JP3445260B2 - Self-sealing performance measuring device for swellable soil material - Google Patents

Self-sealing performance measuring device for swellable soil material

Info

Publication number
JP3445260B2
JP3445260B2 JP2001274246A JP2001274246A JP3445260B2 JP 3445260 B2 JP3445260 B2 JP 3445260B2 JP 2001274246 A JP2001274246 A JP 2001274246A JP 2001274246 A JP2001274246 A JP 2001274246A JP 3445260 B2 JP3445260 B2 JP 3445260B2
Authority
JP
Japan
Prior art keywords
sample
spacer
swelling
self
soil material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001274246A
Other languages
Japanese (ja)
Other versions
JP2003083955A (en
Inventor
益弘 田中
剛 笹倉
道孝 岡本
幹雄 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2001274246A priority Critical patent/JP3445260B2/en
Publication of JP2003083955A publication Critical patent/JP2003083955A/en
Application granted granted Critical
Publication of JP3445260B2 publication Critical patent/JP3445260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,膨潤性土質材料の
自己シール性能を測定する装置に関する。
TECHNICAL FIELD The present invention relates to an apparatus for measuring the self-sealing performance of a swellable soil material.

【0002】[0002]

【従来の技術】放射性廃棄物処理施設の緩衝材としてベ
ントナイト系材料が提案されている。これは,ベントナ
イトの吸水による膨潤圧でシール性を確保しようとする
ものである。同様に,膨潤性土質材料によって防水層を
形成する例は,一般の廃棄物処分場や修景池等でも適用
されている。
2. Description of the Related Art Bentonite materials have been proposed as buffer materials for radioactive waste treatment facilities. This is to secure the sealing property by the swelling pressure due to the water absorption of bentonite. Similarly, the example of forming a waterproof layer with a swelling soil material is also applied to general waste disposal sites, scenic ponds, and the like.

【0003】このような膨潤性土質材料によって緩衝層
や防水層を形成する場合,従来から当該材料の膨潤試験
や透水試験を行って層厚その他の設計指針としてきた。
そのための試験としては,例えば日本ベントナイト工業
会標準試験方法による JBAS104 77ベントナイト (粉状)
の膨潤試験方法やJIS A 1218 (1977)の土壌の透水試
験方法などが知られている。
When forming a buffer layer or a waterproof layer with such a swelling soil material, a swelling test or a water permeability test of the material has been conventionally conducted as a design guideline for the layer thickness and the like.
As a test for that, for example, JBAS104 77 bentonite (powder) according to the standard test method of Japan Bentonite Industry Association
The swelling test method and the soil permeability test method of JIS A 1218 (1977) are known.

【0004】[0004]

【発明が解決しようとする課題】前記の緩衝層や防水層
に接する内外層が,長期経年後に,部分的に溶損や亀裂
が発生して空隙を生ずることがある。例えばその内外層
が可溶性の塩やセメント系固化材を含むものであれば,
それらの成分の溶出が微量でも発生すると,超長期的に
は空隙の発生が想定される。構造躯体や充填材でも同様
に成分溶出に伴う空隙の発生が想定される。緩衝層や防
水層に接する内外層に空隙が発生すると,緩衝層や防水
層の内側において体積変化が生じ, 膨潤が促進される結
果, 透水性に影響を与えることになる。
The inner and outer layers contacting the buffer layer and the waterproof layer may be partially melted or cracked to form voids after a long period of time. For example, if the inner and outer layers contain soluble salts and cement-based solidifying materials,
If even a trace amount of these components elutes, it is expected that voids will be generated in the very long term. It is expected that voids will be generated by elution of the components in the structural body and the filler. When voids are generated in the inner and outer layers that are in contact with the buffer layer and waterproof layer, volume change occurs inside the buffer layer and waterproof layer, swelling is promoted, and water permeability is affected.

【0005】しかし,隣接層に発生する空隙を想定して
膨潤性土質材料のシール性を評価する試験方法はこれま
で知られていない。放射性廃棄物処理施設では超長期的
に緩衝層の難透水性を確保することが最重要課題であ
り,隣接層の劣化を想定した緩衝層の設計を行わねばな
らないところ,従来の膨潤試験から膨潤量を求めて自己
シール性を評価することは不十分である。
However, a test method for evaluating the sealing property of a swellable soil material by assuming voids generated in adjacent layers has not been known so far. In radioactive waste treatment facilities, securing the impermeability of the buffer layer for the very long term is the most important issue, and the buffer layer must be designed in consideration of deterioration of the adjacent layer. It is insufficient to evaluate the self-sealing property by determining the amount.

【0006】したがって,本発明の課題は,空隙の発生
を想定した自己シール性の測定装置を提供することにあ
る。
[0006] Therefore, an object of the present invention is to provide a self-sealing measuring device that assumes the occurrence of voids.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の測定装置として,本発明によれば,分割可能な金型内
に閉塞した試料装填空間を形成し,この空間内に装填し
た供試体に通水する手段と,該通水による供試体の膨潤
圧を計測する手段とを備えた土質材料の特性測定装置に
おいて,該空間に対する容積割合が既知のスペーサを付
属部品として備え,このスペーサを供試体と共に該空間
に予め装填して供試体を膨潤させ,スペーサ除去後に再
度供試体を膨潤させることを特徴とする膨潤性土質材料
の自己シール性能測定装置を提供する。ここで,膨潤圧
を計測する手段は, 好ましくは該試料装填空間の一つの
壁面に設置された板状の圧力センサからなり,この圧力
センサと供試体の間にスペーサが介在するように,供試
体とスペーサとを該空間内に装填する。なお,圧力セン
サの形状は膨潤圧が正確に計測されるものであれば板状
に限定されない。
According to the present invention, as a measuring device for solving the above-mentioned problems, according to the present invention, a closed sample loading space is formed in a dividable mold, and a specimen loaded in this space is provided. In a characteristic measuring device for a soil material, which comprises means for passing water through the chamber and means for measuring the swelling pressure of the sample due to the passing water, a spacer having a known volume ratio to the space is provided as an accessory, and this spacer is Provided is a self-sealing performance measuring device for swellable soil material, which is characterized in that it is pre-loaded into the space together with a sample to swell the sample, and after the spacer is removed, the sample is swollen again. Here, the means for measuring the swelling pressure preferably comprises a plate-shaped pressure sensor installed on one wall surface of the sample loading space, and a spacer is interposed between the pressure sensor and the specimen. A sample and a spacer are loaded in the space. The shape of the pressure sensor is not limited to the plate shape as long as the swelling pressure can be accurately measured.

【0008】[0008]

【発明の実施の形態】本発明においては,ベントナイト
のような膨潤性を示す土質材料を十分に膨潤させたあと
で,何等かの原因で空隙が発生した場合に,その空隙の
大きさに応じてどの程度の自己シール性を示すことがで
きるかを評価するために,通常の膨潤圧および透水係数
を測定する試験も行えるようにしながら,空隙発生時の
自己シール能力を測定することができるように工夫した
ものであり,その試験装置の要部を図面の実施例に従っ
て以下に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, when a swelling soil material such as bentonite is sufficiently swelled and then voids are generated for some reason, the size of the voids is adjusted according to the size of the voids. In order to evaluate the degree of self-sealing property that can be exhibited, it is possible to measure the self-sealing ability when voids are generated, while also allowing a normal swelling pressure and hydraulic conductivity measurement test. The main part of the test device is described below with reference to the embodiments of the drawings.

【0009】図1は,本発明の試験装置に用いる鋼製の
金型容器の例を示す分解図であり,上面に方形の凹部を
もつ下型1,上下に貫通する方形の空洞をもつ中型2お
よび下面に方形の凹部をもつ上型3を,順に積み重ねる
ことによって,その内部に閉塞した直方形の試料および
付属品を装填する内部空間が形成される。この内部空間
の大きさは特に制限はないが,例えば100mm×10
0mm×高さ50mm程度のものとすることができる。
FIG. 1 is an exploded view showing an example of a steel mold container used in the test apparatus of the present invention. A lower mold 1 having a rectangular recess on the upper surface 1 and a middle mold having a rectangular cavity penetrating vertically. By stacking 2 and the upper mold 3 having a rectangular recess on the lower surface in order, an internal space for loading the closed rectangular parallelepiped sample and accessories therein is formed. The size of this internal space is not particularly limited, but for example, 100 mm × 10
It can be about 0 mm x 50 mm in height.

【0010】下型1と上型3の各凹部には内部空間に通
ずる孔4と5が穿ってあり,この孔4と5は給排水パイ
プを螺着するのに使用される。中型2の側方にも孔6
a,6bが穿ってあり,これらは圧力センサの検出電流
を取り出すリード線引き出し用に使用される。また,各
型の4隅には,該内部空間には通じていない上下に貫通
するボルト貫通孔が穿ってあり,これにボルトを通して
ナットで締めることによって,各型によって閉塞し且つ
内圧に耐える内部空間が形成される。
Holes 4 and 5 communicating with the internal space are formed in the recesses of the lower mold 1 and the upper mold 3, and these holes 4 and 5 are used for screwing the water supply and drainage pipes. Hole 6 on the side of the medium size 2
A and 6b are bored, and these are used for drawing a lead wire for taking out a detection current of the pressure sensor. In addition, at the four corners of each mold, there are vertically through bolt through holes that do not communicate with the internal space, and bolts are tightened with nuts to close the interior of each mold and withstand internal pressure. A space is formed.

【0011】図2は,図1の状態から,4隅のボルト貫
通孔にボルト7を通し,ナット8で各型を固定した状態
を示している。そのさい,内部空間内には,付属部品と
して多孔メタル板9aと9b,板状の圧力センサ10お
よびスペーサ11を装填すると共に,供試体12を次の
ような関係をもって装填する。
FIG. 2 shows the state shown in FIG. 1 in which bolts 7 are passed through the bolt through holes at the four corners and each die is fixed by a nut 8. At that time, the porous metal plates 9a and 9b, the plate-shaped pressure sensor 10 and the spacers 11 are loaded in the internal space as accessory parts, and the sample 12 is loaded in the following relationship.

【0012】多孔メタル板9aと9bは,ほぼ内部空間
の平断面に相当する面積をもつ鋼製のパンチングボード
であり,上型3と下型1の各凹部に僅かの隙間をもって
フラットに敷き置く。これによって,内部空間内に装填
される供試体12に対して,孔4と5を通じて通水する
場合に,供試体12に低い水圧を均等に付与すると共に
供試体12からの材料の漏出が防止される。
The perforated metal plates 9a and 9b are punching boards made of steel having an area substantially corresponding to the plane cross section of the internal space, and are laid flat in the recesses of the upper die 3 and the lower die 1 with a slight gap. . As a result, when water is passed through the holes 4 and 5 to the sample 12 loaded in the internal space, a low water pressure is evenly applied to the sample 12 and the leakage of material from the sample 12 is prevented. To be done.

【0013】板状の圧力センサ10は,図1に示したよ
うに,二枚の板13と14の間に複数のロードセル15
を介装させたものであり,各ロードセル15で検出され
る微弱電流はリード線16を通じて外部の測定機(図示
せず)に伝送される。板13と14は内部空間の垂直断
面にほぼ等しい面積をもち,これを垂直にして一方の壁
面(孔6a,6bを穿った側の壁面)に接するように装
填することにより,板状の圧力センサ10が内部空間の
一方の壁面を構成することになる。
As shown in FIG. 1, the plate-shaped pressure sensor 10 includes a plurality of load cells 15 between two plates 13 and 14.
The weak current detected by each load cell 15 is transmitted to an external measuring device (not shown) through the lead wire 16. Plates 13 and 14 have an area almost equal to the vertical cross section of the internal space, and by loading this plate vertically so that it is in contact with one wall surface (wall surface on the side where holes 6a and 6b are drilled), plate-shaped pressure The sensor 10 constitutes one wall surface of the internal space.

【0014】スペーサ11は,非吸水性材料(例えば金
属または非透水性のプラスチック等)で形成された容積
体であり,その容積の大きさが異なるものを多数個準備
しておく。容積が異なるといっても,これを内部空間に
装填した場合に,板状の圧力センサ10の面積とほぼ同
等の垂直断面積をもつものが好ましく,したがって,垂
直断面積は変えずにその厚みを変えることによって容積
を異ならしめるのがよい。そしてこのスペーサ11を圧
力センサ10の横に設置し,その反対側に供試体12を
配置するのがよい。すなわち,内部空間の一つの壁面を
形成している板状の圧力センサ10と供試体12との間
にスペーサ11が介在するように,供試体12とスペー
サ11を該空間内に装填するのがよい。特定の容積をも
つスペーサ11を内部空間内に配置することによって,
内部空間内において供試体12をセットする試料装填空
間の大きさが確定されることになる。
The spacer 11 is a volume body made of a non-water-absorbing material (for example, metal or water-impermeable plastic), and a large number of spacers having different volume sizes are prepared. Even if the volume is different, it is preferable that the volume of the plate-shaped pressure sensor 10 has a vertical cross-sectional area almost equal to that of the plate-shaped pressure sensor 10 when loaded in the internal space. It is better to make the volume different by changing. Then, it is preferable that the spacer 11 is installed beside the pressure sensor 10 and the sample 12 is arranged on the opposite side thereof. That is, the test piece 12 and the spacer 11 are loaded in the space so that the spacer 11 is interposed between the plate-shaped pressure sensor 10 forming one wall surface of the internal space and the test piece 12. Good. By arranging the spacer 11 having a specific volume in the internal space,
The size of the sample loading space for setting the sample 12 in the internal space will be determined.

【0015】このようにして確定される試料装填空間に
供試体12をセットするのであるが,この供試体12
は,予めほぼ試料装填空間の大きさと形状に一致するよ
うに膨潤性土質材料(以下, ベントナイトを用いた場合
を例とする)を成形加工しておく。そのさい,自然含水
状態のベントナイトを締め固め冶具を用いて所定の静的
圧縮加圧して成形することにより,仕上がり密度を所定
の値としたものを試験に供する。例えば,自然含水状態
のベントナイトを30Mpaの圧縮応力のもとで形成加
工し,仕上がり密度1.6Mgm-3のものとするといっ
た具合である。
The specimen 12 is set in the sample loading space determined in this way.
In advance, the swelling soil material (hereinafter, bentonite is used as an example) is shaped so that it matches the size and shape of the sample loading space. At that time, bentonite in a natural hydrated state is compacted by a predetermined static compression and pressing using a jig to be molded, and the finished density is set to a predetermined value for the test. For example, bentonite in a natural hydrous state is formed and processed under a compressive stress of 30 Mpa to obtain a finished density of 1.6 Mgm -3 .

【0016】以上のようにして付属部品と供試体を内部
に装填し,ボルト7とナット8によって各金型を緊締
し,また,下型1の孔4に給水パイプ17を螺着接合
し,上型3の孔5に排水パイプ18を螺着接合すること
によって,試験準備が完了する。以下にその試験手順に
ついて図3〜6に従って説明する。
As described above, the accessory and the test piece are loaded into the inside, each mold is tightened with the bolt 7 and the nut 8, and the water supply pipe 17 is screwed and joined to the hole 4 of the lower mold 1. The test preparation is completed by screwing the drain pipe 18 into the hole 5 of the upper mold 3. The test procedure will be described below with reference to FIGS.

【0017】図3〜6は,いずれも図2のX−Y矢視断
面を示したもので,試験途中での状態を順に示してい
る。
3 to 6 each show a cross section taken along the line XY in FIG. 2, and show the states in the middle of the test in order.

【0018】図3は,試験開始時の部品と供試体の装填
状態を示しており,図2と同じ状態にある。この状態
で,給水パイプ17から給水をゆっくりと開始し,給水
圧と給水量さらには排水パイプ18からの排水量を監視
しながら,給水量と排水量が安定した一定値になるまで
(すなわち,供試体への吸水が停止するまで)通水を続
ける。通常は1ケ月ほど通水を継続する。その間,圧力
センサ10で検知される膨潤圧を測定し続け,検出値が
もはや増加しない時点で供試体が飽和したことを知る。
この間の測定データから供試したベントナイトの膨潤圧
と透水係数が計測でき,その防水性能を評価できる。
FIG. 3 shows the loading state of the parts and the test piece at the start of the test, which is in the same state as in FIG. In this state, water supply is slowly started from the water supply pipe 17, and while monitoring the water supply pressure and the water supply amount, and further the drainage amount from the drainage pipe 18, until the water supply amount and the drainage amount reach a stable constant value (that is, the specimen Continue to pass water until the water absorption to (stops). Normally, water will continue for about one month. During that time, the swelling pressure detected by the pressure sensor 10 is continuously measured, and it is known that the sample is saturated when the detected value no longer increases.
The swelling pressure and water permeability of bentonite tested can be measured from the measured data during this period, and its waterproof performance can be evaluated.

【0019】図4は,供試体への吸水が飽和した時点
(最大膨潤圧を示している時点)で上型3を外し,多孔
メタル板9aも除いて,飽和した供試体12(S)を平
面的に見た状態を示しており,供試体12(S)は隙間
なく試料装填空間内に充満し,その膨潤圧はスペーサ1
1を介して圧力センサ10に伝達されている様子がわか
る。
In FIG. 4, the upper mold 3 is removed at the time when the water absorption into the sample is saturated (at which the maximum swelling pressure is shown), and the saturated sample 12 (S) is removed except for the porous metal plate 9a. The plan view is shown, in which the sample 12 (S) is filled in the sample loading space without any gap, and the swelling pressure is the spacer 1
It can be seen that the pressure is transmitted to the pressure sensor 10 via 1.

【0020】図5は,図4の状態からスペーサ11を取
り除いた状態を示している。スペーサ11を除いた跡に
はスペーサ容積に相当する空隙20が生じている。スペ
ーサ11を除いた後,再び多孔メタル板9aを飽和供試
体12(S)の上にセットし上型3を被せて図2のよう
にボルト7とナット8で金型を緊締し,再度給水を開始
して,前段と同様に,膨潤圧の測定および透水係数の計
測を行う。この後段の測定では,飽和供試体12(S)
がさらに膨潤して空隙20が満たされるまでは圧力セン
サ10での膨潤圧は0であり,透水係数も大きい値を示
すが,空隙20が満たされると,図6に示したように,
その再膨潤供試体12(RS)による膨潤圧が検出さ
れ,透水係数も小さくなり,空隙20の大きさ(スペー
サ11の容積)に対しての供試体のシール性能が評価で
きることになる。
FIG. 5 shows a state in which the spacer 11 is removed from the state of FIG. A void 20 corresponding to the spacer volume is formed in the trace except the spacer 11. After removing the spacer 11, the porous metal plate 9a is set again on the saturated sample 12 (S), the upper mold 3 is covered, and the mold is tightened with the bolt 7 and the nut 8 as shown in FIG. Start, and measure the swelling pressure and permeability as in the previous step. In the latter measurement, the saturated specimen 12 (S)
The swelling pressure in the pressure sensor 10 is 0 until the swells further and the void 20 is filled, and the hydraulic conductivity also shows a large value, but when the void 20 is filled, as shown in FIG.
The swelling pressure due to the re-swelling specimen 12 (RS) is detected, the water permeability becomes small, and the sealing performance of the specimen with respect to the size of the void 20 (volume of the spacer 11) can be evaluated.

【0021】〔試験例〕図1〜2に示した金型容器と付
属部品を使用し,放射性廃棄物処理施設の緩衝材として
提案されているベントナイトAとベントナイトBを供試
材として,空隙発生時の自己シール性を評価した。
[Test Example] Using the mold container and accessory parts shown in FIGS. 1 and 2, using bentonite A and bentonite B, which have been proposed as cushioning materials for radioactive waste treatment facilities, as test materials, voids are generated. The self-sealing property at that time was evaluated.

【0022】まず,自然乾燥状態のベントナイトAとB
の供試体を,締め固め冶具を用いて静的圧縮加圧法によ
り,下記に示した寸法に成形した。いずれも,仕上がり
密度は 1.6 Mgm-3とし,締め固め時の圧縮応力は3MPa
であった。
First, naturally dried bentonites A and B
The specimens of No. 1 were molded into the dimensions shown below by the static compression and pressure method using a compaction jig. In both cases, the final density was 1.6 Mgm -3 and the compressive stress during compaction was 3 MPa.
Met.

【0023】[0023]

【表1】 [Table 1]

【0024】いずれの供試体No.1〜4においても,二
枚の多孔メタル板9aと9bおよびスペーサ11の片面
によって囲われる試料装填空間の寸法にほぼ等しい直方
体形状に成形加工したものであり,供試体の数だけの金
型を準備し,各大きさのスペーサ11および板状の圧力
センサ10を供試体と共にセットし,これらNo.1〜4
についての試験を,図3〜6の手順に従って,同時に並
行して行った。
Each of the specimens Nos. 1 to 4 was formed into a rectangular parallelepiped shape substantially equal to the size of the sample loading space surrounded by the two porous metal plates 9a and 9b and one side of the spacer 11. Prepare as many molds as the number of test pieces, set the spacers 11 and the plate-shaped pressure sensor 10 of each size together with the test pieces, and set these Nos. 1 to 4
The tests were performed simultaneously in parallel according to the procedure of FIGS.

【0025】すなわち,いずれの供試体にも通水を開始
し,供試体への吸水が停止するまで通水を1ケ月間継続
し膨潤圧を発生させるとともに,供試体を飽和させた。
次いで,金型を分割してスペーサを取外し,供試体のリ
バウンド量を測定して,実質空隙量の確認を行った。そ
の後,空隙を設けた状態で金型を緊締して通水を開始
し,透水性と膨潤圧を経時的に計測した。そのさい通水
開始直後はベントナイトの流出を防ぐために動水勾配を
小さくした。
That is, water flow was started in all the test pieces, and water was continued for one month until water absorption into the test pieces was stopped to generate a swelling pressure and saturate the test pieces.
Next, the mold was divided, the spacers were removed, and the rebound amount of the specimen was measured to confirm the actual void volume. After that, water was started by tightening the mold with the voids, and the water permeability and swelling pressure were measured over time. Immediately after the start of water flow, the hydraulic gradient was reduced to prevent the outflow of bentonite.

【0026】このようにして,空隙部のシールが終了す
るまで通水によるベントナイトの透水性と膨潤圧を調べ
た。その結果,ベントナイトAの供試体では,膨潤圧の
計測から, 空隙率5%(No.1)と空隙率10%(No.
2)のものでは通水後4日程度で空隙部がシールされた
ことが確認された。そして,透水係数については,初期
空隙時にはNo.1では10-7ms-1程度, No.2では1
-7ms-4程度であったものが,7日過ぎには,No.1
では10-11ms-1程度,No.2では10-10ms-1程度
まで小さくなった。膨潤圧についても,初期空隙時の 0
MPaから,7日過ぎには, No.1では 0.14 MPa, No.
2では 0.03 MPa に達した。
In this way, the water permeability and swelling pressure of bentonite due to water flow were examined until the sealing of the voids was completed. As a result, in the bentonite A specimen, the porosity was 5% (No. 1) and the porosity was 10% (No.
In the case of 2), it was confirmed that the voids were sealed about 4 days after passing water. Regarding the hydraulic conductivity, in the initial void, it was about 10 -7 ms -1 for No. 1 and 1 for No. 2.
It was around 0 -7 ms -4 , but after 7 days, No. 1
In No. 2, it became as small as 10 -11 ms -1 , and in No. 2 as small as 10 -10 ms -1 . The swelling pressure is also 0 at the initial void.
From MPa, after 7 days, No. 1 was 0.14 MPa, No. 1
At 2, it reached 0.03 MPa.

【0027】これに対して,ベントナイトAの空隙率1
5%のもの(No.3)では,通水後12日を経ても透水
係数は初期空隙時の値のまま経過し,膨潤圧も通水後2
0日まで測定し続けたが 0 MPaから実質的に増加するこ
とはみられなかった。この結果,ベントナイトAの自己
シール性能は,膨潤後に10%以下の空隙が発生しても
十分な自己シール性を示すが,15%以上の空隙が発生
した場合には自己シール性を示さないと評価され得る。
On the other hand, the porosity of bentonite A is 1
In the case of 5% (No. 3), the hydraulic conductivity remains the same as that at the initial void even after 12 days of water passage, and the swelling pressure is 2% after water passage.
The measurement was continued until day 0, but no substantial increase from 0 MPa was observed. As a result, the self-sealing performance of bentonite A shows sufficient self-sealing property even if 10% or less of voids are generated after swelling, but it does not show self-sealing property when 15% or more of voids are generated. Can be evaluated.

【0028】ベントナイトBについての空隙率30%
(No.4)での試験では,通水後7日程度で空隙部が自
己シールされ,透水係数も10日過ぎには10-12ms
-1程度まで小さくなり,膨潤圧も 0.11 MPa に達した。
したがって,ベントナイトBでは膨潤後に30%までの
空隙が発生しても自己シール性を有することが確認され
た。各試験No.1〜4について,最終時点(No.1では
空隙を形成したあと18日間の通水,No.2では同20
日,No.3では同21日,No.4では同15日)での透
水係数と膨潤圧を表2に示した。
30% porosity for bentonite B
In the test of (No. 4), the voids self-sealed in about 7 days after passing water, and the permeability coefficient was 10 -12 ms after 10 days.
It decreased to around -1 and the swelling pressure reached 0.11 MPa.
Therefore, it was confirmed that bentonite B has a self-sealing property even if voids of up to 30% are generated after swelling. For each test No. 1 to 4, at the final time point (No. 1, water flow for 18 days after forming voids, No. 2 was the same as
Table 2 shows the hydraulic conductivity and swelling pressure on the same day, 21 days for No. 3 and 15 days for No. 4.

【0029】[0029]

【表2】 [Table 2]

【0030】No.1〜4の各試験において,表2に示し
た各通水期間の終了後,金型を分割して各空隙部の自己
シール状況を観察したところ,No.3のものでは膨潤量
が足りず,空隙部は完全にはシールされていなかった
が,他の例No.1〜2およびNo.4のものでは空隙部一
杯に膨潤しており,空隙部がシールされていることが確
認された。
In each test of Nos. 1 to 4, after the completion of each water passage period shown in Table 2, the mold was divided and the self-sealing condition of each void was observed. The amount of swelling was insufficient and the void was not completely sealed, but in the other examples No. 1 and 2 and No. 4, the void was swollen and the void was sealed. It was confirmed.

【0031】[0031]

【発明の効果】以上説明したように,本発明の試験装置
によると,膨潤性土質材料によって放射性廃棄物処理施
設の緩衝層や各種施設の防水層を形成する場合に,その
隣接層において長期経年後に空隙を生じたときの自己シ
ール性能の評価を簡便且つ正確に行うことができる。こ
のため,本発明に従う試験を行うことにより,超長期に
わたる安全性が要求される放射性廃棄物処理施設などの
緩衝層を形成する場合等の設計指針に多いに貢献でき
る。
As described above, according to the test apparatus of the present invention, when the buffer layer of the radioactive waste treatment facility and the waterproof layer of various facilities are formed by the swelling soil material, the adjoining layer is subjected to long-term aging. It is possible to easily and accurately evaluate the self-sealing performance when a void is generated later. Therefore, the test according to the present invention can greatly contribute to the design guideline for forming a buffer layer in a radioactive waste treatment facility or the like, which requires safety for a very long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の試験装置に用いる鋼製の金型容器の例
を示す分解略断面図である。
FIG. 1 is an exploded schematic cross-sectional view showing an example of a steel mold container used in a test apparatus of the present invention.

【図2】本発明の試験装置に用いる鋼製の金型容器につ
いて,図1の状態からボルトとナットで各型を固定した
状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a steel mold container used in the test apparatus of the present invention, in which each mold is fixed with bolts and nuts from the condition of FIG.

【図3】図2のX−Y矢視断面を示したもので,試験開
始時の付属部品と供試体の装填状態を示す図である。
FIG. 3 is a cross-sectional view taken along the line XY of FIG. 2, and is a view showing a loading state of accessory parts and a specimen at the start of the test.

【図4】図2のX−Y矢視断面を示したもので,供試体
への吸水が飽和した時点で上型を外し,多孔メタル板も
除いて,飽和した供試体12(S)を平面的に見た状態
を示している。
FIG. 4 is a cross-sectional view taken along the line XY of FIG. 2, in which when the water absorption into the sample is saturated, the upper mold is removed, and the saturated sample 12 (S) is removed except for the porous metal plate. The state is shown in a plan view.

【図5】図2のX−Y矢視断面を示したもので,図4の
状態からスペーサ11を取り除いて空隙20を形成した
状態を示している。
5 is a cross-sectional view taken along the line XY of FIG. 2, showing a state in which the spacer 11 is removed from the state of FIG. 4 to form a void 20.

【図6】図2のX−Y矢視断面を示したもので,図5の
状態から空隙20が満たされた結果,再膨潤供試体12
(RS)による膨潤圧が検出される状態を示している。
6 is a cross-sectional view taken along the line XY of FIG. 2, and as a result of filling the voids 20 from the state of FIG.
The state where the swelling pressure due to (RS) is detected is shown.

【符号の説明】[Explanation of symbols]

1 下型 2 中型 3 上型 9a,9b 多孔メタル板 10 板状の圧力センサ 11 スペーサ 12 供試体 1 Lower mold 2 Medium 3 Upper mold 9a, 9b Perforated metal plate 10 Plate-shaped pressure sensor 11 Spacer 12 Specimen

フロントページの続き (72)発明者 畔柳 幹雄 東京都港区元赤坂一丁目2番7号 鹿島 建設株式会社内 (56)参考文献 特開 昭57−200841(JP,A) 特開 昭63−200062(JP,A) 実開 昭59−170252(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 33/24 G01L 7/00 G01L 7/02 G01M 3/02 Front Page Continuation (72) Inventor Mikio Kuroyanagi 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. (56) Reference JP-A-57-200841 (JP, A) JP-A-63-200062 (JP, A) Actual development Sho 59-170252 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) G01N 33/24 G01L 7/00 G01L 7/02 G01M 3/02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分割可能な金型内に閉塞した試料装填空
間を形成し,この空間内に装填した供試体に通水する手
段と,該通水による供試体の膨潤圧を計測する手段とを
備えた土質材料の特性測定装置において,該空間に対す
る容積割合が既知のスペーサを付属部品として備え,こ
のスペーサを供試体と共に該空間に予め装填して供試体
を膨潤させ,スペーサ除去後に再度供試体を膨潤させる
ことを特徴とする膨潤性土質材料の自己シール性能測定
装置。
1. A means for forming a closed sample loading space in a dividable mold, and means for passing water through the specimen loaded in this space; and means for measuring the swelling pressure of the specimen due to the passing of water. In a device for measuring characteristics of soil material, a spacer having a known volume ratio with respect to the space is provided as an accessory, and the spacer is pre-loaded into the space together with the sample to swell the sample, and the spacer is again provided after the spacer is removed. An apparatus for measuring the self-sealing performance of a swellable soil material, which is characterized by swelling a sample.
【請求項2】 該膨潤圧を計測する手段が該試料装填空
間の一つの壁面に設置された圧力センサからなる請求項
1に記載の膨潤性土質材料の自己シール性能試験装置。
2. The self-sealing performance testing device for swelling soil material according to claim 1, wherein the means for measuring the swelling pressure comprises a pressure sensor installed on one wall surface of the sample loading space.
【請求項3】 該膨潤圧を計測する手段が該試料装填空
間の一つの壁面に設置された圧力センサからなり,この
圧力センサと供試体の間にスペーサが介在するように,
供試体とスペーサとを該空間内に装填する請求項1また
は2に記載の膨潤性土質材料の自己シール性能試験装
置。
3. The means for measuring the swelling pressure comprises a pressure sensor installed on one wall surface of the sample loading space, and a spacer is interposed between the pressure sensor and the specimen.
The self-sealing performance testing device for a swellable soil material according to claim 1, wherein a sample and a spacer are loaded in the space.
JP2001274246A 2001-09-10 2001-09-10 Self-sealing performance measuring device for swellable soil material Expired - Fee Related JP3445260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001274246A JP3445260B2 (en) 2001-09-10 2001-09-10 Self-sealing performance measuring device for swellable soil material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274246A JP3445260B2 (en) 2001-09-10 2001-09-10 Self-sealing performance measuring device for swellable soil material

Publications (2)

Publication Number Publication Date
JP2003083955A JP2003083955A (en) 2003-03-19
JP3445260B2 true JP3445260B2 (en) 2003-09-08

Family

ID=19099319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001274246A Expired - Fee Related JP3445260B2 (en) 2001-09-10 2001-09-10 Self-sealing performance measuring device for swellable soil material

Country Status (1)

Country Link
JP (1) JP3445260B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401778A (en) * 2011-04-20 2012-04-04 河海大学 Device and method for measuring swelling representation parameters of swelling soil
CN106198340A (en) * 2016-06-22 2016-12-07 辽宁工程技术大学 A kind of coal seam permeability test system and method simulating pit mining
CN110132965A (en) * 2019-05-16 2019-08-16 水利部交通运输部国家能源局南京水利科学研究院 Coupled heat-moisture-stress acts on lower swelled ground external crack test device and application method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571517B1 (en) * 2004-05-04 2006-04-14 한국철도기술연구원 Unsaturated soil moisture property measuring device
JP5416661B2 (en) * 2010-06-30 2014-02-12 鹿島建設株式会社 Swelling test method
JP2015141192A (en) * 2014-01-30 2015-08-03 一般財団法人電力中央研究所 Container for storing buried environmental member model for evaluating behavior of buried environmental field of underground isolation member
CN103884313B (en) * 2014-03-24 2016-04-27 新疆水利水电科学研究院 Two-dimensional vector measures the method for ground frozen swell and melt settlement
CN104062056A (en) * 2014-07-11 2014-09-24 杨啸 Swelling soil side expansive force comprehensive testing device
CN104729960A (en) * 2015-03-06 2015-06-24 马钢(集团)控股有限公司 Bentonite swelling capacity measurement apparatus
CN104634947A (en) * 2015-03-06 2015-05-20 马钢(集团)控股有限公司 Detection method of equipment for detecting expansion volume of bentonite
CN105043611B (en) * 2015-06-16 2017-12-29 中山大学 A kind of swelled ground lateral swelling force in-situ testing device
CN105203735B (en) * 2015-09-19 2017-07-04 桂林理工大学 The implementation method of drying and watering cycle is carried out in model engineering in the case of soil body bearing load
CN108005130B (en) * 2017-11-29 2019-06-28 国家电网公司 A kind of test method that moisture content influences expansive soil foundation pile foundation bearer properties
CN111889396B (en) * 2020-08-07 2021-05-07 江苏金兴铠源机械有限公司 Device for detecting sealing performance and circulation performance of hydraulic pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102401778A (en) * 2011-04-20 2012-04-04 河海大学 Device and method for measuring swelling representation parameters of swelling soil
CN106198340A (en) * 2016-06-22 2016-12-07 辽宁工程技术大学 A kind of coal seam permeability test system and method simulating pit mining
CN110132965A (en) * 2019-05-16 2019-08-16 水利部交通运输部国家能源局南京水利科学研究院 Coupled heat-moisture-stress acts on lower swelled ground external crack test device and application method
CN110132965B (en) * 2019-05-16 2022-07-05 水利部交通运输部国家能源局南京水利科学研究院 Testing device for surface cracks of expansive soil under action of hydromechanical-thermal coupling and using method

Also Published As

Publication number Publication date
JP2003083955A (en) 2003-03-19

Similar Documents

Publication Publication Date Title
JP3445260B2 (en) Self-sealing performance measuring device for swellable soil material
US9880081B1 (en) Expandable jacket for triaxial, unconfined and uniaxial compression tests and test device for three-dimensional consolidation and settlement tests
Puppala et al. Cone penetration in very weakly cemented sand
Lo et al. A technique for reducing membrane penetration and bedding errors
JPH1164202A (en) Method and device for testing shear strength
CN110779803A (en) Multifunctional rock-soil three-dimensional model test device and use method thereof
Mazzieri et al. Permeability of damaged geosynthetic clay liners
Trautwein IN-SITU HYDRAULIC CONDUCTIVITY TESTS FOR COMPACTED SOIL LINERS AND CAPS REFERENCE: Trautwein, SJ, and Boutwell, GP," In Situ Hydraulic Conductivity Tests for Compacted Soil Liners and Caps," Hydraulic Conductivity and Waste Contaminant Transport in Soil. ASTM STP 1142
Lade et al. Characterization of cross-anisotropic soil deposits from isotropic compression tests
JP6024960B2 (en) Measurement test method for water absorption expansion characteristics
CN212060001U (en) Testing arrangement of buffer material high temperature swelling volume
Pitanga et al. Measurement of gas permeability in geosynthetic clay liners in transient flow mode
AT519477A4 (en) DEVICE AND METHOD FOR THE FLEXIBILITY TESTING OF BITUMINOUS BONDED LAYER LAYERS
Zakaria Yielding of unsaturated soil.
CN110886331B (en) Device and method for measuring bonding strength of slurry and soil body and filter pressing effect
CN111366607A (en) Device and method for testing high-temperature expansion amount of buffer material
CN110361314A (en) Encapsulating method and its device suitable for large-scale three-dimensional load permeameter
CN113484138B (en) Rock slope damage accumulation assessment method under complex load action based on electric measurement
CN116296800A (en) High-stress and large-diameter dam foundation deep coarse-grained soil penetration test device and method
JP3543221B2 (en) Soil material swelling sample preparation equipment
CN115310026A (en) Bentonite expansive force prediction method and system considering ionic hydration energy
Hewitt et al. Effect of normal stress during hydration and shear on the shear strength of GCL/textured geomembrane interfaces
MacKay et al. A new apparatus for measuring oxygen diffusion and water retention in soils
Musso et al. Monitoring drying and wetting of a cement bentonite mixture with Electrical Resistivity Tomography
JP3120674B2 (en) Permeability test equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees