw material coarse particles, but the present invention is not limited to this. Further, in this embodiment, two DC plasma torches are provided, but of course, one may be provided. In addition, 31 and 32 are gas pumps.

【0022】次に、前記図1の装置によって本発明に係
る超微粒子二酸化チタン複合化超微粒子を製造した実施
例について説明する。実施例1 アルゴンガスと酸素ガスの混合ガス流(50×103cc
/min)がコアガス源12からプラズマトーチ2に供給
され、高周波誘導コイル4により与えられた出力(周波
数3.68MHz、出力20kW)によって常圧で中心温
度が10,000℃を超す熱プラズマが形成される。
Next, an example of producing the ultrafine titanium dioxide composite ultrafine particles according to the present invention by the apparatus shown in FIG. 1 will be described. Example 1 Mixed gas flow of argon gas and oxygen gas (50 × 10 3 cc
/ Min) is supplied from the core gas source 12 to the plasma torch 2 and the output (frequency 3.68 MHz, output 20 kW) given by the high frequency induction coil 4 forms a thermal plasma having a center temperature of more than 10,000 ° C. at normal pressure. To be done.

【0023】チタン・ケイ素系原料粗粒子として、ケイ
素/チタン(重量比)が0.032(即ち、SiO2が4w
t%)となるように金属チタン粉末と酸化ケイ粉末を選
択し、該チタン・ケイ素原料粗粒子をArガスで流動化
し、原料フィーダ5から連続的に10g/min を原料供
給部6に送り、高周波誘導熱プラズマフレームの300
0℃以上の高温部へ供給する。供給された原料粗粒子は
高温熱プラズマで瞬時にして溶融・蒸発して気相化し、
雰囲気ガスにより酸化されると共に高温で液相反応によ
り新しいチタン・ケイ素の超微粒子二酸化チタン複合化
酸化物が形成され、フィルター9に捕集され、捕集筒8
内に落下集積させて、取り出すことができる。
As titanium / silicon raw material coarse particles, silicon / titanium (weight ratio) is 0.032 (that is, SiO 2 is 4 w).
t%), metallic titanium powder and silica oxide powder are selected, the titanium / silicon raw material coarse particles are fluidized with Ar gas, and 10 g / min is continuously sent from the raw material feeder 5 to the raw material supply section 6, High frequency induction thermal plasma flame 300
Supply to high temperature part above 0 ℃. The supplied raw material coarse particles are instantly melted and vaporized by high temperature thermal plasma to form a gas phase,
A new ultrafine titanium dioxide composite oxide of titanium and silicon is formed by a liquid phase reaction at a high temperature while being oxidized by an atmosphere gas, and is collected by a filter 9 and a collecting cylinder 8
It can be dropped inside and collected.

【0024】このようにして得られたチタン・ケイ素複
合化酸化物超微粒子は、白色でありレーザー粒度分布計
により粒径を計測したところ平均粒径が0.1μmの超
微粒子であった。そして、該チタン・ケイ素複合化酸化
物超微粒子を10mg/ccの濃度で懸濁し、レーザーゼー
タ電位計でpHを変化させた時のゼータ電位を測定し
た。その結果を図3のグラフに破線で示す。
The titanium-silicon composite oxide ultrafine particles thus obtained were white and the average particle size was 0.1 μm as measured by a laser particle size distribution meter. Then, the titanium / silicon composite oxide ultrafine particles were suspended at a concentration of 10 mg / cc, and the zeta potential when the pH was changed was measured with a laser zeta potentiometer. The result is shown by a broken line in the graph of FIG.

【0025】一方比較例として、0.1μmのアルミニ
ウム系、ケイ素系を殆ど含まないチタンから本実施例と
同様な条件で製造した超微粒子酸化チタン(比較例1)
を前記実施例と同様に10mg/ccの濃度で懸濁し、レー
ザーゼータ電位計でpHを変化させた時のゼータ電位を
測定し、その結果を同様に図3に実線で示している。
On the other hand, as a comparative example, ultrafine particles of titanium oxide produced from 0.1 μm-aluminum- and titanium-free titanium under the same conditions as in this embodiment (Comparative Example 1).
Was suspended at a concentration of 10 mg / cc in the same manner as in the above Example, and the zeta potential when the pH was changed was measured with a laser zeta potentiometer, and the result is also shown by the solid line in FIG.

【0026】図3から明らかなように、本実施例のもの
は、比較例である超微粒子酸化チタンに比べて等電点
が、酸化チタンの一般値pH6より小さくpH4になっ
ており、pH4.5以上(弱酸性水、純水を含む)で分
散性が非常に優れていることが判る。
As is clear from FIG. 3, the isoelectric point of the present embodiment is pH 4, which is smaller than the general value pH 6 of titanium oxide, which is pH 4. It can be seen that the dispersibility is extremely excellent when it is 5 or more (including weakly acidic water and pure water).

【0027】実施例2 実施例1と同様なチタン・ケイ素系原料粗粒子を同様な
条件で図2に示す直流熱プラズマによる製造装置によっ
て製造した。それにより得られた超微粒子二酸化チタン
複合化酸化物は、白色を呈していた。そして、そのゼー
タ電位曲線を実施例1と同様な条件で測定した。その結
果を図4に破線で示す。該図から明らかなように、直流
熱プラズマを使用する図2の装置によって製造した場合
も高周波熱プラズマを使用する図1の装置で製造した場
合とほぼ同様なゼータ電位曲線を示しており、分散性が
非常に優れていることが判る。なお同図に実線で示して
いるゼータ電位曲線は、前記の比較例1のものである。
Example 2 The same titanium / silicon raw material coarse particles as in Example 1 were produced under the same conditions by the production apparatus using the direct current thermal plasma shown in FIG. The ultrafine particle titanium dioxide composite oxide thus obtained was white in color. Then, the zeta potential curve was measured under the same conditions as in Example 1. The result is shown by a broken line in FIG. As is clear from the figure, the zeta-potential curve which is almost the same as the case where it is manufactured by the apparatus of FIG. 1 which uses the high frequency thermal plasma is also shown when it is manufactured by the apparatus of FIG. 2 which uses the DC thermal plasma. It turns out that the performance is very good. The zeta potential curve shown by the solid line in the figure is that of Comparative Example 1 described above.

【0028】実施例3 チタン・ケイ素系原料粗粒子として、ケイ素/チタン
(重量比)が0.032含むように金属チタン粉末と、
金属ケイ素粉末を選択し、該チタン・ケイ素系原料素粒
子から図1に示す装置により前記実施例1と同様にして
超微粒子二酸化チタン複合化酸化物を得た。得られた超
微粒子二酸化チタン複合化酸化物は、やはり白色状を呈
していた。そして、それについて前記と同様な条件で測
定したゼータ電位曲線を比較例1と共に図5に示す。本
実施例においても、pH4.5以上において、分散性が
優れていることが判る。なお同図に実線で示しているゼ
ータ電位曲線は、前記の比較例1のものである。
Example 3 As titanium / silicon raw material coarse particles, metal titanium powder was added so that silicon / titanium (weight ratio) contained 0.032.
A metallic silicon powder was selected, and ultrafine titanium dioxide composite oxide was obtained from the titanium / silicon raw material elementary particles in the same manner as in Example 1 by the apparatus shown in FIG. The obtained ultrafine particle titanium dioxide composite oxide was also white in color. A zeta potential curve measured under the same conditions as above is shown in FIG. 5 together with Comparative Example 1. Also in this example, it can be seen that the dispersibility is excellent at pH 4.5 or higher. The zeta potential curve shown by the solid line in the figure is that of Comparative Example 1 described above.

【0029】実施例4 チタン・アルミニウム系原料粗粒子として、アルミニウ
ム/チタン(重量比)が0.037含むように金属チタ
ン粉末と、金属アルミニウム粉末を選択し、該チタン・
アルミニウム系原料粗粒子から図1に示す装置により前
記実施例1と同様にして超微粒子二酸化チタン複合化酸
化物を得た。得られた超微粒子二酸化チタン複合化酸化
物は、やはり白色状を呈していた。そして、それについ
て前記と同様な条件で測定したゼータ電位曲線を比較例
1と共に図6に示す。本実施例においては、等電点がp
H7.5となりpH7以下(純水、弱酸性水を含む)で
分散性が優れていることが判る。
Example 4 As titanium / aluminum-based raw material coarse particles, metal titanium powder and metal aluminum powder were selected so that aluminum / titanium (weight ratio) contained 0.037.
Ultrafine particles of titanium dioxide composite oxide were obtained from aluminum-based raw material coarse particles in the same manner as in Example 1 using the apparatus shown in FIG. The obtained ultrafine particle titanium dioxide composite oxide was also white in color. A zeta potential curve measured under the same conditions as above is shown in FIG. 6 together with Comparative Example 1. In this embodiment, the isoelectric point is p
It can be seen that the dispersibility is excellent at H7.5 and pH of 7 or less (including pure water and weakly acidic water).

【0030】次に、本発明による超微粒子二酸化チタン
複合化酸化物の特性をさらに調べるために、本発明の方
法で製造した超微粒子二酸化チタン複合化酸化物と、チ
タンとケイ素またはアルミニウムとの成分比が前記超微
粒子二酸化チタン複合化酸化物と同一になるように、予
め製造された酸化チタン超微粒子と酸化ケイ素またはア
ルミニウム超微粒子とを混合した混合物とについて、分
散性を比較する試験を以下のように行った。
Next, in order to further investigate the characteristics of the ultrafine titanium dioxide composite oxide according to the present invention, the ultrafine titanium dioxide composite oxide produced by the method of the present invention and the component of titanium and silicon or aluminum. A test for comparing the dispersibility of a mixture of pre-manufactured titanium oxide ultrafine particles and silicon oxide or aluminum ultrafine particles so that the ratio is the same as that of the ultrafine particle titanium dioxide composite oxide is as follows. So went.

【0031】実施例5 ケイ素/チタン(重量比)が0.041(即ち、SiO2
が5wt%)となるように、混合された金属チタン粉末
と、300メッシュ以下の酸化ケイ素粉末の混合物を、
図1の製造装置で第1実施例と同様にして製造して、白
色状の超微粒子二酸化チタン複合化酸化物(実施例5)
を得た。また、ケイ素を殆ど含まない純酸化チタンの超
微粒子に、前記超微粒子二酸化チタン複合化酸化物とチ
タンとケイ素の成分比が同じになるような量の酸化ケイ
素超微粒子を混合してチタン・ケイ素超微粒子混合物
(比較例2)を得た。このようにして得られた両者を別
々にpH7の純水に2mg/ccの濃度で懸濁し、分散性を
調査した。その結果を表1に示す。
Example 5 Silicon / titanium (weight ratio) was 0.041 (ie SiO 2
Of 5% by weight), and a mixture of the mixed metal titanium powder and silicon oxide powder of 300 mesh or less,
A white ultrafine titanium dioxide composite oxide (Example 5) manufactured by the manufacturing apparatus of FIG. 1 in the same manner as in Example 1
Got Further, pure titanium oxide ultrafine particles containing almost no silicon are mixed with the above-mentioned ultrafine particle titanium dioxide composite oxide and silicon oxide ultrafine particles in an amount such that the component ratio of titanium and silicon is the same. An ultrafine particle mixture (Comparative Example 2) was obtained. Both thus obtained were separately suspended in pure water of pH 7 at a concentration of 2 mg / cc, and the dispersibility was investigated. The results are shown in Table 1.

【表1】 該表から明らかなように、両者は、ケイ素/チタン(重
量比)は同じであっても、本発明の実施例は比較例と比
較して分散性が一段と向上していることが判る。
[Table 1] As is clear from the table, even though both have the same silicon / titanium (weight ratio), the examples of the present invention have further improved dispersibility as compared with the comparative examples.

【0032】即ち、本発明に係るチタン・ケイ素複合化
酸化物は、単に酸化ケイ酸と酸化チタンとの混合物に比
べてpH7の純水において分散性が著しく改善されてい
る。このことは本発明に係るチタン・ケイ素複合化酸化
物が単なる酸化チタンと酸化ケイ素の混合物ではなく、
チタン・ケイ素原料粗粒子の高温下での気相化による新
しい固相化合物の形成、或いは一部酸化チタンの結晶格
子へケイ素が侵入しチタン元素と置換することによって
新しい複合化酸化物が生成されたものと考えられる。そ
して、本発明の複合化酸化物をフッ化水素酸で加熱処理
してもこれに含まれるケイ素分が容易に溶出しなかった
事実からも、本発明の超微粒子二酸化チタン複合化酸化
物が単なる混合物あるいはコーティングでないことは明
らかである。
That is, the titanium-silicon composite oxide according to the present invention has remarkably improved dispersibility in pure water of pH 7 as compared with a mixture of silicic acid oxide and titanium oxide. This means that the titanium-silicon composite oxide according to the present invention is not a simple mixture of titanium oxide and silicon oxide,
Formation of new solid phase compound by vaporization of titanium / silicon raw material coarse particles at high temperature, or formation of new complex oxide by partial penetration of silicon into the crystal lattice of titanium oxide and substitution with titanium element It is believed that And even from the fact that the silicon content contained in the complex oxide of the present invention was not easily eluted even when it was heat-treated with hydrofluoric acid, the ultrafine titanium dioxide complex oxide of the present invention was simply Obviously it is not a mixture or coating.

【0033】実施例6 アルミニウム/チタン(重量比)が0.046となるよ
うに混合された金属チタン粉末と、350メッシュ以下
の金属アルミニウム粉末の混合物を、図1の製造装置で
第1実施例と同様にして製造して、白色状の超微粒子二
酸化チタン複合化酸化物を得た(実施例6)。また、ア
ルミニウムを殆ど含まない純酸化チタンの超微粒子に、
前記超微粒子二酸化チタン複合化酸化物とチタンとアル
ミニウムの成分比が同じになるような量の酸化アルミニ
ウム超微粒子を混合してチタン・アルミニウム超微粒子
混合物(比較例3)を得た。このようにして得られた両
者を別々にpH6.5の弱酸性水に2mg/ccの濃度で懸
濁し、分散性を調査した。その結果を表2に示す。
Example 6 A mixture of metallic titanium powder mixed so as to have an aluminum / titanium (weight ratio) of 0.046 and metallic aluminum powder of 350 mesh or less was used in the manufacturing apparatus of FIG. A white ultrafine titanium dioxide composite oxide was produced in the same manner as in (Example 6). In addition, ultrafine particles of pure titanium oxide containing almost no aluminum,
A titanium / aluminum ultrafine particle mixture (Comparative Example 3) was obtained by mixing the above ultrafine particle titanium dioxide composite oxide and aluminum oxide ultrafine particles in an amount such that the component ratios of titanium and aluminum were the same. Both thus obtained were separately suspended in weakly acidic water of pH 6.5 at a concentration of 2 mg / cc, and the dispersibility was investigated. The results are shown in Table 2.

【表2】 該表から明らかなように両者は、アルミニウム/チタン
(重量比)は同じであっても本発明の実施例は比較例と
比較して分散性が一段と向上していることが判る。
[Table 2] As is clear from the table, it can be seen that both of them have the same aluminum / titanium (weight ratio), but the examples of the present invention have further improved dispersibility as compared with the comparative examples.

【0034】即ち、本発明に係るチタン・アルミニウム
複合超微粒子は、実施例5と同様に単なる酸化チタンと
酸化アルミニウムの混合物ではなくチタン・アルミニウ
ムの新しい複合化酸化物であると考えられる。
That is, it is considered that the titanium / aluminum composite ultrafine particles according to the present invention are not a simple mixture of titanium oxide and aluminum oxide but a new composite oxide of titanium / aluminum as in Example 5.

【0035】そして、本発明の複合化酸化物(実施例
6)と該比較例3を粉末X線回折法にて測定したとこ
ろ、比較例では図7(a)、(b)に示すX線回折プロ
ファイル線図、本実施例では図8(a)(b)に示すX
線回折プロファイル線図が得られた。なお、各図(b)
はそれぞれ各図(a)における2θ(deg)が30〜3
51degの部分を拡大して表したものである。その結
果、図7(a)(b)に示すように、比較例で検出され
た酸化アルミニウムのピークが、該複合化酸化物ではピ
ークが表われなかった。その事実からも、本発明の超微
粒子二酸化チタン複合化酸化物が単なる混合物あるいは
コーティングでないことは明らかである。
Then, the composite oxide of the present invention (Example 6) and the comparative example 3 were measured by a powder X-ray diffraction method. In the comparative example, the X-rays shown in FIGS. Diffraction profile diagram, X shown in FIGS. 8A and 8B in this embodiment
A line diffraction profile diagram was obtained. In addition, each figure (b)
2θ (deg) in each figure (a) is 30 to 3 respectively.
This is an enlarged view of the 51 deg portion. As a result, as shown in FIGS. 7A and 7B, the peak of aluminum oxide detected in the comparative example did not appear in the complex oxide. From this fact, it is clear that the ultrafine titanium dioxide composite oxide of the present invention is not a mere mixture or coating.

【0036】実施例7、8 チタン・ケイ素原料粗粒子として、ケイ素/チタン(重
量比)が0.0039(即ち、SiO2が0.5wt%)とな
るように混合された金属チタン粉末と酸化ケイ素粉末の
混合物(実施例7)、及びケイ素/チタン(重量比)が
0.024(即ちSiO2が3wt%)となるように混合され
た金属チタン粉末と酸化ケイ素粉末の混合物(実施例
8)と変えて、図1の製造装置により実施例1と同様な
方法で製造して実施例7、8のチタン・ケイ素の超微粒
子二酸化チタン複合化酸化物を得た。また、比較例とし
て、ケイ素/チタン(重量比)が0.0078となるよ
うに混合された金属チタン粉末と酸化ケイ素粉末の混合
物(比較例4)と、ケイ素を殆ど含まない純金属チタン
粉末を出発原料として、同様な方法で酸化チタン超微粒
子(比較例5)を得た。それらの超微粒子をpH7の純
水に2mg/ccの濃度で懸濁し、ケイ素の含有割合の違い
による分散性の状態を観察した。その結果を表3に示
す。
Examples 7 and 8 As titanium / silicon raw material coarse particles, metal titanium powder mixed so that silicon / titanium (weight ratio) was 0.0039 (ie, SiO 2 was 0.5 wt%) and oxidized. A mixture of silicon powder (Example 7), and a mixture of metallic titanium powder and silicon oxide powder (Example 8) mixed such that silicon / titanium (weight ratio) was 0.024 (that is, SiO 2 was 3 wt%). 1) was manufactured in the same manner as in Example 1 using the manufacturing apparatus shown in FIG. 1 to obtain titanium-silicon ultrafine titanium dioxide composite oxides in Examples 7 and 8. In addition, as a comparative example, a mixture of titanium metal powder and silicon oxide powder (comparative example 4) mixed such that silicon / titanium (weight ratio) was 0.0078, and pure metal titanium powder containing almost no silicon were used. Titanium oxide ultrafine particles (Comparative Example 5) were obtained as a starting material by the same method. The ultrafine particles were suspended in pure water of pH 7 at a concentration of 2 mg / cc, and the dispersibility state was observed depending on the difference in the silicon content. The results are shown in Table 3.

【表3】 [Table 3]

【0037】該表からも明らかなように、ケイ素の含有
量が多くなる程分散性が改善されている。従って、使用
する水のpHに応じてケイ素の含有量を適宜適択するこ
とができる。
As is clear from the table, the dispersibility is improved as the silicon content increases. Therefore, the content of silicon can be appropriately selected according to the pH of the water used.

【0038】また、他の実施例として、二酸化チタンに
複合化させる物質として、ZnOやZrO2等を用いた
実験も実施した。その結果、前記実施例と同様に優れた
分散性を示す易分散性の超微粒子二酸化チタン複合化酸
化物を得ることができた。
As another example, an experiment using ZnO, ZrO 2 or the like as a substance to be composited with titanium dioxide was also conducted. As a result, it was possible to obtain an easily dispersible ultrafine particle titanium dioxide composite oxide exhibiting excellent dispersibility as in the above-mentioned Examples.

【0039】以上、本発明に係る超微粒子二酸化チタン
複合超微粒子及びその製造方法の実施例について説明し
たが、本発明によって得られた超微粒子二酸化チタン複
合化超微粒子は、純水及び弱酸性或いは弱アルカリ性溶
液への分散性が極めて良いので、化粧料基剤に配合する
ことによって、均質で良好な紫外線遮蔽効果を持つ優れ
た化粧料を得ることができる。また、化学繊維の原料樹
脂に混合して紡糸することによって、均質で良好な紫外
線遮蔽効果を持つ優れた繊維製品を得ることができる。
さらに、プラスチックに配合又はコートすることによっ
て、均質で良好な紫外線遮蔽効果を持つ紫外線遮蔽プラ
スチック材を得ることができる。さらに、また白色顔料
として紫外線遮蔽効果を持つ均質で良好な各種塗料を得
ることができる。
The embodiments of the ultrafine titanium dioxide composite ultrafine particles and the method for producing the same according to the present invention have been described above. The ultrafine titanium dioxide composite ultrafine particles obtained by the present invention are pure water and weakly acidic or Since the dispersibility in a weakly alkaline solution is extremely good, it is possible to obtain a uniform and excellent cosmetic having a good UV-shielding effect by incorporating it into a cosmetic base. Further, by mixing with the raw material resin of the chemical fiber and spinning, it is possible to obtain a homogeneous and excellent fiber product having a good ultraviolet shielding effect.
Furthermore, by blending or coating with a plastic, it is possible to obtain a uniform and good ultraviolet-shielding plastic material having an ultraviolet-shielding effect. Furthermore, various homogeneous and good coating materials having an ultraviolet shielding effect as a white pigment can be obtained.

【0040】[0040]

【発明の効果】本発明により得られたチタン・ケイ素ま
たはチタン・アルミニウムの超微粒子二酸化チタン複合
化酸化物は、ケイ素あるいはアルミニウムがチタンと複
合して超微粒子複合化酸化物を形成することにより、従
来の二酸化チタン微粒子の難分散域であるpH5〜7の
溶液で優れた分散を有する。そして本発明の超微粒子二
酸化チタン複合化酸化物は、コーティングでも混合でも
ないので、表面処理層が剥離を起す問題がなく、分散性
が変化(変質)する恐れはない。
The ultrafine particle titanium dioxide composite oxide of titanium / silicon or titanium / aluminum obtained according to the present invention is obtained by forming an ultrafine particle composite oxide by combining silicon or aluminum with titanium. It has excellent dispersion in a solution of pH 5 to 7, which is a difficult dispersion range of conventional titanium dioxide fine particles. Since the ultrafine particle titanium dioxide composite oxide of the present invention is neither a coating nor a mixture, there is no problem of peeling of the surface treatment layer, and there is no fear of change (alteration) in dispersibility.

【0041】また、その製造方法は、複雑な工程を有す
ることなく単純であり、短時間に容易にでき生産性を向
上させ、且つ均質なチタン・ケイ素またはチタン・アル
ミニウムの超微粒子二酸化チタン複合化酸化物を廉価に
得ることができる。
Further, the manufacturing method thereof is simple without having complicated steps, can be easily carried out in a short time and improves the productivity, and is a uniform ultrafine titanium dioxide composite of titanium-silicon or titanium-aluminum. Oxides can be obtained at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超微粒子二酸化チタン複合化酸化物の
製造装置の概略説明図である。
FIG. 1 is a schematic explanatory view of an apparatus for producing an ultrafine particle titanium dioxide composite oxide of the present invention.

【図2】本発明の超微粒子二酸化チタン複合化酸化物の
他の製造装置の概略説明図である。
FIG. 2 is a schematic explanatory view of another production apparatus of the ultrafine particle titanium dioxide composite oxide of the present invention.

【図3】本発明の実施例に係る超微粒子二酸化チタン複
合化酸化物と酸化チタンとのゼータ電位曲線を表した線
図である。
FIG. 3 is a diagram showing a zeta potential curve of ultrafine titanium dioxide composite oxide and titanium oxide according to an example of the present invention.

【図4】本発明の他の実施例に係る超微粒子二酸化チタ
ン複合化酸化物と酸化チタンとのゼータ電位曲線を表し
た線図である。
FIG. 4 is a diagram showing a zeta potential curve of ultrafine titanium dioxide composite oxide and titanium oxide according to another example of the present invention.

【図5】本発明のさらに他の実施例に係る超微粒子二酸
化チタン複合化酸化物と酸化チタンとのゼータ電位曲線
を表した線図である。
FIG. 5 is a diagram showing a zeta potential curve of ultrafine titanium dioxide composite oxide and titanium oxide according to still another embodiment of the present invention.

【図6】本発明のさらに他の実施例に係る超微粒子二酸
化チタン複合化酸化物と酸化チタンとのゼータ電位曲線
を表した線図である。
FIG. 6 is a diagram showing a zeta potential curve of ultrafine particle titanium dioxide composite oxide and titanium oxide according to still another example of the present invention.

【図7】本発明の実施例に係る超微粒子二酸化チタン複
合化酸化物とケイ素の含有量が同じである酸化チタンと
酸化アルミニュウムの混合物(比較例3)のX線回折プ
ロファイルを表した線図である。
FIG. 7 is a diagram showing an X-ray diffraction profile of a mixture of titanium oxide and aluminum oxide having the same silicon content (comparative example 3) and an ultrafine particle titanium dioxide composite oxide according to an example of the present invention. Is.

【図8】本発明の実施例に係る超微粒子二酸化チタン複
合化酸化物のX線回折プロファイルを表した線図であ
る。
FIG. 8 is a diagram showing an X-ray diffraction profile of an ultrafine particle titanium dioxide composite oxide according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1、21 反応容器 2 高周波プラ
ズマトーチ 4 加熱コイル 5、27、28
原料フィーダ 7 捕集器 9 フィルター 22、23 直流プラズマトーチ
1, 21 Reaction container 2 High frequency plasma torch 4 Heating coil 5, 27, 28
Raw material feeder 7 Collector 9 Filters 22 and 23 DC plasma torch

───────────────────────────────────────────────────── フロントページの続き (72)発明者 元木 信二郎 神奈川県平塚市田村5893 高周波熱錬株 式会社 湘南事業所内 (72)発明者 森 勇治 神奈川県平塚市田村5893 高周波熱錬株 式会社 湘南事業所内 (56)参考文献 特開 昭63−45123(JP,A) 特開 昭62−72522(JP,A) 特開 平2−307806(JP,A) 特開 昭55−154317(JP,A) 特開 昭59−107905(JP,A) 特開 昭60−255602(JP,A) 特開 昭48−11299(JP,A) 特開 昭54−35894(JP,A) 特開 平5−9025(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01G 23/00 - 23/08 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinjiro Motoki 5893 Tamura, Hiratsuka-shi, Kanagawa High-frequency thermal smelting company Shonan Plant On-site (56) Reference JP-A 63-45123 (JP, A) JP-A 62-72522 (JP, A) JP-A 2-307806 (JP, A) JP-A 55-154317 (JP, A) ) JP-A-59-107905 (JP, A) JP-A-60-255602 (JP, A) JP-A-48-11299 (JP, A) JP-A-54-35894 (JP, A) JP-A-5- 9025 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C01G 23/00-23/08

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属チタン粉末又は酸化チタン粉末と、
金属ケイ素粉末又は酸化ケイ素粉末とをケイ素/チタン
(重量比)が0.0008〜0.0864の範囲内となる
ように予め混合してチタン・ケイ素系原料粗粒子を得、
該チタン・ケイ素系原料粗粒子を、熱プラズマにより形
成された3000℃以上の高温下で溶融蒸発させて気相
化させることにより、チタン・ケイ素の超微粒子複合酸
化物を生成させて補集することを特徴とする超微粒子二
酸化チタン複合化酸化物の製造方法。
1. A metal titanium powder or titanium oxide powder,
Preliminarily mixed with metal silicon powder or silicon oxide powder so that silicon / titanium (weight ratio) is within the range of 0.0008 to 0.0864 to obtain titanium-silicon raw material coarse particles,
The titanium / silicon-based raw material coarse particles are melt-evaporated at a high temperature of 3000 ° C. or higher formed by thermal plasma to be vaporized to generate an ultrafine particle composite oxide of titanium / silicon to be collected. A method for producing an ultrafine particle titanium dioxide composite oxide, comprising:
【請求項2】 金属チタン粉末又は酸化チタン粉末と、
金属アルミニウム粉末又は酸化アルミニウム粉末とをア
ルミニウム/チタン(重量比)が0.0009〜0.09
80の範囲内となるように予め混合してチタン・アルミ
ニウム系原料粗粒子を得、該チタン・アルミニウム系原
料粗粒子を、熱プラズマにより形成された3000℃以
上の高温下で溶融蒸発させて気相化させることにより、
チタン・アルミニウムの超微粒子複合酸化物を生成させ
て補集することを特徴とする超微粒子二酸化チタン複合
化酸化物の製造方法。
2. A metal titanium powder or titanium oxide powder,
Aluminum / titanium (weight ratio) is 0.0009 to 0.09 with metallic aluminum powder or aluminum oxide powder.
The titanium / aluminum-based raw material coarse particles are premixed so as to be in the range of 80, and the titanium / aluminum-based raw material coarse particles are melted and evaporated at a high temperature of 3000 ° C. or higher formed by thermal plasma to vaporize By making the phases
A method for producing an ultrafine particle titanium dioxide composite oxide, which comprises producing and collecting ultrafine particle composite oxide of titanium / aluminum.
【請求項3】 前記熱プラズマが高周波誘導熱プラズマ
である請求項1又は2記載の超微粒子二酸化チタン複合
化酸化物の製造方法。
3. A process according to claim 1 or 2 ultrafine titanium dioxide composite oxide according the thermal plasma is a high-frequency induction thermal plasma.
【請求項4】 前記熱プラズマが直流熱プラズマである
請求項1又は2記載の超微粒子二酸化チタン複合化酸化
物の製造方法。
4. The process for producing the thermal plasma is claim 1 or 2 ultrafine titanium dioxide composite oxide according a DC thermal plasma.
JP30611893A 1993-11-12 1993-11-12 Method for producing ultrafine titanium dioxide composite oxide Expired - Fee Related JP3483282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30611893A JP3483282B2 (en) 1993-11-12 1993-11-12 Method for producing ultrafine titanium dioxide composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30611893A JP3483282B2 (en) 1993-11-12 1993-11-12 Method for producing ultrafine titanium dioxide composite oxide

Publications (2)

Publication Number Publication Date
JPH07138020A JPH07138020A (en) 1995-05-30
JP3483282B2 true JP3483282B2 (en) 2004-01-06

Family

ID=17953269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30611893A Expired - Fee Related JP3483282B2 (en) 1993-11-12 1993-11-12 Method for producing ultrafine titanium dioxide composite oxide

Country Status (1)

Country Link
JP (1) JP3483282B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2152442A4 (en) * 2007-05-11 2017-08-02 SDC Materials, Inc. Fluid recirculation system for use in vapor phase particle production system

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1174397A (en) * 1995-12-27 1997-07-28 Toyo Ink Manufacturing Co. Ltd. Masterbatch containing titanium oxide
JP3215979B2 (en) * 1995-12-27 2001-10-09 東洋インキ製造株式会社 Masterbatch containing titanium oxide
JP3584293B2 (en) * 1995-12-27 2004-11-04 堺化学工業株式会社 Titanium dioxide with low volatile water content, its production method and masterbatch containing it
AU2003220859A1 (en) * 2002-03-29 2003-10-13 Isi Corporation Ultraviolet shielding powder, dispersion having the powder, ultraviolet shielding film and ultraviolet shielding container
JP4462828B2 (en) * 2003-01-20 2010-05-12 弌倫 木島 Method for producing titanium-containing oxide ultrafine particles, and titanium-containing oxide fine particles
US20050119398A1 (en) * 2003-09-11 2005-06-02 Lu Zhang Plasma synthesis of metal oxide nanoparticles
EP2138458A1 (en) * 2004-04-19 2009-12-30 SDC Materials, LLC High throughput discovery of materials through vapor phase synthesis
US7829598B2 (en) * 2005-12-11 2010-11-09 Scf Technologies A/S Production of nanosized materials
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
KR101158188B1 (en) 2010-02-01 2012-06-19 삼성전기주식회사 Apparatus for synthesizing nano particles, and method for synthesizing the nano particles with the same
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
RU2014110365A (en) 2011-08-19 2015-09-27 ЭсДиСиМАТИРИАЛЗ, ИНК. COATED SUBSTRATES FOR USE IN CATALYSIS, CATALYTIC CONVERTERS AND METHODS OF COATING SUBSTRATES WITH OXIDE COATING COMPOSITIONS
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
CN106061600A (en) 2013-10-22 2016-10-26 Sdc材料公司 Catalyst design for heavy-duty diesel combustion engines
KR20160074574A (en) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 COMPOSITIONS OF LEAN NOx TRAP
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2152442A4 (en) * 2007-05-11 2017-08-02 SDC Materials, Inc. Fluid recirculation system for use in vapor phase particle production system

Also Published As

Publication number Publication date
JPH07138020A (en) 1995-05-30

Similar Documents

Publication Publication Date Title
JP3483282B2 (en) Method for producing ultrafine titanium dioxide composite oxide
JP5008047B2 (en) Titanium dioxide particles doped with rare earth elements and method for producing the same
EP1527017A1 (en) Doped zinc oxide powder, process for its preparation, and its use
TWI245742B (en) Method for manufacturing highly-crystallized oxide powder
US20100028253A1 (en) Titanium dioxide powder and method for production thereof
JP4140324B2 (en) Metal boride powder and method for producing the same
Loghman-Estarki et al. Large scale synthesis of non-transformable tetragonal Sc2O3, Y2O3 doped ZrO2 nanopowders via the citric acid based gel method to obtain plasma sprayed coating
TWI311547B (en) Anatase-type titanium oxide powder and method of manufacturing the same
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
JP2005170760A (en) Fine particle and method of manufacturing the same
JP2001220141A (en) Titanium oxide dispersion
Ishigaki et al. Synthesis of functional nanocrystallites through reactive thermal plasma processing
JP2001287996A (en) Anatase-type titanium oxide single crystal
JP3550660B2 (en) Manufacturing method of spherical titanium oxide powder
JP4462828B2 (en) Method for producing titanium-containing oxide ultrafine particles, and titanium-containing oxide fine particles
CN1063155C (en) Technology for preparing hydrosol of superfine metal oxide powder
Li et al. RF plasma processing of Er-doped TiO2 luminescent nanoparticles
Sun et al. Synthesis and characteristics of nano-size sandwich structure (Y, Gd) BO3: Eu3+ phosphors
JP4483389B2 (en) Method for producing glass particles
Ishigaki Synthesis of ceramic nanoparticles with non-equilibrium crystal structures and chemical compositions by controlled thermal plasma processing
CN102627968A (en) Preparation method of praseodymium-doped calcium titanate luminescent powder
Kobayashi et al. Synthesis of pure, crystalline (Ba, Sr) TiO3 nanosized powders in radio frequency induction thermal plasma
He et al. Synthesis and characterization of zirconia nanoparticles by combining sulfated hydroxy zirconyl and nitrated hydroxy zirconyl in hexagonal phase lyotropic liquid crystal
KR102044380B1 (en) Fabricating method of titania nano-particles
JPH06115942A (en) Ultrafine particle compound oxide of titanium-iron and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees