JP3462052B2 - Cerium oxide abrasive and substrate polishing method - Google Patents

Cerium oxide abrasive and substrate polishing method

Info

Publication number
JP3462052B2
JP3462052B2 JP26597997A JP26597997A JP3462052B2 JP 3462052 B2 JP3462052 B2 JP 3462052B2 JP 26597997 A JP26597997 A JP 26597997A JP 26597997 A JP26597997 A JP 26597997A JP 3462052 B2 JP3462052 B2 JP 3462052B2
Authority
JP
Japan
Prior art keywords
cerium oxide
particles
polishing
slurry
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26597997A
Other languages
Japanese (ja)
Other versions
JPH10152673A (en
Inventor
誠人 吉田
寅之助 芦沢
裕樹 寺崎
靖 倉田
純 松沢
清仁 丹野
裕人 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27478488&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3462052(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP26597997A priority Critical patent/JP3462052B2/en
Publication of JPH10152673A publication Critical patent/JPH10152673A/en
Priority to TW87116262A priority patent/TW589351B/en
Application granted granted Critical
Publication of JP3462052B2 publication Critical patent/JP3462052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化セリウム研磨
剤及び基板の研磨法に関する。
TECHNICAL FIELD The present invention relates to a cerium oxide abrasive and a method for polishing a substrate.

【0002】[0002]

【従来の技術】従来、半導体装置の製造工程において、
プラズマ−CVD、低圧−CVD等の方法で形成される
SiO2絶縁膜等無機絶縁膜層を平坦化するための化学
機械研磨剤としてコロイダルシリカ系の研磨剤が一般的
に検討されている。コロイダルシリカ系の研磨剤は、シ
リカ粒子を四塩化珪酸を熱分解する等の方法で粒成長さ
せ、アンモニア等のアルカリ金属を含まないアルカリ溶
液でpH調整を行って製造している。しかしながら、こ
の様な研磨剤は無機絶縁膜の研磨速度が充分な速度を持
たず、実用化には低研磨速度という技術課題がある。一
方、フォトマスク用ガラス表面研磨として、酸化セリウ
ム研磨剤が用いられている。酸化セリウム粒子はシリカ
粒子やアルミナ粒子に比べ硬度が低く、したがって研磨
表面に傷が入りにくいことから仕上げ鏡面研磨に有用で
ある。また、酸化セリウムは強い酸化剤として知られる
ように化学的活性な性質を有している。この利点を活か
し、絶縁膜用化学機械研磨剤への適用が有用である。し
かしながら、フォトマスク用ガラス表面研磨用酸化セリ
ウム研磨剤をそのまま無機絶縁膜研磨に適用すると、1
次粒子径が大きく、そのため絶縁膜表面に目視で観察で
きる研磨傷が入ってしまう。
2. Description of the Related Art Conventionally, in the process of manufacturing a semiconductor device,
A colloidal silica-based polishing agent is generally studied as a chemical mechanical polishing agent for flattening an inorganic insulating film layer such as a SiO 2 insulating film formed by a method such as plasma-CVD or low-pressure-CVD. The colloidal silica-based polishing agent is manufactured by growing silica particles by a method such as thermal decomposition of tetrachlorosilicic acid and adjusting the pH with an alkali solution containing no alkali metal such as ammonia. However, such an abrasive does not have a sufficient polishing rate for the inorganic insulating film, and has a technical problem of low polishing rate for practical use. On the other hand, a cerium oxide polishing agent is used for polishing the glass surface for a photomask. Cerium oxide particles have a lower hardness than silica particles and alumina particles, and therefore scratches are less likely to occur on the polishing surface, and are therefore useful for finish mirror polishing. Further, cerium oxide has a chemically active property as known as a strong oxidant. Taking advantage of this advantage, application to chemical mechanical polishing agents for insulating films is useful. However, if the cerium oxide polishing agent for polishing the glass surface for the photomask is directly applied to polishing the inorganic insulating film,
The secondary particle diameter is large, and therefore, the surface of the insulating film has polishing scratches that can be visually observed.

【0003】[0003]

【発明が解決しようとする課題】本発明は、SiO2
縁膜等の被研磨面を傷なく高速に研磨することが可能な
酸化セリウム研磨剤及び基板の研磨法を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention provides a cerium oxide polishing agent and a substrate polishing method capable of polishing a surface to be polished such as a SiO 2 insulating film at high speed without scratches.

【0004】[0004]

【課題を解決するための手段】本発明の酸化セリウム研
磨剤は、一次粒子径の中央値が30〜250nmであり
粒子径の中央値が150〜600nmである酸化セリウ
ム粒子を媒体に分散させたスラリーを含むものである。
また本発明の酸化セリウム研磨剤は、一次粒子径の中央
値が100〜250nmであり粒子径の中央値が150
〜350nmである酸化セリウム粒子を媒体に分散させ
たスラリーを含むものであることができる。上記の酸化
セリウム粒子では、一次粒子の最大径は600nm以下
が好ましく、一次粒子径は10〜600nmであること
が好ましい。
In the cerium oxide abrasive of the present invention, cerium oxide particles having a median primary particle diameter of 30 to 250 nm and a median particle diameter of 150 to 600 nm are dispersed in a medium. It contains a slurry.
The cerium oxide abrasive of the present invention has a median primary particle diameter of 100 to 250 nm and a median particle diameter of 150.
It may include a slurry in which cerium oxide particles of ˜350 nm are dispersed in a medium. In the above cerium oxide particles, the maximum diameter of primary particles is preferably 600 nm or less, and the primary particle diameter is preferably 10 to 600 nm.

【0005】また本発明の酸化セリウム研磨剤は、一次
粒子径の中央値が30〜70nmであり粒子径の中央値
が250〜600nmである酸化セリウム粒子を媒体に
分散させたスラリーを含むものであることができる。上
記の酸化セリウム粒子では、一次粒子径は10〜100
nmであることが好ましい。本発明の酸化セリウム研磨
剤では、酸化セリウム粒子の最大径は3000nm以下
であることが好ましい。
The cerium oxide abrasive of the present invention contains a slurry in which cerium oxide particles having a median primary particle diameter of 30 to 70 nm and a median particle diameter of 250 to 600 nm are dispersed in a medium. You can In the above cerium oxide particles, the primary particle diameter is 10 to 100.
It is preferably nm. In the cerium oxide polishing agent of the present invention, the maximum diameter of the cerium oxide particles is preferably 3000 nm or less.

【0006】媒体として水を使用することができ、例え
ば水溶性有機高分子、水溶性陰イオン界面活性剤、水溶
性非イオン性界面活性剤及び水溶性アミンから選ばれる
少なくとも1種である分散剤が使用され、ポリアクリル
酸アンモニウム塩が好ましい。酸化セリウム粒子は炭酸
セリウムを焼成した酸化セリウムが好ましく使用され
る。本発明の酸化セリウム研磨剤で、例えばシリカ膜が
形成された半導体チップ等の所定の基板を研磨すること
ができる。
Water can be used as a medium, for example, a dispersant which is at least one selected from water-soluble organic polymers, water-soluble anionic surfactants, water-soluble nonionic surfactants and water-soluble amines. Are used, with polyacrylic acid ammonium salts being preferred. As the cerium oxide particles, cerium oxide obtained by firing cerium carbonate is preferably used. The cerium oxide abrasive of the present invention can polish a predetermined substrate such as a semiconductor chip having a silica film formed thereon.

【0007】[0007]

【発明の実施の形態】一般に酸化セリウムは、炭酸塩、
硫酸塩、蓚酸塩等のセリウム化合物を焼成することによ
って得られる。TEOS−CVD法等で形成されるSi
2絶縁膜は1次粒子径が大きく、かつ結晶歪が少ない
ほど、すなわち結晶性がよいほど高速研磨が可能である
が、研磨傷が入りやすい傾向がある。そこで、本発明で
用いる酸化セリウム粒子は、あまり結晶性を上げないで
作製される。また、半導体チップ研磨に使用することか
ら、アルカリ金属およびハロゲン類の含有率は1ppm
以下に抑えることが好ましい。本発明の研磨剤は高純度
のもので、Na、K、Si、Mg、Ca、Zr、Ti、
Ni、Cr、Feはそれぞれ1ppm以下、Alは10
ppm以下である。
DETAILED DESCRIPTION OF THE INVENTION Generally, cerium oxide is a carbonate,
It is obtained by firing a cerium compound such as a sulfate or an oxalate. Si formed by the TEOS-CVD method or the like
The larger the primary particle diameter of the O 2 insulating film and the smaller the crystal strain, that is, the better the crystallinity, the higher the speed of polishing is possible, but the polishing scratches are likely to occur. Therefore, the cerium oxide particles used in the present invention are produced without raising the crystallinity so much. Since it is used for polishing semiconductor chips, the content of alkali metals and halogens is 1ppm.
It is preferable to suppress it to the following. The polishing agent of the present invention is of high purity and comprises Na, K, Si, Mg, Ca, Zr, Ti,
Ni, Cr, and Fe are each 1 ppm or less, and Al is 10
It is below ppm.

【0008】本発明において、酸化セリウム粒子を作製
する方法として焼成法が使用できる。ただし、研磨傷が
入らない粒子を作製するためにできるだけ結晶性を上げ
ない低温焼成が好ましい。セリウム化合物の酸化温度が
300℃であることから、焼成温度は600℃以上90
0℃以下が好ましい。炭酸セリウムを600℃以上90
0℃以下で5〜300分、酸素ガス等の酸化雰囲気で焼
成すること好ましい。焼成された酸化セリウムは、ジェ
ットミル等の乾式粉砕、ビ−ズミル等の湿式粉砕で粉砕
することができる。ジェットミルは例えば化学工業論文
集第6巻第5号(1980)527〜532頁に説明さ
れている。焼成された酸化セリウムをジェットミル等の
乾式粉砕で粉砕すると粉砕残りの発生が観察された。
In the present invention, a firing method can be used as a method for producing cerium oxide particles. However, in order to produce particles that are free from polishing scratches, low temperature firing that does not increase the crystallinity as much as possible is preferable. Since the oxidation temperature of the cerium compound is 300 ° C, the firing temperature is 600 ° C or higher and 90 ° C or higher.
It is preferably 0 ° C or lower. Cerium carbonate more than 600 ℃ 90
It is preferable to perform firing at 0 ° C. or lower for 5 to 300 minutes in an oxidizing atmosphere such as oxygen gas. The calcined cerium oxide can be pulverized by dry pulverization such as a jet mill or wet pulverization such as a bead mill. The jet mill is described, for example, in Chemical Industry Papers, Vol. 6, No. 5 (1980), pages 527-532. When the calcined cerium oxide was pulverized by dry pulverization using a jet mill or the like, generation of pulverization residue was observed.

【0009】本発明における酸化セリウムスラリーは、
上記の方法により製造された酸化セリウム粒子を含有す
る水溶液又はこの水溶液から回収した酸化セリウム粒
子、水及び必要に応じて分散剤からなる組成物を分散さ
せることによって得られる。ここで酸化セリウム粒子の
濃度には制限は無いが、懸濁液の取り扱い易さから0.
1〜10重量%の範囲が好ましい。また分散剤として
は、金属イオン類を含まないものとして、アクリル酸重
合体及びそのアンモニウム塩、メタクリル酸重合体及び
そのアンモニウム塩、ポリビニルアルコール等の水溶性
有機高分子類、ラウリル硫酸アンモニウム、ポリオキシ
エチレンラウリルエーテル硫酸アンモニウム等の水溶性
陰イオン性界面活性剤、ポリオキシエチレンラウリルエ
ーテル、ポリエチレングリコールモノステアレート等の
水溶性非イオン性界面活性剤、モノエタノールアミン、
ジエタノールアミン等の水溶性アミン類などが挙げられ
る。ポリアクリル酸アンモニウム塩、特に重量平均分子
量5000〜20000のポリアクリル酸アンモニウム
塩が好ましい。これらの分散剤の添加量は、スラリー中
の粒子の分散性及び沈降防止性などから酸化セリウム粒
子100重量部に対して0.01重量部から5重量部の
範囲が好ましく、その分散効果を高めるためには分散処
理時に分散機の中に粒子と同時に入れることが好まし
い。
The cerium oxide slurry in the present invention is
It is obtained by dispersing the aqueous solution containing the cerium oxide particles produced by the above method or the composition comprising the cerium oxide particles recovered from the aqueous solution, water and, if necessary, a dispersant. Here, the concentration of the cerium oxide particles is not limited, but it is 0.
The range of 1 to 10% by weight is preferable. As the dispersant, as a dispersant containing no metal ions, an acrylic acid polymer and its ammonium salt, a methacrylic acid polymer and its ammonium salt, water-soluble organic polymers such as polyvinyl alcohol, ammonium lauryl sulfate, and polyoxyethylene. Water-soluble anionic surfactants such as ammonium lauryl ether sulfate, polyoxyethylene lauryl ether, water-soluble nonionic surfactants such as polyethylene glycol monostearate, monoethanolamine,
Examples thereof include water-soluble amines such as diethanolamine. Ammonium polyacrylate, particularly ammonium polyacrylate having a weight average molecular weight of 5,000 to 20,000 is preferable. The amount of these dispersants added is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the cerium oxide particles from the viewpoint of dispersibility of particles in the slurry and anti-settling property, etc., and enhances the dispersing effect. For this purpose, it is preferable to put the particles in a disperser at the same time as the dispersion treatment.

【0010】これらの酸化セリウム粒子を水中に分散さ
せる方法としては、通常の撹拌機による分散処理の他
に、ホモジナイザー、超音波分散機、ボールミルなどを
用いることができる。特に酸化セリウム粒子を1μm以
下の微粒子として分散させるためには、ボールミル、振
動ボールミル、遊星ボールミル、媒体撹拌式ミルなどの
湿式分散機を用いることが好ましい。また、スラリーの
アルカリ性を高めたい場合には、分散処理時又は処理後
にアンモニア水などの金属イオンを含まないアルカリ性
物質を添加することができる。本発明の酸化セリウム研
磨剤は、上記スラリ−をそのまま使用してもよいが、
N,N−ジエチルエタノ−ルアミン、N,N−ジメチル
エタノ−ルアミン、アミノエチルエタノ−ルアミン等の
添加剤を添加して研磨剤とすることができる。
As a method for dispersing these cerium oxide particles in water, a homogenizer, an ultrasonic disperser, a ball mill and the like can be used in addition to the usual dispersion treatment with a stirrer. In particular, in order to disperse the cerium oxide particles as fine particles of 1 μm or less, it is preferable to use a wet disperser such as a ball mill, a vibrating ball mill, a planetary ball mill, or a medium stirring type mill. When it is desired to increase the alkalinity of the slurry, an alkaline substance containing no metal ions, such as aqueous ammonia, can be added during or after the dispersion treatment. The cerium oxide abrasive of the present invention may use the above slurry as it is,
Additives such as N, N-diethylethanolamine, N, N-dimethylethanolamine, aminoethylethanolamine and the like can be added to obtain a polishing agent.

【0011】本発明のスラリーに分散される酸化セリウ
ム粒子を構成する一次粒子径の中央値は30〜250n
mであり、粒子径の中央値は150〜600nmであ
る。一次粒子径の中央値が30nm未満又は粒子径の中
央値が150nm未満であればSiO2絶縁膜等の被研
磨面を高速に研磨することができず、一次粒子径の中央
値が250nmを越える又は粒子径の中央値が600n
mを越えるとSiO2絶縁膜等の被研磨面に傷が発生す
る。また一次粒子径の中央値が100〜250nmであ
り粒子径の中央値が150〜350nmである酸化セリ
ウム粒子が好ましく、それぞれの中央値が上記下限値未
満であると研磨速度が小さくなり、上限値を越えると傷
が発生しやすい。上記の酸化セリウム粒子では、一次粒
子の最大径は600nm以下が好ましく、一次粒子径は
10〜600nmであることが好ましい。一次粒子が6
00nmを上限値を越えると傷が発生しやすく、10n
m未満であると研磨速度が小さくなる。また一次粒子径
の中央値が30〜70nmであり粒子径の中央値が25
0〜600nmである酸化セリウム粒子が好ましく、そ
れぞれの中央値が上記下限値未満であると研磨速度が小
さくなり、上限値を越えると傷が発生しやすい。上記の
酸化セリウム粒子では、一次粒子径は10〜100nm
であることが好ましく、一次粒子が10nm未満である
と研磨速度が小さくなり、100nmを上限値を越える
と傷が発生しやすくなる。本発明の酸化セリウム研磨剤
では、酸化セリウム粒子の最大径は3000nm以下で
あることが好ましい。酸化セリウム粒子の最大径が30
00nmを越えると傷が発生しやすい。
The median primary particle diameter of the cerium oxide particles dispersed in the slurry of the present invention is 30 to 250 n.
m, and the median particle diameter is 150 to 600 nm. If the median primary particle size is less than 30 nm or the median particle size is less than 150 nm, the surface to be polished such as SiO2 insulating film cannot be polished at high speed, and the median primary particle size exceeds 250 nm, or Median particle size is 600n
If it exceeds m, scratches occur on the surface to be polished such as the SiO 2 insulating film. Further, cerium oxide particles having a median primary particle diameter of 100 to 250 nm and a median particle diameter of 150 to 350 nm are preferable, and when each of the median values is less than the lower limit value, the polishing rate becomes small and the upper limit value is increased. If it exceeds, scratches are likely to occur. In the above cerium oxide particles, the maximum diameter of primary particles is preferably 600 nm or less, and the primary particle diameter is preferably 10 to 600 nm. 6 primary particles
If it exceeds the upper limit of 00 nm, scratches are likely to occur,
If it is less than m, the polishing rate will be low. Further, the median value of the primary particle diameter is 30 to 70 nm, and the median value of the particle diameter is 25.
Cerium oxide particles having a particle size of 0 to 600 nm are preferable, and when the median value of each is less than the lower limit value, the polishing rate becomes low, and when it exceeds the upper limit value, scratches are likely to occur. In the above cerium oxide particles, the primary particle diameter is 10 to 100 nm.
When the primary particles are less than 10 nm, the polishing rate becomes small, and when the primary particles exceed 100 nm, scratches are likely to occur. In the cerium oxide polishing agent of the present invention, the maximum diameter of the cerium oxide particles is preferably 3000 nm or less. The maximum diameter of cerium oxide particles is 30
If it exceeds 00 nm, scratches are likely to occur.

【0012】焼成酸化セリウムをジェットミル等の乾式
粉砕で粉砕した酸化セリウム粒子には粉砕残りが含ま
れ、この粉砕残り粒子は一次粒子が再凝集した凝集体と
は異なっており、研磨時の応力により破壊され活性面を
発生すると推定され、SiO2絶縁膜等の被研磨面を傷
なく高速に研磨することに寄与していると考えられる。
本発明のスラリ−には、3000nm以下の粉砕残り粒
子を含むことができる。
Cerium oxide particles obtained by pulverizing calcined cerium oxide by dry pulverization using a jet mill or the like contain pulverized residue, and the pulverized residual particles are different from aggregates in which primary particles are reaggregated. It is presumed that the surface to be polished is destroyed and an active surface is generated, which is considered to contribute to polishing the surface to be polished such as the SiO 2 insulating film at high speed without scratches.
The slurry of the present invention may contain uncrushed particles of 3000 nm or less.

【0013】本発明で、一次粒子径は走査型電子顕微鏡
(例えば(株)日立製作所製 S−900型)による観
察で測定する。スラリ−粒子である酸化セリウム粒子径
はレ−ザ回折法(例えばマルバーンインスツルメンツ社
製 Master Sizer microplus、
屈折率:1.9285、光源:He−Neレーザー、吸
収0)によって測定する。
In the present invention, the primary particle size is measured by observation with a scanning electron microscope (for example, S-900 type manufactured by Hitachi, Ltd.). The diameter of cerium oxide particles, which are slurry particles, is determined by a laser diffraction method (for example, Master Sizer microplus manufactured by Malvern Instruments, Inc.,
Refractive index: 1.9285, light source: He-Ne laser, absorption 0).

【0014】本発明のスラリ−に分散された酸化セリウ
ム粒子を構成する一次粒子のアスペクト比は1〜2、中
央値1.3が好ましい。アスペクト比は走査型電子顕微
鏡(例えば(株)日立製作所製 S−900型)による
観察で測定する。本発明のスラリ−に分散された酸化セ
リウム粒子として、粉末X線リートベルト法(RIET
AN−94)による解析で等方的微小歪を表わす構造パ
ラメーター:Yの値が0.01以上0.70以下である
酸化セリウム粒子を使用することができる。このような
結晶歪みを有する酸化セリウム粒子を使用することによ
り、被研磨表面に傷をつけることなく、かつ高速に研磨
することができる。
The aspect ratio of the primary particles constituting the cerium oxide particles dispersed in the slurry of the present invention is preferably 1 to 2, and the median value is 1.3. The aspect ratio is measured by observation with a scanning electron microscope (for example, S-900 type manufactured by Hitachi, Ltd.). As the cerium oxide particles dispersed in the slurry of the present invention, a powder X-ray Rietveld method (RIET) is used.
Cerium oxide particles having a value Y of 0.01 or more and 0.70 or less, which is a structural parameter expressing an isotropic microstrain by analysis by AN-94), can be used. By using the cerium oxide particles having such crystal strain, polishing can be performed at high speed without scratching the surface to be polished.

【0015】本発明のスラリ−に分散された酸化セリウ
ム粒子の比表面積は7〜45m2/gが好ましい。比表
面積が7m2/g未満だと被研磨表面に傷をつけるやす
くなり、45m2/gを越えると研磨速度が遅くなる傾
向にある。スラリ−の酸化セリウム粒子の比表面積は分
散される酸化セリウム粒子の比表面積と同じである。本
発明のスラリ−中の酸化セリウム粒子のゼ−タ電位は−
100mV以上−10mVが好ましい。これにより酸化
セリウム粒子の分散性を良好にし被研磨表面に傷をつけ
ることなく、かつ高速に研磨することができる。本発明
のスラリ−に分散された酸化セリウム粒子は平均粒径が
200nm以上400nm以下で粒度分布の半値幅が3
00nm以下とすることができる。本発明のスラリ−の
pHは7以上10以下が好ましく、8以上9以下がより
好ましい。スラリ−調整後、ポリエチレン等の容器に入
れ5〜55℃で7日以上、より好ましくは30日以上放
置して使用すれば傷の発生が少なくなる。本発明のスラ
リ−は分散性に優れ沈降速度が遅く、直径10cm高さ
1mの円中のどの高さの位置でも2時間放置濃度変化率
が10%未満である。
The specific surface area of the cerium oxide particles dispersed in the slurry of the present invention is preferably 7 to 45 m 2 / g. If the specific surface area is less than 7 m 2 / g, the surface to be polished is likely to be scratched, and if it exceeds 45 m 2 / g, the polishing rate tends to be slow. The specific surface area of the cerium oxide particles of the slurry is the same as the specific surface area of the dispersed cerium oxide particles. The zeta potential of the cerium oxide particles in the slurry of the present invention is-
100 mV or more and −10 mV are preferable. As a result, the dispersibility of the cerium oxide particles is improved, and the surface to be polished can be polished at high speed without scratching. The cerium oxide particles dispersed in the slurry of the present invention have an average particle size of 200 nm or more and 400 nm or less and a half-value width of the particle size distribution of 3
It can be set to 00 nm or less. The pH of the slurry of the present invention is preferably 7 or more and 10 or less, more preferably 8 or more and 9 or less. After the slurry is adjusted, if it is put in a container such as polyethylene and left at 5 to 55 ° C. for 7 days or longer, more preferably 30 days or longer, scratches are less likely to occur. The slurry of the present invention is excellent in dispersibility and has a slow sedimentation speed, and the rate of change in concentration for 2 hours is less than 10% at any height in a circle having a diameter of 10 cm and a height of 1 m.

【0016】本発明の酸化セリウム研磨剤が使用される
無機絶縁膜の作製方法として、低圧CVD法、プラズマ
CVD法等が挙げられる。低圧CVD法によるSiO2
絶縁膜形成は、Si源としてモノシラン:SiH、酸
素源として酸素:O2を用いる。このSiH4−O2系酸
化反応を400℃程度以下の低温で行わせることにより
得られる。高温リフローによる表面平坦化を図るために
リン:Pをドープするときには、SiH4−O2−PH3
系反応ガスを用いることが好ましい。プラズマCVD法
は、通常の熱平衡下では高温を必要とする化学反応が低
温でできる利点を有する。プラズマ発生法には、容量結
合型と誘導結合型の2つが挙げられる。反応ガスとして
は、Si源としてSiH4、酸素源としてN2Oを用いた
SiH4−N2O系ガスとテトラエトキシシラン(TEO
S)をSi源に用いたTEOS−O2系ガス(TEOS
−プラズマCVD法)が挙げられる。基板温度は250
℃〜400℃、反応圧力は67〜400Paの範囲が好
ましい。このように、本発明のSiO2絶縁膜にはリ
ン、ホウ素等の元素がド−プされていても良い。
As a method for producing an inorganic insulating film in which the cerium oxide abrasive of the present invention is used, a low pressure CVD method, a plasma CVD method and the like can be mentioned. SiO 2 by low pressure CVD method
In forming the insulating film, monosilane: SiH 4 is used as the Si source, and oxygen: O 2 is used as the oxygen source. It can be obtained by carrying out this SiH 4 —O 2 system oxidation reaction at a low temperature of about 400 ° C. or lower. When phosphorus: P is doped to achieve surface flattening by high temperature reflow, SiH 4 —O 2 —PH 3
It is preferable to use a system reaction gas. The plasma CVD method has an advantage that a chemical reaction that requires a high temperature under normal thermal equilibrium can be performed at a low temperature. There are two plasma generation methods, a capacitive coupling type and an inductive coupling type. As the reaction gas, SiH 4 is used as the Si source, and SiH 4 —N 2 O based gas using N 2 O as the oxygen source and tetraethoxysilane (TEO).
TEOS-O2-based gas (TEOS) using S as the Si source
-Plasma CVD method). Substrate temperature is 250
C. to 400.degree. C., and the reaction pressure is preferably in the range of 67 to 400 Pa. As described above, the SiO 2 insulating film of the present invention may be doped with elements such as phosphorus and boron.

【0017】所定の基板として、半導体基板すなわち回
路素子と配線パターンが形成された段階の半導体基板、
回路素子が形成された段階の半導体基板等の半導体基板
上にSiO2絶縁膜層が形成された基板が使用できる。
このような半導体基板上に形成されたSiO2絶縁膜層
を上記酸化セリウム研磨剤で研磨することによって、S
iO2絶縁膜層表面の凹凸を解消し、半導体基板全面に
渡って平滑な面とする。ここで、研磨する装置として
は、半導体基板を保持するホルダーと研磨布(パッド)
を貼り付けた(回転数が変更可能なモータ等を取り付け
てある)定盤を有する一般的な研磨装置が使用できる。
研磨布としては、一般的な不織布、発泡ポリウレタン、
多孔質フッ素樹脂などが使用でき、特に制限がない。ま
た、研磨布にはスラリーが溜まる様な溝加工を施すこと
が好ましい。研磨条件には制限はないが、定盤の回転速
度は半導体が飛び出さない様に100rpm以下の低回
転が好ましく、半導体基板にかける圧力は研磨後に傷が
発生しない様に1kg/cm2以下が好ましい。研磨し
ている間、研磨布にはスラリーをポンプ等で連続的に供
給する。この供給量には制限はないが、研磨布の表面が
常にスラリーで覆われていることが好ましい。
As a predetermined substrate, a semiconductor substrate, that is, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed,
A substrate in which a SiO 2 insulating film layer is formed on a semiconductor substrate such as a semiconductor substrate in a stage where a circuit element is formed can be used.
By polishing the SiO 2 insulating film layer formed on such a semiconductor substrate with the above cerium oxide abrasive, S
The irregularities on the surface of the iO 2 insulating film layer are eliminated, and the entire surface of the semiconductor substrate is made smooth. Here, as a polishing device, a holder for holding a semiconductor substrate and a polishing cloth (pad) are used.
It is possible to use a general polishing apparatus having a surface plate to which is attached (a motor or the like whose rotation speed is changeable is attached).
As the polishing cloth, general non-woven fabric, foamed polyurethane,
A porous fluororesin or the like can be used, and there is no particular limitation. Further, it is preferable that the polishing cloth is grooved so that the slurry is accumulated. Although the polishing conditions are not limited, the rotation speed of the surface plate is preferably 100 rpm or less so that the semiconductor does not jump out, and the pressure applied to the semiconductor substrate is 1 kg / cm 2 or less so that scratches do not occur after polishing. preferable. During polishing, slurry is continuously supplied to the polishing cloth with a pump or the like. Although the supply amount is not limited, it is preferable that the surface of the polishing cloth is always covered with the slurry.

【0018】研磨終了後の半導体基板は、流水中で良く
洗浄後、スピンドライヤ等を用いて半導体基板上に付着
した水滴を払い落としてから乾燥させることが好まし
い。このようにして平坦化されたSiO2絶縁膜層の上
に、第2層目のアルミニウム配線を形成し、その配線間
および配線上に再度上記方法によりSiO2絶縁膜を形
成後、上記酸化セリウム研磨剤を用いて研磨することに
よって、絶縁膜表面の凹凸を解消し、半導体基板全面に
渡って平滑な面とする。この工程を所定数繰り返すこと
により、所望の層数の半導体を製造する。
It is preferable that the semiconductor substrate after the polishing is thoroughly washed in running water, and then water droplets adhering to the semiconductor substrate are removed by using a spin dryer or the like and then dried. On this way, the SiO 2 insulating film layer which is flattened, forming an aluminum wiring of the second layer, after forming the SiO 2 insulating film again by the above method on the inter-wiring and the wiring, the cerium oxide By polishing with an abrasive, unevenness on the surface of the insulating film is eliminated, and a smooth surface is formed over the entire surface of the semiconductor substrate. By repeating this process a predetermined number of times, a semiconductor having a desired number of layers is manufactured.

【0019】本発明の酸化セリウム研磨剤は、半導体基
板に形成されたSiO2絶縁膜だけでなく、所定の配線
を有する配線板に形成されたSiO2絶縁膜、ガラス、
窒化ケイ素等の無機絶縁膜、フォトマスク・レンズ・プ
リズムなどの光学ガラス、ITO等の無機導電膜、ガラ
ス及び結晶質材料で構成される光集積回路・光スイッチ
ング素子・光導波路、光ファイバ−の端面、シンチレ−
タ等の光学用単結晶、固体レ−ザ単結晶、青色レ−ザ用
LEDサファイア基板、SiC、GaP、GaAS等の
半導体単結晶、磁気ディスク用ガラス基板、磁気ヘッド
等を研磨するために使用される。
The cerium oxide polishing agent of the present invention is applicable not only to the SiO 2 insulating film formed on a semiconductor substrate, but also to the SiO 2 insulating film formed on a wiring board having predetermined wiring, glass,
Inorganic insulating films such as silicon nitride, optical glass such as photomasks, lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits composed of glass and crystalline materials, optical switching elements, optical waveguides, optical fibers End face, scintillation
Used for polishing optical single crystals such as lasers, solid laser single crystals, LED sapphire substrates for blue lasers, semiconductor single crystals such as SiC, GaP, GaAs, glass substrates for magnetic disks, magnetic heads, etc. To be done.

【0020】このように本発明において所定の基板と
は、SiO2絶縁膜が形成された半導体基板、SiO2
縁膜が形成された配線板、ガラス、窒化ケイ素等の無機
絶縁膜、フォトマスク・レンズ・プリズムなどの光学ガ
ラス、ITO等の無機導電膜、ガラス及び結晶質材料で
構成される光集積回路・光スイッチング素子・光導波
路、光ファイバ−の端面、シンチレ−タ等の光学用単結
晶、固体レ−ザ単結晶、青色レ−ザ用LEDサファイア
基板、SiC、GaP、GaAS等の半導体単結晶、磁
気ディスク用ガラス基板、磁気ヘッド等を含む。
[0020] The predetermined substrate in the present invention as described above, SiO 2 semiconductor substrate on which an insulating film is formed, SiO 2 insulating film is formed wiring board, glass, inorganic insulating films such as silicon nitride, photomask Optical glass such as lenses and prisms, inorganic conductive films such as ITO, optical integrated circuits, optical switching elements and optical waveguides composed of glass and crystalline materials, optical fiber end faces, optical single crystals such as scintillators , A solid-state laser single crystal, a blue laser LED sapphire substrate, a semiconductor single crystal such as SiC, GaP, or GaAs, a magnetic disk glass substrate, and a magnetic head.

【0021】[0021]

【実施例】【Example】

実施例1 (酸化セリウム粒子の作製1)炭酸セリウム水和物2k
gを白金製容器に入れ、800℃で2時間空気中で焼成
することにより黄白色の粉末を約1kg得た。この粉末
をX線回折法で相同定を行ったところ酸化セリウムであ
ることを確認した。焼成粉末粒子径は30〜100ミク
ロンであった。焼成粉末粒子表面を走査型電子顕微鏡で
観察したところ、酸化セリウムの粒界が観察された。粒
界に囲まれた酸化セリウム一次粒子径を測定したとこ
ろ、その分布の中央値が190nm、最大値が500n
mであった。焼成粉末についてX線回折精密測定を行
い、その結果についてリートベルト法(RIETAN−
94)による解析で、一次粒子径を表わす構造パラメー
タ−:Xの値が0.080、等方的微少歪みを表わす構
造パラメータ−:Yの値が0.223であった。酸化セ
リウム粉末1kgをジェットミルを用いて乾式粉砕を行
った。粉砕粒子について走査型電子顕微鏡で観察したと
ころ、一次粒子径と同等サイズの小さな粒子の他に、1
ミクロンから3ミクロンの大きな粉砕残り粒子と0.5
から1ミクロンの粉砕残り粒子が混在していた。粉砕残
り粒子は、一次粒子の凝集体ではない。粉砕粒子につい
てX線回折精密測定を行い、その結果についてリートベ
ルト法(RIETAN−94)による解析で、一次粒子
径を表わす構造パラメータ−:Xの値が0.085、等
方的微少歪みを表わす構造パラメータ−:Yの値が0.
264であった。この結果、粉砕による一次粒子径変量
はほとんどなく、また粉砕により粒子に歪みが導入され
ていた。さらにBET法による比表面積測定の結果、1
0m2/gであることがわかった。
Example 1 (Preparation of cerium oxide particles 1) Cerium carbonate hydrate 2k
g was placed in a platinum container and baked in air at 800 ° C. for 2 hours to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed to be cerium oxide. The particle size of the calcined powder was 30-100 microns. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. The cerium oxide primary particle size surrounded by the grain boundaries was measured, and the median value of the distribution was 190 nm and the maximum value was 500 n.
It was m. X-ray diffraction precision measurement was performed on the calcined powder, and the results were measured by the Rietveld method (RIETAN-
According to the analysis by 94), the value of the structural parameter −: X indicating the primary particle diameter was 0.080, and the value of the structural parameter −: Y indicating the isotropic microstrain was 0.223. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the crushed particles with a scanning electron microscope revealed that, in addition to small particles of the same size as the primary particle size,
Large unmilled particles from micron to 3 microns and 0.5
To 1 micron of uncrushed particles were mixed. The unmilled particles are not aggregates of primary particles. X-ray diffraction precision measurement was performed on the crushed particles, and the result was analyzed by Rietveld method (RIETAN-94). Structural parameter: The value of Y is 0.
Was 264. As a result, there was almost no change in the primary particle diameter due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of the specific surface area measurement by the BET method, 1
It was found to be 0 m 2 / g.

【0022】(酸化セリウム粒子の作製2)炭酸セリウ
ム水和物2kgを白金製容器に入れ、750℃で2時間
空気中で焼成することにより黄白色の粉末を約1kg得
た。この粉末をX線回折法で相同定を行ったところ酸化
セリウムであることを確認した。焼成粉末粒子径は30
〜100ミクロンであった。焼成粉末粒子表面を走査型
電子顕微鏡で観察したところ、酸化セリウムの粒界が観
察された。粒界に囲まれた酸化セリウム一次粒子径を測
定したところ、その分布の中央値が141nm、最大値
が400nmであった。焼成粉末についてX線回折精密
測定を行い、その結果についてリートベルト法(RIE
TAN−94)による解析で、一次粒子径を表わす構造
パラメータ−:Xの値が0.101、等方的微少歪みを
表わす構造パラメータ−:Yの値が0.223であっ
た。酸化セリウム粉末1kgをジェットミルを用いて乾
式粉砕を行った。粉砕粒子について走査型電子顕微鏡で
観察したところ、一次粒子径と同等サイズの小さな粒子
の他に、1ミクロンから3ミクロンの大きな粉砕残り粒
子と0.5から1ミクロンの粉砕残り粒子が混在してい
た。粉砕残り粒子は、一次粒子の凝集体ではない。粉砕
粒子についてX線回折精密測定を行い、その結果につい
てリートベルト法(RIETAN−94)による解析
で、一次粒子径を表わす構造パラメータ−:Xの値が
0.104、等方的微少歪みを表わす構造パラメータ
−:Yの値が0.315であった。この結果、粉砕によ
る一次粒子径変量はほとんどなく、また粉砕により粒子
に歪みが導入されていた。さらにBET法による比表面
積測定の結果、16m2/gであることがわかった。
(Preparation of Cerium Oxide Particles 2) 2 kg of cerium carbonate hydrate was placed in a platinum container and calcined in air at 750 ° C. for 2 hours to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed to be cerium oxide. Particle size of fired powder is 30
Was ~ 100 microns. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the cerium oxide primary particle size surrounded by the grain boundaries was measured, the median value of the distribution was 141 nm and the maximum value was 400 nm. X-ray diffraction precision measurement was performed on the calcined powder, and the results were measured by the Rietveld method (RIE
According to the analysis by TAN-94), the value of the structural parameter-: X indicating the primary particle diameter was 0.101, and the value of the structural parameter-: Y indicating the isotropic microstrain was 0.223. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the crushed particles with a scanning electron microscope revealed that, in addition to small particles of the same size as the primary particle size, large crushed residual particles of 1 to 3 microns and crushed residual particles of 0.5 to 1 micron were mixed. It was The unmilled particles are not aggregates of primary particles. X-ray diffraction precision measurement was performed on the crushed particles, and the results were analyzed by the Rietveld method (RIETAN-94). The structural parameter representing the primary particle diameter: the value of X was 0.104, indicating isotropic microstrain. The value of structural parameter-: Y was 0.315. As a result, there was almost no change in the primary particle diameter due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, it was found to be 16 m 2 / g.

【0023】(酸化セリウムスラリーの作製)上記作製
1,2の酸化セリウム粒子1kgとポリアクリル酸アン
モニウム塩水溶液(40重量%)23gと脱イオン水8
977gを混合し、攪拌しながら超音波分散を10分間
施した。得られたスラリーを1ミクロンフィルターでろ
過をし、さらに脱イオン水を加えることにより3wt.
%研磨剤を得た。スラリーpHは8.3であった。スラ
リー粒子の粒度分布をレーザー回折法(測定装置:マル
バーンインスツルメンツ社製Master Sizer
microplus、屈折率:1.9285、光源:
He−Neレーザー、吸収0で測定)を用いて調べたと
ころ、中央値がともに200nmであった。最大粒子径
は780nm以上の粒子が0体積%であった。スラリー
の分散性およびスラリー粒子の電荷を調べるため、スラ
リーのゼータ電位を調べた。両側に白金製電極を取り付
けてある測定セルに酸化セリウムスラリーを入れ、両電
極に10Vの電圧を印加した。電圧を印加することによ
り電荷を持ったスラリー粒子はその電荷と反対の極を持
つ電極側に移動する。この移動速度を求めることにより
粒子のゼータ電位を求めることができる。ゼータ電位測
定の結果、それぞれマイナスに荷電し、−50mV、−
63mVと絶対値が大きく分散性が良好であることを確
認した。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared in the above-mentioned Preparations 1 and 23, 23 g of ammonium polyacrylate aqueous solution (40% by weight) and deionized water 8
977 g were mixed and ultrasonically dispersed for 10 minutes while stirring. The obtained slurry was filtered with a 1-micron filter, and deionized water was further added to add 3 wt.
% Abrasive was obtained. The slurry pH was 8.3. The particle size distribution of the slurry particles is measured by a laser diffraction method (measurement device: Master Sizer manufactured by Malvern Instruments Ltd.).
microplus, refractive index: 1.9285, light source:
The measurement was carried out using a He-Ne laser and the absorption was 0), and the median values were both 200 nm. Particles having a maximum particle size of 780 nm or more were 0% by volume. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was put into a measuring cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. By applying a voltage, the slurry particles having an electric charge move to the electrode side having a pole opposite to the electric charge. The zeta potential of the particles can be obtained by obtaining this moving speed. As a result of zeta potential measurement, each was negatively charged, and was −50 mV, −
It was confirmed that the absolute value was 63 mV and the dispersibility was good.

【0024】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーにTEOS−プラ
ズマCVD法で作製したSiO2絶縁膜を形成させたS
iウエハをセットし、多孔質ウレタン樹脂製の研磨パッ
ドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを
載せ、さらに加工荷重が300g/cm2になるように
重しを載せた。定盤上に上記の酸化セリウムスラリー
(固形分:3重量%)を50cc/minの速度で滴下
しながら、定盤を30rpmで2分間回転させ、絶縁膜
を研磨した。研磨後ウエハをホルダーから取り外して、
流水で良く洗浄後、超音波洗浄機によりさらに20分間
洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を
除去し、120℃の乾燥機で10分間乾燥させた。光干
渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定
した結果、この研磨によりそれぞれ600nm、580
nm(研磨速度:300nm/min.、290nm/
min.)の絶縁膜が削られ、ウエハ全面に渡って均一
の厚みになっていることがわかった。また、光学顕微鏡
を用いて絶縁膜表面を観察したところ、明確な傷は見ら
れなかった。
(Polishing of Insulating Film Layer) A SiO2 insulating film prepared by the TEOS-plasma CVD method was formed on a holder to which a suction pad for mounting a substrate to be held was attached.
An i-wafer was set, a holder was placed with the insulating film surface facing down on a surface plate to which a polishing pad made of porous urethane resin was attached, and a weight was placed so that the processing load was 300 g / cm 2 . . The insulating film was polished by rotating the platen at 30 rpm for 2 minutes while dropping the above cerium oxide slurry (solid content: 3% by weight) on the platen at a rate of 50 cc / min. After polishing, remove the wafer from the holder,
After being thoroughly washed with running water, it was further washed with an ultrasonic washer for 20 minutes. After washing, water drops were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the change in film thickness before and after polishing by using an optical interference type film thickness measuring device, it was found that 600 nm and 580 nm were obtained by this polishing.
nm (polishing rate: 300 nm / min., 290 nm /
min. It was found that the insulating film of) was shaved and the thickness was uniform over the entire surface of the wafer. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was seen.

【0025】実施例2 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、700℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100ミクロ
ンであった。焼成粉末粒子表面を走査型電子顕微鏡で観
察したところ、酸化セリウムの粒界が観察された。粒界
に囲まれた酸化セリウム一次粒子径を測定したところ、
その分布の中央値が50nm、最大値が100nmであ
った。焼成粉末についてX線回折精密測定を行い、その
結果についてリートベルト法(RIETAN−94)に
よる解析で、一次粒子径を表わす構造パラメータ−:X
の値が0.300、等方的微少歪みを表わす構造パラメ
ータ−:Yの値が0.350であった。酸化セリウム粉
末1kgをジェットミルを用いて乾式粉砕を行った。粉
砕粒子について走査型電子顕微鏡で観察したところ、一
次粒子径と同等サイズの小さな粒子の他に、2ミクロン
から4ミクロンの大きな粉砕残り粒子と0.5から1.
2ミクロンの粉砕残り粒子が混在していた。粉砕残り粒
子は、一次粒子の凝集体ではない。粉砕粒子についてX
線回折精密測定を行い、その結果についてリートベルト
法(RIETAN−94)による解析で、一次粒子径を
表わす構造パラメータ−:Xの値が0.302、等方的
微少歪みを表わす構造パラメータ−:Yの値が0.41
2であった。この結果、粉砕による一次粒子径変量はほ
とんどなく、また粉砕により粒子に歪みが導入されてい
た。さらにBET法による比表面積測定の結果、40m
2/gであることがわかった。
Example 2 (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was put in a platinum container and baked in air at 700 ° C. for 2 hours to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed to be cerium oxide. The particle size of the calcined powder was 30-100 microns. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the cerium oxide primary particle size surrounded by grain boundaries was measured,
The median value of the distribution was 50 nm and the maximum value was 100 nm. X-ray diffraction precision measurement was performed on the calcined powder, and the result was analyzed by the Rietveld method (RIETAN-94) to show a structural parameter representing the primary particle diameter: X
Value was 0.300, and the value of structural parameter −: Y representing isotropic microstrain was 0.350. 1 kg of cerium oxide powder was dry-ground using a jet mill. Observation of the crushed particles with a scanning electron microscope revealed that, in addition to small particles having the same size as the primary particle size, large uncrushed particles of 2 to 4 microns and 0.5 to 1.
2 micron crushed particles were mixed. The unmilled particles are not aggregates of primary particles. About crushed particles X
A line diffraction precision measurement was carried out, and the result was analyzed by the Rietveld method (RIETAN-94). The structural parameter representing the primary particle diameter: the value of X was 0.302, and the structural parameter representing the isotropic microstrain: The value of Y is 0.41
It was 2. As a result, there was almost no change in the primary particle diameter due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, 40 m
It was found to be 2 / g.

【0026】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、攪拌しながら超音波分散を10分間施し
た。得られたスラリーを2ミクロンフィルターでろ過を
し、さらに脱イオン水を加えることにより3wt.%研
磨剤を得た。スラリーpHは8.0であった。スラリー
粒子の粒度分布をレーザー回折法(測定装置:Mast
er Sizer製microplus、屈折率:1.
9285)を用いて調べたところ、中央値が510nm
で、最大粒子径は1430nm以上の粒子が0%であっ
た。スラリーの分散性およびスラリー粒子の電荷を調べ
るため、スラリーのゼータ電位を調べた。両側に白金製
電極を取り付けてある測定セルに酸化セリウムスラリー
を入れ、両電極に10Vの電圧を印加した。電圧を印加
することにより電荷を持ったスラリー粒子はその電荷と
反対の極を持つ電極側に移動する。この移動速度を求め
ることにより粒子のゼータ電位を求めることができる。
ゼータ電位測定の結果、マイナスに荷電し、−64mV
と絶対値が大きく分散性が良好であることを確認した。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight) and deionized water 8977.
g was mixed and ultrasonically dispersed for 10 minutes while stirring. The resulting slurry was filtered through a 2 micron filter, and deionized water was added to obtain 3 wt. % Abrasive was obtained. The slurry pH was 8.0. The particle size distribution of slurry particles is measured by laser diffraction method
er Sizer microplus, refractive index: 1.
9285), the median value is 510 nm
The maximum particle size was 0% for particles having a particle size of 1430 nm or more. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was put into a measuring cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. By applying a voltage, the slurry particles having an electric charge move to the electrode side having a pole opposite to the electric charge. The zeta potential of the particles can be obtained by obtaining this moving speed.
As a result of zeta potential measurement, it was negatively charged and was -64 mV.
It was confirmed that the absolute value was large and the dispersibility was good.

【0027】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーにTEOS−プラ
ズマCVD法で作製したSiO2絶縁膜を形成させたS
iウエハをセットし、多孔質ウレタン樹脂製の研磨パッ
ドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを
載せ、さらに加工加重が300g/cm2になるように
重しを載せた。定盤上に上記の酸化セリウムスラリー
(固形分:3重量%)を35cc/minの速度で滴下
しながら、定盤を30rpmで2分間回転させ、絶縁膜
を研磨した。研磨後ウエハをホルダーから取り外して、
流水で良く洗浄後、超音波洗浄機によりさらに20分間
洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を
除去し、120℃の乾燥機で10分間乾燥させた。光干
渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定
した結果、この研磨により740nm(研磨速度:37
0nm/min.)の絶縁膜が削られ、ウエハ全面に渡
って均一の厚みになっていることがわかった。また、光
学顕微鏡を用いて絶縁膜表面を観察したところ、明確な
傷は見られなかった。
(Polishing of Insulating Film Layer) A SiO 2 insulating film prepared by the TEOS-plasma CVD method was formed on a holder to which a suction pad for attaching a substrate to be held was attached.
An i-wafer was set, a holder was placed with the insulating film surface facing down on a surface plate to which a polishing pad made of a porous urethane resin was attached, and a weight was placed so that the processing load was 300 g / cm 2 . . The insulating film was polished by rotating the platen at 30 rpm for 2 minutes while dropping the cerium oxide slurry (solid content: 3% by weight) on the platen at a rate of 35 cc / min. After polishing, remove the wafer from the holder,
After being thoroughly washed with running water, it was further washed with an ultrasonic washer for 20 minutes. After washing, water drops were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the change in film thickness before and after polishing by using an optical interference type film thickness measuring device, it was found that the film thickness was 740 nm (polishing rate:
0 nm / min. It was found that the insulating film of) was shaved and the thickness was uniform over the entire surface of the wafer. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was seen.

【0028】実施例3 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、800℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100ミクロ
ンであった。焼成粉末粒子表面を走査型電子顕微鏡で観
察したところ、酸化セリウムの粒界が観察された。粒界
に囲まれた酸化セリウム一次粒子径を測定したところ、
その分布の中央値が190nm、最大値が500nmで
あった。焼成粉末についてX線回折精密測定を行い、そ
の結果についてリートベルト法(RIETAN−94)
による解析で、一次粒子径を表わす構造パラメータ−:
Xの値が0.080、等方的微少歪みを表わす構造パラ
メータ−:Yの値が0.223であった。酸化セリウム
粉末1kgをビーズミルを用いて湿式粉砕を行った。粉
砕粒子を含む液を乾燥し、乾燥粒子をボールミル粉砕を
行った。粉砕粒子について走査型電子顕微鏡で観察した
ところ、一次粒子径と同等サイズの粒子まで粉砕されて
おり、大きな粉砕残りは見られなかった。粉砕粒子につ
いてX線回折精密測定を行い、その結果についてリート
ベルト法(RIETAN−94)による解析で、一次粒
子径を表わす構造パラメータ−:Xの値が0.085、
等方的微少歪みを表わす構造パラメータ−:Yの値が
0.300であった。この結果、粉砕による一次粒子径
変量はほとんどなく、また粉砕により粒子に歪みが導入
されていた。さらにBET法による比表面積測定の結
果、10m2/gであることがわかった。
Example 3 (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was placed in a platinum container and baked in air at 800 ° C. for 2 hours to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed to be cerium oxide. The particle size of the calcined powder was 30-100 microns. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the cerium oxide primary particle size surrounded by grain boundaries was measured,
The median value of the distribution was 190 nm and the maximum value was 500 nm. X-ray diffraction precision measurement was performed on the calcined powder, and the result was measured by Rietveld method (RIETAN-94).
The structural parameter representing the primary particle size by the analysis by:
The value of X was 0.080 and the value of structural parameter −: Y representing isotropic microstrain was 0.223. 1 kg of cerium oxide powder was wet-milled using a bead mill. The liquid containing the crushed particles was dried, and the dried particles were ball-milled. When the crushed particles were observed with a scanning electron microscope, particles having a size equivalent to the primary particle size were crushed, and no large crushing residue was found. X-ray diffraction precision measurement was performed on the crushed particles, and the results were analyzed by Rietveld method (RIETAN-94). The structural parameter representing the primary particle diameter: the value of X was 0.085,
The value of structural parameter −: Y representing isotropic microstrain was 0.300. As a result, there was almost no change in the primary particle diameter due to pulverization, and distortion was introduced into the particles due to pulverization. Further, as a result of measuring the specific surface area by the BET method, it was found to be 10 m 2 / g.

【0029】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、攪拌しながら超音波分散を10分間施し
た。得られたスラリーを1ミクロンフィルターでろ過を
し、さらに脱イオン水を加えることにより3wt.%研
磨剤を得た。スラリーpHは8.3であった。スラリー
粒子の粒度分布をレーザー回折法(測定装置:Mast
erSizer製microplus、屈折率:1.9
285)を用いて調べたところ、中央値が290nm
で、最大粒子径は780nm以上の粒子が0%であっ
た。スラリーの分散性およびスラリー粒子の電荷を調べ
るため、スラリーのゼータ電位を調べた。両側に白金製
電極を取り付けてある測定セルに酸化セリウムスラリー
を入れ、両電極に10Vの電圧を印加した。電圧を印加
することにより電荷を持ったスラリー粒子はその電荷と
反対の極を持つ電極側に移動する。この移動速度を求め
ることにより粒子のゼータ電位を求めることができる。
ゼータ電位測定の結果、マイナスに荷電し、−50mV
と絶対値が大きく分散性が良好であることを確認した。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight) and deionized water 8977.
g was mixed and ultrasonically dispersed for 10 minutes while stirring. The obtained slurry was filtered with a 1-micron filter, and deionized water was further added to add 3 wt. % Abrasive was obtained. The slurry pH was 8.3. The particle size distribution of slurry particles is measured by laser diffraction method
erSizer microplus, refractive index: 1.9
285), the median value is 290 nm
The maximum particle size was 0% for particles having a maximum particle size of 780 nm or more. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was put into a measuring cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. By applying a voltage, the slurry particles having an electric charge move to the electrode side having a pole opposite to the electric charge. The zeta potential of the particles can be obtained by obtaining this moving speed.
As a result of zeta potential measurement, it was negatively charged and was -50 mV.
It was confirmed that the absolute value was large and the dispersibility was good.

【0030】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーにTEOS−プラ
ズマCVD法で作製したSiO2絶縁膜を形成させたS
iウエハをセットし、多孔質ウレタン樹脂製の研磨パッ
ドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを
載せ、さらに加工加重が300g/cm2になるように
重しを載せた。定盤上に上記の酸化セリウムスラリー
(固形分:3重量%)を35cc/minの速度で滴下
しながら、定盤を30rpmで2分間回転させ、絶縁膜
を研磨した。研磨後ウエハをホルダーから取り外して、
流水で良く洗浄後、超音波洗浄機によりさらに20分間
洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を
除去し、120℃の乾燥機で10分間乾燥させた。光干
渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定
した結果、この研磨により560nm(研磨速度:28
0nm/min.)の絶縁膜が削られ、ウエハ全面に渡
って均一の厚みになっていることがわかった。また、光
学顕微鏡を用いて絶縁膜表面を観察したところ、明確な
傷は見られなかった。
(Polishing of Insulating Film Layer) A SiO 2 insulating film prepared by the TEOS-plasma CVD method was formed on a holder to which a suction pad for attaching a substrate to be held was attached.
An i-wafer was set, a holder was placed with the insulating film surface facing down on a surface plate to which a polishing pad made of a porous urethane resin was attached, and a weight was placed so that the processing load was 300 g / cm 2 . . The insulating film was polished by rotating the platen at 30 rpm for 2 minutes while dropping the cerium oxide slurry (solid content: 3% by weight) on the platen at a rate of 35 cc / min. After polishing, remove the wafer from the holder,
After being thoroughly washed with running water, it was further washed with an ultrasonic washer for 20 minutes. After washing, water drops were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the change in film thickness before and after polishing by using an optical interference type film thickness measuring device, it was found that the film thickness of 560 nm (polishing rate: 28
0 nm / min. It was found that the insulating film of) was shaved and the thickness was uniform over the entire surface of the wafer. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was seen.

【0031】実施例4 (酸化セリウム粒子の作製)炭酸セリウム水和物2kg
を白金製容器に入れ、700℃で2時間空気中で焼成す
ることにより黄白色の粉末を約1kg得た。この粉末を
X線回折法で相同定を行ったところ酸化セリウムである
ことを確認した。焼成粉末粒子径は30〜100ミクロ
ンであった。焼成粉末粒子表面を走査型電子顕微鏡で観
察したところ、酸化セリウムの粒界が観察された。粒界
に囲まれた酸化セリウム一次粒子径を測定したところ、
その分布の中央値が50nm、最大値が100nmであ
った。焼成粉末についてX線回折精密測定を行い、その
結果についてリートベルト法(RIETAN−94)に
よる解析で、一次粒子径を表わす構造パラメータ−:X
の値が0.300、等方的微少歪みを表わす構造パラメ
ータ−:Yの値が0.350であった。酸化セリウム粉
末1kgをビーズミルを用いて湿式粉砕を行った。粉砕
粒子を含む液を乾燥し、乾燥粒子をボールミル粉砕を行
った。粉砕粒子について走査型電子顕微鏡で観察したと
ころ、一次粒子径と同等サイズの粒子まで粉砕されてお
り、大きな粉砕残りは見られなかった。粉砕粒子につい
てX線回折精密測定を行い、その結果についてリートベ
ルト法(RIETAN−94)による解析で、一次粒子
径を表わす構造パラメータ−:Xの値が0.302、等
方的微少歪みを表わす構造パラメータ−:Yの値が0.
450であった。この結果、粉砕による一次粒子径変量
はほとんどなく、また粉砕により粒子に歪みが導入され
ていた。さらにBET法による比表面積測定の結果、4
0m2/gであることがわかった。
Example 4 (Preparation of cerium oxide particles) 2 kg of cerium carbonate hydrate
Was put in a platinum container and baked in air at 700 ° C. for 2 hours to obtain about 1 kg of yellowish white powder. When this powder was subjected to phase identification by X-ray diffraction, it was confirmed to be cerium oxide. The particle size of the calcined powder was 30-100 microns. When the surface of the calcined powder particles was observed with a scanning electron microscope, grain boundaries of cerium oxide were observed. When the cerium oxide primary particle size surrounded by grain boundaries was measured,
The median value of the distribution was 50 nm and the maximum value was 100 nm. X-ray diffraction precision measurement was performed on the calcined powder, and the result was analyzed by the Rietveld method (RIETAN-94) to show a structural parameter representing the primary particle diameter: X
Value was 0.300, and the value of structural parameter −: Y representing isotropic microstrain was 0.350. 1 kg of cerium oxide powder was wet-milled using a bead mill. The liquid containing the crushed particles was dried, and the dried particles were ball-milled. When the crushed particles were observed with a scanning electron microscope, particles having a size equivalent to the primary particle size were crushed, and no large crushing residue was found. The X-ray diffraction precision measurement was performed on the crushed particles, and the results were analyzed by the Rietveld method (RIETAN-94). The structural parameter indicating the primary particle diameter: X value was 0.302, indicating isotropic microstrain. Structural parameter: The value of Y is 0.
It was 450. As a result, there was almost no change in the primary particle diameter due to pulverization, and distortion was introduced into the particles due to pulverization. Furthermore, as a result of measuring the specific surface area by the BET method, 4
It was found to be 0 m 2 / g.

【0032】(酸化セリウムスラリーの作製)上記作製
の酸化セリウム粒子1kgとポリアクリル酸アンモニウ
ム塩水溶液(40重量%)23gと脱イオン水8977
gを混合し、攪拌しながら超音波分散を10分間施し
た。得られたスラリーを1ミクロンフィルターでろ過を
し、さらに脱イオン水を加えることにより3wt.%研
磨剤を得た。スラリーpHは8.5であった。スラリー
粒子の粒度分布をレーザー回折法(測定装置:Mast
erSizer製microplus、屈折率:1.9
285)を用いて調べたところ、中央値が290nm
で、最大粒子径は780nm以上の粒子が0%であっ
た。スラリーの分散性およびスラリー粒子の電荷を調べ
るため、スラリーのゼータ電位を調べた。両側に白金製
電極を取り付けてある測定セルに酸化セリウムスラリー
を入れ、両電極に10Vの電圧を印加した。電圧を印加
することにより電荷を持ったスラリー粒子はその電荷と
反対の極を持つ電極側に移動する。この移動速度を求め
ることにより粒子のゼータ電位を求めることができる。
ゼータ電位測定の結果、マイナスに荷電し、−65mV
と絶対値が大きく分散性が良好であることを確認した。
(Preparation of Cerium Oxide Slurry) 1 kg of the cerium oxide particles prepared above, 23 g of an aqueous solution of ammonium polyacrylate (40% by weight) and deionized water 8977.
g was mixed and ultrasonically dispersed for 10 minutes while stirring. The obtained slurry was filtered with a 1-micron filter, and deionized water was further added to add 3 wt. % Abrasive was obtained. The slurry pH was 8.5. The particle size distribution of slurry particles is measured by laser diffraction method
erSizer microplus, refractive index: 1.9
285), the median value is 290 nm
The maximum particle size was 0% for particles having a maximum particle size of 780 nm or more. To examine the dispersibility of the slurry and the charge of the slurry particles, the zeta potential of the slurry was examined. The cerium oxide slurry was put into a measuring cell having platinum electrodes attached to both sides, and a voltage of 10 V was applied to both electrodes. By applying a voltage, the slurry particles having an electric charge move to the electrode side having a pole opposite to the electric charge. The zeta potential of the particles can be obtained by obtaining this moving speed.
As a result of zeta potential measurement, it was negatively charged and was -65 mV.
It was confirmed that the absolute value was large and the dispersibility was good.

【0033】(絶縁膜層の研磨)保持する基板取り付け
用の吸着パッドを貼り付けたホルダーにTEOS−プラ
ズマCVD法で作製したSiO2絶縁膜を形成させたS
iウエハをセットし、多孔質ウレタン樹脂製の研磨パッ
ドを貼り付けた定盤上に絶縁膜面を下にしてホルダーを
載せ、さらに加工加重が300g/cm2になるように
重しを載せた。定盤上に上記の酸化セリウムスラリー
(固形分:3重量%)を35cc/minの速度で滴下
しながら、定盤を30rpmで2分間回転させ、絶縁膜
を研磨した。研磨後ウエハをホルダーから取り外して、
流水で良く洗浄後、超音波洗浄機によりさらに20分間
洗浄した。洗浄後、ウエハをスピンドライヤーで水滴を
除去し、120℃の乾燥機で10分間乾燥させた。光干
渉式膜厚測定装置を用いて、研磨前後の膜厚変化を測定
した結果、この研磨により400nm(研磨速度:20
0nm/min.)の絶縁膜が削られ、ウエハ全面に渡
って均一の厚みになっていることがわかった。また、光
学顕微鏡を用いて絶縁膜表面を観察したところ、明確な
傷は見られなかった。
(Polishing of Insulating Film Layer) A SiO 2 insulating film prepared by the TEOS-plasma CVD method was formed on a holder to which a suction pad for attaching a substrate to be held was attached.
An i-wafer was set, a holder was placed with the insulating film surface facing down on a surface plate to which a polishing pad made of a porous urethane resin was attached, and a weight was placed so that the processing load was 300 g / cm 2 . . The insulating film was polished by rotating the platen at 30 rpm for 2 minutes while dropping the cerium oxide slurry (solid content: 3% by weight) on the platen at a rate of 35 cc / min. After polishing, remove the wafer from the holder,
After being thoroughly washed with running water, it was further washed with an ultrasonic washer for 20 minutes. After washing, water drops were removed from the wafer with a spin dryer, and the wafer was dried with a dryer at 120 ° C. for 10 minutes. As a result of measuring the change in film thickness before and after polishing using an optical interference type film thickness measuring device, it was found that 400 nm (polishing rate: 20
0 nm / min. It was found that the insulating film of) was shaved and the thickness was uniform over the entire surface of the wafer. Further, when the surface of the insulating film was observed using an optical microscope, no clear scratch was seen.

【0034】比較例 実施例と同様にTEOS−CVD法で作製したSiO2
絶縁膜を形成させたSiウエハについて、市販シリカス
ラリー(キャボット社製、商品名SS225)を用いて
研磨を行った。この市販スラリーのpHは10.3で、
SiO2粒子を12.5wt%含んでいるものである。
研磨条件は実施例と同一である。その結果、研磨による
傷は見られず、また均一に研磨がなされたが、2分間の
研磨により150nm(研磨速度:75nm/mi
n.)の絶縁膜層しか削れなかった。
Comparative Example SiO 2 produced by the TEOS-CVD method as in the example.
The Si wafer having the insulating film formed thereon was polished using a commercially available silica slurry (manufactured by Cabot Corporation, trade name SS225). The pH of this commercial slurry is 10.3,
It contains 12.5 wt% of SiO 2 particles.
The polishing conditions are the same as in the example. As a result, no scratches due to polishing were found, and the polishing was performed uniformly, but after polishing for 2 minutes, 150 nm (polishing rate: 75 nm / mi
n. Only the insulating film layer of) was scraped.

【0035】[0035]

【発明の効果】本発明の研磨剤により、SiO2絶縁膜
等の被研磨面を傷なく高速に研磨することが可能とな
る。
The polishing agent of the present invention makes it possible to polish a surface to be polished such as a SiO2 insulating film at high speed without scratches.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺崎 裕樹 茨城県つくば市和台48 日立化成工業株 式会社 筑波開発研究所内 (72)発明者 倉田 靖 茨城県つくば市和台48 日立化成工業株 式会社 筑波開発研究所内 (72)発明者 松沢 純 茨城県つくば市和台48 日立化成工業株 式会社 筑波開発研究所内 (72)発明者 丹野 清仁 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 山崎工場内 (72)発明者 大槻 裕人 茨城県日立市東町四丁目13番1号 日立 化成工業株式会社 茨城研究所内 (56)参考文献 特開 平8−134435(JP,A) 特開 平8−153696(JP,A) 特開 平8−81218(JP,A) 特開 平10−106994(JP,A) 特開 平10−102038(JP,A) 特開 平8−22970(JP,A) 特開 平6−330025(JP,A) 特開 平6−216096(JP,A) 特公 昭53−6756(JP,B2) 社団法人日本分析学会X線分析研究懇 談会主催で1999年12月6日〜9日に開催 された「第9回X線分析講習会 粉末X 線リートベルト解析」おける講義資料、 53頁〜76頁「3.粉末X線回折データの リートベルト解析 無機材質研究所 泉 富士夫」および163頁〜193頁「8.Ri etveld法の材料解析への応用 物 質工学工業技術研究所 秋葉悦男」 (58)調査した分野(Int.Cl.7,DB名) C09K 3/14 C01F 17/00 B24B 37/00 H01L 21/304 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroki Terasaki 48 Wadai, Tsukuba City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Tsukuba Development Laboratory (72) Inventor Yasushi Kurata 48 Wadai, Tsukuba City, Ibaraki Hitachi Chemical Co., Ltd. Company Tsukuba R & D Labs (72) Inventor Jun Matsuzawa 48 Wadai, Tsukuba, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Company Tsukuba R & D Labs (72) Inventor Kiyohito Tanno 4-13-1 Higashimachi, Hitachi, Ibaraki Hitachi Chemical Co., Ltd. Yamazaki Plant Co., Ltd. (72) Inventor Hiroto Otsuki 4-13-1, Higashimachi, Hitachi City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Ibaraki Research Laboratory (56) Reference JP-A-8-134435 (JP, A) JP 8-153696 (JP, A) JP-A-8-81218 (JP, A) JP-A-10-106994 (JP, A) JP-A-10-102038 (JP, A) JP-A-8-2297 0 (JP, A) JP-A-6-330025 (JP, A) JP-A-6-216096 (JP, A) JPK Sho 53-6756 (JP, B2) Japan Society for Analytical Science X-ray analysis research conference Lecture materials in the "9th X-ray Analysis Workshop: Powder X-ray Rietveld Analysis" held from December 6th to 9th, 1999, sponsored by the Society, pp. 53-76 "3. Rietveld analysis Fujio Izumi, Institute for Inorganic Materials, pp.163-193, "8. Application of Ri etveld method to material analysis, Etsuo Akiba, Institute of Materials Engineering," (58) Fields investigated (Int.Cl. 7 , DB name) C09K 3/14 C01F 17/00 B24B 37/00 H01L 21/304

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粉末X線リートベルト法(RIETAN
−94)による解析で等方的微小歪を表わす構造パラメ
ーター:Yの値が0.01以上0.70以下である酸化
セリウム粒子を媒体に分散させたスラリーを含み、スラ
リー中の酸化セリウム粒子の平均粒子径が200nm以
上400nm以下である酸化セリウム研磨剤。
1. A powder X-ray Rietveld method (RIETAN)
-94) structural parameter indicating isotropic microstrain: a slurry containing cerium oxide particles having a Y value of 0.01 or more and 0.70 or less dispersed in a medium. A cerium oxide abrasive having an average particle diameter of 200 nm or more and 400 nm or less.
【請求項2】 媒体が水である請求項1に記載の酸化セ
リウム研磨剤。
2. The cerium oxide abrasive according to claim 1, wherein the medium is water.
【請求項3】 スラリ−が分散剤を含む請求項1または
2に記載の酸化セリウム研磨剤。
3. The cerium oxide abrasive according to claim 1, wherein the slurry contains a dispersant.
【請求項4】 分散剤が水溶性有機高分子、水溶性陰イ
オン界面活性剤、水溶性非イオン性界面活性剤及び水溶
性アミンから選ばれる少なくとも1種である請求項1〜
3のいずれかに記載の酸化セリウム研磨剤。
4. The dispersant is at least one selected from water-soluble organic polymers, water-soluble anionic surfactants, water-soluble nonionic surfactants and water-soluble amines.
The cerium oxide abrasive according to any one of 3 above.
【請求項5】 分散剤がポリアクリル酸アンモニウム塩
である請求項4記載の酸化セリウム研磨剤。
5. The cerium oxide abrasive according to claim 4, wherein the dispersant is ammonium polyacrylate.
【請求項6】 酸化セリウム粒子が炭酸セリウムを焼成
した酸化セリウムである請求項1〜5のいずれかに記載
の酸化セリウム研磨剤。
6. The cerium oxide abrasive according to claim 1, wherein the cerium oxide particles are cerium oxide obtained by firing cerium carbonate.
【請求項7】 請求項1〜6のいずれかに記載の酸化セ
リウム研磨剤で所定の基板を研磨することを特徴とする
基板の研磨法。
7. A method of polishing a substrate, which comprises polishing a predetermined substrate with the cerium oxide abrasive according to any one of claims 1 to 6.
【請求項8】 所定の基板がシリカ膜が形成された半導
体チップである請求項7記載の基板の研磨法。
8. The method of polishing a substrate according to claim 7, wherein the predetermined substrate is a semiconductor chip having a silica film formed thereon.
JP26597997A 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method Expired - Fee Related JP3462052B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP26597997A JP3462052B2 (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method
TW87116262A TW589351B (en) 1997-09-30 1998-09-30 Cerium oxide abrasive and method of polishing substrates

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP8-258770 1996-09-30
JP25877696 1996-09-30
JP25877096 1996-09-30
JP8-258774 1996-09-30
JP25877496 1996-09-30
JP8-258776 1996-09-30
JP26597997A JP3462052B2 (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2001103920A Division JP2001329250A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001103923A Division JP2001329251A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001275530A Division JP2002138275A (en) 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base

Publications (2)

Publication Number Publication Date
JPH10152673A JPH10152673A (en) 1998-06-09
JP3462052B2 true JP3462052B2 (en) 2003-11-05

Family

ID=27478488

Family Applications (7)

Application Number Title Priority Date Filing Date
JP26597997A Expired - Fee Related JP3462052B2 (en) 1996-09-30 1997-09-30 Cerium oxide abrasive and substrate polishing method
JP2001103920A Withdrawn JP2001329250A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001103923A Withdrawn JP2001329251A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001275530A Withdrawn JP2002138275A (en) 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base
JP2006246046A Expired - Lifetime JP5023626B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2006246039A Expired - Lifetime JP4971731B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2012089594A Withdrawn JP2012169648A (en) 1996-09-30 2012-04-10 Cerium oxide abrasive and method for polishing substrate

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2001103920A Withdrawn JP2001329250A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001103923A Withdrawn JP2001329251A (en) 1996-09-30 2001-04-02 Cerium oxide abrasive and polishing method for substrate
JP2001275530A Withdrawn JP2002138275A (en) 1996-09-30 2001-09-11 Cerium oxide abrasive agent and method for abrading base
JP2006246046A Expired - Lifetime JP5023626B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2006246039A Expired - Lifetime JP4971731B2 (en) 1996-09-30 2006-09-11 Polishing method of cerium oxide slurry and substrate
JP2012089594A Withdrawn JP2012169648A (en) 1996-09-30 2012-04-10 Cerium oxide abrasive and method for polishing substrate

Country Status (1)

Country Link
JP (7) JP3462052B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1245471C (en) 1996-09-30 2006-03-15 日立化成工业株式会社 Cerium oxide abrasive and method of polishing substrates
JPH11181403A (en) 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
JP3560484B2 (en) * 1998-08-05 2004-09-02 昭和電工株式会社 Abrasive composition for polishing LSI devices and polishing method
US6299659B1 (en) 1998-08-05 2001-10-09 Showa Denko K.K. Polishing material composition and polishing method for polishing LSI devices
CN1293148C (en) 1998-11-13 2007-01-03 三井化学株式会社 Organic polymer/fine inorganic particle aqueous dispersion with excellent dispersion stability and use thereof
EP1148538A4 (en) 1998-12-25 2009-10-21 Hitachi Chemical Co Ltd Cmp abrasive, liquid additive for cmp abrasive and method for polishing substrate
JP4608925B2 (en) * 1998-12-25 2011-01-12 日立化成工業株式会社 Additive for CMP abrasives
JP4604727B2 (en) * 1998-12-25 2011-01-05 日立化成工業株式会社 Additive for CMP abrasives
KR20000055131A (en) * 1999-02-03 2000-09-05 유현식 Method for preparing metaloxide slurry for semiconductor element cmp
US6740590B1 (en) * 1999-03-18 2004-05-25 Kabushiki Kaisha Toshiba Aqueous dispersion, aqueous dispersion for chemical mechanical polishing used for manufacture of semiconductor devices, method for manufacture of semiconductor devices, and method for formation of embedded writing
KR100515782B1 (en) * 1999-05-28 2005-09-23 히다치 가세고교 가부시끼가이샤 Method for producing cerium oxide, cerium oxide abrasive, method for polishing substrate using the same, and method for manufacturing semiconductor device
JP4544379B2 (en) * 1999-06-28 2010-09-15 日産化学工業株式会社 Glass hard disk abrasive
WO2001000744A1 (en) 1999-06-28 2001-01-04 Nissan Chemical Industries, Ltd. Abrasive compound for glass hard disk platter
US7232529B1 (en) 1999-08-26 2007-06-19 Hitachi Chemical Company, Ltd. Polishing compound for chemimechanical polishing and polishing method
JP2002217140A (en) * 2001-01-19 2002-08-02 Hitachi Chem Co Ltd Cmp abrasive and polishing method of substrate
US6786945B2 (en) * 2001-02-20 2004-09-07 Hitachi Chemical Co., Ltd. Polishing compound and method for polishing substrate
JP2002359216A (en) 2001-05-30 2002-12-13 Mitsubishi Electric Corp Polishing method using ceria slurry, and method of manufacturing semiconductor device
EP1481020A2 (en) * 2002-02-04 2004-12-01 Nanophase Technologies Corporation Stable dispersions of nanoparticles in aqueous media
AU2003275697A1 (en) 2002-10-28 2004-05-13 Nissan Chemical Industries, Ltd. Cerium oxide particles and process for the production thereof
KR100630691B1 (en) 2004-07-15 2006-10-02 삼성전자주식회사 Cerium oxide polishing particles, slurry for CMP, methods for preparing the same, and methods for polishing substrate
JP4951218B2 (en) * 2004-07-15 2012-06-13 三星電子株式会社 Cerium oxide abrasive particles and composition comprising the abrasive particles
KR100574984B1 (en) * 2004-08-16 2006-05-02 삼성전자주식회사 Cerium oxide polishing particles, slurry for CMP, methods for preparing the same, and methods for polishing substrate
KR100641348B1 (en) 2005-06-03 2006-11-03 주식회사 케이씨텍 Slurry for cmp and method of fabricating the same and method of polishing substrate
KR100753994B1 (en) 2005-08-05 2007-09-06 정인 Producing method for cerium-based glass polishing material and method for using the same
EP1838620B1 (en) * 2005-10-14 2016-12-14 Lg Chem, Ltd. Method for preparing a cerium oxide powder for a chemical mechanical polishing slurry
KR100812052B1 (en) * 2005-11-14 2008-03-10 주식회사 엘지화학 Cerium carbonate powder, cerium oxide powder, method for preparing the same, and cmp slurry comprising the same
JP2009113993A (en) * 2006-03-03 2009-05-28 Hitachi Chem Co Ltd Metal oxide particle, polishing material containing them, method for polishing substrate using the polishing material and method for producing semiconductor device manufactured by polishing
JP4599565B2 (en) * 2006-10-23 2010-12-15 国立大学法人信州大学 Electrolytic plating method and electrolytic plating solution
FR2923400B1 (en) * 2007-11-09 2009-12-04 Rhodia Operations COLLOIDAL DISPERSION OF MINERAL PARTICLES IN A LIQUID PHASE COMPRISING AN AMPHOLYTE COPOLYMER
JP5221979B2 (en) * 2008-02-25 2013-06-26 シャープ株式会社 Manufacturing method of semiconductor device
JP2009010406A (en) * 2008-08-18 2009-01-15 Hitachi Chem Co Ltd Abrasive powder and polishing method for substrate
KR101075491B1 (en) 2009-01-16 2011-10-21 주식회사 하이닉스반도체 Method for manufacturing semiconductor device
CN102686360A (en) 2009-11-12 2012-09-19 日立化成工业株式会社 CMP polishing liquid and polishing method using the same and fabricating method of semiconductor substrate
JP2010222707A (en) * 2010-06-07 2010-10-07 Shinshu Univ Electroless plating method and electroless plating solution
JP6088953B2 (en) * 2013-09-24 2017-03-01 三井金属鉱業株式会社 Abrasive slurry and substrate manufacturing method using the same
EP3083501B1 (en) * 2013-12-16 2020-02-12 Rhodia Operations Liquid suspension of cerium oxide particles
JP6200979B2 (en) * 2016-02-01 2017-09-20 株式会社フジミインコーポレーテッド Polishing composition and method for producing substrate using the same
CN110358453A (en) * 2018-04-10 2019-10-22 蓝思科技(长沙)有限公司 A kind of glass polishing nano-cerium oxide polishing fluid and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS536756B2 (en) * 1974-05-13 1978-03-10
JP2832270B2 (en) * 1993-05-18 1998-12-09 三井金属鉱業株式会社 Abrasive for glass polishing
JP3278532B2 (en) * 1994-07-08 2002-04-30 株式会社東芝 Method for manufacturing semiconductor device
JP3430733B2 (en) * 1994-09-30 2003-07-28 株式会社日立製作所 Abrasive and polishing method
JP2864451B2 (en) * 1994-11-07 1999-03-03 三井金属鉱業株式会社 Abrasive and polishing method
EP0820092A4 (en) * 1996-02-07 2000-03-29 Hitachi Chemical Co Ltd Cerium oxide abrasive, semiconductor chip, semiconductor device, process for the production of them, and method for the polishing of substrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
社団法人日本分析学会X線分析研究懇談会主催で1999年12月6日〜9日に開催された「第9回X線分析講習会 粉末X線リートベルト解析」おける講義資料、53頁〜76頁「3.粉末X線回折データのリートベルト解析 無機材質研究所 泉富士夫」および163頁〜193頁「8.Rietveld法の材料解析への応用 物質工学工業技術研究所 秋葉悦男」

Also Published As

Publication number Publication date
JP2007036271A (en) 2007-02-08
JPH10152673A (en) 1998-06-09
JP2012169648A (en) 2012-09-06
JP2002138275A (en) 2002-05-14
JP2001329250A (en) 2001-11-27
JP2007036270A (en) 2007-02-08
JP2001329251A (en) 2001-11-27
JP4971731B2 (en) 2012-07-11
JP5023626B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP3462052B2 (en) Cerium oxide abrasive and substrate polishing method
JP4788586B2 (en) Abrasive and slurry
KR20000048741A (en) Cerium oxide abrasive and method of abrading substrates
JP3480323B2 (en) Cerium oxide abrasive, substrate polishing method, and semiconductor device
JP4788585B2 (en) Abrasive and slurry
JPH11181404A (en) Cerium oxide abrasive and grinding of substrate
JPH11181407A (en) Cerium oxide abrasive and grinding of substrate
JPH11181405A (en) Cerium oxide abrasive and grinding of substrate
JP4776518B2 (en) Abrasive and slurry
JP4788588B2 (en) Polishing method
JP4776519B2 (en) Abrasive and slurry
JPH11181406A (en) Cerium oxide abrasive and grinding of substrate
JP2004250714A (en) Cerium oxide abrasive and method for grinding substrate
JP2007129249A (en) Abrasive and slurry

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees