JP3460364B2 - Method for producing hydrocarbon adsorbent - Google Patents

Method for producing hydrocarbon adsorbent

Info

Publication number
JP3460364B2
JP3460364B2 JP04687195A JP4687195A JP3460364B2 JP 3460364 B2 JP3460364 B2 JP 3460364B2 JP 04687195 A JP04687195 A JP 04687195A JP 4687195 A JP4687195 A JP 4687195A JP 3460364 B2 JP3460364 B2 JP 3460364B2
Authority
JP
Japan
Prior art keywords
zeolite
parts
sio
adsorbent
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04687195A
Other languages
Japanese (ja)
Other versions
JPH08243382A (en
Inventor
浩行 金坂
真紀 上久保
宏行 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP04687195A priority Critical patent/JP3460364B2/en
Publication of JPH08243382A publication Critical patent/JPH08243382A/en
Application granted granted Critical
Publication of JP3460364B2 publication Critical patent/JP3460364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素吸着材の製造
方法に関し、特に自動車等の内燃機関から排出される排
ガス浄化用装置に使用される炭化水素吸着材の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a hydrocarbon adsorbent, and more particularly to a method for producing a hydrocarbon adsorbent used in a device for purifying exhaust gas discharged from an internal combustion engine such as an automobile.

【0002】従来から、自動車等の内燃機関の排ガス浄
化用触媒としては、一酸化炭素(CO)及び炭化水素
(HC)の酸化と窒素酸化物(NOx)の還元とを同時
に行うことのできる三元触媒が汎用されている。このよ
うな触媒は、例えば特公昭58−20307号公報にも
見られるように、耐火性担体上のアルミナコート層にパ
ラジウム、白金及びロジウム等の貴金属、及び必要に応
じて助触媒成分としてセリウムやランタン等の希土類金
属又はニッケル等のベースメタル酸化物を添加したもの
がほとんどである。
Conventionally, as an exhaust gas purifying catalyst for an internal combustion engine of an automobile or the like, three catalysts capable of simultaneously oxidizing carbon monoxide (CO) and hydrocarbons (HC) and reducing nitrogen oxides (NOx) have been proposed. The original catalyst is widely used. Such a catalyst is disclosed in, for example, Japanese Patent Publication No. 58-20307, for example, a noble metal such as palladium, platinum and rhodium in an alumina coat layer on a refractory carrier, and optionally cerium or a cocatalyst component. In most cases, a rare earth metal such as lanthanum or a base metal oxide such as nickel is added.

【0003】このような従来の触媒は、排ガス温度とエ
ンジンの設定空燃比との影響を強く受ける。自動車用触
媒が浄化能を発揮することができる排ガス温度として
は、一般に300℃以上が必要であり、また空燃比はH
C及びCOの酸化とNOxの還元とのバランスがとれる
理論空燃比付近で触媒が有効に働く。従って、従来の三
元触媒を用いる排ガス浄化装置を取り付けた自動車で
は、三元触媒が有効に働くような位置に設置されてお
り、また排気系の酸素濃度を検出して、混合気を理論空
燃比付近に保ようにフィードバック制御が行われてい
る。
Such a conventional catalyst is strongly affected by the exhaust gas temperature and the set air-fuel ratio of the engine. The exhaust gas temperature at which the automobile catalyst can exert its purifying ability generally needs to be 300 ° C. or higher, and the air-fuel ratio is H.
The catalyst works effectively near the stoichiometric air-fuel ratio where the oxidation of C and CO and the reduction of NOx are balanced. Therefore, a conventional automobile equipped with an exhaust gas purification device that uses a three-way catalyst is installed at a position where the three-way catalyst works effectively, and the oxygen concentration in the exhaust system is detected to create a theoretical air-fuel mixture. Feedback control is performed so that the fuel ratio is maintained near the fuel ratio.

【0004】しかしながら、従来の三元触媒をエキゾー
ストマニホールド直後に設置しても、排ガス温度が低い
(300℃以下)エンジン始動直後には活性が低く、始
動直後(コールドスタート時)に排出されるHCは浄化
されずにそのまま排出されてしまうおそれがあった。
However, even if the conventional three-way catalyst is installed immediately after the exhaust manifold, the activity is low immediately after the engine start when the exhaust gas temperature is low (300 ° C. or less), and HC is exhausted immediately after start (cold start). Could be discharged as is without being purified.

