JP3480323B2 - Cerium oxide abrasive, substrate polishing method, and semiconductor device - Google Patents

Cerium oxide abrasive, substrate polishing method, and semiconductor device

Info

Publication number
JP3480323B2
JP3480323B2 JP18479198A JP18479198A JP3480323B2 JP 3480323 B2 JP3480323 B2 JP 3480323B2 JP 18479198 A JP18479198 A JP 18479198A JP 18479198 A JP18479198 A JP 18479198A JP 3480323 B2 JP3480323 B2 JP 3480323B2
Authority
JP
Japan
Prior art keywords
cerium oxide
polishing
particles
slurry
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18479198A
Other languages
Japanese (ja)
Other versions
JP2000017195A (en
Inventor
誠人 吉田
寅之助 芦沢
裕人 大槻
靖 倉田
裕樹 寺崎
純 松沢
清仁 丹野
正人 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP18479198A priority Critical patent/JP3480323B2/en
Publication of JP2000017195A publication Critical patent/JP2000017195A/en
Application granted granted Critical
Publication of JP3480323B2 publication Critical patent/JP3480323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化セリウム研磨
剤、基板の研磨法及び半導体装置に関する。
TECHNICAL FIELD The present invention relates to a cerium oxide polishing agent, a substrate polishing method, and a semiconductor device.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において、
プラズマ−CVD、低圧−CVD等の方法で形成される
SiO2絶縁膜等無機絶縁膜層を平坦化するための化学
機械研磨剤として、コロイダルシリカ系の研磨剤が一般
的に検討されている。コロイダルシリカ系の研磨剤は、
シリカ粒子を四塩化珪酸の熱分解等の方法で粒成長さ
せ、アンモニア等のアルカリ金属を含まないアルカリ溶
液でpH調整を行って製造している。しかしながら、こ
の様な研磨剤は無機絶縁膜の研磨速度が充分な速度を持
たず、実用化には低研磨速度という技術課題がある。
2. Description of the Related Art Conventionally, in the process of manufacturing a semiconductor device,
As a chemical mechanical polishing agent for flattening an inorganic insulating film layer such as a SiO 2 insulating film formed by a method such as plasma-CVD or low pressure-CVD, a colloidal silica-based polishing agent is generally studied. Colloidal silica-based abrasives
Silica particles are grown by a method such as thermal decomposition of tetrachlorosilicic acid, and the pH is adjusted with an alkali solution containing no alkali metal such as ammonia. However, such an abrasive does not have a sufficient polishing rate for the inorganic insulating film, and has a technical problem of low polishing rate for practical use.

【0003】一方、フォトマスク用ガラス表面研磨とし
て、酸化セリウム研磨剤が用いられている。酸化セリウ
ム粒子はシリカ粒子やアルミナ粒子に比べ硬度が低く、
したがって研磨表面に傷が入りにくいことから仕上げ鏡
面研磨に有用である。また、酸化セリウムは強い酸化剤
として知られるように、化学的活性な性質を有してい
る。この利点を活かし、絶縁膜用化学機械研磨剤への適
用が有用である。しかしながら、フォトマスク用ガラス
表面研磨用酸化セリウム研磨剤をそのまま無機絶縁膜研
磨に適用すると、1次粒子径が大きく、そのため絶縁膜
表面に目視で観察できる研磨傷が入ってしまう。また、
酸化セリウム粒子は理論密度が7.2g/ccと大きい
ことから沈降しやすい。そのことから研磨時の研磨剤供
給濃度むら、供給管での詰まり等の問題が生じる。
On the other hand, a cerium oxide polishing agent is used for polishing the glass surface of a photomask. Cerium oxide particles have lower hardness than silica particles and alumina particles,
Therefore, the polished surface is less likely to be scratched, which is useful for finishing mirror polishing. Further, cerium oxide has a chemically active property, as is known as a strong oxidant. Taking advantage of this advantage, application to chemical mechanical polishing agents for insulating films is useful. However, when the cerium oxide polishing agent for polishing the glass surface for a photomask is directly applied to the polishing of the inorganic insulating film, the primary particle diameter is large, so that the surface of the insulating film may have visible scratches. Also,
Since cerium oxide particles have a large theoretical density of 7.2 g / cc, they tend to settle. As a result, problems such as uneven concentration of the polishing agent supplied during polishing and clogging of the supply pipe occur.

【0004】[0004]

【発明が解決しようとする課題】本発明は、沈降しにく
く、またSiO2絶縁膜等の被研磨面を傷なく高速に研
磨することが可能な酸化セリウム研磨剤及び基板の研磨
法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a cerium oxide abrasive and a method for polishing a substrate, which hardly cause sedimentation and can polish a surface to be polished such as an SiO 2 insulating film at high speed without scratches. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明は、酸化セリウム
粒子、アクリル酸アンモニウム塩とアクリル酸メチルの
共重合体および水を含む酸化セリウム研磨剤である。ア
クリル酸アンモニウム塩とアクリル酸メチルの共重合体
が酸化セリウム粒子100重量部に対して0.01以上
5重量部以下添加することがこのましい。アクリル酸ア
ンモニウム塩とアクリル酸メチルの共重合体の重量平均
分子量は1000〜20000が好ましい。アクリル酸
アンモニウム塩とアクリル酸メチルとのモル比は、アク
リル酸アンモニウム塩/アクリル酸メチルが10/90
〜90/10が好ましい。酸化セリウム研磨剤のpHは
7以上10以下が好ましい。本発明の基板の研磨法は、
シリカ膜が形成された半導体チップ等の所定の基板を上
記の研磨剤で研磨するものである。本発明の半導体装置
は、シリカ膜が上記の研磨剤で研磨された半導体チップ
を備えるものである。
The present invention is a cerium oxide abrasive containing cerium oxide particles, a copolymer of ammonium acrylate and methyl acrylate, and water. It is preferable to add 0.01 to 5 parts by weight of a copolymer of ammonium acrylate and methyl acrylate to 100 parts by weight of cerium oxide particles. The weight average molecular weight of the copolymer of ammonium acrylate and methyl acrylate is preferably 1,000 to 20,000. The molar ratio of ammonium acrylate and methyl acrylate is 10/90 for ammonium acrylate / methyl acrylate.
90 to 90/10 is preferable. The pH of the cerium oxide abrasive is preferably 7 or more and 10 or less. The substrate polishing method of the present invention is
A predetermined substrate such as a semiconductor chip having a silica film formed thereon is polished with the above-mentioned abrasive. The semiconductor device of the present invention comprises a semiconductor chip in which a silica film is polished with the above abrasive.

【0006】[0006]

【発明の実施の形態】一般に酸化セリウムは、炭酸塩、
硫酸塩、蓚酸塩等のセリウム化合物を焼成することによ
って得られる。TEOS−CVD法等で形成されるSi
2絶縁膜は1次粒子径が大きく、かつ結晶歪が少ない
ほど、すなわち結晶性がよいほど高速研磨が可能である
が、研磨傷が入りやすい傾向がある。そこで、本発明で
用いる酸化セリウム粒子は、あまり結晶性を上げないで
作製される。また、半導体チップ研磨に使用することか
ら、アルカリ金属およびハロゲン類の含有率は1ppm
以下に抑えることが好ましい。本発明の研磨剤は高純度
のもので、Na、K、Si、Mg、Ca、Zr、Ti、
Ni、Cr、Feはそれぞれ1ppm以下、Alは10
ppm以下である。本発明において、酸化セリウム粒子
を作製する方法として焼成法が使用できる。ただし、研
磨傷が入らない粒子を作製するために、できるだけ結晶
性を上げない低温焼成が好ましい。セリウム化合物の酸
化温度が300℃であることから、焼成温度は600℃
以上900℃以下が好ましい。炭酸セリウムを600℃
以上900℃以下で5〜300分、酸素ガス等の酸化雰
囲気で焼成すること好ましい。
DETAILED DESCRIPTION OF THE INVENTION Generally, cerium oxide is a carbonate,
It is obtained by firing a cerium compound such as a sulfate or an oxalate. Si formed by the TEOS-CVD method or the like
The larger the primary particle diameter of the O 2 insulating film and the smaller the crystal strain, that is, the better the crystallinity, the higher the speed of polishing is possible, but the polishing scratches are likely to occur. Therefore, the cerium oxide particles used in the present invention are produced without raising the crystallinity so much. Since it is used for polishing semiconductor chips, the content of alkali metals and halogens is 1ppm.
It is preferable to suppress it to the following. The polishing agent of the present invention is of high purity and comprises Na, K, Si, Mg, Ca, Zr, Ti,
Ni, Cr, and Fe are each 1 ppm or less, and Al is 10
It is below ppm. In the present invention, a firing method can be used as a method for producing cerium oxide particles. However, in order to produce particles that are free from polishing scratches, low temperature firing that does not increase the crystallinity as much as possible is preferable. Since the oxidation temperature of the cerium compound is 300 ° C, the firing temperature is 600 ° C.
It is preferably 900 ° C or higher and 900 ° C or lower. Cerium carbonate at 600 ° C
It is preferable to perform the firing at 900 ° C. or lower for 5 to 300 minutes in an oxidizing atmosphere such as oxygen gas.

【0007】焼成された酸化セリウムは、ジェットミル
等の乾式粉砕、ビ−ズミル等の湿式粉砕で粉砕すること
ができる。ジェットミルは例えば化学工業論文集第6巻
第5号(1980)527〜532頁に説明されてい
る。焼成酸化セリウムをジェットミル等の乾式粉砕等で
粉砕した酸化セリウム粒子には、一次粒子サイズの小さ
い粒子と一次粒子サイズまで粉砕されていない粉砕粒子
が含まれ、この粉砕粒子は一次粒子が再凝集した凝集体
とは異なっており、2つ以上の一次粒子から構成され結
晶粒界を有している。この結晶粒界を有す粉砕粒子を含
む研磨剤で研磨を行うと、研磨時の応力により破壊され
活性面を発生すると推定され、SiO2絶縁膜等の被研
磨面を傷なく高速に研磨することに寄与していると考え
られる。
The calcined cerium oxide can be pulverized by dry pulverization such as a jet mill or wet pulverization such as a bead mill. The jet mill is described, for example, in Chemical Industry Papers, Vol. 6, No. 5 (1980), pages 527-532. Cerium oxide particles obtained by crushing calcined cerium oxide by dry crushing with a jet mill, etc., include particles with a small primary particle size and crushed particles that have not been crushed to the primary particle size. Unlike the agglomerates described above, the agglomerates are composed of two or more primary particles and have grain boundaries. It is presumed that when polishing is performed with an abrasive containing crushed particles having crystal grain boundaries, the surface to be polished is broken by stress during polishing and an active surface is generated, and the surface to be polished such as an SiO 2 insulating film is polished at high speed without damage. It is thought that it contributes to this.

【0008】本発明における酸化セリウムスラリーは、
上記の方法により製造された酸化セリウム粒子を含有す
る水溶液又はこの水溶液から回収した酸化セリウム粒
子、水及び必要に応じて分散剤からなる組成物を分散さ
せることによって得られる。ここで、酸化セリウム粒子
の濃度に制限は無いが、懸濁液(研磨剤)の取り扱い易
さから0.5〜10重量%の範囲が好ましい。また分散
剤としては、アクリ酸アンモニウム塩とアクリル酸メチ
ルの共重合体が使用され、重量平均分子量1000〜2
0000のアクリル酸アンモニウム塩とアクリル酸メチ
ルの共重合体が好ましい。アクリル酸アンモニウム塩と
アクリル酸メチルとのモル比は、アクリル酸アンモニウ
ム塩/アクリル酸メチルが10/90〜90/10が好
ましい。これらの分散剤の添加量は、スラリー中の粒子
の分散性及び沈降防止性等から、酸化セリウム粒子10
0重量部に対して0.01重量部から5重量部の範囲が
好ましく、その分散効果を高めるためには、分散処理時
に分散機の中に粒子と同時に入れることが好ましい。ア
クリル酸アンモニウム塩とアクリル酸メチルの共重合体
が酸化セリウム粒子100重量部に対して0.01重量
部未満では沈降し易く、5重量部を超えると再凝集によ
る粒度分布の経時変化が生じやすい。また、重量平均分
子量が20000を超えると再凝集による粒度分布の経
時変化が生じやすい。重量平均分子量が1000未満で
は分散性及び沈降防止の効果が十分でない場合がある。
The cerium oxide slurry in the present invention is
It is obtained by dispersing the aqueous solution containing the cerium oxide particles produced by the above method or the composition comprising the cerium oxide particles recovered from the aqueous solution, water and, if necessary, a dispersant. Here, there is no limitation on the concentration of the cerium oxide particles, but a range of 0.5 to 10% by weight is preferable from the viewpoint of easy handling of the suspension (abrasive). As the dispersant, a copolymer of ammonium acrylate and methyl acrylate is used and has a weight average molecular weight of 1000 to 2
A copolymer of 0000 ammonium acrylate and methyl acrylate is preferred. The molar ratio of ammonium acrylate and methyl acrylate is preferably 10/90 to 90/10 of ammonium acrylate / methyl acrylate. The amount of these dispersants added depends on the cerium oxide particles 10 depending on the dispersibility of the particles in the slurry and the anti-settling property.
The range of 0.01 to 5 parts by weight is preferable with respect to 0 parts by weight, and in order to enhance the dispersing effect, it is preferable to put the particles in the disperser at the same time as the dispersing treatment. If the copolymer of ammonium acrylate and methyl acrylate is less than 0.01 parts by weight with respect to 100 parts by weight of the cerium oxide particles, it tends to settle, and if it exceeds 5 parts by weight, the particle size distribution due to re-aggregation tends to change with time. . Further, if the weight average molecular weight exceeds 20,000, a change with time in the particle size distribution due to reaggregation is likely to occur. If the weight average molecular weight is less than 1000, the dispersibility and the effect of preventing sedimentation may not be sufficient.

【0009】これらの酸化セリウム粒子を水中に分散さ
せる方法としては、通常の撹拌機による分散処理の他
に、ホモジナイザー、超音波分散機、ボールミル等を用
いることができる。サブミクロンオーダの酸化セリウム
粒子を分散させるためには、ボールミル、振動ボールミ
ル、遊星ボールミル、媒体撹拌式ミル等の湿式分散機を
用いることが好ましい。また、スラリーのアルカリ性を
高めたい場合には、分散処理時又は処理後に、アンモニ
ア水などの金属イオンを含まないアルカリ性物質を添加
することができる。
As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a ball mill or the like can be used in addition to the usual dispersion treatment with a stirrer. In order to disperse the submicron-order cerium oxide particles, it is preferable to use a wet disperser such as a ball mill, a vibrating ball mill, a planetary ball mill, or a medium stirring mill. Further, when it is desired to increase the alkalinity of the slurry, an alkaline substance containing no metal ions, such as aqueous ammonia, can be added during or after the dispersion treatment.

【0010】本発明の酸化セリウム研磨剤は、上記スラ
リ−をそのまま使用してもよいが、N,N−ジエチルエ
タノ−ルアミン、N,N−ジメチルエタノ−ルアミン、
アミノエチルエタノ−ルアミン等の添加剤を適宜添加し
て研磨剤とすることができる。
In the cerium oxide abrasive according to the present invention, the above slurry may be used as it is, but N, N-diethylethanolamine, N, N-dimethylethanolamine,
Additives such as aminoethylethanolamine may be appropriately added to obtain a polishing agent.

【0011】酸化セリウム粒子は、2個以上の1次粒子
から構成され結晶粒界を有する多結晶粒子が使用でき
る。その粒子径の中央値は、60〜1500nmが好ま
しく、一次粒子径の中央値は30〜250nmが好まし
い。前記結晶粒界を有する酸化セリウム粒子は、全酸化
セリウム粒子の5〜100体積%であることが好まし
く、結晶粒界を有する酸化セリウム粒子の他には一次粒
子径と同等サイズの小さな粒子、一次粒子が凝集した凝
集粒子がスラリ−に混在することができる。結晶粒界を
有する酸化セリウム粒子の最大径が3000nm以下で
あることが好ましい。酸化セリウム粒子を構成する一次
粒子は、最大径が600nm以下、さらには10〜60
0nmの範囲のものを使用することが好ましい。酸化セ
リウム粒子は、炭酸セリウムを焼成したものが好まし
い。本発明の酸化セリウム研磨剤は沈降し難く、所定の
基板、例えばシリカ膜が形成された半導体チップのシリ
カ膜を高速、かつ傷を付けることなく研磨法することが
できる。
As the cerium oxide particles, polycrystalline particles composed of two or more primary particles and having crystal grain boundaries can be used. The median value of the particle diameter is preferably 60 to 1500 nm, and the median value of the primary particle diameter is preferably 30 to 250 nm. The cerium oxide particles having crystal grain boundaries are preferably 5 to 100% by volume of all cerium oxide particles, and in addition to the cerium oxide particles having crystal grain boundaries, small particles having the same size as the primary particle diameter, primary particles Aggregated particles in which the particles are aggregated can be mixed in the slurry. The maximum diameter of the cerium oxide particles having crystal grain boundaries is preferably 3000 nm or less. The primary particles constituting the cerium oxide particles have a maximum diameter of 600 nm or less, and further 10 to 60.
It is preferable to use one having a range of 0 nm. The cerium oxide particles are preferably calcined cerium carbonate. The cerium oxide polishing agent of the present invention is unlikely to settle, and a predetermined substrate, for example, a silica film of a semiconductor chip on which a silica film is formed can be polished at a high speed and without scratching.

【0012】本発明のスラリ−に分散された酸化セリウ
ム粒子を構成する一次粒子のアスペクト比は1〜2、中
央値1.3が好ましい。アスペクト比は、走査型電子顕
微鏡(例えば(株)日立製作所製 S−900型)によ
る観察で測定する。本発明のスラリ−に分散された酸化
セリウム粒子として、粉末X線リートベルト法(RIE
TAN−94)による解析で、等方的微小歪を表わす構
造パラメーター:Yの値が、0.01以上0.70以下
である酸化セリウム粒子を使用することができる。この
ような結晶歪みを有する酸化セリウム粒子を使用するこ
とにより、被研磨表面に傷をつけることなく、かつ高速
に研磨することができる。本発明のスラリ−に分散され
た酸化セリウム粒子の比表面積は、7〜45m2/gが
好ましい。比表面積が7m2/g未満だと被研磨表面に
傷を付け易くなり、45m2/gを越えると研磨速度が
遅くなる傾向にある。スラリ−の酸化セリウム粒子の比
表面積は、分散される酸化セリウム粒子の比表面積と同
じである。比表面積はBET法で測定することができ
る。本発明のスラリ−中の酸化セリウム粒子のゼ−タ電
位は、−100mV以上−10mVが好ましい。これに
より、酸化セリウム粒子の分散性を良好にし、被研磨表
面に傷を付けることなく、かつ高速に研磨することがで
きる。本発明のスラリ−のpHは、7以上10以下が好
ましく、8以上9以下がより好ましい。スラリ−調整
後、ポリエチレン等の容器に入れ5〜55℃で7日以
上、より好ましくは30日以上放置して使用すれば傷の
発生が少なくなる。本発明のスラリ−は、分散性に優れ
沈降速度が遅く、直径10cm高さ1mの円柱容器のど
の高さの位置でも、2時間放置濃度変化率が10%未満
である。
The aspect ratio of the primary particles constituting the cerium oxide particles dispersed in the slurry of the present invention is preferably 1 to 2, and the median value is 1.3. The aspect ratio is measured by observation with a scanning electron microscope (for example, S-900 type manufactured by Hitachi, Ltd.). As the cerium oxide particles dispersed in the slurry of the present invention, powder X-ray Rietveld method (RIE
Cerium oxide particles having a value of Y, which is a structural parameter representing isotropic microstrain in the analysis by TAN-94), of 0.01 or more and 0.70 or less can be used. By using the cerium oxide particles having such crystal strain, polishing can be performed at high speed without scratching the surface to be polished. The specific surface area of the cerium oxide particles dispersed in the slurry of the present invention is preferably 7 to 45 m 2 / g. If the specific surface area is less than 7 m 2 / g, the surface to be polished is likely to be scratched, and if it exceeds 45 m 2 / g, the polishing rate tends to be slow. The specific surface area of the cerium oxide particles of the slurry is the same as the specific surface area of the dispersed cerium oxide particles. The specific surface area can be measured by the BET method. The cerium oxide particles in the slurry of the present invention preferably have a zeta potential of -100 mV or more and -10 mV. As a result, the dispersibility of the cerium oxide particles is improved, and the surface to be polished can be polished at high speed without scratching. The pH of the slurry of the present invention is preferably 7 or more and 10 or less, more preferably 8 or more and 9 or less. After the slurry is adjusted, if it is put in a container such as polyethylene and left at 5 to 55 ° C. for 7 days or longer, more preferably 30 days or longer, scratches are less likely to occur. INDUSTRIAL APPLICABILITY The slurry of the present invention has excellent dispersibility, has a slow sedimentation speed, and has a rate of change in concentration for 2 hours when it is left for less than 10% at any position of a cylindrical container having a diameter of 10 cm and a height of 1 m.

【0013】本発明の酸化セリウム研磨剤が使用される
無機絶縁膜の作製方法として、定圧CVD法、プラズマ
CVD法等が挙げられる。定圧CVD法によるSiO2
絶縁膜形成は、Si源としてモノシラン:SiH4、酸
素源として酸素:O2を用いる。このSiH4−O2系酸
化反応を、400℃程度以下の低温で行わせることによ
り得られる。高温リフローによる表面平坦化を図るため
に、リン:Pをドープするときには、SiH4−O2−P
3系反応ガスを用いることが好ましい。プラズマCD
法は、通常の熱平衡下では高温を必要とする化学反応が
低温でできる利点を有する。プラズマ発生法には、容量
結合型と誘導結合型の2つが挙げられる。反応ガスとし
ては、Si源としてSiH4、酸素源としてN2Oを用い
たSiH4−N2O系ガスとテトラエトキシシラン(TE
OS)を、Si源に用いたTEOS−O2系ガス(TE
OS−プラズマCVD法)が挙げられる。基板温度は2
50℃〜400℃、反応圧力は67〜400Paの範囲
が好ましい。このように、本発明のSiO絶縁膜には
リン、ホウ素等の元素がド−プされていても良い。
As a method for producing an inorganic insulating film in which the cerium oxide abrasive of the present invention is used, a constant pressure CVD method, a plasma CVD method and the like can be mentioned. SiO 2 by constant pressure CVD method
In forming the insulating film, monosilane: SiH 4 is used as the Si source, and oxygen: O 2 is used as the oxygen source. It can be obtained by carrying out this SiH 4 —O 2 system oxidation reaction at a low temperature of about 400 ° C. or lower. When phosphorus: P is doped to achieve surface flattening by high temperature reflow, SiH 4 —O 2 —P
It is preferable to use an H 3 -based reaction gas. Plasma CD
The method has the advantage that chemical reactions that require high temperatures under normal thermal equilibrium can occur at low temperatures. There are two plasma generation methods, a capacitive coupling type and an inductive coupling type. As a reaction gas, SiH 4 is used as a Si source, and SiH 4 —N 2 O based gas using N 2 O as an oxygen source and tetraethoxysilane (TE) are used.
TEOS-O 2 system gas (TE) which used OS as the Si source.
OS-plasma CVD method). Substrate temperature is 2
The range of 50 ° C. to 400 ° C. and the reaction pressure of 67 to 400 Pa are preferable. As described above, the SiO 2 insulating film of the present invention may be doped with elements such as phosphorus and boron.

【0014】所定の基板として、半導体基板すなわち回
路素子とアルミニウム配線が形成された段階の半導体基
板、回路素子が形成された段階の半導体基板等の半導体
基板上にSiO2絶縁膜層が形成された基板等が使用で
きる。このような半導体基板上に形成されたSiO2
縁膜層を、上記酸化セリウム研磨剤で研磨することによ
って、SiO2絶縁膜層表面の凹凸を解消し、半導体基
板全面に渡って平滑な面とする。ここで、研磨する装置
としては、半導体基板を保持するホルダーと研磨布(パ
ッド)を貼り付けた(回転数が変更可能なモータ等を取
り付けてある)定盤を有する一般的な研磨装置が使用で
きる。研磨布としては、一般的な不織布、発泡ポリウレ
タン、多孔質フッ素樹脂などが使用でき、特に制限がな
い。また、研磨布にはスラリーが溜まる様な溝加工を施
すことが好ましい。研磨条件には制限はないが、定盤の
回転速度は、半導体が飛び出さない様に100rpm以
下の低回転が好ましく、半導体基板にかける圧力は、研
磨後に傷が発生しない様に1kg/cm2以下が好まし
い。研磨している間、研磨布にはスラリーをポンプ等で
連続的に供給する。この供給量に制限はないが、研磨布
の表面が常にスラリーで覆われていることが好ましい。
As a predetermined substrate, a SiO 2 insulating film layer is formed on a semiconductor substrate, that is, a semiconductor substrate in which circuit elements and aluminum wiring are formed, a semiconductor substrate in which circuit elements are formed, and the like. A substrate or the like can be used. By polishing the SiO 2 insulating film layer formed on such a semiconductor substrate with the cerium oxide abrasive, unevenness on the surface of the SiO 2 insulating film layer is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. To do. Here, as a polishing device, a general polishing device having a holder for holding a semiconductor substrate and a surface plate to which a polishing cloth (pad) is attached (a motor or the like whose rotation speed is changeable) is used is used. it can. As the polishing cloth, general non-woven cloth, foamed polyurethane, porous fluororesin, etc. can be used without any particular limitation. Further, it is preferable that the polishing cloth is grooved so that the slurry is accumulated. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably a low rotation of 100 rpm or less so that the semiconductor does not jump out, and the pressure applied to the semiconductor substrate is 1 kg / cm 2 so that scratches do not occur after polishing. The following are preferred. During polishing, slurry is continuously supplied to the polishing cloth with a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing cloth is always covered with the slurry.

【0015】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして平坦化されたSiO2絶縁膜層の上
に、第2層目のアルミニウム配線を形成し、その配線間
および配線上に再度上記方法により、SiO2絶縁膜を
形成後、上記酸化セリウム研磨剤を用いて研磨すること
によって、絶縁膜表面の凹凸を解消し、半導体基板全面
に渡って平滑な面とする。この工程を所定数繰り返すこ
とにより、所望の層数の半導体を製造する。
It is preferable that the semiconductor substrate after the polishing is thoroughly washed in running water, and then water droplets adhering to the semiconductor substrate are removed by using a spin dryer or the like and then dried. On this way, the SiO 2 insulating film layer which is flattened, forming an aluminum wiring of the second layer, again by the above method on the inter-wiring and the wiring, after forming the SiO 2 insulating film, the oxide By polishing with a cerium abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0016】本発明の酸化セリウム研磨剤は、半導体基
板に形成されたSiO2絶縁膜だけでなく、所定の配線
を有する配線板に形成されたSiO絶縁膜、ガラス、
窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プ
リズム等の光学ガラス、ITO等の無機導電膜、ガラス
及び結晶質材料で構成される光集積回路・光スイッチン
グ素子・光導波路、光ファイバ−の端面、シンチレ−タ
等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用L
EDサファイア基板、SiC、GaP、GaAS等の半
導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド等
を研磨するために使用される。
The cerium oxide abrasive of the present invention is not limited to the SiO 2 insulating film formed on a semiconductor substrate, but also an SiO 2 insulating film formed on a wiring board having a predetermined wiring, glass,
Inorganic insulating film such as silicon nitride, optical glass such as photomask, lens and prism, inorganic conductive film such as ITO, optical integrated circuit composed of glass and crystalline material, optical switching element, optical waveguide, optical fiber End face, optical single crystal for scintillator, solid laser single crystal, blue laser L
It is used for polishing an ED sapphire substrate, a semiconductor single crystal such as SiC, GaP and GaAs, a glass substrate for a magnetic disk, a magnetic head and the like.

【0017】このように本発明において所定の基板と
は、SiO2絶縁膜が形成された半導体基板、SiO2
縁膜が形成された配線板、ガラス、窒化ケイ素等の無機
絶縁膜、フォトマスク・レンズ・プリズム等の光学ガラ
ス、ITO等の無機導電膜、ガラス及び結晶質材料で構
成される光集積回路・光スイッチング素子・光導波路、
光ファイバ−の端面、シンチレ−タ等の光学用単結晶、
固体レ−ザ単結晶、青色レ−ザ用LEDサファイア基
板、SiC、GaP、GaAS等の半導体単結晶、磁気
ディスク用ガラス基板、磁気ヘッド等を含む。
[0017] The predetermined substrate in the present invention as described above, SiO 2 semiconductor substrate on which an insulating film is formed, SiO 2 insulating film is formed wiring board, glass, inorganic insulating films such as silicon nitride, photomask Optical glass such as lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits, optical switching elements and optical waveguides composed of glass and crystalline materials,
Optical fiber end face, optical single crystal such as scintillator,
It includes a solid-state laser single crystal, a blue laser LED sapphire substrate, a semiconductor single crystal such as SiC, GaP, or GaAs, a magnetic disk glass substrate, and a magnetic head.

【0018】また所定の基板として、基板が半導体基板
であり、その上の形成層が有機SOG膜及び化学気相堆
積や熱酸化によって形成されたSiO2膜であり、不活
性化膜が形成される膜がSiO2膜で、選択的に研磨さ
れる膜が有機SOG膜である基板上に2種類以上の異な
る膜が形成された基板であっても良い。有機SOG膜と
は、例えばアルコキシシラン及びアルキルアルコキシシ
ランをアルコール等の有機溶媒中で水及び触媒を添加す
ることにより、加水分解して得られる塗布液をスピンコ
ート法等により基板に塗布後、加熱処理により硬化さた
ものである。
Further, as the predetermined substrate, the substrate is a semiconductor substrate, the formation layer thereon is an organic SOG film and a SiO 2 film formed by chemical vapor deposition or thermal oxidation, and a passivation film is formed. The film may be a SiO 2 film, and the film to be selectively polished may be an organic SOG film, on which two or more different films are formed. The organic SOG film is, for example, a coating solution obtained by hydrolyzing an alkoxysilane and an alkylalkoxysilane in an organic solvent such as alcohol by adding water and a catalyst to the substrate by spin coating or the like, followed by heating. It has been cured by treatment.

【0019】[0019]

【実施例】実施例1 (酸化セリウム粒子の作製1)炭酸セリウム水和物2k
gを白金製容器に入れ、800℃、2時間空気中で焼成
することにより、黄白色の粉末を約1kg得た。この粉
末をX線回折法で相同定を行ったところ、酸化セリウム
であることを確認した。焼成粉末粒子径は30〜100
ミクロンであった。焼成粉末粒子表面を走査型電子顕微
鏡で観察したところ、酸化セリウムの粒界が観察され
た。粒界に囲まれた酸化セリウム一次粒子径を測定した
ところ、その分布の中央値が190nm、最大値が50
0nmであった。焼成粉末についてX線回折精密測定を
行い、その結果についてリートベルト法(RIETAN
−94)による解析で、一次粒子径を表わす構造パラメ
ータ−:Xの値が0.080、等方的微少歪みを表わす
構造パラメータ−:Yの値が0.223であった。酸化
セリウム粉末1kgをジェットミルにより乾式粉砕を行
った。粉砕粒子について走査型電子顕微鏡で観察したと
ころ、一次粒子径と同等サイズの小さな粒子の他に、1
ミクロンから3ミクロンの大きな粉砕粒子と0.5から
1ミクロンの粉砕粒子が混在していた。これらの粉砕粒
子は、一次粒子が再凝集した凝集体とは異なっており、
2つ以上の一次粒子から構成され結晶粒界を有してい
る。この粉砕粒子についてX線回折精密測定を行い、そ
の結果についてリートベルト法(RIETAN−94)
による解析で、一次粒子径を表わす構造パラメータ−:
Xの値が0.085、等方的微少歪みを表わす構造パラ
メータ−:Yの値が0.264であった。この結果、粉
砕による一次粒子径変量は殆どなく、また粉砕により粒
子に歪みが導入されていた。さらに、BET法による比
表面積測定の結果、10m2/gであることがわかっ
た。
Examples Example 1 (Preparation of cerium oxide particles 1) Cerium carbonate hydrate 2k
g was put in a platinum container and baked in air at 800 ° C. for 2 hours to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by an X-ray diffraction method, it was confirmed to be cerium oxide. Baking powder particle size is 30-100
It was micron. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the cerium oxide primary particle size surrounded by grain boundaries was measured, the median value of the distribution was 190 nm, and the maximum value was 50.
It was 0 nm. X-ray diffraction precision measurement was performed on the calcined powder, and the result was measured by the Rietveld method (RIETAN).
According to the analysis by -94), the value of the structural parameter-: X representing the primary particle diameter was 0.080, and the value of the structural parameter-: Y representing the isotropic microstrain was 0.223. 1 kg of cerium oxide powder was dry-ground with a jet mill. Observation of the crushed particles with a scanning electron microscope revealed that, in addition to small particles of the same size as the primary particle size,
Large crushed particles of micron to 3 micron and crushed particles of 0.5 to 1 micron were mixed. These crushed particles are different from the aggregates in which the primary particles are re-aggregated,
It is composed of two or more primary particles and has a crystal grain boundary. X-ray diffraction precision measurement was performed on the crushed particles, and the results were measured by Rietveld method (RIETAN-94).
The structural parameter representing the primary particle size by the analysis by:
The value of X was 0.085, and the value of structural parameter −: Y representing isotropic microstrain was 0.264. As a result, there was almost no change in the primary particle diameter due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 10 m 2 / g.

【0020】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとアクリル酸アンモニウム塩
とアクリル酸メチルの共重合体水溶液(40重量%)2
3gと脱イオン水8977gを混合し、撹拌しながら超
音波分散を10分間施した。アクリル酸アンモニウム塩
とアクリル酸メチルの共重合体の重量平均分子量は10
000で、アクリル酸アンモニウム塩とアクリル酸メチ
ルのモル比は3:1のものを使用した。得られたスラリ
ーを1ミクロンフィルターでろ過をし、さらに脱イオン
水を加えることにより3wt%研磨剤を得た。スラリー
pHは8.3であった。スラリー中の粒子を走査型電子
顕微鏡で観察するために、スラリーを適当な濃度に希釈
し、それを乾燥した。スラリー中に含まれる結晶粒界を
有する粉砕粒子径を測定したところ、作製した酸化セリ
ウム粒子の中央値が825nm、最大値が1230nm
であった。その粉砕粒子は全体の84体積%であった。
この場合、他の粒子は殆ど一次粒子径と同等サイズの小
さな粒子であった。この場合、他の粒子は殆ど一次粒子
径と同等サイズの小さな粒子であった。スラリーの分散
性およびスラリー粒子の電荷を調べるため、スラリーの
ゼータ電位を調べた。両側に白金製電極を取り付けてあ
る測定セルに、酸化セリウムスラリーを入れ、両電極に
10Vの電圧を印加した。電圧を印加することにより電
荷を持ったスラリー粒子は、その電荷と反対の極を持つ
電極側に移動する。この移動速度を求めることにより、
粒子のゼータ電位を求めることができる。ゼータ電位測
定の結果、それぞれマイナスに荷電し、−50mVと絶
対値が大きく分散性が良好であることを確認した。ま
た、アンドレアゼンピペットにより沈降速度を測定した
ところ、3時間で濃度変化は0.01wt.%で、沈降
速度は6.7cm/hと沈降速度が遅く、また研磨時に
攪拌することにより研磨剤濃度むらが生じなかった。研
磨剤を6ヶ月間5℃〜55℃で保管した。その後、攪拌
により均一な濃度分布の研磨剤に戻し、レーザー回折粒
度分布測定を行ったところ、作製直後と同一の粒度分布
であることを確認できた。BET法によるスラリー粒子
の比表面積測定の結果、作製1の場合は10m2/g、
作製2の場合は16m2/gであった。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, an aqueous solution of a copolymer of ammonium acrylate and methyl acrylate (40% by weight) 2
3 g and 8977 g of deionized water were mixed and ultrasonically dispersed for 10 minutes while stirring. The weight average molecular weight of the copolymer of ammonium acrylate and methyl acrylate is 10
000, and the molar ratio of ammonium acrylate salt to methyl acrylate was 3: 1. The obtained slurry was filtered with a 1-micron filter, and deionized water was further added to obtain a 3 wt% abrasive. The slurry pH was 8.3. The slurry was diluted to the appropriate concentration and dried for scanning electron microscopy of the particles in the slurry. When the crushed particle size having crystal grain boundaries contained in the slurry was measured, the median value of the prepared cerium oxide particles was 825 nm, and the maximum value was 1230 nm.
Met. The ground particles were 84% by volume of the whole.
In this case, the other particles were almost as small as the primary particle size. In this case, the other particles were almost as small as the primary particle size. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was put into a measurement cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. By applying a voltage, the slurry particles having an electric charge move to the side of the electrode having a pole opposite to the electric charge. By obtaining this moving speed,
The zeta potential of the particles can be determined. As a result of zeta potential measurement, it was confirmed that each was negatively charged, had a large absolute value of −50 mV, and had good dispersibility. When the sedimentation rate was measured with an Andreazen pipette, the concentration change was 0.01 wt. %, The sedimentation rate was 6.7 cm / h, which was low, and unevenness in the concentration of the abrasive was not caused by stirring during polishing. The abrasive was stored at 5 ° C to 55 ° C for 6 months. After that, the mixture was returned to an abrasive having a uniform concentration distribution by stirring, and laser diffraction particle size distribution measurement was carried out. As a result, it was confirmed that the particle size distribution was the same as that immediately after preparation. As a result of measurement of the specific surface area of the slurry particles by the BET method, in the case of preparation 1, 10 m 2 / g,
In the case of preparation 2, it was 16 m 2 / g.

【0021】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーに、TEOS−プ
ラズマCVD法で作製したSiO2絶縁膜を形成させた
Siウエハをセットし、多孔質ウレタン樹脂製の研磨パ
ッドを貼り付けた定盤上に、絶縁膜面を下にしてホルダ
ーを載せ、さらに加工荷重が300g/cm2になるよ
うに重しを載せた。定盤上に上記の酸化セリウムスラリ
ー(固形分:3重量%)を50cc/minの速度で滴
下しながら、定盤を30rpmで2分間回転させ、絶縁
膜を研磨した。研磨後ウエハをホルダーから取り外し
て、流水で良く洗浄後、超音波洗浄機によりさらに20
分間洗浄した。洗浄後、ウエハをスピンドライヤーで水
滴を除去し、120℃の乾燥機で10分間乾燥させた。
光干渉式膜厚測定装置を用いて、研磨前後の膜厚変化を
測定した結果、この研磨によりそれぞれ600nm、5
80nm(研磨速度:300nm/min、290nm
/min)の絶縁膜が削られ、ウエハ全面に渡って均一
の厚みになっていることがわかった。また、光学顕微鏡
を用いて絶縁膜表面を観察したところ、明確な傷は見ら
れなかった。
(Polishing of Insulating Film Layer) A Si wafer having a SiO 2 insulating film formed by TEOS-plasma CVD method is set on a holder to which a suction pad for attaching a substrate to be held is attached, and porous urethane is used. A holder was placed with the insulating film surface facing down on a surface plate to which a resin polishing pad was attached, and a weight was placed so that the processing load was 300 g / cm 2. The insulating film was polished by rotating the platen at 30 rpm for 2 minutes while dropping the above cerium oxide slurry (solid content: 3% by weight) on the platen at a rate of 50 cc / min. After polishing, remove the wafer from the holder and wash it thoroughly with running water.
Washed for minutes. After washing, water drops were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes.
As a result of measuring the change in film thickness before and after polishing using an optical interference type film thickness measuring device, it was found that the film thickness was 600 nm and 5 nm, respectively.
80 nm (polishing rate: 300 nm / min, 290 nm
It was found that the insulating film of / min) was shaved and the thickness was uniform over the entire surface of the wafer. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was seen.

【0022】比較例 実施例と同様にTEOS−CVD法で作製したSiO2
絶縁膜を形成させたSiウエハについて、市販シリカス
ラリー(キャボット社製、商品名SS225)を用いて
研磨を行った。この市販スラリーのpHは10.3で、
SiO2粒子を12.5wt%含んでいるものである。
研磨条件は実施例と同一である。その結果、研磨による
傷は見られず、また均一に研磨がなされたが、2分間の
研磨により150nm(研磨速度:75nm/min)
の絶縁膜層しか削れなかった。
Comparative Example SiO 2 produced by the TEOS-CVD method as in the example.
The Si wafer having the insulating film formed thereon was polished using a commercially available silica slurry (manufactured by Cabot Corporation, trade name SS225). The pH of this commercial slurry is 10.3,
It contains 12.5 wt% of SiO 2 particles.
The polishing conditions are the same as in the example. As a result, no scratches due to polishing were found, and polishing was performed uniformly, but after polishing for 2 minutes, 150 nm (polishing rate: 75 nm / min)
I was able to scrape only the insulating film layer.

【0023】[0023]

【発明の効果】本発明の研磨剤により、沈降しにくく、
SiO2絶縁膜等の被研磨面を傷なく高速に研磨するこ
とが可能となる。
EFFECTS OF THE INVENTION The abrasive of the present invention prevents sedimentation,
It becomes possible to polish the surface to be polished such as the SiO 2 insulating film at high speed without scratches.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/304 622 H01L 21/304 622D (72)発明者 倉田 靖 茨城県つくば市和台48 日立化成工業株 式会社 筑波開発研究所内 (72)発明者 寺崎 裕樹 茨城県つくば市和台48 日立化成工業株 式会社 筑波開発研究所内 (72)発明者 松沢 純 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 山崎工場内 (72)発明者 丹野 清仁 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 山崎工場内 (72)発明者 深沢 正人 茨城県つくば市和台48 日立化成工業株 式会社 筑波開発研究所内 (56)参考文献 特開 平10−168431(JP,A) 特開 昭52−74585(JP,A) 特開 昭54−43190(JP,A) 特開 平10−154673(JP,A) 特開 平9−270402(JP,A) 特開 平10−106990(JP,A) 特開 平10−106994(JP,A) 特開 平10−102039(JP,A) (58)調査した分野(Int.Cl.7,DB名) C09C 1/68 B24B 37/00 C01F 17/00 C09K 3/14 550 C09K 3/14 550 H01L 21/304 622 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01L 21/304 622 H01L 21/304 622D (72) Inventor Yasushi Kurata 48 Wadai, Tsukuba City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Tsukuba Development In-house (72) Inventor Hiroki Terasaki 48 Wadai, Tsukuba, Ibaraki Hitachi Chemical Co., Ltd. Tsukuba Development Laboratory (72) Inventor Jun Matsuzawa 4-13-1, Higashimachi, Hitachi-shi, Ibaraki Hitachi Chemical Co., Ltd. Yamazaki Inside the factory (72) Inventor Kiyohito Tanno 4-13-1 Higashimachi, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Yamazaki Inside the factory (72) Masato Fukasawa 48 Wadai, Tsukuba City, Ibaraki Hitachi Chemical Co., Ltd. Tsukuba Development In the laboratory (56) Reference JP 10-168431 (JP, A) JP 52-74585 (JP, A) JP 54-43190 (JP, A) JP 10-154673 (JP, A) JP 9-270402 (JP, A) JP 10-106990 (JP, A) JP 10-106994 (JP, A) JP 10-102039 (JP , A) (58) Fields investigated (Int.Cl. 7 , DB name) C09C 1/68 B24B 37/00 C01F 17/00 C09K 3/14 550 C09K 3/14 550 H01L 21/304 622

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 酸化セリウム粒子、アクリル酸アンモニ
ウム塩とアクリル酸メチルの共重合体および水を含む酸
化セリウム研磨剤であって、アクリル酸アンモニウム塩
とアクリル酸メチルの共重合体の重量平均分子量が10
00〜20000である酸化セリウム研磨剤。
1. A cerium oxide abrasive containing cerium oxide particles, a copolymer of ammonium acrylate and methyl acrylate and water, wherein the weight average molecular weight of the copolymer of ammonium acrylate and methyl acrylate is 10
A cerium oxide abrasive that is 0 to 20000.
【請求項2】 アクリル酸アンモニウム塩とアクリル酸
メチルの共重合体が酸化セリウム粒子100重量部に対
して0.01以上5重量部以下添加された請求項1記載
の酸化セリウム研磨剤。
2. The cerium oxide abrasive according to claim 1, wherein the copolymer of ammonium acrylate and methyl acrylate is added in an amount of 0.01 to 5 parts by weight based on 100 parts by weight of the cerium oxide particles.
【請求項3】 アクリル酸アンモニウム塩/アクリル酸
メチルのモル比が10/90〜90/10である請求項
1または請求項2記載の酸化セリウム研磨剤。
3. The cerium oxide abrasive according to claim 1, wherein the molar ratio of ammonium acrylate / methyl acrylate is 10/90 to 90/10.
【請求項4】 pHが7以上10以下である請求項1〜
3のいずれかに記載の酸化セリウム研磨剤。
4. The pH is 7 or more and 10 or less.
The cerium oxide abrasive according to any one of 3 above.
【請求項5】 請求項1〜4のいずれかに記載の酸化セ
リウム研磨剤で、所定の基板を研磨する基板の研磨法。
5. A method for polishing a substrate, which polishes a predetermined substrate with the cerium oxide abrasive according to claim 1.
【請求項6】 所定の基板がシリカ膜が形成された半導
体チップである請求項5記載の基板の研磨法。
6. The method of polishing a substrate according to claim 5, wherein the predetermined substrate is a semiconductor chip having a silica film formed thereon.
【請求項7】 請求項6記載の半導体チップを備える半
導体装置。
7. A semiconductor device comprising the semiconductor chip according to claim 6.
JP18479198A 1998-06-30 1998-06-30 Cerium oxide abrasive, substrate polishing method, and semiconductor device Expired - Lifetime JP3480323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18479198A JP3480323B2 (en) 1998-06-30 1998-06-30 Cerium oxide abrasive, substrate polishing method, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18479198A JP3480323B2 (en) 1998-06-30 1998-06-30 Cerium oxide abrasive, substrate polishing method, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2000017195A JP2000017195A (en) 2000-01-18
JP3480323B2 true JP3480323B2 (en) 2003-12-15

Family

ID=16159366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18479198A Expired - Lifetime JP3480323B2 (en) 1998-06-30 1998-06-30 Cerium oxide abrasive, substrate polishing method, and semiconductor device

Country Status (1)

Country Link
JP (1) JP3480323B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110596A (en) 2000-10-02 2002-04-12 Mitsubishi Electric Corp Polishing agent for semiconductor processing, dispersant used therefor, and method of manufacturing semiconductor device using the same polishing agent
DE60140621D1 (en) 2000-11-30 2010-01-07 Showa Denko Kk CERBASING ABRASANT AND ITS PRODUCTION
JP4064636B2 (en) * 2001-02-07 2008-03-19 三井金属鉱業株式会社 Cerium-based abrasive particles and method for producing the same
JP5017574B2 (en) 2001-05-25 2012-09-05 エア プロダクツ アンド ケミカルズ インコーポレイテッド Cerium oxide abrasive and method for producing substrate
JP4554363B2 (en) * 2002-07-22 2010-09-29 Agcセイミケミカル株式会社 Abrasive for semiconductor, manufacturing method thereof and polishing method
TWI286567B (en) * 2003-09-12 2007-09-11 Hitachi Chemical Co Ltd Cerium salt and fabricating method thereof, cerium oxide and cerium polishing agent
TWI363790B (en) 2005-10-19 2012-05-11 Hitachi Chemical Co Ltd Cerium oxide slurry, cerium oxide polishing solution and polishing method by utilizing the same
JP2008001907A (en) * 2007-07-26 2008-01-10 Mitsui Mining & Smelting Co Ltd Cerium-based abrasive slurry and method for producing cerium-based abrasive slurry

Also Published As

Publication number Publication date
JP2000017195A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
JP3462052B2 (en) Cerium oxide abrasive and substrate polishing method
US6221118B1 (en) Cerium oxide abrasive and method of polishing substrates
JP4788586B2 (en) Abrasive and slurry
JP3480323B2 (en) Cerium oxide abrasive, substrate polishing method, and semiconductor device
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
JP2010030041A (en) Cerium oxide abrasive and method of polishing substrate
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JP4788585B2 (en) Abrasive and slurry
JPH11181404A (en) Cerium oxide abrasive and grinding of substrate
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP4445820B2 (en) Cerium oxide abrasive and substrate polishing method
JPH11181407A (en) Cerium oxide abrasive and grinding of substrate
JPH11181405A (en) Cerium oxide abrasive and grinding of substrate
JP4776518B2 (en) Abrasive and slurry
JP2005039286A (en) Cerium oxide abrasive and method for polishing substrate
JP2004250714A (en) Cerium oxide abrasive and method for grinding substrate
JPH11181406A (en) Cerium oxide abrasive and grinding of substrate
JP2005039287A (en) Cerium oxide abrasive and method for polishing substrate
JP2003051467A (en) Cerium oxide abrasive and polishing method of substrate

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term