JP3436170B2 - Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same - Google Patents

Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same

Info

Publication number
JP3436170B2
JP3436170B2 JP03742899A JP3742899A JP3436170B2 JP 3436170 B2 JP3436170 B2 JP 3436170B2 JP 03742899 A JP03742899 A JP 03742899A JP 3742899 A JP3742899 A JP 3742899A JP 3436170 B2 JP3436170 B2 JP 3436170B2
Authority
JP
Japan
Prior art keywords
conductive
core layer
adhesive layer
film
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03742899A
Other languages
Japanese (ja)
Other versions
JP2000243147A (en
Inventor
佳嗣 船田
崇敏 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP03742899A priority Critical patent/JP3436170B2/en
Publication of JP2000243147A publication Critical patent/JP2000243147A/en
Application granted granted Critical
Publication of JP3436170B2 publication Critical patent/JP3436170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/811Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/81101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector the bump connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a bump connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、異方性導電フィル
ム、これを用いた半導体装置及びその製造方法に関し、
特に、半導体素子叉はパッケージと基板との電気的接続
及び機械的接合を確実にして信頼性を向上せしめた異方
性導電フィルム、これを用いた半導体装置及びその製造
方法に関する。
TECHNICAL FIELD The present invention relates to an anisotropic conductive film, a semiconductor device using the same, and a method for manufacturing the same,
In particular, the present invention relates to an anisotropic conductive film in which electrical connection and mechanical bonding between a semiconductor element or a package and a substrate are ensured and reliability is improved, a semiconductor device using the same, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年電子機器の小型化、薄型化に伴い、
半導体チップ等の微小部品と基板等の微細回路を接続す
る必要性が高まっており、その配線ピッチはますます小
さくなってきている。従来これらの接続は、相互の部品
接続端子同士をワイヤボンディングする方法が主流であ
ったが、接続端子同士を対向させ直接接続する方が高速
化、軽薄短小化等により有利であることから、フリップ
チップ接続が盛んに行われている。これらの端子同士の
接続部は、外部環境からの保護と接続信頼性の向上を目
的として安価な樹脂による封止が主としてなされてお
り、対向端子間の電気的接続後隣接端子間の隙間から液
状樹脂を流入する方法がとられていた。接続端子同士の
接続は、例えば、はんだ接続、金−金圧着、導電性ペー
スト接続等によって実施される。
2. Description of the Related Art With the recent miniaturization and thinning of electronic devices,
The need for connecting minute components such as semiconductor chips to minute circuits such as substrates is increasing, and the wiring pitch thereof is becoming smaller and smaller. Conventionally, the method of wire-bonding mutual component connection terminals has been the mainstream for these connections, but flip-flops are advantageous because direct connection with connection terminals facing each other is faster, lighter, thinner, and smaller. Chip connections are being actively made. The connection part between these terminals is mainly sealed with an inexpensive resin for the purpose of protection from the external environment and improvement of connection reliability.After electrical connection between opposite terminals, liquid is formed from the gap between adjacent terminals. The method of inflowing the resin was taken. The connection between the connection terminals is performed by, for example, solder connection, gold-gold pressure bonding, conductive paste connection, or the like.

【0003】しかしながら、小型化、薄型化が進行する
につれて、対向部品−回路間隙および隣接端子間隙が小
さくなり、液状樹脂の流入(いわゆるアンダーフィル)
が難しくなってきている。一般的には低粘度のエポキシ
樹脂等の熱硬化性樹脂が使用されている。これに対し
て、半導体チップと基板とを接続する際に、予めチップ
を搭載する基板領域に液状樹脂を塗布したり又はフィル
ム状樹脂を載置しておき、相互の接続端子同士を目合わ
せした後、熱圧着して電気的な接続を行うと共に機械的
接合をする(アンダーフィル不要)方法が提案されてお
り、その1つの方法として異方性導電樹脂による接続が
ある。
However, as miniaturization and thinning progress, the gap between the facing component-circuit and the gap between adjacent terminals becomes smaller, and the liquid resin flows in (so-called underfill).
Is getting harder. Generally, a thermosetting resin such as a low-viscosity epoxy resin is used. On the other hand, when connecting the semiconductor chip and the substrate, liquid resin was applied or a film-shaped resin was placed in advance on the substrate region on which the chip was mounted, and mutual connection terminals were aligned with each other. After that, a method has been proposed in which thermocompression bonding is performed to perform electrical connection and mechanical connection (underfill is not required), and as one of the methods, there is connection using an anisotropic conductive resin.

【0004】異方性導電樹脂には、大別して2つのタイ
プがある。一つは、図8に示したような導電粒子81を
バインダー樹脂82中に分散させたタイプである。異方
性導電樹脂は、樹脂中に分散されている導電粒子数が導
電性ペースト等に比べて少ないため、そのままでは絶縁
性を示す。少なくとも一方の電極上に金属突起(バン
プ)が形成された2つの電子部品85、86間に異方性
導電樹脂80を介在させ熱圧着することにより、双方の
電極88、89間に導電粒子81が挟み込まれ、この導
電粒子81を介して電気的接続が得られる。同時に、バ
インダー樹脂82により電子部品同士は機械的接合され
る。この時、隣接電極間には圧力が加わらず、導電粒子
数も少ないため隣接電極間の絶縁性が保たれる。樹脂形
態としては液(ペースト)状及びフィルム状のものがあ
り、例えば、特開平5−32799号公報、特開平6−
223633号公報、特開平7−197001号公報等
が挙げられる。
The anisotropic conductive resin is roughly classified into two types. One is a type in which conductive particles 81 as shown in FIG. 8 are dispersed in a binder resin 82. Since the anisotropic conductive resin has a smaller number of conductive particles dispersed in the resin than a conductive paste or the like, it exhibits insulating properties as it is. The anisotropic conductive resin 80 is interposed between the two electronic components 85 and 86 in which the metal projections (bumps) are formed on at least one of the electrodes, and thermocompression bonding is performed, so that the conductive particles 81 are formed between the electrodes 88 and 89. Are sandwiched, and electrical connection is obtained through the conductive particles 81. At the same time, the binder resin 82 mechanically bonds the electronic components together. At this time, no pressure is applied between the adjacent electrodes and the number of conductive particles is small, so that the insulating property between the adjacent electrodes is maintained. The resin form includes liquid (paste) form and film form, for example, JP-A-5-32799 and JP-A-6-
No. 223633, JP-A No. 7-197001, and the like.

【0005】他の方法は、図9に示したように、バイン
ダー樹脂92内に一方向に導電性を有する線条体91を
配向させたタイプのものを用いる方法である。2つの電
子部品間に異方性導電樹脂を介在させ圧着することによ
り、双方の電極間に導電線条体91が挟み込まれること
で、電子部品の電極と導電線条体が直接接触し、電気的
接続が得られる。導電線条体の配向が乱れないように、
このタイプの異方性導電樹脂形態はフィルム状あるいは
ブロック状といった固体であり、例えば、特開平5−3
25669号公報、特開平8−124435号公報等が
挙げられる。
As another method, as shown in FIG. 9, a method in which a linear body 91 having conductivity in one direction is oriented in a binder resin 92 is used. By sandwiching the anisotropic conductive resin between the two electronic components and crimping the conductive filaments 91 between the two electrodes, the electrodes of the electronic components and the conductive filaments are brought into direct contact with each other, and the electrical conductivity is reduced. Connection is obtained. In order not to disturb the orientation of the conductive filaments,
This type of anisotropic conductive resin is a solid such as a film or a block, and is disclosed in, for example, JP-A-5-3.
25669, JP-A-8-124435, and the like.

【0006】上述したように、フリップチップ接続用樹
脂として導電粒子をバインダー樹脂中に均一分散させた
場合、微細接続を正確に行うためには、導電粒子の密度
を高くする必要があるが、この場合、対向電極間に挟み
込まれなかった導電粒子が隣接端子間に流れ込み、絶縁
性の確保が難しくなるという欠点がある。また、通常バ
インダー樹脂中には導電粒子のみが配合されているため
熱膨張係数が大きく、このため接続信頼性が低い。これ
を改良するためにアンダーフィル材同様シリカ粒子等を
配合して熱膨張係数を低下させることが考えられるが、
この場合、樹脂が硬くなり、かつ電子部品との界面の密
着性が低下するため、やはり接続信頼性が低下する傾向
がある。
As described above, when the conductive particles are uniformly dispersed in the binder resin as the flip-chip connection resin, it is necessary to increase the density of the conductive particles in order to perform accurate fine connection. In this case, there is a drawback that the conductive particles that are not sandwiched between the counter electrodes flow between the adjacent terminals, and it becomes difficult to secure the insulating property. Further, since only the conductive particles are usually mixed in the binder resin, the coefficient of thermal expansion is large, and therefore the connection reliability is low. In order to improve this, it is possible to reduce the thermal expansion coefficient by blending silica particles or the like like the underfill material,
In this case, the resin becomes hard and the adhesiveness at the interface with the electronic component deteriorates, so that the connection reliability also tends to decrease.

【0007】一方、バインダー樹脂の一方向に導電性を
有する線条体を配向させた場合、熱圧着時に線条体の配
向が乱れないようにバインダー樹脂の溶融粘度を高くす
る必要があるが、一般に溶融粘度が高いのは熱可塑性樹
脂であり、熱可塑性樹脂を使用して高い接続信頼性を得
るためには高い溶融温度を有する樹脂を使用する必要が
あるため、当然低温での接続が困難である。また、電子
部品の電極表面と導電線条体との接触により電気的接続
が得られるが、熱可塑性樹脂の場合、熱硬化性樹脂のよ
うな硬化収縮力が作用せず、接続信頼性は概して低い。
このタイプの異方性導電樹脂材料としては、耐熱性の良
好な熱可塑性ポリイミドやポリアミドイミド等を使用し
たものが開発されているが、使用温度が300℃前後と
極めて高く、圧着時間も30秒レベルとやや長い。更
に、図9に示したように電極高さが比較的高い場合、電
子部品の表面に異方性導電フィルムが追随せず、両者の
間に隙間が発生しやすい。実用化されているものの多く
は、シリコーンゴム等のゴム材料を使用したもので、電
子部品と異方性導電フィルムの間には電気的接続部以外
は空隙があり、一般的に電子部品との接着性を有してお
らず、電気的接続を得るために外部から圧力を常時加え
る必要がある。
On the other hand, when the conductive filaments are oriented in one direction of the binder resin, it is necessary to increase the melt viscosity of the binder resin so that the orientation of the filaments is not disturbed during thermocompression bonding. Generally, it is a thermoplastic resin that has a high melt viscosity, and it is naturally difficult to connect at a low temperature because it is necessary to use a resin with a high melting temperature in order to use a thermoplastic resin to obtain high connection reliability. Is. In addition, an electrical connection can be obtained by contact between the electrode surface of the electronic component and the conductive filament, but in the case of a thermoplastic resin, the curing shrinkage force of a thermosetting resin does not act and the connection reliability is generally Low.
As this type of anisotropic conductive resin material, materials using thermoplastic polyimide or polyamide imide having good heat resistance have been developed, but the operating temperature is extremely high at around 300 ° C and the pressure bonding time is 30 seconds. Level and somewhat long. Furthermore, as shown in FIG. 9, when the electrode height is relatively high, the anisotropic conductive film does not follow the surface of the electronic component, and a gap is likely to occur between the two. Most of those that have been put into practical use use rubber materials such as silicone rubber, and there is a gap between the electronic component and the anisotropic conductive film other than the electrical connection portion, and it is generally used for electronic components. It does not have adhesiveness, and it is necessary to constantly apply pressure from the outside in order to obtain an electrical connection.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
した従来技術の欠点を改良し、特に、フリップチップ接
続に好適な短時間での接続が可能で、且つ、接続信頼性
を向上せしめた新規な異方性導電フィルム、これを用い
た半導体装置及びその製造方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks of the prior art, and in particular, to enable connection in a short time suitable for flip chip connection and to improve connection reliability. The present invention also provides a novel anisotropic conductive film, a semiconductor device using the same, and a method for manufacturing the same.

【0009】[0009]

【課題を解決するための手段】本発明は上記した目的を
達成するため、基本的には、以下に記載されたような技
術構成を採用するものである。即ち、本発明に係わる異
方性導電フィルムの第1態様は、絶縁フィルムの厚み方
向に、その表面を平滑にした導電線条体を充填せしめた
絶縁性を有するコア層と、このコア層の両面に設けら
れ、熱により溶融する接着剤層と、前記接着剤層内に均
一に分散せしめた変形可能な導電粒子とからなり、前記
導電線条体が前記コア層の厚さ方向に貫通しており、そ
の表面がコア層表面より突出しており、且つ前記導電線
条体が前記コア層の両面に設けられた接着剤層に埋設さ
れ、熱圧着により厚み方向にのみ導電性を発現するよう
に構成すると共に、前記導電線条体の径が、前記導電粒
子径の3倍以上であることを特徴とするものであり、
叉、第2態様は、絶縁フィルムの厚み方向に、その表面
を平滑にした導電線条体を充填せしめた絶縁性を有する
コア層と、このコア層の両面に設けられ、熱により溶融
する接着剤層と、前記接着剤層内に均一に分散せしめた
変形可能な導電粒子とからなり、前記導電線条体が前記
コア層の厚さ方向に貫通しており、その表面がコア層表
面より突出しており、且つ前記導電線条体が前記コア層
の両面に設けられた接着剤層に埋設され、熱圧着により
厚み方向にのみ導電性を発現するように構成すると共
に、前記導電線条体が、前記導電粒子径の1/3より小
さいピッチで配列され ていることを特徴とするものであ
り、 叉、態様は、前記コア層が、熱圧着する時の温
度で溶融しないことを特徴とするものであり、叉、第
態様は、前記接着剤層が、熱硬化性樹脂であることを特
徴とするものであり、叉、第態様は、前記接着剤層
が、熱可塑性樹脂であることを特徴とするものであり、
叉、第態様は、前記コア層の厚みが、その両面に設け
られた前記接着剤層の厚みより大きいことを特徴とする
ものであり、叉、第態様は、前記接着剤層の厚みが、
前記導電粒子径より大きいことを特徴とするものであ
り、叉、第態様は、前記コア層の引張弾性率が、その
両側に設けられた前記接着剤層の引張弾性率より小さい
ことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention basically adopts the technical constitution as described below. That is, the first aspect of the anisotropic conductive film according to the present invention is to provide an insulating core layer filled with a conductive filament whose surface is smoothed in the thickness direction of the insulating film, and a core layer of this core layer. An adhesive layer which is provided on both sides and is melted by heat, and composed of deformable conductive particles uniformly dispersed in the adhesive layer, the conductive filaments penetrate in the thickness direction of the core layer. and it has its surface protrudes from the core layer surface, and the conductive striatum is embedded in the adhesive layer provided on both surfaces of the core layer, so as to express the conductivity only in the thickness direction by thermocompression bonding
And the diameter of the conductive filament is
It is characterized by being more than 3 times the diameter of the child ,
The second aspect is that the surface of the insulating film in the thickness direction is
It has an insulating property that is filled with a conductive wire that smoothes
Core layer and both sides of this core layer are melted by heat
And the adhesive layer to be uniformly dispersed in the adhesive layer.
Consisting of deformable conductive particles, wherein the conductive filaments are
It penetrates in the thickness direction of the core layer, and its surface is the core layer surface.
Projecting from the surface, and the conductive filament is the core layer.
Embedded in the adhesive layer on both sides of the
If it is configured so that it exhibits conductivity only in the thickness direction,
In addition, the conductive filament is smaller than 1/3 of the conductive particle diameter.
It is characterized by being arranged at a fine pitch.
Ri, or third aspect, wherein the core layer, which is characterized in that it does not melt at the temperature at which thermal bonding, or, fourth
An aspect is characterized in that the adhesive layer is a thermosetting resin, and a fifth aspect is characterized in that the adhesive layer is a thermoplastic resin. ,
The sixth aspect is characterized in that the thickness of the core layer is larger than the thickness of the adhesive layer provided on both surfaces thereof, and the seventh aspect is the thickness of the adhesive layer. But,
It is characterized in that it is larger than the conductive particle diameter, and in the eighth aspect, the tensile modulus of elasticity of the core layer is smaller than the tensile modulus of elasticity of the adhesive layers provided on both sides thereof. It is what

【0010】叉、本発明に係わる半導体装置の第1態様
は、2つの電子部品が異方性導電フィルムを介して電気
的に接続された半導体装置であって、前記2つの電子部
品間に、絶縁フィルムの厚み方向に、その表面を平滑に
した導電線条体を充填せしめた絶縁性を有するコア層
と、このコア層の両面に設けられ、熱により溶融する接
着剤層と、前記接着剤層内に均一に分散せしめた変形可
能な導電粒子とからなり、前記導電線条体が前記コア層
の厚さ方向に貫通しており、その表面がコア層表面より
突出しており、且つ前記導電線条体が前記コア層の両面
に設けられた接着剤層に埋設されている異方性導電フィ
ルムを介在せしめ、前記コア層である絶縁フィルムの厚
み方向に充填されている導電線条体の両端が、前記導電
粒子を介して、前記2つの電子部品の夫々の電極に接触
し、前記電子部品の表面と異方性導電フィルムとは、コ
ア層の両面に設けられた接着剤層で各々固着一体化され
ように構成すると共に、前記導電線条体の径が、前記
導電粒子径の3倍以上であることを特徴とするものであ
り、叉、第2態様は、前記2つの電子部品の一方が半導
体素子叉は半導体パッケージであり、他方の電子部品が
配線基板であることを特徴とするものであり、叉、第3
態様は、2つの電子部品の一方が半導体パッケージ、他
方の電子部品が配線基板であり、半導体パッケージと異
方性導電フィルムの電気的接続部以外に隙間があること
を特徴とするものである。
The first aspect of the semiconductor device according to the present invention is a semiconductor device in which two electronic parts are electrically connected via an anisotropic conductive film, and the two electronic parts are connected between the two electronic parts. In the thickness direction of the insulating film, an insulating core layer filled with a conductive filament whose surface is smoothed, an adhesive layer provided on both sides of the core layer and melted by heat, and the adhesive Consisting of deformable conductive particles uniformly dispersed in the layer, the conductive linear body penetrates in the thickness direction of the core layer, the surface thereof protrudes from the core layer surface, and the conductive The anisotropic conductive film embedded in the adhesive layer provided on both sides of the core layer intervenes the linear body, the conductive linear body filled in the thickness direction of the insulating film that is the core layer Both ends, through the conductive particles, the One of the contacts to each of the electrodes of the electronic component, wherein the electronic component of the surface and the anisotropic conductive film, as well as configured to be respectively fixed integrally with an adhesive layer provided on both sides of the core layer, wherein The diameter of the conductive wire is
The diameter of the conductive particles is three times or more, and in the second aspect, one of the two electronic components is a semiconductor element or a semiconductor package, and the other electronic component is a wiring board. It is characterized by the fact that the third
The aspect is characterized in that one of the two electronic components is a semiconductor package and the other electronic component is a wiring board, and there is a gap other than an electrical connection portion between the semiconductor package and the anisotropic conductive film.

【0011】叉、本発明に係わる半導体装置の製造方法
の態様は、2つの電子部品が異方性導電フィルムを介し
て電気的に接続された半導体装置の製造方法であって、
前記2つの電子部品間に、絶縁フィルムの厚み方向に、
その表面を平滑にした導電線条体を充填せしめた絶縁性
を有するコア層と、このコア層の両面に設けられ、熱に
より溶融する接着剤層と、前記接着剤層内に均一に分散
せしめた変形可能な導電粒子とからなり、前記導電線条
体が前記コア層の厚さ方向に貫通しており、その表面が
コア層表面より突出しており、且つ前記導電線条体が前
記コア層の両面に設けられた接着剤層に埋設されている
異方性導電フィルムを介在せしめる工程と、前記異方性
導電フィルムを加熱することで、前記接着剤層を溶融せ
しめると共に、前記コア層である絶縁フィルムの厚み方
向に充填されている導電線条体の両端を、前記導電粒子
を介して、前記2つの電子部品の夫々の電極に接触せし
める工程と、前記接着剤層を固化せしめることで前記2
つの電子部品を各々固着一体化せしめる工程と、を含
み、 前記導電線条体の径が、前記導電粒子径の3倍以上
であることを特徴とするものである。
In addition, an aspect of the method of manufacturing a semiconductor device according to the present invention is a method of manufacturing a semiconductor device in which two electronic components are electrically connected via an anisotropic conductive film,
Between the two electronic components, in the thickness direction of the insulating film,
An insulating core layer filled with a conductive filament whose surface is smoothed, an adhesive layer provided on both sides of the core layer, which is melted by heat, and uniformly dispersed in the adhesive layer. Deformable conductive particles, the conductive linear body penetrates in the thickness direction of the core layer, the surface thereof protrudes from the core layer surface, and the conductive linear body is the core layer. The step of interposing an anisotropic conductive film embedded in the adhesive layer provided on both sides of the, and by heating the anisotropic conductive film, to melt the adhesive layer, at the core layer By making both ends of the conductive filament filled in the thickness direction of an insulating film contact the respective electrodes of the two electronic components through the conductive particles, and solidifying the adhesive layer. 2 above
And the process of fixing and integrating the two electronic components.
Seen, the diameter of the conductive striatum, more than three times the conductive particle diameter
It is characterized by being.

【0012】[0012]

【発明の実施の形態】本発明に係わる異方性導電フィル
ムは、絶縁フィルムの厚み方向に導電線条体が充填され
ているコア層と、このコア層の両面に設けられ、熱によ
り溶融する接着剤層とからなり、熱圧着により厚み方向
にのみ導電性を発現することを特徴とするものであり、
叉、前記熱により溶融する接着剤層中に導電粒子が均一
に分散されていることを特徴とするものである。
BEST MODE FOR CARRYING OUT THE INVENTION An anisotropic conductive film according to the present invention is provided with a core layer filled with conductive filaments in the thickness direction of an insulating film, and provided on both sides of this core layer, and is melted by heat. An adhesive layer, which is characterized by exhibiting conductivity only in the thickness direction by thermocompression bonding,
In addition, the conductive particles are uniformly dispersed in the adhesive layer which is melted by the heat.

【0013】叉、本発明に係わる半導体装置は、2つの
電子部品が異方性導電フィルムを介して電気的に接続さ
れた半導体装置であって、前記2つの電子部品間に、絶
縁フィルムの厚み方向に導電線条体が充填されているコ
ア層と、このコア層の両面に設けられ、熱により溶融す
る接着剤層とからなる異方性導電フィルムを介在せし
め、前記コア層である絶縁フィルムの厚み方向に充填さ
れている導電線条体の両端が前記2つの電子部品の夫々
の電極に接触し、前記電子部品の表面と異方性導電フィ
ルムとは、コア層の両面に設けられた接着剤層で各々固
着一体化されたことを特徴とするものである。
Further, the semiconductor device according to the present invention is a semiconductor device in which two electronic parts are electrically connected via an anisotropic conductive film, and the thickness of the insulating film is between the two electronic parts. Insulating film which is the core layer with an anisotropic conductive film consisting of a core layer filled with conductive filaments in the direction and adhesive layers provided on both sides of the core layer and melted by heat. Both ends of the conductive filament that is filled in the thickness direction of each contact the respective electrodes of the two electronic components, and the surface of the electronic component and the anisotropic conductive film are provided on both sides of the core layer. It is characterized in that they are fixed and integrated by an adhesive layer.

【0014】この発明によれば、コア層に熱圧着温度で
溶融しない樹脂を使用することにより厚み方向に充填さ
れた導電線条体の配向が乱れることがなく、熱圧着する
ことが出来る。従って、電子部品とコア層は良好に接着
し、同時に、電子部品の電極表面とコア層の厚み方向に
充填された導電線条体との接触状態が、強固で且つ確実
に保持され、安定した接続信頼性が得られる。
According to the present invention, by using a resin that does not melt at the thermocompression bonding temperature for the core layer, the thermocompression bonding can be performed without disturbing the orientation of the conductive filament filled in the thickness direction. Therefore, the electronic component and the core layer are well adhered to each other, and at the same time, the contact state between the electrode surface of the electronic component and the conductive filament filled in the thickness direction of the core layer is firmly and surely maintained and stable. Connection reliability is obtained.

【0015】また、接着剤層中に加圧により変形可能な
導電粒子を配することで、電子部品の電極表面とコア層
の厚み方向に充填された導電線条体の間に変形された導
電粒子が介在し、厚み方向の温度サイクル特性は益々向
上する。更に、コア層が接着剤層より厚く、かつ低弾性
の樹脂を使用することにより、接続部近傍に発生する内
部応力を低減することができ、一層良好な接続信頼性が
得られるものである。
Further, by disposing conductive particles that can be deformed by pressure in the adhesive layer, the deformed conductivity between the electrode surface of the electronic component and the conductive filament filled in the thickness direction of the core layer. Due to the inclusion of particles, the temperature cycle characteristics in the thickness direction are further improved. Furthermore, by using a resin whose core layer is thicker than the adhesive layer and has a low elasticity, the internal stress generated in the vicinity of the connection portion can be reduced, and further excellent connection reliability can be obtained.

【0016】[0016]

【実施例】以下に、本発明に係わる異方性導電フィル
ム、これを用いた半導体装置及びその製造方法の具体例
を図面を参照しながら詳細に説明する。図1乃至図7
は、本発明に係わる異方性導電フィルム、これを用いた
半導体装置及びその製造方法の具体例の構造を示す図で
あって、これらの図には、絶縁フィルム12aの厚み方
向に導電線条体11が充填されているコア層12と、こ
のコア層12の両面に設けた熱により溶融する接着剤層
13とからなり、熱圧着により厚み方向にのみ導電性を
発現することを特徴とする異方性導電フィルム10が示
され、叉、前記導電線条体11が絶縁フィルム12aの
厚さ方向に貫通しており、その表面が絶縁フィルム12
a表面より突出し、且つ前記導電線条体11が前記コア
層12の両面に設けられた接着剤層13に埋設されてい
ることを特徴とする異方性導電フィルムが示され、叉、
前記熱により溶融する接着剤層13中に導電粒子44が
均一に分散されていることを特徴とする異方性導電フィ
ルム40が示されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific examples of the anisotropic conductive film according to the present invention, the semiconductor device using the same, and the manufacturing method thereof will be described in detail with reference to the drawings. 1 to 7
FIG. 3 is a diagram showing a structure of an anisotropic conductive film according to the present invention, a semiconductor device using the same, and a specific example of a method for manufacturing the same, in which conductive lines are formed in the thickness direction of the insulating film 12a. A core layer 12 filled with the body 11 and an adhesive layer 13 provided on both surfaces of the core layer 12 and melted by heat, and is characterized by exhibiting conductivity only in the thickness direction by thermocompression bonding. An anisotropic conductive film 10 is shown, and the conductive linear body 11 penetrates in the thickness direction of the insulating film 12a, and the surface thereof is the insulating film 12.
a anisotropic conductive film characterized in that it projects from the surface a and the conductive filaments 11 are embedded in the adhesive layers 13 provided on both surfaces of the core layer 12, and
The anisotropic conductive film 40 is shown in which the conductive particles 44 are uniformly dispersed in the adhesive layer 13 which is melted by the heat.

【0017】更に、2つの電子部品15、16が異方性
導電フィルム10を介して電気的に接続された半導体装
置であって、前記2つの電子部品間15、16に、絶縁
フィルム12aの厚み方向に導電線条体11が充填され
ているコア層12と、このコア層12の両面に設けら
れ、熱により溶融する接着剤層13とからなる異方性導
電フィルム10を介在せしめ、前記コア層12である絶
縁フィルム12aの厚み方向に充填されている導電線条
体11の両端が前記2つの電子部品15、16の夫々の
電極18、19に接触し、前記電子部品15、16の表
面と異方性導電フィルム10とは、コア層12の両面に
設けられた接着剤層13で各々固着一体化されたことを
特徴とする半導体装置が示されている。
Further, in the semiconductor device in which the two electronic components 15 and 16 are electrically connected via the anisotropic conductive film 10, the thickness of the insulating film 12a is provided between the two electronic components 15 and 16. An anisotropic conductive film 10 composed of a core layer 12 filled with conductive filaments 11 in the direction and adhesive layers 13 provided on both surfaces of the core layer 12 and melted by heat is interposed, Both ends of the conductive linear member 11 filled in the thickness direction of the insulating film 12a which is the layer 12 contacts the electrodes 18 and 19 of the two electronic components 15 and 16, respectively, and the surface of the electronic components 15 and 16 is formed. The semiconductor device is characterized in that the anisotropic conductive film 10 and the anisotropic conductive film 10 are fixed and integrated by the adhesive layers 13 provided on both surfaces of the core layer 12, respectively.

【0018】以下に、本発明を更に詳細に説明する。は
じめに本発明の異方性導電フィルムについて説明する。
図1に本発明の異方性導電フィルム10の断面図及びこ
れを用いた半導体チップ15と配線基板16との接続断
面図の一例を示す。本発明の異方性導電フィルム10
は、絶縁フィルム12aに導電線条体11が厚さ方向に
充填されたコア層12の両面に接着剤層13が設けられ
た3層構成である。
The present invention will be described in more detail below. First, the anisotropic conductive film of the present invention will be described.
FIG. 1 shows an example of a cross-sectional view of an anisotropic conductive film 10 of the present invention and a connection cross-sectional view of a semiconductor chip 15 and a wiring board 16 using the anisotropic conductive film 10. Anisotropic conductive film 10 of the present invention
Is a three-layer structure in which an adhesive layer 13 is provided on both sides of a core layer 12 in which a conductive filament 11 is filled in an insulating film 12a in the thickness direction.

【0019】コア層12の絶縁フィルム12aとして使
用できる樹脂は、熱圧着時に厚み方向に充填された導電
線条体11の配向が保持される樹脂であればよい。その
ためには、熱圧着温度での溶融粘度が高いことが好まし
く、溶融しないことが最も好ましい。即ち、熱圧着温度
で殆ど、あるいは全く流動しない樹脂が好ましく、具体
的には、硬化済みのエポキシ樹脂、フェノール樹脂、シ
リコーン樹脂等の熱または光硬化性樹脂、ポリイミド、
ポリアミドイミド、アラミド樹脂等、或いはポリスルホ
ン、ポリエーテルイミド、芳香族ポリエステル、フッ素
樹脂等の高融点の結晶性または高ガラス転移点を有する
非晶性の熱可塑性樹脂が挙げられる。特に、低弾性率で
あるシリコーン樹脂、シリコーン変性エポキシ樹脂、フ
ッ素樹脂等を使用すると応力緩和の点で有利であり、後
述の接着剤層の弾性率と同等以下であることが好まし
い。
The resin that can be used as the insulating film 12a of the core layer 12 may be any resin that maintains the orientation of the conductive filament 11 filled in the thickness direction during thermocompression bonding. For that purpose, it is preferable that the melt viscosity at the thermocompression bonding temperature is high, and it is most preferable that the melt viscosity is not melted. That is, a resin that hardly or completely does not flow at the thermocompression bonding temperature is preferable, and specifically, a cured epoxy resin, a phenol resin, a thermosetting resin such as a silicone resin, a photocurable resin, a polyimide,
Examples thereof include polyamide imide, aramid resin and the like, or amorphous thermoplastic resin having high melting point crystalline or high glass transition point such as polysulfone, polyether imide, aromatic polyester and fluororesin. In particular, it is advantageous to use a silicone resin, a silicone-modified epoxy resin, a fluororesin, or the like, which has a low elastic modulus, in terms of stress relaxation, and it is preferable that the elastic modulus is equal to or less than that of the adhesive layer described later.

【0020】前記コア層12を形成する絶縁フィルム1
2aの厚さ方向に充填される導電線条体11は特に限定
されない。例えば、銅、ニッケル、金、はんだ等の金
属、銀、銅、パラジウム等の金属粉をエポキシ樹脂等の
バインダー樹脂に配合した導電性ペースト、或いはポリ
チオフェン、ポリピロール、ポリアニリン等の導電性樹
脂が使用できるが、抵抗値が小さい金属が最も好まし
い。これらの導電材が絶縁フィルムの厚さ方向に充填さ
れた材料の製造方法は特に制限されない。予め開口され
た孔内にめっき、印刷等により導電材料を充填すること
もできるし、予め金属ワイヤを所定の間隔で並行配置し
た状態で樹脂を流し込み成形後、ワイヤの配向方向と垂
直な面で切断することによっても製造できる。
Insulating film 1 forming the core layer 12
The conductive filament 11 filled in the thickness direction of 2a is not particularly limited. For example, a conductive paste in which a metal powder such as copper, nickel, gold, or solder, a metal powder such as silver, copper, or palladium is mixed with a binder resin such as an epoxy resin, or a conductive resin such as polythiophene, polypyrrole, or polyaniline can be used. However, a metal having a low resistance value is most preferable. The method for producing the material in which these conductive materials are filled in the thickness direction of the insulating film is not particularly limited. It is also possible to fill the pre-opened holes with a conductive material by plating, printing, etc., or after casting the resin in a state where metal wires are arranged in parallel at a predetermined interval in advance, in a plane perpendicular to the wire orientation direction. It can also be manufactured by cutting.

【0021】前記導電線条体11が厚み方向に充填され
たコア層12の両面には、接着剤層13が設けられる。
熱圧着時にこの接着剤層13が溶融し、電子部品15、
16と一体化される。接着剤13としては、接続信頼性
が良好な熱硬化性樹脂を使用することが好ましい。具体
的には、エポキシ樹脂、シリコーン変性エポキシ樹脂、
シリコーン樹脂等が好ましい。これらの接着剤層には必
要に応じてシリカ粒子等のフィラーを配合することがで
きる。この場合、樹脂の弾性率が高くなり、応力緩和の
点で不利となるが、上述のコア層12を接着剤層13の
弾性率に比べて小さく、かつ厚くすることで、接続信頼
性の低下を抑制することができる。ここで、接着剤層1
3は電子部品表面を被覆する範囲でなるべく薄くするこ
とが好ましい。即ち、電子部品の電極高さを基板の反り
やバンプの高さのバラツキを考慮したなるべく低い高さ
とすることで、接着剤層13の厚み方向への温度サイク
ル処理に伴う変位を小さくすることができる。基板の材
質や半導体素子の大きさによりその最小高さは異なる。
なお、半導体パッケージを配線基板に実装する場合は封
止の必要はないため、接続部の補強機能があればよく、
半導体パッケージと配線基板との間には隙間があっても
使用可能である。
Adhesive layers 13 are provided on both surfaces of the core layer 12 filled with the conductive filaments 11 in the thickness direction.
This adhesive layer 13 melts during thermocompression bonding,
It is integrated with 16. As the adhesive 13, it is preferable to use a thermosetting resin having good connection reliability. Specifically, epoxy resin, silicone modified epoxy resin,
Silicone resin or the like is preferable. A filler such as silica particles can be blended in these adhesive layers as needed. In this case, the elastic modulus of the resin becomes high, which is disadvantageous in terms of stress relaxation. However, by making the core layer 12 smaller and thicker than the elastic modulus of the adhesive layer 13, the connection reliability decreases. Can be suppressed. Here, the adhesive layer 1
3 is preferably as thin as possible within the range of covering the surface of the electronic component. That is, by making the electrode height of the electronic component as low as possible in consideration of the warp of the substrate and the variation of the height of the bumps, the displacement of the adhesive layer 13 in the thickness direction due to the temperature cycle treatment can be reduced. it can. The minimum height differs depending on the material of the substrate and the size of the semiconductor element.
When mounting a semiconductor package on a wiring board, it is not necessary to seal it.
It can be used even if there is a gap between the semiconductor package and the wiring board.

【0022】導電線条体11は、コア層12の厚み方向
に充填されるが、コア層12の表面より突出させる必要
がある。熱圧着時にコア層12の両面に形成されている
接着剤層13が溶融して、導電線条体11表面と電子部
品のバンプ18とが接触するが、コア層12の表面と面
一あるいはより窪んでいると十分な接触が得られず安定
した接続が取れない。ここで、導電線条体11のコア層
12表面からの突出高さは、両面に形成した接着剤層1
3の厚みと同等以下、即ち導電線条体11の先端が接着
剤層13に埋設されていることが好ましい。導電線条体
11の先端の突出する高さより接着剤層13の厚みが薄
いと、電子部品との間に空隙が生じ接合不十分となる。
The conductive filament 11 is filled in the thickness direction of the core layer 12, but it is necessary to project it from the surface of the core layer 12. At the time of thermocompression bonding, the adhesive layers 13 formed on both surfaces of the core layer 12 are melted and the surface of the conductive wire 11 and the bumps 18 of the electronic component come into contact with each other. If it is dented, sufficient contact cannot be obtained and stable connection cannot be obtained. Here, the protruding height of the conductive filament 11 from the surface of the core layer 12 is the adhesive layer 1 formed on both sides.
It is preferable that the thickness is equal to or less than that of No. 3, that is, the tip of the conductive linear member 11 is embedded in the adhesive layer 13. If the thickness of the adhesive layer 13 is smaller than the protruding height of the tip of the conductive linear member 11, a gap is formed between the adhesive layer 13 and the electronic component, resulting in insufficient bonding.

【0023】導電線条体の直径は、接続する電子部品の
電極の形状に応じて任意に設定できる。図2に示したよ
うに、電極内に導電線条体が多数接触するように、微細
な径の導電線条体22を微細ピッチで配設してもよい
し、図3に示したように、半導体素子35のバンプ38
と導電線条体31と配線基板36の配線基板接続端子3
9とを1対1に対応させるように、電極と等ピッチで配
列させてもよい。後者の場合、接触面積はなるべく大き
くするため、導電線条体22の径を大きくかつ表面を平
滑にすることが好ましい。なお、導電線条体の断面は必
ずしも円型とする必要はなく、楕円型、多角形型でもよ
い。
The diameter of the conductive filament can be arbitrarily set according to the shape of the electrode of the electronic component to be connected. As shown in FIG. 2, the conductive filaments 22 having a fine diameter may be arranged at a fine pitch so that a large number of the conductive filaments come into contact with each other in the electrode, or as shown in FIG. , The bump 38 of the semiconductor element 35
Wiring board connection terminals 3 of the conductive wire strip 31 and the wiring board 36
The electrodes 9 and 9 may be arranged at equal pitches so that they correspond to each other one to one. In the latter case, since the contact area is made as large as possible, it is preferable that the diameter of the conductive filament 22 is large and the surface is smooth. The cross section of the conductive filament does not necessarily have to be circular, but may be elliptical or polygonal.

【0024】図1に示したように、異方性導電フィルム
10を用いた熱圧着により、導電線条体11と半導体チ
ップ15のアルミパッド17上に設けられたバンプ18
と配線基板16のパッド19とは直接接触し、その接触
を周りの接着剤13が硬化収縮することにより保持して
いる。この場合、温度サイクル処理により接着剤13が
劣化するにつれて保持力が低下しやすく、接続信頼性が
必ずしも十分でない。
As shown in FIG. 1, the bumps 18 are provided on the conductive wire 11 and the aluminum pads 17 of the semiconductor chip 15 by thermocompression bonding using the anisotropic conductive film 10.
And the pad 19 of the wiring board 16 are in direct contact with each other, and the contact is held by the surrounding adhesive 13 being cured and shrunk. In this case, the holding force is likely to decrease as the adhesive 13 deteriorates due to the temperature cycle treatment, and the connection reliability is not always sufficient.

【0025】接着剤層中に導電粒子を配合させることに
より接続信頼性を更に向上させることができる。図4に
その場合の異方性導電フィルム40の断面図およびこれ
を用いた半導体チップ45と配線基板46との接続断面
図の一例を示す。接着剤層43に変形可能な導電粒子4
4を配合した場合、導電線条体41と半導体チップ45
のアルミパッド47上に設けられたバンプ48および配
線基板46のパッド49の間に導電粒子44が変形した
状態で介在し、接着剤層43の保持力が緩和されても導
電粒子44の変形が復元することで、導電線条体41と
前記電子部品45、46との電気的接続が保持される。
導電粒子44としては、変形可能で熱圧着後も復元する
ものであれば特に制限されない。具体的には、ポリスチ
レン、アクリル樹脂等の周囲に金めっき処理された粒子
や、銀銅合金等の柔軟な金属粒子が挙げられる。導電粒
子径は電子部品のパッド形状に応じて任意に設定できる
が、通常3〜20μm程度であることが好ましく、より
好ましくは5〜10μmである。
By incorporating conductive particles into the adhesive layer, the connection reliability can be further improved. FIG. 4 shows an example of a cross-sectional view of the anisotropic conductive film 40 in that case and a connection cross-sectional view of the semiconductor chip 45 and the wiring board 46 using the anisotropic conductive film 40. Conductive particles 4 that can be transformed into the adhesive layer 43
4 is mixed, the conductive wire 41 and the semiconductor chip 45
The conductive particles 44 are interposed between the bumps 48 provided on the aluminum pads 47 and the pads 49 of the wiring board 46 in a deformed state, and the conductive particles 44 are not deformed even if the holding force of the adhesive layer 43 is relaxed. By restoring, the electrical connection between the conductive linear member 41 and the electronic components 45 and 46 is maintained.
The conductive particles 44 are not particularly limited as long as they are deformable and can be restored even after thermocompression bonding. Specific examples thereof include particles in which polystyrene, acrylic resin, etc. are gold-plated around, and soft metal particles such as silver-copper alloy. The diameter of the conductive particles can be arbitrarily set according to the pad shape of the electronic component, but is usually preferably about 3 to 20 μm, more preferably 5 to 10 μm.

【0026】導電線条体41の径は、接続する電子部品
の電極の形状に応じて任意に設定できる。図5に示した
ように、電極面積当たりに導電線条体を多数対応させる
ように微細な径の導電線条体51を微細ピッチで配設し
てもよいし、図6に示したように、電極と導電線条体6
1とを1対1に対応させるように電極と等ピッチで配列
させてもよい。前者の場合、導電線条体51の直径は導
電粒子54の直径の1/3以下にすることが好ましい。
これ以上であると、導電粒子54が熱圧着により扁平に
なっても導電粒子と接触する導電線条体先端数が安定し
た接続が得られるとされる5個以上にすることが困難で
ある。後者の場合、接触面積はなるべく大きくするた
め、導電線条体61の直径を大きくかつその表面を平滑
にすることが好ましい。ここで、導電線条体61の直径
は導電粒子64の直径の3倍以上とすることが好まし
い。導電線条体61の直径が導電粒子64の直径の3倍
未満であると5個以上載せることは甚だ困難である。な
お、導電線条体表面51、61はコア層52、62より
突出している必然性はない。コア層と面一あるいは導電
粒子径に比べて小さい範囲でコア層表面より窪んでいて
もよい。なお、導電線条体の断面は必ずしも円型とする
必要はなく、楕円型、多角形型でもよい。
The diameter of the conductive linear member 41 can be arbitrarily set according to the shape of the electrode of the electronic component to be connected. As shown in FIG. 5, the conductive wire strips 51 having a fine diameter may be arranged at a fine pitch so that a large number of conductive wire strips may correspond to the electrode area, or as shown in FIG. , Electrode and conductive wire 6
The electrodes and the electrodes may be arranged at equal pitches so as to have a one-to-one correspondence. In the former case, the diameter of the conductive filament 51 is preferably 1/3 or less of the diameter of the conductive particles 54.
If it is more than this, even if the conductive particles 54 are flattened by thermocompression bonding, it is difficult to make the number of the conductive wire filaments in contact with the conductive particles 5 or more, which is considered to be stable. In the latter case, since the contact area is made as large as possible, it is preferable to make the diameter of the conductive linear member 61 large and make its surface smooth. Here, it is preferable that the diameter of the conductive filaments 61 be three times or more the diameter of the conductive particles 64. If the diameter of the conductive filaments 61 is less than 3 times the diameter of the conductive particles 64, it is extremely difficult to mount five or more. It is not necessary that the surfaces 51, 61 of the conductive filaments protrude from the core layers 52, 62. It may be flush with the core layer or may be recessed from the surface of the core layer in a range smaller than the diameter of the conductive particles. The cross section of the conductive filament does not necessarily have to be circular, but may be elliptical or polygonal.

【0027】次に、本発明の実施例を図面を用いて説明
する。なお、本発明は以下の実施例に示した内容に限定
されるものではない。
Next, an embodiment of the present invention will be described with reference to the drawings. The present invention is not name limited to the contents shown in the following examples.

【0028】(実施例2) 方性導電フィルムのコア層はポリイミドフィルム10
0μm厚で、これに設けられた40μm径の孔内に銅が
電解めっきにより充填され、その両端部はニッケル/金
処理されている。この導電線条体は120μmピッチで
配列されている。そして、この実施例の異方性導電フィ
ルムは、コア層両面に平均粒径0.2μmのシリカ粒子
と表面にニッケル/金メッキ処理された平均粒径5μm
のプラスチック粒子を均一分散させた厚み15μmのジ
シクロペンタジエン変性フェノールノボラック骨格を有
するBステージ状のエポキシ樹脂接着剤層を配した3層
構成となっており、コア層の方が接着剤より低弾性率と
なっている。導体表面はコア層表面と概ね面一で平滑で
ある。半導体素子は10mm角で75μm角のアルミパ
ッド上に金めっきバンプが形成された120μmピッチ
ペリフェラル仕様と なっている。ここで、金めっきバン
プの形状は、表面積が70μm角、めっき厚みが10μ
mである。一方、配線基板は、セミアディティブ法で形
成されたFR4をコア材とするビルドアップ基板であ
り、その表層の接続端子は、厚み18μmの感光性めっ
きレジスト層に、露光により設けた開口部に電解銅めっ
きを10μm、続いて該銅めっき表面に電解ニッケル、
金めっき処理を施すことにより、最終的に15μm厚、
75μm角の凸状部を有するものである。前記異方性導
電フィルムを配線基板上に仮圧着し、半導体素子と配線
基板を目合わせ後210℃で10秒間熱圧着し、半導体
素子と配線基板を隙間無く一体化させた。
[0028](ActuallyExample2) Difference The core layer of the anisotropic conductive film is the polyimide film 10
The thickness is 0 μm, and the copper in the 40 μm diameter hole
Filled by electrolytic plating, both ends of which are nickel / gold
Is being processed. This conductive filament is 120μm pitch
It is arranged. Then, the anisotropic conductive film of this example is
Rum is silica particles with an average particle size of 0.2 μm on both sides of the core layer.
And nickel / gold plated average particle size 5μm
With a thickness of 15 μm, in which the plastic particles of
Cyclopentadiene modified phenol novolac skeleton
3 layers with B-stage epoxy resin adhesive layer
The core layer has a lower elastic modulus than the adhesive.
Has become. The conductor surface is almost flush with the core layer surface and smooth
is there.The semiconductor element is a 10 mm square, 75 μm square aluminum package.
120μm pitch with gold-plated bumps on the pad
With peripheral specifications Has become. Where the gold-plated van
The surface area is 70μm square and the plating thickness is 10μ.
m. On the other hand, the wiring board is formed by the semi-additive method.
It is a built-up board that uses FR4 made as a core material
The surface of the connection terminals is a photosensitive metal layer with a thickness of 18 μm.
The copper layer on the opening provided by exposure on the resist layer.
10 μm, then electrolytic nickel on the copper-plated surface,
By applying gold plating, the final thickness is 15 μm,
It has a convex portion of 75 μm square.The anisotropic guide
Wiring the semiconductor film by temporarily crimping the electrical film onto the wiring board
After aligning the substrates, thermocompression bond them at 210 ℃ for 10 seconds,
The element and wiring board were integrated without any gap.

【0029】得られた半導体装置20個を温度サイクル
処理(−40℃/125℃,各30分間)600サイク
ル実施したが、不良は発生しなかった。 (実施例3) 方性導電フィルムのコア層はシリコーン変性エポキシ
樹脂硬化済みシート150μm厚で、これに1μm径の
金がコア層表裏より各々1μm突出した金線条体が概ね
3μmピッチで充填されている。そしてこの異方性導電
フィルムのコア層両面に平均粒径0.2μmのシリカ粒
子と表面にニッケル/金メッキ処理された平均粒径10
μmのプラスチック粒子を均一分散させた厚み15μm
のナフタレン骨格を有するBステージ状のエポキシ樹脂
接着剤層を配した3層構成となっており、コア層の方が
接着剤より低弾性率となっている。半導体素子は10m
m角で90μm角のアルミパッド上に金めっきバンプが
形成された120μmピッチペリフェラル仕様となって
いる。ここで、金めっきバンプの形状は、表面積が80
μm角、めっき厚みが10μmである。一方、配線基板
は、セミアディティブ法で形成されたFR4をコア材と
するビルドアップ基板であり、その表層の接続端子は、
厚み20μmの感光性めっきレジスト層に露光により設
けた開口部に、電解銅めっきを10μm、続いて該銅め
っき表面に電解ニッケル、金めっき処理を施すことによ
り、最終的に15μm厚、75μm角の凸状部を有す
る。前記異方性導電フィルムを配線基板上に仮圧着し、
半導体素子と配線基板を目合わせ後200℃で10秒間
熱圧着し、半導体素子と配線基板を隙間無く一体化させ
た。
20 semiconductor devices thus obtained are subjected to temperature cycle
Treatment (-40 ℃ / 125 ℃, 30 minutes each) 600 cycles
However, no defects occurred. (Example3) Difference The core layer of the anisotropic conductive film is silicone modified epoxy
Resin-cured sheet with a thickness of 150 μm, with a diameter of 1 μm
The gold filaments with gold protruding from the front and back of the core layer by 1 μm
It is filled with a pitch of 3 μm. And this anisotropic conductivity
Silica particles with an average particle size of 0.2 μm on both sides of the core layer of the film
Average particle size of nickel / gold plated on the child and surface 10
15 μm thickness with uniformly dispersed plastic particles of μm
B-stage epoxy resin having a naphthalene skeleton
It has a three-layer structure with an adhesive layer, and the core layer is
It has a lower elastic modulus than the adhesive. Semiconductor element is 10m
Gold-plated bumps on 90 μm square aluminum pads
The formed 120μm pitch peripheral specifications
There is. Here, the surface area of the gold-plated bump is 80
The μm square and the plating thickness are 10 μm. On the other hand, wiring board
Uses FR4 formed by the semi-additive method as the core material.
It is a build-up board, and the connection terminals on its surface are
The photosensitive plating resist layer with a thickness of 20 μm is provided by exposure.
10 μm of electrolytic copper plating on the opening, and then the copper
By applying electrolytic nickel or gold plating treatment to the plated surface
And finally has a convex portion with a thickness of 15 μm and a square of 75 μm.
It Temporarily pressing the anisotropic conductive film on a wiring board,
After aligning the semiconductor element and the wiring board, at 200 ℃ for 10 seconds
Thermocompression bonding to integrate the semiconductor element and the wiring board without gaps
It was

【0030】得られた半導体装置20個を温度サイクル
処理(−40℃/125℃,各30分間)600サイク
ル実施したが、不良は発生しなかった。
The 20 semiconductor devices thus obtained were subjected to a temperature cycle treatment (-40 ° C./125° C., 30 minutes each) for 600 cycles, but no defects occurred .

【0031】[0031]

【0032】[0032]

【0033】(比較例4) 実施例2で使用した異方性導電フィルムのコア層に充填
された導電線条体の径を12μmに変更した以外は全く
同一で半導体素子と配線基板を隙間無く一体化させた。
[0033] (ratio Comparative Examples 4) gap between the semiconductor element and the wiring board in exactly the same except that the diameter of the core layer filled conductive striatum of the anisotropic conductive film used in Example 2 was changed to 12μm Integrated without.

【0034】得られた半導体装置20個を温度サイクル
処理(−40℃/125℃,各30分間)したところ、
200サイクルより不良が発生し600サイクルで18
個不良となった。 (比較例5) 実施例3で使用した異方性導電フィルムのコア層に充填
された導電線条体の径を3μm、5μmピッチに変更し
た以外は全く同一で半導体素子と配線基板を隙間無く一
体化させた。
The 20 semiconductor devices thus obtained were subjected to a temperature cycle treatment (-40 ° C./125° C., 30 minutes each),
Defects occur after 200 cycles and 18 after 600 cycles
It became an individual defect. (Comparative Example 5) Except that the diameter of the conductive filaments filled in the core layer of the anisotropic conductive film used in Example 3 was changed to 3 μm and 5 μm pitch, the semiconductor element and the wiring board were completely the same. Integrated.

【0035】得られた半導体装置20個を温度サイクル
処理(−40℃/125℃,各30分間)したところ、
200サイクルより不良が発生し600サイクルで全て
不良となった。 (発明の他の実施例) 上述したように半導体素子を配線基板に接続する場合
は、半導体素子と配線基板の間は隙間無く樹脂が充填さ
れていることが使用環境からの保護の点で好ましいが、
チップサイズパッケージのような半導体素子面が既に封
止されているパッケージを配線基板に実装する場合は、
半導体パッケージと配線基板の間に空隙があってもよ
い。図7に示したように、チップサイズパッケージ74
のはんだバンプ78が、異方性導電フィルム70の導電
線条体71と接触し、接着剤73がはんだバンプ78の
先端周辺部のみに被覆され補強されていてもよい。ま
た、異方性導電フィルム70の半導体パッケージ74側
の接着剤層として熱可塑性樹脂を使用すると、ハンダバ
ンプ78と接着剤層73がともに溶融するためリペアが
可能である。この場合、はんだの融点より熱可塑性樹脂
の溶融温度が高いことが好ましい。はんだバンプ78の
融点以上、熱可塑性樹脂の溶融温度以下でリフローする
ことにより、はんだバンプと導電線条体は金属結合し、
更に高い接続信頼性が得られる。なお、接着剤層に導電
粒子を配合することもできることは言うまでもない。
The 20 semiconductor devices thus obtained were subjected to a temperature cycle treatment (-40 ° C./125° C., 30 minutes each),
A defect was generated from 200 cycles, and all were defective at 600 cycles. (Other embodiment of the invention) When connecting the semiconductor element to the wiring board as described above, it is preferable that the resin is filled without a gap between the semiconductor element and the wiring board from the viewpoint of protection from the use environment. But,
When mounting a package, such as a chip size package, where the semiconductor element surface is already sealed, on the wiring board,
There may be a gap between the semiconductor package and the wiring board. As shown in FIG. 7, the chip size package 74
The solder bumps 78 may be in contact with the conductive linear members 71 of the anisotropic conductive film 70, and the adhesive 73 may be coated and reinforced only on the tip peripheral portions of the solder bumps 78. When a thermoplastic resin is used as the adhesive layer on the side of the semiconductor package 74 of the anisotropic conductive film 70, the solder bumps 78 and the adhesive layer 73 are melted together so that repair is possible. In this case, it is preferable that the melting temperature of the thermoplastic resin is higher than the melting point of the solder. By reflowing above the melting point of the solder bumps 78 and below the melting temperature of the thermoplastic resin, the solder bumps and the conductive filaments are metal-bonded,
Higher connection reliability can be obtained. Needless to say, conductive particles can be added to the adhesive layer.

【0036】このように、本発明に係わる異方性導電フ
ィルムは、絶縁フィルムの厚み方向に導電線条体が充填
されているコア層と、このコア層の両面に設けられ、熱
により溶融する接着剤層とからなり、熱圧着により厚み
方向にのみ導電性を発現することを特徴とするものであ
り、叉、前記導電線条体が絶縁フィルムの厚さ方向に貫
通しており、その表面が絶縁フィルム表面より突出し、
且つ前記導電線条体が前記コア層の両面に設けられた接
着剤層に埋設されていることを特徴とするものであり、
叉、前記熱により溶融する接着剤層中に導電粒子が均一
に分散されていることを特徴とするものであり、叉、前
記導電線条体が絶縁フィルムの厚さ方向に貫通してお
り、且つ前記絶縁フィルムの表面が平滑であることを特
徴とするものであり、叉、前記導電線条体の径が、前記
接着剤層中に均一に分散されている導電粒子径の3倍以
上であることを特徴とするものであり、叉、前記導電線
条体が、前記接着剤層中に均一に分散されている導電粒
子径の1/3より小さいピッチで配列されていることを
特徴とするものであり、叉、前記コア層が、熱圧着温度
で溶融しないことを特徴とするものであり、叉、前記接
着剤層が、熱硬化性樹脂であることを特徴とするもので
あり、叉、前記接着剤層が、熱可塑性樹脂であることを
特徴とするものであり、叉、前記コア層の厚みが、その
両面に設けられた前記接着剤層の厚みより大きいことを
特徴とするものであり、叉、前記接着剤層の厚みが、接
着剤層中に均一に分散されている導電粒子径より大きい
ことを特徴とするものであり、叉、前記コア層の引張弾
性率が、その両側に設けられた前記接着剤層の引張弾性
率より小さいことを特徴とするものである。
As described above, the anisotropic conductive film according to the present invention is provided with the core layer filled with the conductive filaments in the thickness direction of the insulating film and both surfaces of this core layer, and is melted by heat. It is characterized in that it consists of an adhesive layer, and develops conductivity only in the thickness direction by thermocompression bonding. Further, the conductive wire body penetrates in the thickness direction of the insulating film, and its surface Is projected from the surface of the insulating film,
And, the conductive wire is embedded in an adhesive layer provided on both surfaces of the core layer,
Further, it is characterized in that the conductive particles are uniformly dispersed in the adhesive layer that is melted by the heat, fork, the conductive filaments penetrate in the thickness direction of the insulating film, In addition, the surface of the insulating film is smooth, and the diameter of the conductive filaments is 3 times or more of the diameter of the conductive particles uniformly dispersed in the adhesive layer. In addition, the conductive filaments are arranged at a pitch smaller than 1/3 of the diameter of the conductive particles uniformly dispersed in the adhesive layer. The core layer is characterized in that it does not melt at thermocompression bonding temperature, and the adhesive layer is characterized in that it is a thermosetting resin, Further, the adhesive layer is made of a thermoplastic resin. The thickness of the core layer is larger than the thickness of the adhesive layer provided on both sides of the core layer, and the thickness of the adhesive layer is uniform in the adhesive layer. The tensile elastic modulus of the core layer is larger than the diameter of the conductive particles dispersed, and the tensile elastic modulus of the core layer is smaller than the tensile elastic modulus of the adhesive layers provided on both sides of the core layer. It is a thing.

【0037】叉、本発明に係わる半導体装置は、2つの
電子部品が異方性導電フィルムを介して電気的に接続さ
れた半導体装置であって、前記2つの電子部品間に、絶
縁フィルムの厚み方向に導電線条体が充填されているコ
ア層と、このコア層の両面に設けられ、熱により溶融す
る接着剤層とからなる異方性導電フィルムを介在せし
め、前記コア層である絶縁フィルムの厚み方向に充填さ
れている導電線条体の両端が前記2つの電子部品の夫々
の電極に接触し、前記電子部品の表面と異方性導電フィ
ルムとは、コア層の両面に設けられた接着剤層で各々固
着一体化されることを特徴とするものであり、叉、前記
熱により溶融する接着剤層中に導電粒子が均一に分散さ
れていることを特徴とするものであり、叉、前記2つの
電子部品の一方が半導体素子叉は半導体パッケージであ
り、他方の電子部品が配線基板であることを特徴とする
ものであり、叉、2つの電子部品の一方が半導体パッケ
ージ、他方の電子部品が配線基板であり、半導体パッケ
ージと異方性導電フィルムの電気的接続部以外に隙間が
あることを特徴とするものである。叉、本発明に係わる
半導体装置の製造方法は、2つの電子部品が異方性導電
フィルムを介して電気的に接続された半導体装置の製造
方法であって、前記2つの電子部品間に、絶縁フィルム
の厚み方向に導電線条体が充填されているコア層と、こ
のコア層の両面に設けられ、熱により溶融する接着剤層
とからなる異方性導電フィルムを介在せしめる工程と、
前記異方性導電フィルムを加熱することで、前記コア層
である絶縁フィルムの厚み方向に充填されている導電線
条体の両端を前記2つの電子部品の夫々の電極に接触せ
しめると共に、前記接着剤層を溶融せしめる工程と、前
記接着剤層を固化せしめることで前記2つの電子部品を
各々固着一体化する工程とを含むことを特徴とするもの
であり、叉、前記熱により溶融する接着剤層中に均一に
分散された導電粒子を介して、前記コア層である絶縁フ
ィルムの厚み方向に充填されている導電線条体の両端
を、前記2つの電子部品の夫々の電極に接触せしめるこ
とを特徴とするものである。
Further, the semiconductor device according to the present invention is a semiconductor device in which two electronic parts are electrically connected via an anisotropic conductive film, and the thickness of the insulating film is between the two electronic parts. Insulating film which is the core layer with an anisotropic conductive film consisting of a core layer filled with conductive filaments in the direction and adhesive layers provided on both sides of the core layer and melted by heat. Both ends of the conductive filament that is filled in the thickness direction of each contact the respective electrodes of the two electronic components, and the surface of the electronic component and the anisotropic conductive film are provided on both sides of the core layer. The adhesive layer is characterized in that they are fixed and integrated with each other, and that the conductive particles are uniformly dispersed in the adhesive layer that is melted by heat. , One of the two electronic components is half The body element or the semiconductor package is characterized in that the other electronic component is a wiring board, and one of the two electronic components is a semiconductor package and the other electronic component is a wiring board. It is characterized in that there is a gap other than the electrical connection between the package and the anisotropic conductive film. Further, a method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device in which two electronic parts are electrically connected via an anisotropic conductive film, and the two electronic parts are insulated from each other. A core layer filled with a conductive filament in the thickness direction of the film, and a step of interposing an anisotropic conductive film consisting of an adhesive layer provided on both surfaces of the core layer and melted by heat,
By heating the anisotropic conductive film, both ends of the conductive filaments filled in the thickness direction of the insulating film that is the core layer are brought into contact with the respective electrodes of the two electronic components, and the adhesion is performed. It is characterized by including a step of melting the agent layer and a step of fixing and integrating the two electronic components by solidifying the adhesive layer, and further, the adhesive melted by the heat. Both ends of the conductive filament filled in the thickness direction of the insulating film, which is the core layer, are brought into contact with the respective electrodes of the two electronic components through the conductive particles uniformly dispersed in the layer. It is characterized by.

【0038】[0038]

【発明の効果】本発明の異方性導電フィルムを使用する
ことで良好な接続信頼性を有する半導体装置が提供でき
る。その理由は異方性導電フィルムを3層構成としてい
ることによる。即ち、絶縁フィルムコア層として熱圧着
温度で溶融しない樹脂を使用することにより、厚み方向
に充填された導電線条体の配向が乱れることがなく、
叉、絶縁フィルムコア層の両側に熱圧着温度で溶融する
接着剤を配することにより、熱圧着により電子部品とコ
ア層は良好に接着し、これにより、電子部品の電極表面
とコア層の厚み方向に充填された導電線条体の接触状態
が保持される。
EFFECT OF THE INVENTION By using the anisotropic conductive film of the present invention, a semiconductor device having good connection reliability can be provided. The reason is that the anisotropic conductive film has a three-layer structure. That is, by using a resin that does not melt at the thermocompression bonding temperature as the insulating film core layer, the orientation of the conductive filament filled in the thickness direction is not disturbed,
In addition, by disposing an adhesive that melts at the thermocompression bonding temperature on both sides of the insulating film core layer, the electronic component and the core layer are well adhered by thermocompression bonding, which results in the thickness of the electrode surface of the electronic component and the core layer thickness. The contact state of the conductive filament filled in the direction is maintained.

【0039】また、接着剤層中に加圧により変形可能な
導電粒子を配することで、電子部品の電極表面とコア層
の厚み方向に充填された導電線条体の間に変形された導
電粒子が介在され、温度サイクル処理に応じて導電粒子
が変形追随する。ここで、コア層として接着剤層より厚
く、かつ低弾性の樹脂を使用することにより、接続部近
傍に発生する内部応力を低減することができる。
Further, by disposing conductive particles that can be deformed by pressure in the adhesive layer, the deformed conductivity between the electrode surface of the electronic component and the conductive filament filled in the thickness direction of the core layer. The particles are interposed, and the conductive particles follow the deformation in accordance with the temperature cycle treatment. Here, by using a resin that is thicker than the adhesive layer and has a low elasticity as the core layer, it is possible to reduce internal stress generated in the vicinity of the connection portion.

【0040】また、接着剤として、熱可塑性樹脂を使用
すれば、半導体パッケージの配線基板への接続信頼性が
向上し、かつリペア可能になる。
If a thermoplastic resin is used as the adhesive, the reliability of connection of the semiconductor package to the wiring board is improved and repair is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体例を示す異方性導電フィルムおよ
びこれを用いた半導体装置の断面図である。
FIG. 1 is a cross-sectional view of an anisotropic conductive film showing a specific example of the present invention and a semiconductor device using the same.

【図2】半導体装置の電極と異方性導電フィルムのコア
層に充填された導電線条体との対応状態を説明する図で
ある。
FIG. 2 is a diagram illustrating a corresponding state of an electrode of a semiconductor device and a conductive filament filled in a core layer of an anisotropic conductive film.

【図3】半導体装置の電極と異方性導電フィルムのコア
層に充填された導電線条体との他の対応状態を説明する
図である。
FIG. 3 is a diagram illustrating another corresponding state of the electrodes of the semiconductor device and the conductive filaments filled in the core layer of the anisotropic conductive film.

【図4】本発明の他の具体例を示す異方性導電フィルム
およびこれを用いた半導体装置の断面図である。
FIG. 4 is a cross-sectional view of an anisotropic conductive film and a semiconductor device using the same showing another specific example of the present invention.

【図5】半導体装置の電極と異方性導電フィルムのコア
層に充填された導電線条体との対応状態を説明する図で
ある。
FIG. 5 is a diagram illustrating a corresponding state of an electrode of a semiconductor device and a conductive filament filled in a core layer of an anisotropic conductive film.

【図6】半導体装置の電極と異方性導電フィルムのコア
層に充填された導電線条体との他の対応状態を説明する
図である。
FIG. 6 is a diagram illustrating another corresponding state of the electrodes of the semiconductor device and the conductive filaments filled in the core layer of the anisotropic conductive film.

【図7】本発明の別の具体例を示す図である。FIG. 7 is a diagram showing another specific example of the present invention.

【図8】従来例を説明する図である。FIG. 8 is a diagram illustrating a conventional example.

【図9】従来例を説明する図である。FIG. 9 is a diagram illustrating a conventional example.

【符号の説明】[Explanation of symbols]

異方性導電フィルム:10、20、30、40、50、
60、70、80、90 導電線条体:11、21、31、41、51、61、7
1、91 コア材:12、22、32、42、52、62、72 接着剤層:13、23、33、43、53、63、73 導電粒子:44、54、64、81 半導体素子:15、25、35、45、55、65、7
5、85、95 配線基板:16、26、36、46、56、66、7
6、86、96 半導体素子接続端子(アルミニウムパッド):17、2
7、37、47、57、67、87、97 金属突起(バンプ):18、28、38、48、58、
68、88、98 配線基板接続端子:19、29、39、49、59、6
9、79、89、99 半導体パッケージ:74 はんだバンプ:78 バインダー樹脂:82、92 絶縁フィルム:12a
Anisotropic conductive film: 10, 20, 30, 40, 50,
60, 70, 80, 90 Conductive filaments: 11, 21, 31, 41, 51, 61, 7
1, 91 Core material: 12, 22, 32, 42, 52, 62, 72 Adhesive layer: 13, 23, 33, 43, 53, 63, 73 Conductive particles: 44, 54, 64, 81 Semiconductor element: 15 , 25, 35, 45, 55, 65, 7
5, 85, 95 Wiring board: 16, 26, 36, 46, 56, 66, 7
6, 86, 96 Semiconductor element connection terminals (aluminum pad): 17, 2
7, 37, 47, 57, 67, 87, 97 Metal protrusions (bumps): 18, 28, 38, 48, 58,
68, 88, 98 Wiring board connection terminals: 19, 29, 39, 49, 59, 6
9, 79, 89, 99 Semiconductor package: 74 Solder bump: 78 Binder resin: 82, 92 Insulating film: 12a

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H05K 3/32 H05K 3/32 B (58)調査した分野(Int.Cl.7,DB名) H01B 5/16 H01B 1/20 H01L 21/60 311 H01L 23/32 H01R 11/01 501 H05K 3/32 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H05K 3/32 H05K 3/32 B (58) Fields investigated (Int.Cl. 7 , DB name) H01B 5/16 H01B 1 / 20 H01L 21/60 311 H01L 23/32 H01R 11/01 501 H05K 3/32

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁フィルムの厚み方向に、その表面を
平滑にした導電線条体を充填せしめた絶縁性を有するコ
ア層と、このコア層の両面に設けられ、熱により溶融す
る接着剤層と、前記接着剤層内に均一に分散せしめた変
形可能な導電粒子とからなり、前記導電線条体が前記コ
ア層の厚さ方向に貫通しており、その表面がコア層表面
より突出しており、且つ前記導電線条体が前記コア層の
両面に設けられた接着剤層に埋設され、熱圧着により厚
み方向にのみ導電性を発現するように構成すると共に、
前記導電線条体の径が、前記導電粒子径の3倍以上であ
ことを特徴とする異方性導電フィルム。
1. An insulating core layer filled with a conductive filament whose surface is smoothed in the thickness direction of an insulating film, and an adhesive layer provided on both sides of the core layer and melted by heat. And a deformable conductive particle uniformly dispersed in the adhesive layer, the conductive filament penetrates in the thickness direction of the core layer, the surface of which protrudes from the core layer surface. And the conductive filaments are embedded in an adhesive layer provided on both surfaces of the core layer, and configured to develop conductivity only in the thickness direction by thermocompression bonding ,
The diameter of the conductive filament is 3 times or more the diameter of the conductive particles.
Anisotropic conductive film characterized by that.
【請求項2】 絶縁フィルムの厚み方向に、その表面を
平滑にした導電線条体を充填せしめた絶縁性を有するコ
ア層と、このコア層の両面に設けられ、熱により溶融す
る接着剤層と、前記接着剤層内に均一に分散せしめた変
形可能な導電粒子とからなり、前記導電線条体が前記コ
ア層の厚さ方向に貫通しており、その表面がコア層表面
より突出しており、且つ前記導電線条体が前記コア層の
両面に設けられた接着剤層に埋設され、熱圧着により厚
み方向にのみ導電性を発現するように構成すると共に、
前記導電線条体が、前記導電粒子径の1/3より小さい
ピッチで配列されていることを特徴とする異方性導電フ
ィルム。
2. The surface of the insulating film in the thickness direction
An insulating core filled with a smooth conductive wire.
A layer and both sides of this core layer are melted by heat
Adhesive layer and the dispersion that is evenly dispersed in the adhesive layer.
Shapeable conductive particles, and the conductive filaments are
A penetrates in the thickness direction of the layer, and the surface is the core layer surface
More protruding, and the conductive filaments of the core layer
It is embedded in the adhesive layer provided on both sides and thickened by thermocompression bonding.
In addition to being configured to develop conductivity only in the viewing direction,
The conductive filament is smaller than 1/3 of the conductive particle diameter.
Anisotropic conductive films characterized by being arranged at a pitch
Film.
【請求項3】 前記コア層が、熱圧着する時の温度で溶
融しないことを特徴とする請求項1又は2の何れかに記
載の異方性導電フィルム。
3. The core layer melts at the temperature at which thermocompression bonding is performed.
It does not melt, It writes in any one of Claim 1 or 2 characterized by the above-mentioned.
Anisotropic conductive film.
【請求項4】 前記接着剤層が、熱硬化性樹脂であるこ
とを特徴とする請求項1乃至3の何れかに記載の異方性
導電フィルム。
4. The adhesive layer is a thermosetting resin.
Anisotropy according to any one of claims 1 to 3, characterized in that
Conductive film.
【請求項5】 前記接着剤層が、熱可塑性樹脂であるこ
とを特徴とする請求項1乃至3の何れかに記載の異方性
導電フィルム。
5. The adhesive layer is a thermoplastic resin.
Anisotropy according to any one of claims 1 to 3, characterized in that
Conductive film.
【請求項6】 前記コア層の厚みが、その両面に設けら
れた前記接着剤層の厚みより大きいことを特徴とする請
求項1乃至5の何れかに記載の異方性導電フィルム。
6. The thickness of the core layer is provided on both sides thereof.
Is larger than the thickness of the adhesive layer
The anisotropic conductive film according to any one of claims 1 to 5.
【請求項7】 前記接着剤層の厚みが、前記導電粒子径
より大きいことを特徴とする請求項1乃至6の何れかに
記載の異方性導電フィルム。
7. The thickness of the adhesive layer is the diameter of the conductive particles.
It is larger than any one of Claim 1 thru | or 6 characterized by the above-mentioned.
The anisotropic conductive film described.
【請求項8】 前記コア層の引張弾性率が、その両側に
設けられた前記接着剤層の引張弾性率より小さいことを
特徴とする請求項1乃至7の何れかに記載の異方性導電
フィルム。
8. The core layer has tensile elastic moduli on both sides thereof.
Being smaller than the tensile elastic modulus of the adhesive layer provided
The anisotropic conductive material according to any one of claims 1 to 7.
the film.
【請求項9】 2つの電子部品が異方性導電フィルムを
介して電気的に接続された半導体装置であって、 前記2つの電子部品間に、絶縁フィルムの厚み方向に、
その表面を平滑にした導電線条体を充填せしめた絶縁性
を有するコア層と、このコア層の両面に設けられ、熱に
より溶融する接着剤層と、前記接着剤層内に均一に分散
せしめた変形可能な導電粒子とからなり、前記導電線条
体が前記コア層の厚さ方向に貫通しており、その表面が
コア層表面より突出しており、且つ前記導電線条体が前
記コア層の両面に設けられた接着剤層に埋設されている
異方性導電フィルムを介在せしめ、前記コア層である絶
縁フィルムの厚み方向に充填されている導電線条体の両
端が、前記導電粒子を介して、前記2つの電子部品の夫
々の電極に接触し、前記電子部品の表面と異方性導電フ
ィルムとは、コア層の両面に設けられた接着剤層で各々
固着一体化されるように構成すると共に、前記導電線条
体の径が、前記導電粒子径の3倍以上であることを特徴
とする半導体装置。
9.Two electronic parts use anisotropic conductive film
A semiconductor device electrically connected via Between the two electronic components, in the thickness direction of the insulating film,
Insulating property filled with conductive filaments whose surface is smooth
Is provided on both sides of the core layer having a
An adhesive layer that melts better and is evenly dispersed in the adhesive layer
The conductive wire comprises a deformable conductive particle
The body penetrates in the thickness direction of the core layer, and its surface is
It protrudes from the surface of the core layer, and the conductive wire is
Embedded in the adhesive layer provided on both sides of the core layer
With an anisotropic conductive film interposed, the core layer is insulated.
Both of the conductive filaments filled in the thickness direction of the edge film
The ends of the two electronic components are connected to each other via the conductive particles.
Contacting the various electrodes and contacting the surface of the electronic component and the anisotropic conductive film.
The film is an adhesive layer provided on both sides of the core layer.
The conductive wire is configured so as to be fixedly integrated.
The diameter of the body is three times or more the diameter of the conductive particles
Semiconductor device.
【請求項10】 前記2つの電子部品の一方が半導体素
子叉は半導体パッケージであり、他方の電子部品が配線
基板であることを特徴とする請求項9記載の半導体装
置。
10. One of the two electronic components is a semiconductor element.
The fork is a semiconductor package and the other electronic component is the wiring
The semiconductor device according to claim 9, which is a substrate.
Place
【請求項11】 2つの電子部品の一方が半導体パッケ
ージ、他方の電子部品が配線基板であり、半導体パッケ
ージと異方性導電フィルムの電気的接続部以外に隙間が
あることを特徴とする請求項9記載の半導体装置。
11. One of the two electronic components is a semiconductor package.
, The other electronic component is the wiring board, and the semiconductor package
Gaps other than the electrical connection between the
The semiconductor device according to claim 9, wherein the semiconductor device is present.
【請求項12】 2つの電子部品が異方性導電フィルム
を介して電気的に接続された半導体装置の製造方法であ
って、 前記2つの電子部品間に、絶縁フィルムの厚み方向に、
その表面を平滑にした導電線条体を充填せしめた絶縁性
を有するコア層と、このコア層の両面に設けられ、熱に
より溶融する接着剤層と、前記接着剤層内に均一に分散
せしめた変形可 能な導電粒子とからなり、前記導電線条
体が前記コア層の厚さ方向に貫通しており、その表面が
コア層表面より突出しており、且つ前記導電線条体が前
記コア層の両面に設けられた接着剤層に埋設されている
異方性導電フィルムを介在せしめる工程と、 前記異方性導電フィルムを加熱することで、前記接着剤
層を溶融せしめると共に、前記コア層である絶縁フィル
ムの厚み方向に充填されている導電線条体の両端を、前
記導電粒子を介して、前記2つの電子部品の夫々の電極
に接触せしめる工程と、 前記接着剤層を固化せしめることで前記2つの電子部品
を各々固着一体化せしめる工程と、 を含み、 前記導電線条体の径が、前記導電粒子径の3倍以上であ
ることを特徴とする半導体装置の製造方法。
12. The method according to claim 12,Two electronic parts are anisotropic conductive films
A method of manufacturing a semiconductor device electrically connected via
I mean Between the two electronic components, in the thickness direction of the insulating film,
Insulating property filled with conductive filaments whose surface is smooth
Is provided on both sides of the core layer having a
An adhesive layer that melts better and is evenly dispersed in the adhesive layer
Possible deformation And the conductive wire
The body penetrates in the thickness direction of the core layer, and its surface is
It protrudes from the surface of the core layer, and the conductive wire is
Embedded in the adhesive layer provided on both sides of the core layer
A step of interposing an anisotropic conductive film, By heating the anisotropic conductive film, the adhesive
The layer is melted and at the same time the core layer is an insulating fill.
Set both ends of the conductive filament that is filled in the thickness direction of the
The electrodes of the two electronic components are connected via conductive particles.
The step of contacting The two electronic components are formed by solidifying the adhesive layer.
And the process of fixing and integrating Including, The diameter of the conductive filament is 3 times or more the diameter of the conductive particles.
A method of manufacturing a semiconductor device, comprising:
JP03742899A 1999-02-16 1999-02-16 Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same Expired - Fee Related JP3436170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03742899A JP3436170B2 (en) 1999-02-16 1999-02-16 Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03742899A JP3436170B2 (en) 1999-02-16 1999-02-16 Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000243147A JP2000243147A (en) 2000-09-08
JP3436170B2 true JP3436170B2 (en) 2003-08-11

Family

ID=12497255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03742899A Expired - Fee Related JP3436170B2 (en) 1999-02-16 1999-02-16 Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3436170B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820014B2 (en) * 2001-04-27 2011-11-24 旭化成株式会社 Method for producing conductive adhesive sheet having anisotropy
JP4838828B2 (en) * 2001-04-27 2011-12-14 旭化成株式会社 Conductive adhesive sheet having anisotropy and method for producing the same
KR100850455B1 (en) * 2002-03-30 2008-08-07 삼성테크윈 주식회사 Construction of interconnecting between semiconductor chip and substrate and the interconnecting method thereof
JP4256237B2 (en) * 2003-09-18 2009-04-22 日東電工株式会社 Anisotropic conductive film for electronic component inspection and electronic component inspection method using the same
JP4907840B2 (en) * 2003-11-12 2012-04-04 日立化成工業株式会社 Anisotropic conductive film and circuit board using the same
JP2006278014A (en) 2005-03-28 2006-10-12 Three M Innovative Properties Co Anisotropic conductive structure
JP2008235007A (en) * 2007-03-20 2008-10-02 Sumitomo Electric Ind Ltd Anisotropic conductive sheet, wiring-board body connected by anisotropic conductive sheet, wiring-board connector, and wiring-board module
US7863106B2 (en) * 2008-12-24 2011-01-04 International Business Machines Corporation Silicon interposer testing for three dimensional chip stack
WO2010082616A1 (en) * 2009-01-15 2010-07-22 ポリマテック株式会社 Connector
JP5385682B2 (en) * 2009-05-19 2014-01-08 新光電気工業株式会社 Electronic component mounting structure
JP5409242B2 (en) * 2009-10-07 2014-02-05 新光電気工業株式会社 Inductor and method of manufacturing inductor
JP5218482B2 (en) * 2010-06-21 2013-06-26 日立化成株式会社 Method for producing anisotropic conductive film
WO2015189955A1 (en) * 2014-06-12 2015-12-17 株式会社メイコー Multilayer-circuit-board manufacturing method and multilayer circuit board
JP6600285B2 (en) * 2016-08-31 2019-10-30 富士フイルム株式会社 Manufacturing method of multilayer wiring board

Also Published As

Publication number Publication date
JP2000243147A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
KR100290993B1 (en) Semiconductor device, wiring board for mounting semiconductor and method of production of semiconductor device
US6034331A (en) Connection sheet and electrode connection structure for electrically interconnecting electrodes facing each other, and method using the connection sheet
TWI431746B (en) Semiconductor device
JP3436170B2 (en) Anisotropic conductive film, semiconductor device using the same, and method of manufacturing the same
KR100386758B1 (en) Anisotropic conductor film, semiconductor chip, and method of packaging
US6518649B1 (en) Tape carrier type semiconductor device with gold/gold bonding of leads to bumps
US6835274B2 (en) Electrical connecting device and electrical connecting method
KR20040099152A (en) Semiconductor device and production method therefor
KR20000063759A (en) High reliability non-conductive adhesives for non-solder flip chip bondings and flip chip bonding method using the same
JP2006302929A (en) Salient electrode for connecting electronic component, electronic component packaging body using the same, and manufacturing method of salient electrode and electronic component packaging body
US6528889B1 (en) Electronic circuit device having adhesion-reinforcing pattern on a circuit board for flip-chip mounting an IC chip
KR20130063984A (en) Wiring board and method of manufacturing the same
US20040061240A1 (en) Semiconductor device and fabrication process thereof
JP2000277649A (en) Semiconductor and manufacture of the same
JP2000243864A (en) Semiconductor device, its manufacture, circuit board and electronic apparatus
JPH1116949A (en) Acf-bonding structure
JP3116926B2 (en) Package structure and semiconductor device, package manufacturing method, and semiconductor device manufacturing method
JP4479582B2 (en) Manufacturing method of electronic component mounting body
JPH114064A (en) Anisotropic conductive resin and mounting structure for electronic component using the same
JP3552701B2 (en) Adhesive member, semiconductor device and its manufacturing method, circuit board, and electronic equipment
JP3225800B2 (en) Semiconductor device
JPH10125725A (en) Semiconductor device and manufacturing method thereof
JP3183272B2 (en) Semiconductor device and method of manufacturing the same
JP3438583B2 (en) Anisotropic conductive film connection method
JP3120837B2 (en) Resin film for electrical connection and electrical connection method using the resin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees