JP6024960B2 - Measurement test method for water absorption expansion characteristics - Google Patents

Measurement test method for water absorption expansion characteristics Download PDF

Info

Publication number
JP6024960B2
JP6024960B2 JP2012233093A JP2012233093A JP6024960B2 JP 6024960 B2 JP6024960 B2 JP 6024960B2 JP 2012233093 A JP2012233093 A JP 2012233093A JP 2012233093 A JP2012233093 A JP 2012233093A JP 6024960 B2 JP6024960 B2 JP 6024960B2
Authority
JP
Japan
Prior art keywords
water
clay
expansion
absorbing
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012233093A
Other languages
Japanese (ja)
Other versions
JP2014085177A (en
Inventor
石井 卓
卓 石井
中島 均
均 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2012233093A priority Critical patent/JP6024960B2/en
Publication of JP2014085177A publication Critical patent/JP2014085177A/en
Application granted granted Critical
Publication of JP6024960B2 publication Critical patent/JP6024960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

本発明は、ベントナイトなどの吸水膨張特性を試験する吸水膨張特性の測定試験方法に関する。   The present invention relates to a method for measuring and measuring water absorption expansion characteristics for testing water absorption expansion characteristics such as bentonite.

高レベル放射性廃棄物の地層処分では、図1−1および図1−2に示すように、廃棄体Pのまわりを吸水膨張性粘土Bで囲繞し、まわりからの地圧を緩衝するとともに、地下水の浸入を抑制し、廃棄体Pからの放射性物質の漏洩を抑止することが考えられている(たとえば、非特許文献1参照)。   In the geological disposal of high-level radioactive waste, as shown in FIGS. 1-1 and 1-2, the waste P is surrounded by water-absorbing expansive clay B, and the ground pressure from the surroundings is buffered. It is considered that the intrusion of the radioactive material is suppressed and the leakage of the radioactive substance from the waste body P is suppressed (for example, see Non-Patent Document 1).

廃棄体Pのまわりを吸水膨張性粘土Bで囲繞するのは、(1)吸水膨張性粘土Bの透水係数(1E−10〜1E−13)が一般的な地盤材料の透水係数(1E−5〜1E−8m/s)よりも格段に小さく、難透水性に優れていること、(2)吸水膨張性粘土Bは、コンクリートに比べて柔軟性があるため、ひび割れが発生しにくく、かつ、発生したひび割れはまわりから地下水が浸入した時点で吸水膨張挙動によりシールされるので、卓越した水みちとならないこと、(3)吸水膨張性粘土B(たとえば、ベントナイト)は、天然に存在するものであるから、数万年以上の長期間を経ても材料劣化が生じにくいこと、によるものである。   Surrounding the waste P with the water-swellable clay B is that (1) the water-swelling coefficient of the water-swelling clay B (1E-10 to 1E-13) is the water-swelling coefficient (1E-5) of a general ground material. ~ 1E-8m / s), which is much smaller and excellent in poor water permeability, (2) Since the water-absorbing expansive clay B is more flexible than concrete, it is difficult to generate cracks, and The generated cracks are sealed by the water absorption expansion behavior when groundwater enters from the surroundings, so that it does not become an excellent water channel, and (3) water expansion expandable clay B (for example, bentonite) is naturally present. Therefore, it is because material deterioration hardly occurs even after a long period of tens of thousands of years.

ところで、放射性物質を吸着したコロイド粒子は、吸水膨張性粘土Bを通過して、施設外に漏出することが懸念され、コロイドが通過しない密実な緩衝材であることの担保として、吸水膨張性粘土Bの膨潤圧を指標にする例がある。   By the way, colloidal particles that have adsorbed radioactive substances are likely to leak out of the facility through the water-absorbing expansive clay B. There is an example using the swelling pressure of clay B as an index.

また、吸水膨張性粘土Bの膨潤圧が周囲の岩盤に与える影響も懸念される。このことから、吸水膨張性粘土Bについて複数の膨潤圧計測例が報告されている。   There is also a concern about the influence of the swelling pressure of the water-absorbing expandable clay B on the surrounding rock mass. For this reason, a plurality of swelling pressure measurement examples have been reported for the water-absorbing expandable clay B.

一方、吸水膨張性粘土Bの挙動として、吸水膨張現象に伴う膨張変形挙動についての実現象を予測評価したいというニーズがある。たとえば、廃棄体Pを地下に埋設した後に地下水が浸入することにより、緩衝材が膨張し、その密度が変化することや内部に定置した廃棄体Pの位置がずれる等の挙動が懸念される。   On the other hand, as the behavior of the water-swellable clay B, there is a need to predict and evaluate the actual phenomenon regarding the expansion and deformation behavior associated with the water-absorption and expansion phenomenon. For example, if the waste water P is buried in the ground and then the groundwater infiltrates, the buffer material expands, and its density changes, and the behavior of the waste body P placed inside is shifted.

たとえば、図2は、模擬岩盤(砂岩製)の竪穴にベントナイト系の土質材料B(ベントナイト70%と砂30%の配合で、乾燥時の密度が1.6Mg/m相当の材料)を装填した後に、淡水が浸入しやすいように浸漬させた場合の、緩衝材天端部の膨張による膨出量を時間の経過とともに測定した事例を示している。図3に示すように、時間の経過とともに、次第に吸水して膨張していることがわかる。また、吸水膨張したベントナイト系の土質材料Bは、若干密度の低いゲル(ベントナイトゲル)となって、緩衝材の周囲にある岩盤の割れ目に浸入していく現象も予測されている(たとえば、非特許文献2参照)。 For example, Figure 2 is loaded with simulated rock soil material B (the formulation of 70% bentonite and sand 30%, a density after drying of 1.6 mg / m 3 equivalent material) of the bentonite system wells (manufactured sandstone) Then, an example is shown in which the amount of bulging due to expansion of the top end of the cushioning material is measured over time when immersed so that fresh water can easily enter. As shown in FIG. 3, it can be seen that the water gradually absorbs and expands with time. In addition, the bentonite-based soil material B that has absorbed water is expected to become a slightly low-density gel (bentonite gel) and enter a crack in the rock surrounding the buffer material (for example, non- Patent Document 2).

したがって、吸水膨張性粘土Bの吸水膨張特性を把握し、その挙動を予測し、周囲への影響を評価することが、放射性廃棄物の処分の安全性の評価に必要となる。吸水膨張性粘土Bの吸水膨張特性は、所定密度の吸水膨張粘土(試験体)に吸水させたときに発生する圧力(膨潤圧)を測定することにより把握されてきた。膨潤圧の測定は、比較的簡便な装置で比較的短期間で可能であるため、多くの測定例が報告されている。それらを総括した例として、図4に示すように、吸水膨張性粘土Bの密度と膨潤圧との関係が報告されている(たとえば、非特許文献3参照)。なお、図4は、さまざまな種類の吸水膨張性粘土B(ベントナイト)の測定例を統一的に整理するために、横軸を吸水膨張する粘土鉱物であるモンモリロナイトの乾燥密度に換算した有効モンモリロナイト密度で整理している。   Therefore, it is necessary to evaluate the safety of disposal of radioactive waste by grasping the water-swelling characteristics of the water-swelling clay B, predicting its behavior, and evaluating the influence on the surroundings. The water-absorbing expansion property of the water-absorbing expandable clay B has been grasped by measuring the pressure (swelling pressure) generated when water-absorbing expanded clay (test body) having a predetermined density is absorbed. Since the measurement of the swelling pressure can be performed with a relatively simple apparatus in a relatively short period of time, many measurement examples have been reported. As an example summarizing them, as shown in FIG. 4, the relationship between the density of the water-swellable clay B and the swelling pressure has been reported (for example, see Non-Patent Document 3). FIG. 4 shows the effective montmorillonite density converted to the dry density of montmorillonite, which is a clay mineral that absorbs and expands the horizontal axis, in order to unify the measurement examples of various types of water-swellable clay B (bentonite). Organize with.

核燃料サイクル開発機構、「わが国における高レベル放射性廃棄物地層処分の技術的信頼性−地層処分研究開発第2次とりまとめ−総論レポート」、平成11年11月26日発行Nuclear Fuel Cycle Development Organization, “Technical reliability of geological disposal of high-level radioactive waste in Japan-The second round-up of geological disposal research and development-General Report”, published on November 26, 1999 核燃料サイクル開発機構、「高レベル放射性廃棄物の地層処分技術に関する研究開発−平成14年度報告−」、2003年6月発行Nuclear Fuel Cycle Development Organization, “Research and Development on Geological Disposal Technology of High-Level Radioactive Waste -FY2002 Report-”, published in June 2003 土木学会 エネルギー委員会 低レベル放射性廃棄処分の余裕深度処分に関する研究小委員会、「余裕深度処分における地下施設の設計,品質管理および検査の考え方」、2009年7月発行Japan Society of Civil Engineers Energy Committee Research Subcommittee on Low-level Radioactive Disposal Depth Disposal, “Concept of underground facility design, quality control and inspection in marginal depth disposal”, issued in July 2009

しかしながら、膨潤圧は、周囲を拘束した一定密度の吸水膨張性粘土Bが吸水したときに発生させる圧力であり、吸水膨張初期の変形をさせない状態での反力を計測するので、図4に示すように、測定された膨潤圧力は、一桁程度のバラツキを有する。バラツキの原因の一つとして、微妙な実験装置の違いによって、測定する反力が異なる値となるからであると考えられる。このように、膨潤圧の測定法におけるバラツキでは、過大な膨潤圧が測定されやすい、という欠点がある。   However, the swelling pressure is a pressure generated when the water-absorbing expandable clay B having a constant density with confined surroundings absorbs water, and the reaction force is measured in a state in which the deformation at the initial stage of water-absorbing expansion is not performed. Thus, the measured swelling pressure has a variation of about one digit. One of the causes of the variation is considered to be that the reaction force to be measured becomes a different value due to subtle differences in the experimental apparatus. As described above, the variation in the measurement method of the swelling pressure has a drawback that an excessive swelling pressure is easily measured.

本発明は、上記に鑑みてなされたものであって、吸水膨張性粘土の吸水膨張特性を正確に評価できる吸水膨張特性の測定試験方法を提供することを課題とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the measurement test method of the water absorption expansion | swelling characteristic which can evaluate the water absorption expansion | swelling characteristic of a water absorption expansible clay correctly.

上述した課題を解決し、目的を達成するために、本発明は、吸水膨張する粘土の周囲を拘束するとともに該粘土の上に荷重を載荷した状態で該粘土に吸水させ、該粘土の吸水膨張が終息した時点で該粘土の密度を求め、該粘土に作用する圧力を求めた密度における吸水膨張ポテンシャルとする吸水膨張特性の測定試験方法であって、粘土に載荷する荷重を段階的に小さくし、各段階において粘土の吸水膨張が終息した時点で該粘土の密度と該粘土の密度おける吸水膨張ポテンシャルを求めることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention constrains the periphery of clay that absorbs and expands water, and absorbs water in a state where a load is loaded on the clay, thereby absorbing and expanding the clay. Is a test method for measuring the water-absorbing expansion characteristics by determining the density of the clay at the time of termination of the pressure, and the water- absorbing expansion potential at the density at which the pressure acting on the clay is determined, wherein the load loaded on the clay is reduced stepwise. In each stage, the density of the clay and the water absorption expansion potential at the density of the clay are obtained when the water absorption expansion of the clay ends .

また、本発明は、上記発明において、飽和度を95%以上に調整した粘土を試験体とすることを特徴とする。   Further, the present invention is characterized in that, in the above invention, a clay whose saturation is adjusted to 95% or more is used as a test specimen.

また、本発明は、上記発明において、粘土に含まれる水の電解質濃度を予め定めた濃度に調整するとともに、吸水させる水の電解質濃度を前記予め定めた濃度に調整したことを特徴とする。   Further, the present invention is characterized in that, in the above invention, the electrolyte concentration of water contained in the clay is adjusted to a predetermined concentration, and the electrolyte concentration of water to be absorbed is adjusted to the predetermined concentration.

本発明にかかる吸水膨張特性の測定試験方法は、吸水膨張する粘土の周囲を拘束するとともに該粘土に圧力を作用させた状態で粘土に吸水させ、該粘土の吸水膨張が終息した時点で該粘土の密度を求め、該粘土に作用させた圧力を求めた密度における吸水ポテンシャルとするので、吸水膨張性粘土の吸水膨張特性を正確に評価できる。   The test method for measuring the water absorption and expansion characteristics according to the present invention is to restrain the surroundings of the clay that absorbs and expands water and allow the clay to absorb water while pressure is applied to the clay, and when the water absorption and expansion of the clay ends, the clay Thus, the pressure applied to the clay is taken as the water absorption potential at the obtained density, so that the water absorption and expansion characteristics of the water expansion clay can be accurately evaluated.

また、本発明にかかる吸水膨張特性の測定方法は、粘土に作用させる圧力を段階的に小さくし、各段階において粘土の吸水膨張が終息した時点で該粘土の密度と該粘土の密度における吸水膨張ポテンシャルを求めるので、試験体の数が少なくても多数のデータを取得できる。これにより、試験体および試験装置が少なくて済むので、少ないコストで多数のデータを効率的に取得できる。さらに、一つの試験体から複数のデータを取得できるので、試験体の個体差によるデータのバラツキを小さくできる。   In addition, the method for measuring the water absorption expansion characteristic according to the present invention is such that the pressure acting on the clay is reduced stepwise, and when the water absorption expansion of the clay ends in each step, the density of the clay and the water absorption expansion at the density of the clay Since the potential is obtained, a large number of data can be acquired even if the number of test specimens is small. As a result, the number of test bodies and test devices can be reduced, and a large number of data can be efficiently acquired at a low cost. Furthermore, since a plurality of data can be acquired from one specimen, the variation in data due to individual differences among specimens can be reduced.

図1−1は、高レベル放射性廃棄物の地層処分において、竪置きした廃棄体のまわりをベントナイト系の土質材料で囲繞した例1を示す模式図である。FIG. 1-1 is a schematic diagram illustrating Example 1 in which the surrounding wastes are surrounded by bentonite-based soil materials in the geological disposal of high-level radioactive waste. 図1−2は、高レベル放射性廃棄物の地層処分において、横置きした廃棄体のまわりをベントナイト系の土質材料で囲繞した例2を示す模式図である。FIG. 1-2 is a schematic diagram showing an example 2 in which a horizontally disposed waste body is surrounded by bentonite-based soil material in geological disposal of high-level radioactive waste. 図2は、吸水膨張実験の概要を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the outline of the water absorption expansion experiment. 図3は、図2に示した吸水膨張実験の実験結果を示す図である。FIG. 3 is a diagram showing an experimental result of the water absorption expansion experiment shown in FIG. 図4は、吸水膨張性粘土であるベントナイト系の土質材料の有効モンモリロナイト密度と膨潤圧との関係に関する多数の測定例を示す図である。FIG. 4 is a diagram showing a number of measurement examples relating to the relationship between the effective montmorillonite density and the swelling pressure of bentonite-based soil material which is a water-swelling clay. 図5は、ベントナイト系の土質材料に荷重を載荷した状態で膨張高さを計測する吸水膨張特性の測定試験の概要を説明するための模式図である。FIG. 5 is a schematic diagram for explaining an outline of a water absorption expansion characteristic measurement test in which an expansion height is measured in a state where a load is loaded on a bentonite-based soil material. 図6は、図5に示した測定試験の試験結果を示す図である。FIG. 6 is a diagram illustrating test results of the measurement test illustrated in FIG. 図7は、図6に示した試験結果を図4に示した測定例に加えた図である。7 is a diagram in which the test results shown in FIG. 6 are added to the measurement example shown in FIG. 図8は、吸水膨張性粘土の吸水膨張特性を示す図である。FIG. 8 is a diagram showing the water absorption expansion characteristics of the water expansion expandable clay. 図9は、不飽和状態の吸水膨張性粘土に吸水させた状態を示す概念図である。FIG. 9 is a conceptual diagram showing a state in which water is absorbed by the water-swellable clay in an unsaturated state. 図10は、飽和状態の吸水膨張性粘土に吸水させたときの途中段階の状態を示す概念図である。FIG. 10 is a conceptual diagram showing a state at an intermediate stage when water is absorbed by the saturated water-absorbing expandable clay. 図11は、間隙水の電解質濃度が0に近い吸水膨張性粘土に吸水させた状態を段階的に示す概念図である。FIG. 11 is a conceptual diagram showing in a stepwise manner the water-absorbing expansive clay having a pore water electrolyte concentration close to zero. 図12は、間隙水の電解質濃度が予め定めた濃度の吸水膨張性粘土に間隙水の電解質濃度と同じ濃度の水を吸水させた状態を示す概念図である。FIG. 12 is a conceptual diagram showing a state in which water-absorbing expansive clay having a predetermined electrolyte concentration in the pore water absorbs water having the same concentration as the electrolyte concentration in the pore water.

以下に、本発明にかかる吸水膨張特性の測定試験方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a water absorption expansion characteristic measurement test method according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

本発明の実施の形態である吸水膨張特性の測定試験方法は、上述した膨潤圧を測定する方法と異なり、膨張変形量を測定することにより、吸水膨張特性を把握するものである。   Unlike the method of measuring the swelling pressure described above, the water absorption expansion characteristic measurement test method according to the embodiment of the present invention grasps the water absorption expansion characteristic by measuring the amount of expansion deformation.

図5は、吸水膨張性粘土に荷重を載荷した状態で膨張高さを計測する吸水膨張特性の測定試験の概要を説明するための模式図であり、図6は、図5に示した測定試験の試験結果を示す図である。図5に示すように、吸水膨張性粘土Bに荷重を載荷した状態で膨張量を計測する吸水膨張特性を測定する試験は、吸水膨張性粘土B(たとえば、ベントナイト70%と砂30%の配合で、乾燥密度が1.6Mg/m相当のベントナイト系の土質材料)に荷重を載荷した状態で吸水させた場合の時間経過と膨張高さを測定するものである。図6に示すように、吸水膨張性粘土Bに作用する圧力Pが膨張圧力よりも小さい場合には膨張挙動が生じる。また、吸水膨張性粘土Bに作用する圧力Pが膨張圧力よりも小さいほど膨張高さが高くなる。すなわち、吸水膨張の駆動力は、その吸水膨張性粘土Bが有している膨張能力と拘束されている拘束力の差で決まる。このような吸水して膨張変形する現象における膨張能力に相当するポテンシャルを本発明および本発明の実施の形態では「吸水膨張ポテンシャル」と称することにする。 FIG. 5 is a schematic diagram for explaining an outline of a measurement test of a water absorption expansion characteristic in which an expansion height is measured in a state where a load is loaded on the water expansion clay, and FIG. 6 is a measurement test shown in FIG. It is a figure which shows the test result of. As shown in FIG. 5, the test for measuring the water-absorbing expansion characteristic of measuring the amount of expansion in a state where a load is applied to the water-absorbing expansive clay B is a combination of water-absorbing expansive clay B (for example, 70% bentonite and 30% sand) Then, the time lapse and the expansion height are measured when water is absorbed in a state where a load is loaded on a bentonite-based soil material having a dry density equivalent to 1.6 Mg / m 3 . As shown in FIG. 6, the expansion behavior occurs when the pressure P s which acts on the water-swellable clay B is less than the inflation pressure. Further, as the expansion height pressure P s which acts on the water-swellable clay B is less than the inflation pressure is increased. That is, the driving force for water absorption expansion is determined by the difference between the expansion capability of the water expansion expandable clay B and the restraining force restrained. Such a potential corresponding to the expansion capability in the phenomenon of water deformation and expansion deformation is referred to as “water absorption expansion potential” in the present invention and the embodiment of the present invention.

このように、吸水膨張性粘土Bに荷重を載荷した状態で吸水膨張性粘土Bに吸水させ、吸水膨張性粘土Bの吸水膨張が終息した時点の吸水膨張性粘土Bの密度ρは、吸水前の密度ρd0に対して下記の数式1に示す関係を有している。この式において、δは、図6の縦軸の値に相当しており、膨張高さの元の高さに対する百分率である。 In this way, the density ρ d of the water-swellable clay B when the water-swellable clay B absorbs water while the water-swellable clay B is loaded and the water-swellable clay B ends its water-swelling expansion. It has the relationship shown in the following formula 1 with respect to the previous density ρ d0 . In this equation, δ corresponds to the value on the vertical axis in FIG. 6 and is a percentage of the original height of the inflated height.

(数1)
ρ=ρd0/(1+δ/100)
(Equation 1)
ρ d = ρ d0 / (1 + δ / 100)

言い換えると、吸水膨張が終息した時点の密度ρにおける吸水膨張性粘土B(ベントナイト)の吸水膨張ポテンシャルは、載荷した荷重に対応する。これにより、吸水膨張性粘土Bに作用する圧力P(上載圧力)は、吸水膨張が終息した時点の密度ρにおける吸水ポテンシャルに等しい。 In other words, the water-absorbing expansion potential of the water-expandable clay B (bentonite) at the density ρ d when the water-absorbing expansion ends corresponds to the loaded load. Thereby, the pressure P s (upload pressure) acting on the water-absorbing expandable clay B is equal to the water-absorbing potential at the density ρ d when the water-absorbing expansion ends.

別の言い方をするならば、吸水膨張ポテンシャルは、吸水膨張現象が終息した時点における吸水膨張性粘土Bの拘束応力(載荷した荷重を試験体の断面積で除した値)である。実際の測定試験では、載荷する荷重により生じる圧力P(上載圧力)を測定した後、吸水膨張性粘土Bに荷重を載荷した状態で吸水膨張させ、吸水膨張性粘土Bの吸水膨張が終息した時点で吸水膨張性粘土Bの密度(終息密度)を求める。そして、吸水膨張性粘土Bに作用する圧力P(上載圧力)の圧力値と密度が「所定密度の吸水膨張性粘土の吸水膨張ポテンシャル」として記録される。たとえば、図6に示す結果からは、乾燥密度0.696Mg/m(g/cm)のベントナイト(商品名:クニゲルV1)の吸水膨張ポテンシャルの値は19.6kPaである。同様に、乾燥密度0.457Mg/m(g/cm)の吸水膨張ポテンシャルの値は4.9kPaである。 In other words, the water absorption expansion potential is the restraining stress (the value obtained by dividing the loaded load by the cross-sectional area of the test specimen) when the water absorption expansion phenomenon ends. In an actual measurement test, after measuring the pressure P s (upload pressure) generated by the loaded load, the water-absorbing expandable clay B was subjected to water-absorbing expansion while the load was loaded, and the water-absorbing expansion of the water-absorbing expandable clay B was terminated. At the time, the density (final density) of the water-absorbing expandable clay B is obtained. Then, the pressure value and density of the pressure P s (upload pressure) acting on the water-absorbing expandable clay B are recorded as “the water-absorbing expansion potential of the water-absorbing expandable clay having a predetermined density”. For example, from the results shown in FIG. 6, the value of the water absorption expansion potential of bentonite (trade name: Kunigel V1) having a dry density of 0.696 Mg / m 3 (g / cm 3 ) is 19.6 kPa. Similarly, the value of the water absorption expansion potential at a dry density of 0.457 Mg / m 3 (g / cm 3 ) is 4.9 kPa.

吸水膨張性粘土Bに作用する圧力を吸水膨張ポテンシャルと称する理由は、吸水膨張性粘土Bが載荷した荷重を支持する圧力Pを有するとともに、吸水現象による水を引き込むポテンシャルをも有すると解釈できるからである。すなわち、吸水膨張ポテンシャルは、力学的な力(圧力)であると同時に、水を引き込む吸水力でもある。 The reason why the pressure acting on the water-absorbing expansive clay B is referred to as the water-absorbing expansive potential can be interpreted as having a pressure P s that supports the load on which the water-absorbing expansive clay B is loaded and also having the potential to draw water due to the water absorption phenomenon. Because. That is, the water absorption expansion potential is not only a dynamic force (pressure) but also a water absorption force for drawing water.

吸水膨張性粘土Bの吸水膨張現象が完全な可逆反動であるならば、上述した膨潤圧と吸水膨張ポテンシャルとは同じ値になるが、実際には膨張挙動に粒子間の摩擦力等の影響が加わるために、膨潤圧に比べて吸水膨張ポテンシャルのほうが小さくなり、膨潤圧と吸水膨張ポテンシャルとは一致しない。   If the water-absorbing expansion phenomenon of the water-absorbing expansive clay B is a completely reversible reaction, the above-mentioned swelling pressure and water-absorbing expansion potential will be the same value. Therefore, the water absorption expansion potential becomes smaller than the swelling pressure, and the swelling pressure and the water absorption expansion potential do not match.

図7は、図6に示した試験結果を図4に示した測定例に加えた図である。なお、図6に示した試験結果は、図4に示した測定例と同様、吸水膨張性粘土B(ベントナイト系の土質材料)の乾燥密度を吸水膨張する粘土鉱物であるモンモリロナイトの乾燥密度に換算した有効モンモリロナイト密度で整理している。   7 is a diagram in which the test results shown in FIG. 6 are added to the measurement example shown in FIG. The test results shown in FIG. 6 are converted to the dry density of montmorillonite, which is a clay mineral that absorbs and expands water, in the same way as the measurement example shown in FIG. 4. Sorted by effective montmorillonite density.

上述したように、乾燥密度0.696Mg/mのベントナイト(商品名:クニゲルV1)の吸水膨張ポテンシャルの値は、19.6kPaである。ベントナイト(商品名:クニゲルV1)の中には、吸水膨張性の粘土鉱物であるモンモリロナイトが60%含有されているため、有効モンモリロナイトの乾燥密度は、約0.42Mg/mである。同様に、乾燥密度0.457Mg/m(g/cm)の有効モンモリロナイトの乾燥密度は、約0.27Mg/mであり、その吸水膨張ポテンシャルの値は、4.9kPaである。 As described above, the value of the water absorption expansion potential of bentonite (trade name: Kunigel V1) having a dry density of 0.696 Mg / m 3 is 19.6 kPa. Bentonite (trade name: Kunigel V1) contains 60% of montmorillonite, which is a water-swellable clay mineral, and therefore the dry density of effective montmorillonite is about 0.42 Mg / m 3 . Similarly, the dry density of effective montmorillonite having a dry density of 0.457 Mg / m 3 (g / cm 3 ) is about 0.27 Mg / m 3 , and the value of its water absorption expansion potential is 4.9 kPa.

図7に示した直線は、上記の二点を考慮した回帰線であり、吸水膨張ポテンシャルは、バラツキの中間値に相当していることを示唆していることから、バラツキの小さい測定方法である。   The straight line shown in FIG. 7 is a regression line considering the above two points, and suggests that the water absorption expansion potential corresponds to an intermediate value of the variation, and is therefore a measurement method with a small variation. .

上述したように、吸水膨張性粘土Bの吸水膨張特性を把握する際には、膨潤圧を測定するよりも、吸水膨張ポテンシャルを測定するほうが好ましい。しかしながら、吸水膨張ポテンシャルを測定するには吸水膨張が終息するまで待たなければならないので、一つの吸水膨張ポテンシャルを測定するのにも著しく長い時間がかかる。また、複数の吸水膨張ポテンシャルを測定する場合には、吸水膨張性粘土B(試験体)ごとに荷重を設定し、吸水膨張が終息するまで待たなければならないので、さらに長い時間がかかる。複数の吸水膨張性粘土Bを同時に測定すれば、測定にかかる時間を短縮できるが、試験装置が複数必要となり、試験コストが嵩む。また、複数の吸水膨張性粘土Bは密度や飽和度に微少な個体差があるので、個体差がデータにバラツキをもたらすことも懸念される。   As described above, when grasping the water-absorbing expansion characteristic of the water-absorbing expandable clay B, it is preferable to measure the water-absorbing expansion potential rather than measuring the swelling pressure. However, in order to measure the water absorption expansion potential, it is necessary to wait until the water absorption expansion ends, so it takes a very long time to measure one water absorption expansion potential. Further, when measuring a plurality of water absorption expansion potentials, it is necessary to set a load for each water expansion expandable clay B (test body) and wait for the water absorption expansion to end. If a plurality of water-swellable clays B are measured at the same time, the time required for the measurement can be shortened, but a plurality of test devices are required, and the test cost increases. In addition, since the plurality of water-absorbing expandable clays B have slight individual differences in density and saturation, there is a concern that individual differences may cause variation in data.

図8は、吸水膨張性粘土の吸水膨張特性を示す図である。本発明の実施の形態では、吸水膨張性粘土Bに載荷する荷重を段階的に小さくし、各段階において吸水膨張が終息した時点で、吸水膨張性粘土Bの密度と吸水膨張ポテンシャルを求める。   FIG. 8 is a diagram showing the water absorption expansion characteristics of the water expansion expandable clay. In the embodiment of the present invention, the load loaded on the water-absorbing expandable clay B is decreased stepwise, and the density and water-absorbing expansion potential of the water-absorbing expandable clay B are obtained when the water-absorbing expansion ends in each step.

具体的には、吸水膨張性粘土Bに第1段階の上載圧力Pが作用するように、吸水膨張性粘土Bに荷重を載荷し、吸水膨張性粘土Bの膨張高さを計測する。そして、この計測した膨張高さから元の高さ(吸水前の高さ)に対する膨張高さの割合δ(%)を求める(図8参照)。 More specifically, as acts on the mounting pressure P s of the first stage water-swellable clay B, and loading a load to water-swellable clay B, and measure the expansion height of the water-swellable clay B. Then, the ratio δ (%) of the expansion height with respect to the original height (the height before water absorption) is obtained from the measured expansion height (see FIG. 8).

その後、上述した数式1を用いて吸水膨張が終息した時点の吸水膨張性粘土Bの密度を求める。これにより、第1段階の上載圧力Pが求めた吸水膨張性粘土Bの密度における吸水膨張ポテンシャルとなる。 Thereafter, the density of the water-swellable clay B at the time when the water-swelling expansion ends is obtained using the above-described formula 1. Thus, the hygroscopic expansion potential in the density of the water-swellable clay B the pressure P s placement on the first phase is determined.

つぎに、吸水膨張性粘土Bに第1段階の上載圧力Pよりも小さな第2段階の上載圧力Pが作用するように、吸水膨張性粘土Bに荷重を載せ換えて、吸水膨張性粘土Bの膨張高さを計測する。そして、この計測した膨張高さから元の高さに対する膨張高さの割合、吸水膨張が終息した時点の吸水膨張性粘土Bの密度を求める。これにより、第2段階の上載圧力Pが求めた吸水膨張性粘土Bの密度における吸水膨張ポテンシャルとなる。 Then, so as to act pressure P s placement on a small second stage than the pressure P s placement on the first stage water-swellable clay B, and instead put a load on the water-swellable clay B, water-swellable clay The expansion height of B is measured. And the ratio of the expansion | swelling height with respect to the original height from this measured expansion | swelling height and the density of the water-absorbable expansive clay B at the time of water absorption expansion | swelling are calculated | required. Thus, the hygroscopic expansion potential in the density of the water-swellable clay B the pressure P s placement on the second phase is determined.

このように、吸水膨張性粘土Bに載荷する荷重を段階的に小さくし、各段階において吸水膨張が終息した時点で、吸水膨張性粘土Bの密度と吸水膨張ポテンシャルを求めるが、その段階数は、限られるものではなく、図8に示すように、3段階であっても良いし、それ以上あるいはそれ以下の段階数であってもよい。   Thus, the load loaded on the water-swellable clay B is reduced stepwise, and when the water-swelling expansion ends at each stage, the density and water-swelling expansion potential of the water-swellable clay B are obtained. However, it is not limited, and as shown in FIG. 8, there may be three stages, or more or less stages.

本発明の実施の形態のように、吸水膨張性粘土Bに載荷する荷重を段階的に小さくし、各段階において吸水膨張が終息した時点で、吸水膨張性粘土Bの密度と吸水膨張ポテンシャルを求めれば、一つの吸水膨張性粘土B(試験体)から複数の密度(終息密度)における吸水膨張ポテンシャルを求めることができる。測定試験開始から測定試験終了までの期間は、一つの吸水膨張性粘土Bで一つの密度(終息密度)における吸水膨張ポテンシャルを求める場合に比べて長くなるが、第1段階における吸水膨張が終息した時点(状態)がわかれば、第2段階以降における吸水膨張が終息した時点の判定が容易になる。これにより、つぎの段階、すなわち、荷重を小さくすること、に進みやすくなる。   As in the embodiment of the present invention, the load loaded on the water-swelling clay B is reduced stepwise, and the water-swelling clay B density and water-swelling expansion potential can be obtained when the water-swelling expansion ends at each stage. For example, the water absorption expansion potential at a plurality of densities (final density) can be obtained from one water absorption expandable clay B (test body). The period from the start of the measurement test to the end of the measurement test is longer than the case of obtaining the water absorption expansion potential at one density (final density) with one water absorbent expansive clay B, but the water absorption expansion at the first stage has ended. If the time point (state) is known, it becomes easy to determine the time point when the water-absorbing expansion in the second stage and thereafter ends. This makes it easier to proceed to the next stage, that is, to reduce the load.

また、一つの吸水膨張性粘土Bから複数のデータ(複数の密度における吸水膨張ポテンシャルのデータ)を取得するので、吸水膨張性粘土Bの数、試験装置の数が少なくて済み、コストや試験スペースを削減できる。さらに、一つの吸水膨張性粘土Bから複数のデータを取得するので、吸水膨張性粘土Bの個体差によるデータのバラツキを小さくできる。   Moreover, since a plurality of data (data of water absorption expansion potential at a plurality of densities) are acquired from one water-swellable clay B, the number of water-swellable clays B and the number of test devices can be reduced, and the cost and test space can be reduced. Can be reduced. Furthermore, since a plurality of data are acquired from one water-absorbing expandable clay B, the data variation due to individual differences in the water-absorbing expandable clay B can be reduced.

図8には、6つのデータをとるために、2つの吸水膨張性粘土B(試験体)を用いる例を示した。この例によれば、6つのデータを取るために、2つの吸水膨張性粘土Bと2つの試験装置を用いればよいので、6つの吸水膨張性粘土Bと6つの試験装置を用いる必要はない。これにより、コストや試験スペースを削減できる。   FIG. 8 shows an example in which two water-swellable clays B (test bodies) are used to obtain six data. According to this example, since it is sufficient to use two water-swellable clays B and two test devices in order to obtain six data, it is not necessary to use six water-swellable clays B and six test devices. Thereby, cost and test space can be reduced.

本発明の実施の形態では、飽和度を95%以上に調整した吸水膨張性粘土Bを試験体とする。   In the embodiment of the present invention, the water-swellable clay B having a saturation adjusted to 95% or more is used as a test specimen.

図9は、不飽和状態の吸水膨張性粘土に吸水させた状態を示す概念図であり、図10は、飽和状態の吸水膨張性粘土に吸水させたときの途中段階の状態を示す概念図である。   FIG. 9 is a conceptual diagram showing a state in which water is absorbed by an unsaturated water-absorbing expandable clay, and FIG. 10 is a conceptual diagram showing a state at an intermediate stage when water is absorbed by a saturated water-absorbing clay. is there.

吸水膨張性粘土Bが不飽和状態から吸水を始めると、図9に示すように、注水側の底部付近だけが吸水膨張して膨張挙動が始まる。時間の経過とともに、試験体全体に水が行き渡ると考えられるが、その間は、試験体の飽和度は均質ではないため、均質で安定した膨張変形挙動とならない懸念がある。また、終息密度に至るまでに要する時間も大きくなるという懸念がある。飽和度を事前に95%に調整した吸水膨張性粘土Bを試験体とすることにより、図10に示すように、均質に湿潤化した吸水膨張性粘土Bの膨張挙動を観測できる。吸水膨張性粘土Bの飽和度を初めから水で飽和した状態(飽和度95%以上)にしておくことにより、吸水膨張性粘土Bに均質な吸水膨張特性が生じるので、膨張挙動が安定して進む結果、精度の良い測定ができる。なお、飽和度の高い吸水膨張性粘土の試験体の作成方法としては、特許第4217953号がある。   When the water-absorbing expandable clay B starts to absorb water from the unsaturated state, only the vicinity of the bottom portion on the water injection side absorbs water and expands, as shown in FIG. Although it is considered that water spreads over the entire test body over time, there is a concern that the degree of saturation of the test body is not homogeneous during that time, and thus a homogeneous and stable expansion deformation behavior is not obtained. There is also a concern that the time required to reach the end density will also increase. By using the water-swellable clay B whose saturation is adjusted to 95% in advance as a test specimen, the expansion behavior of the water-swellable clay B wetted uniformly can be observed as shown in FIG. By making the water-absorbing expandable clay B saturated with water from the beginning (saturation level of 95% or more), the water-absorbing expandable clay B has uniform water-absorbing expansion characteristics, so that the expansion behavior is stable. As a result, accurate measurement can be performed. In addition, as a method for preparing a specimen of water-swellable clay having a high degree of saturation, there is Japanese Patent No. 4217953.

ところで、吸水膨張性粘土鉱物であるモンモリロナイトの吸水膨張特性は、粘土鉱物の結晶層の間に存在する陽イオンが周囲の水に比べて電解質濃度が高い故の浸透圧現象であるとされている。このことから、吸水膨張性粘土Bに含まれる水(以下「間隙水」という)の電解質濃度が高い場合には吸水膨張特性は小さくなるはずである。その観点で図4を見ると、人工海水環境における膨潤圧は蒸留水環境における膨潤圧に比べて小さいプロットが多い。一方で、低密度領域では、蒸留水環境での値に比べて大きい傾向が認められ、バラツキが大きい。試験体は、半乾燥状態(たとえば、飽和度60%程度)で作成し、その後、所定の電解質濃度の水を通水させて行く方法をとるため、実際に吸水膨張性粘土Bに含まれる間隙水は均質な電解質濃度ではないことがバラツキが大きいことの原因として考えられる。   By the way, the water absorption and expansion characteristics of montmorillonite, which is a water-swellable clay mineral, are considered to be an osmotic pressure phenomenon because the cation existing between the crystal layers of the clay mineral has a higher electrolyte concentration than the surrounding water. . From this, when the electrolyte concentration of the water (hereinafter referred to as “pore water”) contained in the water-absorbing expansive clay B is high, the water-absorbing expansion characteristic should be small. When FIG. 4 is seen from that viewpoint, there are many plots in which the swelling pressure in the artificial seawater environment is smaller than the swelling pressure in the distilled water environment. On the other hand, in the low density region, a large tendency is recognized compared with the value in the distilled water environment, and the variation is large. The test specimen is prepared in a semi-dry state (for example, a saturation degree of about 60%), and then a method of allowing water having a predetermined electrolyte concentration to flow therethrough, so that the gap actually contained in the water-absorbing expandable clay B is used. It is considered that water is not a homogeneous electrolyte concentration, which is a cause of the large variation.

本発明の実施の形態では、吸水膨張性粘土Bに含まれる間隙水の電解質濃度を予め定めた濃度に調整するとともに、吸水させる水の電解質濃度を吸水膨張性粘土に含まれる水の濃度(予め定めた濃度)に調整する。   In the embodiment of the present invention, the electrolyte concentration of pore water contained in the water-swelling clay B is adjusted to a predetermined concentration, and the electrolyte concentration of water to be absorbed is adjusted to the concentration of water contained in the water-swelling clay (preliminary). Adjust to the specified concentration).

図11は、間隙水の電解質濃度が0に近い吸水膨張性粘土に吸水させた状態を段階的に示す概念図であり、図12は、間隙水の電解質濃度が予め定めた濃度の吸水膨張性粘土に間隙水の電解質濃度と同じ濃度の水を吸水させた状態を示す概念図である。   FIG. 11 is a conceptual diagram showing stepwise a state in which the water-swelling clay having an electrolyte concentration of pore water close to 0 is absorbed, and FIG. 12 is a water-swelling property having a predetermined concentration of the electrolyte concentration of pore water. It is a conceptual diagram which shows the state which made water absorb the water of the same density | concentration as the electrolyte density | concentration of pore water in clay.

たとえば、図11(a)に示すように、吸水膨張性粘土Bに含まれる間隙水の電解質濃度が0に近い場合には、吸水膨張性粘土Bの底部から一定濃度の水を注水してから、試験体全体が同じ濃度の間隙水に置き換わる。図11(b)から(c)に至る時間は、当該電解質濃度環境における膨張挙動を呈することができない。これが、図4に示す人工海水環境条件でのプロットがばらついた値となっている原因の一つとなっている。   For example, as shown in FIG. 11 (a), when the electrolyte concentration of pore water contained in the water-swelling clay B is close to 0, water having a constant concentration is poured from the bottom of the water-swelling clay B. The whole specimen is replaced with pore water of the same concentration. The time from FIG. 11 (b) to (c) cannot exhibit the expansion behavior in the electrolyte concentration environment. This is one of the reasons why the plots in the artificial seawater environmental conditions shown in FIG.

これに対して、吸水膨張性粘土に含まれる間隙水の電解質濃度を予め定めた濃度に調整するとともに、吸水させる水の電解質濃度を吸水膨張性粘土Bに含まれる間隙水の電解質濃度に調整すると、図12に示すように、吸水膨張性粘土Bの間隙には所定の電解質濃度の間隙水が最初から存在するので、測定開始時点で当該電解質濃度環境における正しい膨張挙動を呈することになる。その結果、より短時間でより均質な電解質濃度環境条件での吸水膨張挙動を観測できる。なお、試験体を事前に所定の電解質濃度で間隙を満たされた状態にして作成する方法については、特許第5041239号の方法がある。   On the other hand, when the electrolyte concentration of pore water contained in the water-swelling clay is adjusted to a predetermined concentration, and the electrolyte concentration of water to be absorbed is adjusted to the electrolyte concentration of the pore water contained in the water-swellable clay B. As shown in FIG. 12, pore water having a predetermined electrolyte concentration is present in the gap between the water-absorbing expansive clay B from the beginning, so that the correct expansion behavior in the electrolyte concentration environment is exhibited at the start of measurement. As a result, it is possible to observe the water absorption expansion behavior under a more homogeneous electrolyte concentration environment condition in a shorter time. In addition, there exists a method of patent 5041239 about the method of making a test body in the state by which the space | gap was filled with predetermined electrolyte concentration beforehand.

B 吸水膨張性粘土   B Water-absorbing expansive clay

Claims (3)

吸水膨張する粘土の周囲を拘束するとともに該粘土の上に荷重を載荷した状態で該粘土に吸水させ、該粘土の吸水膨張が終息した時点で該粘土の密度を求め、該粘土に作用する圧力を求めた密度における吸水膨張ポテンシャルとすることを特徴とする吸水膨張特性の測定試験方法であって、
粘土に載荷する荷重を段階的に小さくし、各段階において粘土の吸水膨張が終息した時点で該粘土の密度と該粘土の密度おける吸水膨張ポテンシャルを求めることを特徴とする吸水膨張特性の測定試験方法
Constrain the periphery of the clay that absorbs water and absorb the water in a state where a load is loaded on the clay, and determine the density of the clay when the water absorption and expansion of the clay ceases, and the pressure acting on the clay Is a water absorption expansion characteristic measurement test method , characterized in that the water absorption expansion potential at the obtained density ,
A test for measuring the water-absorbing expansion characteristic, characterized in that the load loaded on the clay is reduced stepwise and the density of the clay and the water-absorbing expansion potential at the density of the clay are determined at each stage when the water-absorbing expansion of the clay ends. Way .
飽和度を95%以上に調整した粘土を試験体とすることを特徴とする請求項1に記載の吸水膨張特性の測定試験方法。 The measurement test method for water absorption expansion characteristics according to claim 1, wherein clay having a saturation degree adjusted to 95% or more is used as a test specimen. 粘土に含まれる水の電解質濃度を予め定めた濃度に調整するとともに、吸水させる水の電解質濃度を前記予め定めた濃度に調整したことを特徴とする請求項1または2に記載の吸水膨張特性の測定試験方法。 With adjusted to a predetermined concentration electrolyte concentration of water contained in the clay, the electrolyte concentration of water to water of hygroscopic expansion characteristics of claim 1 or 2, characterized in that adjusted to the predetermined concentration Measurement test method.
JP2012233093A 2012-10-22 2012-10-22 Measurement test method for water absorption expansion characteristics Active JP6024960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012233093A JP6024960B2 (en) 2012-10-22 2012-10-22 Measurement test method for water absorption expansion characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012233093A JP6024960B2 (en) 2012-10-22 2012-10-22 Measurement test method for water absorption expansion characteristics

Publications (2)

Publication Number Publication Date
JP2014085177A JP2014085177A (en) 2014-05-12
JP6024960B2 true JP6024960B2 (en) 2016-11-16

Family

ID=50788372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012233093A Active JP6024960B2 (en) 2012-10-22 2012-10-22 Measurement test method for water absorption expansion characteristics

Country Status (1)

Country Link
JP (1) JP6024960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108612073A (en) * 2018-04-24 2018-10-02 兰州交通大学 A kind of high-speed railway foundation expansion soil expansion potentiality analyzer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384718B2 (en) * 2013-11-08 2018-09-05 清水建設株式会社 Water shielding method for underwater space and installation method of shielding material or water shielding material to underwater space
JP6384866B2 (en) * 2014-11-04 2018-09-05 一般財団法人電力中央研究所 Model sample preparation device for buried environment member model for evaluating the behavior of buried environment field of underground isolation member
US9670409B1 (en) 2015-12-23 2017-06-06 King Fahd University Of Petroleum And Minerals Method for reducing swell potential of expansive clayey soil with nano-level constitutive modeling
CN108693333B (en) * 2018-06-14 2021-05-28 中铁二院成都勘察设计研究院有限责任公司 Method for determining salt expansion coefficient of coarse particle sodium sulfate saline soil
CN112033891B (en) * 2020-08-03 2023-09-12 南京交通职业技术学院 Novel expansive force measuring method for expansive soil
CN115389286A (en) * 2022-08-23 2022-11-25 东北大学 Deep rock mass closed stress construction method for physical model test

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217953B2 (en) * 2003-02-03 2009-02-04 清水建設株式会社 Test method for poorly water-permeable soil materials
JP2005024347A (en) * 2003-06-30 2005-01-27 Ibaraki Univ Simple measurement tool for infiltrating volume and swelling volume of bentonite material, measurement method therefor, and simple calculation method for infiltrating speed and swelling rate of the bentonite material by using the tool
US7240545B1 (en) * 2003-12-31 2007-07-10 Saudi Arabian Oil Company Test apparatus for direct measurement of expansion and shrinkage of oil well cements
JP3923954B2 (en) * 2004-03-31 2007-06-06 飛島建設株式会社 Consolidation permeability test apparatus and test method
JP5041239B2 (en) * 2008-05-13 2012-10-03 清水建設株式会社 Buffering material and disposal method of waste
JP5416661B2 (en) * 2010-06-30 2014-02-12 鹿島建設株式会社 Swelling test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108612073A (en) * 2018-04-24 2018-10-02 兰州交通大学 A kind of high-speed railway foundation expansion soil expansion potentiality analyzer

Also Published As

Publication number Publication date
JP2014085177A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP6024960B2 (en) Measurement test method for water absorption expansion characteristics
Gens et al. Hydromechanical behaviour of a heterogeneous compacted soil: experimental observations and modelling
Castellanos et al. Chemical impact on the hydro-mechanical behaviour of high-density FEBEX bentonite
Chen et al. Cyclic thermal and saline effects on the swelling pressure of densely compacted Gaomiaozi bentonite
Liu et al. Experimental research on water retention and gas permeability of compacted bentonite/sand mixtures
Wang et al. Numerical and experimental studies of pressure-controlled cavity expansion in completely decomposed granite soils of Hong Kong
CN106018740A (en) Piezocone penetration test calibration tank system
JP5877484B2 (en) Prediction method for water-swelling clay behavior
Mokni et al. Effect of technological macro voids on the performance of compacted bentonite/sand seals for deep geological repositories
Monfared et al. Temperature and damage impact on the permeability of Opalinus Clay
Toprak et al. Modelling engineered barriers for spent nuclear fuel repository using a double-structure model for pellets
Hu et al. Evaluation of anisotropic poroelastic properties and permeability of the Opalinus Clay using a single transient experiment
Zhang Characterization of excavated claystone and claystone–bentonite mixtures as backfill/seal material
CN115310026B (en) Bentonite expansive force prediction method and system considering ionic hydration energy
ZHANG et al. Optimal curing humidity for compacted bentonite-sand mixtures
Alcantara et al. Modelling of oedometer tests on pellet-powder bentonite mixtures to support mock-up test analysis
Mokni et al. SEALEX in-situ experiments-performance tests of repository seals: experimental observations and modelling
Kim Evaluation of coupled hydro-mechanical (hm) behaviour of in situ shaft sealing components for used nuclear fuel
Abed et al. Simulation of swelling pressure evolution during infiltration in a bentonite block-pellet laboratory scale test
Pusch et al. Can sealing of rock hosting a repository for highly radioactive waste be relied on?
Tan et al. Integrative testing device for investigating the hydro-mechanical behavior of highly expansive clay
Awadalseed et al. Experimental and Numerical Simulation Study of Water Infiltration Impact on Soil‐Pile Interaction in Expansive Soil
KR102458248B1 (en) Construction method of buffer material at field
Toma A model study of negative skin friction on a fixed base pile in soft clay
Hergül An experimental study on the treatment of expansive soils by granular materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160928

R150 Certificate of patent or registration of utility model

Ref document number: 6024960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150