【0005】上記の課題を解決するための排ガス浄化装
置としては、触媒コンバーターの排気上流側にコールド
HCを吸着するための吸着材を納めたHCトラッパーを
配置したものが提案されている(特開平2−21124
5号公報)。
As an exhaust gas purifying apparatus for solving the above-mentioned problems, there has been proposed one in which an HC trapper containing an adsorbent for adsorbing cold HC is arranged on the exhaust gas upstream side of a catalytic converter (Japanese Patent Laid-Open No. Hei 10-1999) 2-21124
No. 5).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
特開平2−211245号公報に開示されている吸着材
では、ゼオライト層中に小孔を形成するために発砲剤を
用いているが、この発砲剤ではハニカムコート時に目詰
まりを起こしやすく、コーティング性が悪いという欠点
があった。
However, in the adsorbent disclosed in Japanese Unexamined Patent Publication (Kokai) No. Hei 2-212145, a foaming agent is used to form small pores in the zeolite layer. The agent has a drawback that it is apt to be clogged during honeycomb coating and has poor coating properties.

【0007】従って本発明は、このような従来の問題点
に着目してなされたもので、ゼオライトスラリー中に用
いる無機バインダーとして細長い形状を有するシリカゾ
ルを用いることにより、良好なコーティング性を確保し
ながら、ゼオライト層中に小孔を作ることができ、炭化
水素のゼオライト細孔中までの拡散性が良くなり、吸着
性能を向上することができる炭化水素吸着材の製造方法
を提供することを目的とする。
Therefore, the present invention has been made by paying attention to such a conventional problem, and by using silica sol having an elongated shape as an inorganic binder used in the zeolite slurry, a good coating property is ensured. , It is intended to provide a method for producing a hydrocarbon adsorbent capable of forming small pores in a zeolite layer, improving the diffusivity of hydrocarbons into zeolite pores, and improving adsorption performance. To do.

【0008】[0008]

【課題を解決するための手段】本発明の上記の目的は、
ゼオライト粉末に、無機バインダーとして動的光散乱法
による測定粒子径(D1nm)と窒素ガス吸着法による
測定粒子径(D2nm)との比D1/D2が5以上であ
る細長い形状を有するシリカゾル及び水を加えてスラリ
ーとし、次いで該スラリーをハニカム状のモノリス担体
に塗布し、乾燥した後、焼成してコート層を形成するこ
とを特徴とする炭化水素吸着材の製造方法により達成さ
れた。
The above objects of the present invention are as follows.
Zeolite powder and silica sol having an elongated shape with a ratio D1 / D2 of the particle size measured by the dynamic light scattering method (D1 nm) and the particle size measured by the nitrogen gas adsorption method (D2 nm) of 5 or more as an inorganic binder are added to zeolite powder. In addition, a method for producing a hydrocarbon adsorbent characterized in that a slurry is formed, and then the slurry is applied to a honeycomb-shaped monolith carrier, dried, and then fired to form a coat layer, is achieved.

【0009】本発明における細長い形状のシリカゾル
は、特開平1−317115号公報に記載されており、
「動的光散乱法による測定粒子径(D1nm)と窒素ガ
ス吸着法による測定粒子径(D2nm)の比D1/D2
が5以上であって、このD1は40〜500ナノメータ
ーであり、そして電子顕微鏡観察による5〜40ナノメ
ーターの範囲内の一様な太さで一平面内のみの伸長を有
する細長い形状の非晶質コロイダルシリカが液体溶媒中
に分散されてなるSiO2 0.5〜30重量%の安定な
シリカゾル」を意味し、市販されており入手することが
出来る。
The elongated silica sol of the present invention is described in JP-A-1-317115.
"Ratio D1 / D2 of particle size measured by dynamic light scattering method (D1 nm) and particle size measured by nitrogen gas adsorption method (D2 nm)
Is 5 or more, the D1 is 40 to 500 nanometers, and a non-elongated shape having a uniform thickness in the range of 5 to 40 nanometers by electron microscopy and an extension only in one plane. It means "a stable silica sol of 0.5 to 30% by weight of SiO 2 in which crystalline colloidal silica is dispersed in a liquid solvent" and is commercially available.

【0010】本発明において、シリカゾルの割合はコー
ト量中の固形分としてSiO2 が5〜30重量%の範囲
であることが好ましい。SiO2 が5重量%未満になる
と、コート層が剥離し易くなり、逆に30重量%を超え
るとコート層中における吸着材の割合が減少するため、
充分な吸着性能が得られない。
In the present invention, the proportion of silica sol is preferably in the range of 5 to 30% by weight of SiO 2 as a solid content in the coating amount. If the SiO 2 content is less than 5% by weight, the coating layer will be easily peeled off.
Sufficient adsorption performance cannot be obtained.

【0011】本発明において使用されるゼオライトとし
ては、公知のゼオライトの中から適宜選択して使用する
ことができ、例えばモルデナイト、USY、β−ゼオラ
イト及びZSM−5から成る群から選ばれた少なくとも
1種が挙げられ、特にシリカ/アルミナのモル比が50
〜2000の範囲にあるゼオライトを用いることが好ま
しい。
The zeolite used in the present invention can be appropriately selected from known zeolites and used, for example, at least one selected from the group consisting of mordenite, USY, β-zeolite and ZSM-5. And the silica / alumina molar ratio is 50
It is preferable to use a zeolite in the range of up to 2000.

【0012】次に、本発明の作用を説明する。本発明の
炭化水素吸着材の製造方法によると、吸着材にコート層
内部まで炭化水素が効率良く拡散するようにゼオライト
層中に小孔が設けられる。そのために、ゼオライトスラ
リー中の無機バインダーとして細長い形状のシリカゾル
を用い、ハニカム担体に塗布している。このような細長
い形状のシリカゾルを用いることにより、ゾルの長径方
向でゼオライト同士が結合した場合に、ゼオライト粒子
間の結合距離が球状のシリカゾルを用いる場合よりも広
がり、ゾルの短径方向でゼオライト同士が結合した場合
に、ゼオライト粒子間の結合距離は短くなり種々の径の
小孔が生じてゼオライトコート層中のガスの拡散性を向
上させることができる。
Next, the operation of the present invention will be described. According to the method for producing a hydrocarbon adsorbent of the present invention, the adsorbent is provided with small pores in the zeolite layer so that the hydrocarbon can be efficiently diffused into the coat layer. Therefore, a long and narrow silica sol is used as an inorganic binder in the zeolite slurry and applied to the honeycomb carrier. By using such an elongated silica sol, when the zeolites are bound to each other in the major axis direction of the sol, the bonding distance between the zeolite particles is wider than in the case of using a spherical silica sol, and the zeolites are bound to each other in the minor axis direction of the sol. When bonded with each other, the bonding distance between the zeolite particles is shortened and small holes of various diameters are generated, so that the gas diffusibility in the zeolite coat layer can be improved.

【0013】特開平1−317115号公報には、この
ような異形のシリカゾルを用いた触媒担体成分、吸着材
成分に成形することで好ましい触媒担体や吸着材等に関
する記述があるが、上記公報では異形ゾルを用いた物を
成形する時に、成形性が向上する点にのみ着目している
が、本発明においては、成形を行わずに、ゼオライト粉
末と異形ゾルと水とでスラリー化しハニカム状のモノリ
ス担体に塗布することでゼオライト粉末間の空隙の大き
さをコントロールすることができることを新たに見い出
した。
Japanese Unexamined Patent Publication (Kokai) No. 1-317115 describes a catalyst carrier, an adsorbent and the like which are preferably formed by molding into a catalyst carrier component and an adsorbent component using such a modified silica sol. When molding a product using a modified sol, attention is paid only to the point that the moldability is improved, but in the present invention, without performing molding, a zeolite powder and a modified sol and water are slurried into a honeycomb shape. It was newly found that the size of the voids between the zeolite powders can be controlled by applying it to the monolith carrier.

【0014】また、特開平1−317115号公報に記
載されているようにシリカゾルの形状が細長い形状のた
め、ゼオライト層とハニカム担体との間の接触部分にも
平滑な面が出来にくく、逆に凹凸のある面が出来やすく
ハニカム担体とゼオライト層との間の密着性を向上させ
ることができる。
Further, since the silica sol has an elongated shape as described in JP-A-1-317115, it is difficult to form a smooth surface even in the contact portion between the zeolite layer and the honeycomb carrier, and conversely. An uneven surface is easily formed, and the adhesion between the honeycomb carrier and the zeolite layer can be improved.

【0015】[0015]

【実施例】以下、本発明を実施例によって更に詳細に説
明するが、本発明はこれによって限定されるものではな
い。また、特に断らない限り、以下に記載する部及び%
は、それぞれ重量部及び重量%を示す。
EXAMPLES The present invention will now be described in more detail by way of examples, which should not be construed as limiting the invention. Unless otherwise specified, the parts and percentages described below
Indicates parts by weight and% by weight, respectively.

【0016】実施例1 USY(SiO2 /Al2 3 =50)100部、細長
い形状のシリカゾル(日産化学工業株式会社製の商品
名:スノーテックスOUP、比重1.099、pH3.
1、粘度8.4mPa.s、動的光散乱法による測定粒
子径55nm、窒素ガス吸着法による測定粒子径12n
m、電子顕微鏡観察による粒子径12nm、SiO2
5.6重量%)45部、及び水85部を磁性ポットに投
入し、振動ミル装置で40分間又はユニバーサルボール
ミル装置で6.5時間混合粉砕して、ウォッシュコート
スラリーを製造した。コーディエライト製品モノリス担
体を吸引コート法で吸水処理した後、前記で製造したス
ラリーを担体断面全体に均一に投入し吸引コート法で余
分なスラリーを除去した。その後、乾燥を行い400℃
で約1時間仮焼成した。
Example 1 100 parts of USY (SiO 2 / Al 2 O 3 = 50), an elongated silica sol (trade name: Snowtex OUP, manufactured by Nissan Chemical Industries, Ltd., specific gravity 1.099, pH 3.
1, viscosity 8.4 mPa.s. s, particle size 55 nm measured by dynamic light scattering method, particle size 12 n measured by nitrogen gas adsorption method
m, particle diameter 12 nm by observation with an electron microscope, SiO 2 1
45 parts by weight (5.6% by weight) and 85 parts of water were put into a magnetic pot, and mixed and ground for 40 minutes with a vibration mill device or for 6.5 hours with a universal ball mill device to produce a washcoat slurry. After the monolithic carrier of cordierite product was subjected to water absorption treatment by a suction coating method, the slurry prepared above was uniformly added to the entire cross section of the carrier and the excess slurry was removed by a suction coating method. Then, dry it at 400 ℃
It was calcined for about 1 hour.

【0017】これによりUSYゼオライトが約60g/
Lのコート量で担体にコートされる。上記のウォッシュ
コート、乾燥及び焼成をさらに2回繰り返して合計約1
50g/Lのゼオライトをコートし、空気雰囲気中で6
50℃で4時間焼成を行い吸着材−1を得た。
As a result, about 60 g of USY zeolite /
The carrier is coated with a coating amount of L. Repeat the above wash coat, drying and baking twice more to obtain a total of about 1
Coated with 50 g / L of zeolite, 6 in air atmosphere
The adsorbent-1 was obtained by firing at 50 ° C for 4 hours.

【0018】実施例2 β−ゼオライト(SiO2 /Al2 3 =100)粉末
100部、実施例1と同様のシリカゾル65部及び水6
5部を用いた他は、実施例1と全く同様にして吸着材−
2を得た。
Example 2 100 parts of β-zeolite (SiO 2 / Al 2 O 3 = 100) powder, 65 parts of silica sol similar to Example 1 and 6 parts of water
Except for using 5 parts, the adsorbent was prepared in the same manner as in Example 1.
Got 2.

【0019】実施例3 β−ゼオライト(SiO2 /Al2 3 =100)粉末
100部に代えてZSM−5(SiO2 /Al2 3
700)粉末100部を用いた他は、実施例2と全く同
様にして吸着材−3を得た。
Example 3 ZSM-5 (SiO 2 / Al 2 O 3 =) instead of 100 parts of β-zeolite (SiO 2 / Al 2 O 3 = 100) powder
700) An adsorbent-3 was obtained in the same manner as in Example 2 except that 100 parts of powder was used.

【0020】実施例4 β−ゼオライト(SiO2 /Al2 3 =100)粉末
100部に代えてモルデナイト(SiO2 /Al2 3
=200)粉末100部を用いた他は、実施例2と全く
同様にして吸着材−4を得た。
[0020] Example 4 beta-zeolite (SiO 2 / Al 2 O 3 = 100) instead of 100 parts of powdered mordenite (SiO 2 / Al 2 O 3
= 200) Adsorbent-4 was obtained in exactly the same manner as in Example 2 except that 100 parts of powder was used.

【0021】実施例5 β−ゼオライト(SiO2 /Al2 3 =100)粉末
100部に代えてUSY(SiO2 /Al2 3 =5
0)粉末50部及びZSM−5(SiO2 /Al 2 3
=700)粉末50部を用いた他は、実施例2と全く同
様にして吸着材−5を得た。
Example 5 β-zeolite (SiO2/ Al2O3= 100) powder
USY (SiO2/ Al2O3= 5
0) 50 parts powder and ZSM-5 (SiO2/ Al 2O3
= 700) The same as Example 2 except that 50 parts of powder was used.
Thus, Adsorbent-5 was obtained.

【0022】実施例6 β−ゼオライト(SiO2 /Al2 3 =100)粉末
100部に代えてUSY(SiO2 /Al2 3 =5
0)粉末50部及びβ−ゼオライト(SiO2 /Al2
3 =50)粉末50部を用いた他は、実施例2と全く
同様にして吸着材−6を得た。
Example 6 USY (SiO 2 / Al 2 O 3 = 5) was used in place of 100 parts of β-zeolite (SiO 2 / Al 2 O 3 = 100) powder.
0) 50 parts of powder and β-zeolite (SiO 2 / Al 2
O 3 = 50) Adsorbent-6 was obtained in the same manner as in Example 2 except that 50 parts of powder was used.

【0023】実施例7 USY(SiO2 /Al2 3 =50)粉末100部、
細長い形状のシリカゾル(日産化学工業株式会社製の商
品名:スノーテックスUP、比重1.132、pH1
0.2、粘度17.0mPa.s、動的光散乱法による
測定粒子径55nm、窒素ガス吸着法による測定粒子径
12nm、電子顕微鏡観察による粒子径12nm、Si
2 20.3重量%)35部及び水95部を用いた他
は、実施例1と全く同様にして吸着材−7を得た。
Example 7 100 parts of USY (SiO 2 / Al 2 O 3 = 50) powder,
Elongated silica sol (trade name of Nissan Chemical Industries, Ltd .: Snowtex UP, specific gravity 1.132, pH 1
0.2, viscosity 17.0 mPa.s. s, particle diameter measured by dynamic light scattering method 55 nm, particle diameter measured by nitrogen gas adsorption method 12 nm, particle diameter 12 nm by electron microscope observation, Si
O 2 20.3% by weight) was used 35 parts and 95 parts of water to give the adsorbent -7 in the same manner as in Example 1.

【0024】比較例1 USY(SiO2 /Al2 3 =50)粉末100部、
酸性シリカゾル(日産化学工業株式会社製の商品名:ス
ノーテックス−O、比重1.128、pH2.61、粘
度1.6cp、SiO2 20.4重量%、粒径12n
m)65部及び水65部を用いた他は、実施例1と全く
同様にして吸着材−R1を得た。
Comparative Example 1 100 parts of USY (SiO 2 / Al 2 O 3 = 50) powder,
Acidic silica sol (trade name of Nissan Chemical Industries: Snowtex-O, specific gravity 1.128, pH 2.61, viscosity 1.6 cp, SiO 2 20.4% by weight, particle size 12 n
m) Adsorbent-R1 was obtained in the same manner as in Example 1 except that 65 parts of water and 65 parts of water were used.

【0025】比較例2 USY(SiO2 /Al2 3 =50)粉末100部に
代えてβ−ゼオライト(SiO2 /Al2 3 =50)
粉末100部を用いた他は、比較例1と全く同様にして
吸着材−R2を得た。
Comparative Example 2 β-zeolite (SiO 2 / Al 2 O 3 = 50) was used instead of 100 parts of USY (SiO 2 / Al 2 O 3 = 50) powder.
An adsorbent-R2 was obtained in exactly the same manner as in Comparative Example 1 except that 100 parts of the powder was used.

【0026】比較例3 USY(SiO2 /Al2 3 =50)粉末100部に
代えてZSM−5ゼオライト(SiO2 /Al2 3
700)粉末100部を用いた他は、比較例1と全く同
様にして吸着材−R3を得た。
[0026] Comparative Example 3 USY (SiO 2 / Al 2 O 3 = 50) ZSM-5 zeolite in place of 100 parts of the powder (SiO 2 / Al 2 O 3 =
700) Adsorbent-R3 was obtained in exactly the same manner as in Comparative Example 1 except that 100 parts of powder was used.

【0027】実施例1〜7及び比較例1〜3で得られた
吸着材を用いて下記評価条件でHC吸着性能の評価を行
った。その結果を表1に示す。
Using the adsorbents obtained in Examples 1 to 7 and Comparative Examples 1 to 3, the HC adsorption performance was evaluated under the following evaluation conditions. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】1)触媒容量 60cc 2)モデルガス評価 SV:40000/h HC 2000ppm(C7 8 )N2 バランス H2 O 10%添加 最初の2分間のHC吸着率を評価1) Catalyst capacity 60 cc 2) Model gas evaluation SV: 40000 / h HC 2000 ppm (C 7 H 8 ) N 2 balance H 2 O 10% addition The HC adsorption rate for the first 2 minutes was evaluated.

【0030】[0030]

【発明の効果】以上説明したきたように、本発明の炭化
水素吸着剤の製造方法によれば、ゼオライト粉末に無機
バインダー及び水を加えてスラリー化を行う時に無機バ
インダーとして細長い形状を有するシリカゾルを用いる
ことにより、ゼオライト粒子間の距離が広がり、排ガス
の拡散性が向上し、炭化水素の吸着能を効率よく行うこ
とができる。
As described above, according to the method for producing a hydrocarbon adsorbent of the present invention, a silica sol having an elongated shape is used as an inorganic binder when slurry is prepared by adding an inorganic binder and water to zeolite powder. By using them, the distance between the zeolite particles is expanded, the diffusibility of the exhaust gas is improved, and the hydrocarbon adsorbing ability can be efficiently performed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−57183(JP,A) 特開 平4−284827(JP,A) 特開 平4−210235(JP,A) 特開 平4−65314(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 20/18 B01D 53/04 F01N 3/24 ─────────────────────────────────────────────────── --Continued from the front page (56) References JP-A-5-57183 (JP, A) JP-A-4-284827 (JP, A) JP-A-4-210235 (JP, A) JP-A-4- 65314 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B01J 20/18 B01D 53/04 F01N 3/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ゼオライト粉末に、無機バインダーとし
て動的光散乱法による測定粒子径(D1nm)と窒素ガ
ス吸着法による測定粒子径(D2nm)との比D1/D
2が5以上である細長い形状を有するシリカゾル及び水
を加えてスラリーとし、次いで該スラリーをハニカム状
のモノリス担体に塗布し、乾燥した後、焼成してコート
層を形成することを特徴とする炭化水素吸着材の製造方
法。
1. The ratio D1 / D of the particle size (D1 nm) measured by the dynamic light scattering method and the particle size (D2 nm) measured by the nitrogen gas adsorption method to the zeolite powder as an inorganic binder.
Carbonization characterized by adding a silica sol having an elongated shape in which 2 is 5 or more and water to form a slurry, and then applying the slurry to a honeycomb-shaped monolith carrier, drying and firing to form a coat layer. Method for manufacturing hydrogen adsorbent.
【請求項2】 ゼオライトがモルデナイト、USY、β
−ゼオライト及びZSM−5から成る群から選ばれた少
なくとも1種であることを特徴とする請求項1記載の炭
化水素吸着材の製造方法。
2. The zeolite is mordenite, USY, β
-The method for producing a hydrocarbon adsorbent according to claim 1, which is at least one selected from the group consisting of zeolite and ZSM-5.
【請求項3】 シリカ/アルミナのモル比が50〜20
00の範囲にあるゼオライトを用いることを特徴とする
請求項1又は2記載の炭化水素吸着材の製造方法。
3. A silica / alumina molar ratio of 50 to 20.
The method for producing a hydrocarbon adsorbent according to claim 1 or 2, characterized in that zeolite in the range of 00 is used.
JP04687195A 1995-03-07 1995-03-07 Method for producing hydrocarbon adsorbent Expired - Fee Related JP3460364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04687195A JP3460364B2 (en) 1995-03-07 1995-03-07 Method for producing hydrocarbon adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04687195A JP3460364B2 (en) 1995-03-07 1995-03-07 Method for producing hydrocarbon adsorbent

Publications (2)

Publication Number Publication Date
JPH08243382A JPH08243382A (en) 1996-09-24
JP3460364B2 true JP3460364B2 (en) 2003-10-27

Family

ID=12759417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04687195A Expired - Fee Related JP3460364B2 (en) 1995-03-07 1995-03-07 Method for producing hydrocarbon adsorbent

Country Status (1)

Country Link
JP (1) JP3460364B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3764915B2 (en) * 1998-06-25 2006-04-12 日産自動車株式会社 Coating hopper and catalytic converter manufacturing method
JP3983967B2 (en) * 2000-09-26 2007-09-26 ニチアス株式会社 Zeolite-supported adsorbing element and method for producing the same
JP2006122803A (en) * 2004-10-28 2006-05-18 Daikin Ind Ltd Functional device, functional material, and method of manufacturing functional device

Also Published As

Publication number Publication date
JPH08243382A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
US5407880A (en) Catalysts for adsorption of hydrocarbons
KR102251564B1 (en) Zoned catalyst for diesel applications
JP5756026B2 (en) Diesel oxidation catalyst composite for high hydrocarbon conversion with layer structure
KR102251530B1 (en) Catalyst compositions comprising metal oxid support particles with specific particle size distributions
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
JP2012518531A (en) Palladium supported catalyst composite
KR20020026454A (en) Exhaust Gas Purifying Catalyst and Method of Producing Same
JP3052710B2 (en) Exhaust gas purification device
JP2020514014A (en) NOx adsorber catalyst
JP2012523957A (en) Multi-zone catalyst composition
US5292696A (en) Hydrocarbon adsorbing body
JP2020515395A (en) Three-layer NOx adsorber catalyst
CA2464560C (en) Exhaust gas purifying catalyst and process for purifying exhaust gas
JPH07124468A (en) Production of hydrocarbon adsorbent and adsorption catalyst
CN102065997B (en) Oxidation catalyst for commercial vehicles comprising diesel motor
JP3282344B2 (en) Exhaust gas purification device
EP1102629A1 (en) Improved catalyzed adsorber system for treating internal combustion engine exhaust gas and method of making same
JP2009226327A (en) CATALYST FOR SELECTIVELY REDUCING NOx
JP2682404B2 (en) Method for producing hydrocarbon adsorbent and catalyst
JP3498410B2 (en) Exhaust gas purification catalyst
JP3460364B2 (en) Method for producing hydrocarbon adsorbent
JPH07241471A (en) Production of adsorptive catalyst for purification of exhaust gas
JP2006167540A (en) Hydrocarbon adsorption/combustion catalyst
JP2024505898A (en) Particulate filter with concentrated distributed PGM and method for preparing the same
KR101094241B1 (en) Preparation process for oxidation Catalyst for purifying the exhaust gas of diesel engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees