JP3435164B2 - Sorachi Harmonizer - Google Patents

Sorachi Harmonizer

Info

Publication number
JP3435164B2
JP3435164B2 JP52825496A JP52825496A JP3435164B2 JP 3435164 B2 JP3435164 B2 JP 3435164B2 JP 52825496 A JP52825496 A JP 52825496A JP 52825496 A JP52825496 A JP 52825496A JP 3435164 B2 JP3435164 B2 JP 3435164B2
Authority
JP
Japan
Prior art keywords
refrigerant
water
air conditioner
liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP52825496A
Other languages
Japanese (ja)
Inventor
剛 遠藤
浩清 寺田
直登 勝又
浩作 八木
憲一 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP3435164B2 publication Critical patent/JP3435164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明は蒸気圧縮冷凍サイクルを利用した空気調和機
に係り、特に冷凍サイクル中の水分濃度を低減する水分
除去装置に関する。
The present invention relates to an air conditioner that uses a vapor compression refrigeration cycle, and more particularly to a water removal device that reduces the water concentration in the refrigeration cycle.

【0002】[0002]

【従来の技術】[Prior art]

空気調和機等の冷凍装置に取り付けられる従来の水分
除去装置は、実開昭63−69961号公報に開示されている
ように、球状乾燥剤を冷媒流路に多数封入した容器を、
凝縮器と膨張装置の間に設置して、凝縮液冷媒中の水分
を除去していた。また、特開平5−66075号公報に、自
動車用空調機の低圧ガス管路中に設けて、効果的に冷媒
中に含まれる水分を吸収する構成が記載されている。 さらに、実開平3−226254号公報には圧力損失を増大
させずに水分を除去するために蒸発器と圧縮機の間の低
圧管路に水分除去装置を設けた構成が開示されている。
A conventional water removing device attached to a refrigerating device such as an air conditioner, as disclosed in Japanese Utility Model Laid-Open No. 63-69961, discloses a container in which a large number of spherical desiccants are enclosed in a refrigerant flow path.
It was installed between the condenser and the expansion device to remove water in the condensed liquid refrigerant. Further, Japanese Patent Application Laid-Open No. 5-66075 describes a structure which is provided in a low pressure gas pipeline of an air conditioner for an automobile to effectively absorb water contained in the refrigerant. Further, Japanese Utility Model Laid-Open No. 3-226254 discloses a structure in which a water removing device is provided in a low pressure pipe line between an evaporator and a compressor in order to remove water without increasing pressure loss.

【0003】[0003]

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

オゾン層を破壊する冷媒の製造禁止が決定され、冷凍
装置の作動流体として広く用いられてきたCFC(クロロ
フルオロカーボン)、HCFC(ハイドロクロロフルオロカ
ーボン)冷媒が、規制対象となっている。そこで、オゾ
ン層破壊の原因となる塩素原子を分子構造中に含まな
い、HFC(ハイドロフルオロカーボン)の単体、および
複数種の混合冷媒がこの代替物質として開発され、実用
化に向けて検討が進められている。ただし、HFC物質は
分極が大きく、従来から使用されている鉱油やアルキル
ベンゼン系潤滑油には溶解性がほとんど無い。冷凍サイ
クル中の潤滑油を循環させ、圧縮機の機構部に潤滑油を
十分供給して機器の信頼性を確保するために冷媒と潤滑
油が溶解性を有することが必須である。そのため、酸素
原子を導入しこの酸素分子との間で相極子相互作用によ
り溶解性が得られる、エーテル系、エステル系、あるい
はカーボネイト系物質を含む冷凍機油が開発されてい
る。これらの冷凍機油は水分子との親和性が高く、いず
れも高い吸湿性を示す。
CFC (chlorofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants, which have been widely used as working fluids in refrigeration equipment, have been banned due to the decision to prohibit the production of refrigerants that destroy the ozone layer. Therefore, HFC (hydrofluorocarbon) simple substance, which does not contain chlorine atoms that cause ozone layer depletion in its molecular structure, and mixed refrigerants of multiple types have been developed as alternative substances, and are being studied for practical use. ing. However, the HFC substance has a large polarization, and is hardly soluble in the mineral oil and the alkylbenzene-based lubricating oil that have been conventionally used. It is essential that the refrigerant and the lubricating oil have solubility in order to circulate the lubricating oil in the refrigeration cycle and sufficiently supply the lubricating oil to the mechanical portion of the compressor to ensure the reliability of the equipment. Therefore, a refrigerating machine oil containing an ether-based, ester-based, or carbonate-based substance, which has solubility introduced by introducing an oxygen atom and a phase-pole interaction with the oxygen molecule, has been developed. These refrigerating machine oils have high affinity with water molecules, and all show high hygroscopicity.

【0004】 水分が冷凍サイクル中に多量に存在すると、低温部で
の氷結や冷媒水和物による細部閉塞が生じる。また、冷
凍機油や冷媒中に水分が存在すると、加水分解により冷
凍機油や冷媒の劣化を生じる原因ともなる。特にエステ
ル系冷凍機油を用いた冷凍サイクルでは、加水分解生成
有機酸により摺動面に化学摩耗を生じるなど、機器の信
頼性を著しく低下させる要因となる。このため、オゾン
層を破壊しないHFC系冷媒を使用する冷凍サイクルで
は、製造行程、製品設置工事、サービス、或いはメンテ
ナンス時に冷凍サイクル中に侵入する水分を所要の低レ
ベルに維持することは困難であり、問題の無いレベルま
でに除去する水分除去手段を付設する事がこれまで以上
に必要になっている。つまり、上記従来技術の実開昭63
−69961号公報に記載のものは従来用いられてきた冷媒
においては有効な手段であるものの、オゾン層破壊が問
題となる現状においては必ずしも満足のいく結果が得ら
れない。
When a large amount of water is present in the refrigeration cycle, freezing in the low temperature part and fine blockage due to the refrigerant hydrate occur. Further, the presence of water in the refrigerating machine oil or the refrigerant may cause deterioration of the refrigerating machine oil or the refrigerant due to hydrolysis. In particular, in a refrigeration cycle using an ester-based refrigerating machine oil, the hydrolytically generated organic acid causes chemical wear on the sliding surface, which is a factor that significantly reduces the reliability of the device. Therefore, in a refrigeration cycle that uses an HFC-based refrigerant that does not destroy the ozone layer, it is difficult to maintain the required low level of water that enters the refrigeration cycle during the manufacturing process, product installation work, service, or maintenance. It is more necessary than ever to attach a means for removing water to a level that does not cause a problem. In other words, the above-mentioned prior art actual development 63
Although the one described in Japanese Patent Publication No. 69961 is an effective means in the conventionally used refrigerants, satisfactory results are not always obtained in the present situation where ozone layer depletion is a problem.

【0005】 冷凍サイクル内の水分を除去する乾燥剤として、合成
ゼオライトが以前より用いられている。合成ゼオライト
は篭状の分子構造を形成するので篭のふるい効果によ
り、特定の分子径を有する物質を選択的に篭内の空洞に
取り込み保持する特性を有している。そのため、比較的
水分子に近い大きさであるフロン系冷媒と共に用いても
冷媒を吸着せずに水分のみを吸着できる。そして、周囲
の水分濃度が高く、水分子の運動速度が遅い状態の時に
篭を通して吸着される確率が増大し吸着性能が上がる。
従って、気相に比べて密度が高く低流速である上に、分
子運動速度が遅い液相状態で吸着材と冷媒を接触させれ
ば、吸着性能が向上する。つまり、凝縮器後の液配管路
に水分除去手段を設けることにより、従来の装置に大幅
な変更を加えることなく地球環境に優しい空気調和機が
得られる。なお、HFC物質は地球温暖化係数の高い物質
であり、冷凍装置への封入絶対量を削減する必要があ
る。冷凍サイクルの運転に必要な冷媒量を削減する方法
として、凝縮した後の液冷媒を絞り手段を通過させ、配
管中で飽和二相状態にする方法が知られている。しか
し、この方法によるヒートポンプ式空気調和機では、室
内機側と室外機側の双方に膨張手段を必要とし、しかも
液接続配管内流れが常に二相流となるように凝縮器直後
において流れを絞るために、冷房運転および暖房運転の
いずれにおいても冷凍サイクル中に液冷媒が常時流れる
場所が無い。二相流では、液単相流に比較して質量流量
換算の流速が大きいから、液配管に介在させる前記従来
の水分除去装置では著しく圧力損失が増加するととも
に、乾燥材には大きな流体力が作用する。この流体力に
より流体摩擦や振動等に起因する擦れにより乾燥剤が摩
耗しまた微粉化し、微粉が細部に侵入して細部詰まりを
生じたり、また圧縮機の摺動部へ侵入して摺動部の摩耗
や焼き付けを生じたりする恐れがある。さらに、膨張手
段を1個だけ有するヒートポンプ式空気調和機において
も、冷房運転及び暖房運転のいずれにおいても常時液単
相流となる場所はなく、いずれかの運転状態では冷凍サ
イクル内のどの場所も必ず気液二相流となり、膨張手段
が2個以上ある場合と同様な不具合が生じる。
Synthetic zeolite has been used as a desiccant for removing water in a refrigeration cycle. Since the synthetic zeolite forms a cage-like molecular structure, it has the property of selectively taking in and retaining a substance having a specific molecular diameter in the cavity of the cage due to the sieving effect of the cage. Therefore, even when used with a CFC-based refrigerant having a size relatively close to that of water molecules, it is possible to adsorb only water without adsorbing the refrigerant. Then, when the surrounding water concentration is high and the movement speed of water molecules is slow, the probability of adsorption through the basket increases and the adsorption performance increases.
Therefore, when the adsorbent and the refrigerant are brought into contact with each other in a liquid phase state in which the density is higher and the flow velocity is lower than that in the gas phase, and the molecular motion velocity is slow, the adsorption performance is improved. In other words, by providing the water removing means in the liquid pipeline after the condenser, an air conditioner that is friendly to the global environment can be obtained without making a great change to the conventional device. HFC substances are substances with a high global warming potential, so it is necessary to reduce the absolute amount enclosed in the refrigerator. As a method of reducing the amount of refrigerant required for the operation of the refrigeration cycle, a method is known in which the condensed liquid refrigerant is passed through a throttling means and brought into a saturated two-phase state in the pipe. However, the heat pump type air conditioner according to this method requires expansion means on both the indoor unit side and the outdoor unit side, and further restricts the flow immediately after the condenser so that the flow in the liquid connection pipe is always a two-phase flow. Therefore, there is no place where the liquid refrigerant always flows during the refrigeration cycle in both the cooling operation and the heating operation. In the two-phase flow, the mass flow rate-converted flow velocity is higher than that in the liquid single-phase flow, so that the conventional water removal device interposed in the liquid pipe causes a significant increase in pressure loss, and the desiccant has a large fluid force. To work. Due to this fluid force, the desiccant wears and becomes fine powder due to friction caused by fluid friction and vibration, etc., and the fine powder penetrates into the details to cause clogging of the details, and also enters the sliding part of the compressor to cause sliding parts. It may cause abrasion and burning. Further, even in the heat pump type air conditioner having only one expansion means, there is no place where the liquid single-phase flow is always present in both the cooling operation and the heating operation, and in any operation state, there is no place in the refrigeration cycle. It always becomes a gas-liquid two-phase flow, and the same problem as in the case where there are two or more expansion means occurs.

【0006】 また、運転状態により冷媒の相状態が変化する液配管
を予め求めておきその配管路中に水分除去手段を設ける
場合には、逆止弁等を必要とし、構造が複雑になるばか
りか装置の信頼性も低下する。 さらに、特開平5−66075号公報、実開平3−226254
号公報に記載のものは、水分除去手段の設けられた位置
における冷媒の状態は過熱ガスか乾き度の大きい飽和状
態であり、冷媒と乾燥剤との接触は気相状態であり、水
分吸収能力において劣るという不具合があった。
In addition, when a liquid pipe in which the phase state of the refrigerant changes depending on the operating state is provided in advance and a water removing means is provided in the pipe line, a check valve or the like is required and the structure becomes complicated. Also, the reliability of the device is reduced. Furthermore, JP-A-5-66075 and JP-A-3-226254
In the one described in the publication, the state of the refrigerant at the position where the water removing means is provided is a superheated gas or a saturated state with a high degree of dryness, the contact between the refrigerant and the desiccant is in a gas phase state, and the water absorption capacity is high. There was a problem that it was inferior.

【0007】 本発明の目的は、空気調和機の冷媒としてオゾン層を
破壊しないHFC系冷媒を用いても、水分による冷媒や冷
凍機油の加水分解及び乾燥剤が微粉化して冷凍サイクル
機構部へ侵入することを防止することにある。 本発明の他の目的は、複雑な構成を用いることなく冷
媒の封入量を削減した空気調和機およびそれに用いられ
る水分除去装置を提供することにある。 本発明の更に他の目的は、膨張手段を1個しか有しな
いヒートポンプ式空気調和機においても乾燥剤の微粉化
を防止することにある。 また、修理やメンテナンスにより、冷凍サイクルを解
放したときにおいても、水分による冷媒や冷凍機油の加
水分解を防止することをも目的とする。 さらに、空気調和機において冷媒としてオゾン層を破
壊しないHFC系冷媒を用いて気流二相流れとなる場合で
あっても、圧力損失が少なく高効率に水分を除去する空
気調和機及びそれに用いられる水分除去装置を提供する
ことをも目的とする。
An object of the present invention is to use an HFC-based refrigerant that does not destroy the ozone layer as a refrigerant for an air conditioner, and hydrolyzes the refrigerant or the refrigerating machine oil due to moisture and desiccants infiltrate into the refrigeration cycle mechanism section. It is to prevent doing. Another object of the present invention is to provide an air conditioner in which the amount of refrigerant enclosed is reduced without using a complicated structure, and a water removal device used therein. Still another object of the present invention is to prevent the desiccant from being pulverized even in a heat pump type air conditioner having only one expansion means. It is also an object to prevent hydrolysis of the refrigerant or the refrigerating machine oil by water even when the refrigerating cycle is released by repair or maintenance. Furthermore, even when using an HFC-based refrigerant that does not destroy the ozone layer as a refrigerant in an air conditioner to form a two-phase airflow, the air conditioner that removes water with low pressure loss and high efficiency, and the water used for it It is also an object to provide a removal device.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するため、本発明は、冷媒圧縮機、四
方弁、室外熱交換器、室外膨張装置、が配管接続された
室外機と、室内膨脹装置と室内熱交換器とが配管接続さ
れた室内機と、を液冷媒配管及びガス冷媒配管で接続し
て冷凍サイクルを形成し、少なくとも1種類の塩素原子
を含まない弗化炭化水素からなる冷媒を用い、四方弁の
切り換えにより冷房運転と暖房運転を切り換えるヒート
ポンプ式の空気調和機において、冷凍サイクル中の水分
濃度を低減する水分除去手段を室外膨張装置と室内膨脹
装置との間に配置し、該水分除去手段に冷媒の流動通路
と水分吸収剤保持部とを区画する区画手段を設け、室内
熱交換器又は室外熱交換器で凝縮した後の冷媒を気液二
相流となるように室外膨脹装置あるいは室内膨脹装置を
制御するものである。
In order to achieve the above object, the present invention has an outdoor unit in which a refrigerant compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion device are pipe-connected, and an indoor expansion device and an indoor heat exchanger are pipe-connected. An indoor unit is connected to a liquid refrigerant pipe and a gas refrigerant pipe to form a refrigeration cycle, and at least one type of fluorocarbon-free refrigerant that does not contain chlorine atoms is used, and cooling operation and heating are performed by switching the four-way valve. In a heat pump type air conditioner that switches between operations, a water removing means for reducing the water concentration in the refrigeration cycle is arranged between the outdoor expansion device and the indoor expansion device, and the water removing means has a refrigerant flow passage and water absorption. A partition means for partitioning the agent holding portion is provided, and the outdoor expansion device or the indoor expansion device is controlled so that the refrigerant after being condensed in the indoor heat exchanger or the outdoor heat exchanger becomes a gas-liquid two-phase flow.

【0009】 また、上記のものにおいて、水分除去手段は、気液分
離器と、この気液分離器内の下部に設けた乾燥剤と該乾
燥剤を保持する部材とを有することが望ましい。 さらに、水分除去手段は、吸着分子の平均直径が3.1
オングストローム以下の合成ゼオライトを内蔵している
ことが望ましい。 さらに、水分除去手段に、水分除去手段内の水分濃度
を表示する表示手段を設けたことが望ましい。 さらに、水分除去手段は水分保持部材を有し、水分保
持部材は水分除去手段に着脱自在に設けられていること
が望ましい。 さらに、水分除去装置は、配管が接続される密封容器
と、密封容器内に設けられ配管と連通する流路を区画す
る内部管と、内部管と密封容器間に保持された水分吸収
剤とを備え、水分吸収剤は吸着分子の平均直径が3.1オ
ングストローム以下の合成ゼオライトであることが望ま
しい。
In addition, in the above-mentioned thing, it is desirable that the water removing means has a gas-liquid separator, a desiccant provided in a lower portion of the gas-liquid separator, and a member for holding the desiccant. Further, the water removing means has an average diameter of adsorbed molecules of 3.1 or less.
It is desirable to have a synthetic zeolite of Angstrom or less built in. Further, it is desirable that the water removing means be provided with a display means for displaying the water concentration in the water removing means. Further, it is preferable that the water removing means has a water holding member, and the water holding member is detachably attached to the water removing means. Further, the water removing device includes a sealed container to which a pipe is connected, an internal pipe that is provided in the sealed container and defines a flow path that communicates with the pipe, and a moisture absorbent retained between the internal pipe and the sealed container. It is desirable that the water absorbent is a synthetic zeolite having an average diameter of adsorbed molecules of 3.1 angstroms or less.

【0010】[0010]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

以下、本発明の一実施例を図面を用いて説明する。第
1図は、ヒートポンプ式空気調和機の冷凍サイクルの模
式図を示したものである。室外ユニット11は、四方弁
3、アキュムレータ2、インバータ駆動スクロール圧縮
機で代表される冷媒圧縮装置1、室外熱交換器4、電磁
膨張弁で代表される室外膨張装置6、ドライヤ7を順次
配管接続して形成されている。一方、室外ユニット12は
室内膨張装置8、室内熱交換機9配管接続して形成され
ている。そして、室外ユニットと室内ユニットとはガス
配管13及び液配管14により配管接続されて冷凍サイクル
を形成している。尚、室外ユニットの室外熱交換器に送
風するために、室外送風機5が、室内ユニットの室内熱
交換器に送風するために室内送風機10が設けられてい
る。図示は省略したが、室内ユニット及び室外ユニット
には各構成機器を制御するためのセンサ及びそのセンサ
の出力に基づいて各構成機器を制御する制御装置及びリ
モコンが備えられている。第2図は、第1図で符号7で
示したドライヤの縦断面図である。ドライヤ7は、容器
21と、この容器21内の中央部に形成された冷媒が流通す
る冷媒通路23と、容器21と冷媒通路23との間に形成され
た空間に収納された乾燥剤22とからなり、その流通方向
両端部には配管が接続されている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic diagram of a refrigeration cycle of a heat pump type air conditioner. In the outdoor unit 11, a four-way valve 3, an accumulator 2, a refrigerant compression device 1 typified by an inverter-driven scroll compressor, an outdoor heat exchanger 4, an outdoor expansion device 6 typified by an electromagnetic expansion valve, and a dryer 7 are sequentially connected by piping. Is formed. On the other hand, the outdoor unit 12 is formed by connecting the indoor expansion device 8 and the indoor heat exchanger 9 by piping. The outdoor unit and the indoor unit are connected by a gas pipe 13 and a liquid pipe 14 to form a refrigeration cycle. An outdoor blower 5 is provided to blow air to the outdoor heat exchanger of the outdoor unit, and an indoor blower 10 is provided to blow air to the indoor heat exchanger of the indoor unit. Although illustration is omitted, each of the indoor unit and the outdoor unit is provided with a sensor for controlling each component, and a control device and a remote controller for controlling each component based on the output of the sensor. FIG. 2 is a vertical cross-sectional view of the dryer indicated by reference numeral 7 in FIG. Dryer 7 is a container
21, a refrigerant passage 23 through which the refrigerant formed in the central portion of the container 21 flows, and a desiccant 22 contained in a space formed between the container 21 and the refrigerant passage 23, the distribution thereof Piping is connected to both ends in the direction.

【0011】 このように構成した本発明の一実施例の動作を以下に
説明する。ヒートポンプ式空気調和機は、蒸気圧縮冷凍
サイクルを利用しており、四方弁3を切り替えることに
より冷房と暖房を切り替えて運転する。この空気調和機
には作動冷媒として、オゾン層を破壊しないHFC(ハイ
ドロフルオロカーボン)が用いられる。このFHC冷媒と
しては、HFC32(ジフルオロメタン)、HFC125(ペンタ
フルオロエタン)、HFC134a(1、1、1、2−トトラ
フルオロエタン)、HFC143a(1、1、2−トリフルオ
ロエタン)のいずれかの単一冷媒或いは混合冷媒があ
る。そして、冷凍機油として、分子構造中に酸素原子を
導入することでHFC系冷媒との相溶性を確保できるエス
テル系、エーテル系、あるいはカーボネート系の冷凍機
油のいずれかを用いている。
The operation of the thus constructed embodiment of the present invention will be described below. The heat pump type air conditioner uses a vapor compression refrigeration cycle, and operates by switching between cooling and heating by switching the four-way valve 3. HFC (hydrofluorocarbon) that does not destroy the ozone layer is used as a working refrigerant in this air conditioner. The FHC refrigerant is any one of HFC32 (difluoromethane), HFC125 (pentafluoroethane), HFC134a (1,1,1,2-totrafluoroethane), and HFC143a (1,1,2-trifluoroethane). There are single or mixed refrigerants. Then, as the refrigerating machine oil, any of ester-based, ether-based, or carbonate-based refrigerating machine oil that can ensure compatibility with the HFC-based refrigerant by introducing an oxygen atom into the molecular structure is used.

【0012】 次にこのように構成した空気調和機を運転する場合に
ついて説明する。まず冷房運転の場合は、冷媒圧縮装置
1より吐出された高温高圧のガス冷媒が、凝縮器である
室外熱交換器4において放熱し、凝縮および過冷却され
て液冷媒となり、制御装置により制御された室外膨張装
置6で減圧されて気液二相流となる。この状態でドライ
ヤ7を通過し、液配管14を流れて室内ユニット12に達す
る。室内膨張装置8においてさらに減圧されて低圧低温
となった冷媒は、蒸発器である室内熱交換器9で吸熱蒸
発して、室内空気と熱交換し室内を冷房する。冷媒はさ
らにガス配管13を経て室外ユニット11に至り、四方弁
3、アキュムレータ2を順次通過して、冷媒圧縮装置1
に吸入され、冷凍サイクルを一巡する。また、暖房運転
の場合は、四方弁3を切り替え、冷媒圧縮装置1から吐
出された高温高圧のガス冷媒がガス配管13を経た後室内
ユニット12に至り、凝縮器である室内熱交換器9におい
て室内空気と熱交換し室内へ放熱し暖房する。この室内
熱交換器9で凝縮及び過冷却された液冷媒は、制御装置
で制御された室内膨張装置8で減圧されて気液二相流と
なる。この状態で液配管14内を流れ、ドライヤ7を通過
する。さらに室外膨張装置6において減圧されて低圧低
温となった冷媒は、蒸発器である室外熱交換器4で吸熱
蒸発し、四方弁3、アキュムレータ2を順次通過して、
冷媒圧縮装置1に吸入され、冷凍サイクルを一巡する。
Next, a case of operating the air conditioner configured as described above will be described. First, in the case of the cooling operation, the high temperature and high pressure gas refrigerant discharged from the refrigerant compression device 1 radiates heat in the outdoor heat exchanger 4 which is a condenser, is condensed and supercooled to become a liquid refrigerant, and is controlled by the control device. It is decompressed by the outdoor expansion device 6 and becomes a gas-liquid two-phase flow. In this state, it passes through the dryer 7, flows through the liquid pipe 14, and reaches the indoor unit 12. The refrigerant that has been further decompressed in the indoor expansion device 8 and has become a low pressure and low temperature undergoes endothermic evaporation in the indoor heat exchanger 9, which is an evaporator, and exchanges heat with indoor air to cool the room. The refrigerant further reaches the outdoor unit 11 via the gas pipe 13, and sequentially passes through the four-way valve 3 and the accumulator 2 to obtain the refrigerant compression device 1.
Is inhaled and goes through the refrigeration cycle. Further, in the heating operation, the four-way valve 3 is switched, the high-temperature and high-pressure gas refrigerant discharged from the refrigerant compression device 1 reaches the indoor unit 12 after passing through the gas pipe 13, and in the indoor heat exchanger 9 which is a condenser. It exchanges heat with the indoor air and radiates heat into the room for heating. The liquid refrigerant condensed and supercooled in the indoor heat exchanger 9 is decompressed by the indoor expansion device 8 controlled by the control device and becomes a gas-liquid two-phase flow. In this state, it flows through the liquid pipe 14 and passes through the dryer 7. Further, the refrigerant that has been decompressed in the outdoor expansion device 6 to have a low pressure and low temperature undergoes endothermic evaporation in the outdoor heat exchanger 4, which is an evaporator, and sequentially passes through the four-way valve 3 and the accumulator 2,
The refrigerant is sucked into the refrigerant compression device 1 and completes the refrigeration cycle.

【0013】 いずれの場合においても室外膨張装置6と室内膨張装
置8間の冷媒は気液二相状態なので、室外ユニット11と
室内ユニット12を連結する比較的長い距離の液配管14内
には、過冷却液冷媒単相で搬送される場合よりも、密度
の低いガス冷媒が混入している分だけ冷媒の量を少なく
できる。したがって、冷凍サイクルに封入する冷媒量を
配管中を冷媒液で満たす満液式より低減できる。 冷凍サイクル中の水分のみを選択吸着する合成ゼオラ
イトをバインダと共に円筒形に焼結成形してコア状とし
た水分保持部分22を容器21中に封入し、配管に連結して
ドライヤ7を形成している。冷媒通路23に相当する水分
保持部分22の内径は、その前後の配管内径と同じか、そ
れ以上としている。 上記したように、冷凍サイクルの運転中にドライヤ7
内を冷媒が通過すると、機器の製造行程や、据付工事中
に冷凍サイクル内に混入した水分が、多孔質のゼオライ
トからなる水分保持部分22に吸着されるので、冷凍サイ
クル内の水分濃度が低減されていく。ここでドライヤ7
の冷媒通路23の内径はその前後の配管内径と同じか、そ
れ以上であるから、気液二相の冷媒が通過しても圧力損
失を著しく増加することが無い。言い替えれば、水分保
持部分22に冷媒流動による流体力が大きく作用しないの
で、摩擦や振動等が原因で乾燥剤が微粉化することを防
止できる。 以上述べたように本実施例によれば、冷媒封入量を低
減したので、オゾン破壊あるいは地球温暖化に悪影響の
ある冷媒の使用量を削減できる。さらに信頼性を低下さ
せる要因である冷凍サイクル中の水分量を低減できるの
で、地球環境保護に有効で、かつ信頼性の高い空気調和
機を提供出来る。
In either case, the refrigerant between the outdoor expansion device 6 and the indoor expansion device 8 is in a gas-liquid two-phase state, so that in the liquid pipe 14 that connects the outdoor unit 11 and the indoor unit 12 a relatively long distance, As compared with the case where the supercooled liquid refrigerant is transported in a single phase, the amount of the refrigerant can be reduced as much as the gas refrigerant having a low density is mixed. Therefore, the amount of the refrigerant filled in the refrigeration cycle can be reduced as compared with the full type in which the pipe is filled with the refrigerant liquid. A synthetic zeolite that selectively adsorbs only water in the refrigeration cycle is sintered and molded into a cylindrical shape with a binder, and a core-shaped water holding portion 22 is enclosed in a container 21 and connected to a pipe to form a dryer 7. There is. The inner diameter of the water retaining portion 22 corresponding to the refrigerant passage 23 is equal to or larger than the inner diameter of the pipe before and after the moisture retaining portion 22. As described above, the dryer 7 is operated during the operation of the refrigeration cycle.
When the refrigerant passes through the inside, the water content mixed in the refrigeration cycle during the equipment manufacturing process and installation work is adsorbed by the water holding portion 22 made of porous zeolite, so the water concentration in the refrigeration cycle is reduced. Will be done. Dryer 7 here
Since the inner diameter of the refrigerant passage 23 is equal to or larger than the inner diameter of the pipe before and after the refrigerant passage 23, the pressure loss does not significantly increase even if the gas-liquid two-phase refrigerant passes through. In other words, since the fluid force due to the flow of the refrigerant does not significantly act on the water retaining portion 22, it is possible to prevent the desiccant from being pulverized due to friction or vibration. As described above, according to the present embodiment, the amount of the refrigerant filled is reduced, so that the amount of the refrigerant used, which has an adverse effect on ozone destruction or global warming, can be reduced. Furthermore, since the amount of water in the refrigeration cycle, which is a factor that lowers reliability, can be reduced, it is possible to provide an air conditioner that is effective in protecting the global environment and has high reliability.

【0014】 次に上記実施例の変形例を第3図に示す。第3図にお
いて、第1図と同一符号は同一部品を示す。本変形例が
第1図の実施例と異なる点はドライヤ7が室外熱交換器
4と室外膨張装置6の間に設けられていること、及び室
内膨張装置8を省いたことである。この変形例において
もドライヤ7は第2図の実施例に示したものと同様の低
圧損構造となっている。そのため、気液二相流において
も乾燥剤が微粉化することがない。 この変形例においては、冷房運転、暖房運転のいずれ
の場合にも室外膨張装置6によって流れを絞るので、冷
房運転時には過冷却液が、暖房運転時には絞られた後の
気液二相流が水分除去装置内を流れる。過冷却液の方が
気液二相流より吸着効率が良いので、冷房運転頻度が多
い場合には、この変形例に示した位置に水分除去装置を
設けることが有効である。暖房運転の頻度が多い場合に
は、ドライヤ7を室内熱交換器14と室外膨張装置6間に
設ければ良い。
Next, a modification of the above embodiment is shown in FIG. 3, the same reference numerals as those in FIG. 1 indicate the same parts. This modification is different from the embodiment of FIG. 1 in that a dryer 7 is provided between the outdoor heat exchanger 4 and the outdoor expansion device 6 and the indoor expansion device 8 is omitted. Also in this modification, the dryer 7 has a low pressure loss structure similar to that shown in the embodiment of FIG. Therefore, the desiccant does not become fine powder even in the gas-liquid two-phase flow. In this modified example, the flow is throttled by the outdoor expansion device 6 in both the cooling operation and the heating operation. Therefore, the supercooled liquid during the cooling operation and the gas-liquid two-phase flow after being throttled during the heating operation become moisture. Flow through the removal device. Since the supercooled liquid has a higher adsorption efficiency than the gas-liquid two-phase flow, it is effective to provide the water removing device at the position shown in this modification when the cooling operation frequency is high. When the heating operation is frequently performed, the dryer 7 may be provided between the indoor heat exchanger 14 and the outdoor expansion device 6.

【0015】 次に、第4図ないし第6図にドライヤ7の変形例の縦
断面図を示す。第4図は第1の変形例であり、ドライヤ
7は、接続配管を両端部に接続する容器31と、乾燥剤が
収納された水分保持部分32と、容器31内を主流路と水分
保持部分32に分割する固定板33と、この固定板を位置決
めするスプリング34とを有している。冷凍サイクルへの
取付位置および冷凍サイクルの動作は、第1図の実施例
と同じである。 この変形例では、合成ゼオライトをビーズ状に成形し
た乾燥剤を容器31の下部に多数封入して水分保持部分32
として利用しており、この乾燥剤が動かないように、固
定板33をスプリング34により押さえつけている。固定板
33には乾燥剤ビーズ径よりも小さい穴が多数形成されて
おり、この穴から冷媒を流通させるので、容器31内の上
部を通過する二相流状態の冷媒の液相部分のみが滞留し
て、水分保持部分32に接触する。このように上部の冷媒
流動部分と、乾燥剤が存在する部分を分けているので、
圧力損失が小さく乾燥剤が高流速の冷媒流中にさらされ
ることもないので乾燥剤が微粉化することがない。ま
た、乾燥剤と冷媒との接触状態は吸着効率の良い液接触
状態である上、滞留する冷媒も冷媒流れにより入れ替え
が進行するので乾燥剤は水分吸着能力を有効に発揮で
き、冷凍サイクル中の水分濃度を急速に低減することが
可能である。
Next, FIGS. 4 to 6 show vertical sectional views of modifications of the dryer 7. FIG. 4 shows a first modified example. The dryer 7 includes a container 31 for connecting the connecting pipes to both ends, a moisture holding portion 32 containing a desiccant, a main flow path and a moisture holding portion in the container 31. It has a fixed plate 33 divided into 32 and a spring 34 for positioning the fixed plate. The position of attachment to the refrigeration cycle and the operation of the refrigeration cycle are the same as in the embodiment of FIG. In this modification, a large amount of desiccant obtained by molding synthetic zeolite into a bead shape is enclosed in the lower portion of the container 31 to retain the water.
The fixing plate 33 is pressed by the spring 34 so that the desiccant does not move. Fixed plate
A large number of holes smaller than the diameter of the desiccant beads are formed in 33, and since the refrigerant is circulated through these holes, only the liquid phase portion of the refrigerant in the two-phase flow state passing through the upper portion of the container 31 is retained. , Comes into contact with the water retaining portion 32. In this way, the upper part where the refrigerant flows and the part where the desiccant is present are separated,
Since the pressure loss is small and the desiccant is not exposed to the high-velocity refrigerant flow, the desiccant is not pulverized. Further, the contact state between the desiccant and the refrigerant is a liquid contact state with good adsorption efficiency, and since the stagnant refrigerant is also replaced by the refrigerant flow, the desiccant can effectively demonstrate its water adsorption capacity, It is possible to reduce the water concentration rapidly.

【0016】 次に、冷媒の乾燥度を目視できかつ水分保持部分を容
易に交換できる様にしたドライヤの他の変形例を第5図
に示す。本変形例は第4図に示した変形例とはサイトグ
ラス36、水分濃度検知部37、結合部38、シールドシート
39を備える点が異なっている。水分濃度検知部37は、例
えば塩化コバルトのような水分濃度で色が変わる物質
を、シートに含浸固着したもので冷凍サイクルの乾燥状
態がサイトグラス36を通して目視できるようになってい
る。また、結合部38はネジ締め構造により任意に容器下
部を取り外しできるようになっている。このように構成
すると、確実に水分が除去されているのを確認できると
共に、故障修理やメンテナンス時に冷媒を入れ替えるま
たは追加する際に乾燥剤の入れ替えを容易にできる。こ
れにより、水分吸着能力を回復できるので信頼性を確保
できる。
Next, FIG. 5 shows another modification of the dryer in which the dryness of the refrigerant can be visually checked and the water-holding portion can be easily replaced. This modified example is different from the modified example shown in FIG. 4 in a sight glass 36, a moisture concentration detecting section 37, a coupling section 38, and a shield sheet.
The difference is that it has 39. The moisture concentration detection unit 37 is made by impregnating and fixing a substance, such as cobalt chloride, which changes its color depending on the moisture concentration on the sheet, so that the dry state of the refrigeration cycle can be visually observed through the sight glass 36. Further, the joint portion 38 has a screw tightening structure so that the lower portion of the container can be arbitrarily removed. According to this structure, it is possible to confirm that the water is surely removed, and it is possible to easily replace the desiccant when replacing or adding the refrigerant at the time of trouble repair or maintenance. As a result, the water adsorption capacity can be restored, and reliability can be secured.

【0017】 第6図にドライヤ7の他の変形例を示す。この図にお
いて、容器41内には接続配管とほぼ同径の内部管46が接
続配管と連結されて設けられており、この内部管46と容
器41間に形成される空間に水分保持部材42としてビーズ
状の乾燥剤が収納されている。なお、内部管46と容器41
間の空間はその流れ方向一端部にかしめ固定された固定
板43が、流れ方向他端部側に可動板44が容器41内壁間と
の間にスプリング45を介在させて設けられており、前記
乾燥剤はこの固定板43と可動板44とで区切られた空間内
に納められている。そして、スプリング45のバネ力によ
って、水分保持部材42は空間内にしっかりと保持され
る。なお、固定板43、可動板44、内部管46のいずれも、
乾燥剤ビーズ径よりも小さい穴を多数有しており、冷媒
はこの穴を自由に通過できるようになっている。このよ
うに構成することにより、循環する気液二相の冷媒は主
として内部管46内を流動するので、乾燥剤は高流速の冷
媒にさらされることがなく、微粉化することがない。こ
の変形例では従来用いられているドライヤをわずかに変
更しただけでありまた、汎用的なビーズタイプの乾燥剤
を使用できるので、構成が容易でかつ安価であるという
メリットがある。
FIG. 6 shows another modification of the dryer 7. In this figure, inside the container 41, an internal pipe 46 having substantially the same diameter as the connecting pipe is provided so as to be connected to the connecting pipe, and as a moisture holding member 42 in a space formed between the internal pipe 46 and the container 41. A bead-shaped desiccant is stored. The inner pipe 46 and the container 41
The space between is provided with a fixed plate 43 that is caulked and fixed at one end in the flow direction, and a movable plate 44 is provided at the other end in the flow direction with a spring 45 interposed between the inner walls of the container 41, The desiccant is contained in the space defined by the fixed plate 43 and the movable plate 44. The water holding member 42 is firmly held in the space by the spring force of the spring 45. In addition, any of the fixed plate 43, the movable plate 44, and the internal pipe 46,
It has many holes smaller than the diameter of the desiccant beads, and the refrigerant can freely pass through these holes. With such a configuration, the circulating gas-liquid two-phase refrigerant mainly flows in the inner pipe 46, so that the desiccant is not exposed to the high-velocity refrigerant and is not pulverized. In this modified example, a conventionally used dryer is slightly changed, and a general-purpose bead type desiccant can be used, so that there is an advantage that the structure is easy and inexpensive.

【0018】 さらに二相流で用いるドライヤの他の変形例として、
気液分離器を用いた例を第7図に示す。この第7図は乾
燥剤を備えた気液分離器の縦断面図である。この図にお
いて、密封容器51内には冷媒を容器51内に導く冷媒導入
管54及び冷媒を容器51から容器51外へ導く冷媒導出管55
とが、設けられており、これら2つの管の先端部は容器
51の底面近傍にまで達している。通常容器内には液相の
冷媒が容器の中間の高さまで満たされており、その上部
は気相の冷媒が満たされている。冷媒導入管54及び冷媒
導出管55にはそれぞれガス冷媒混合穴56および57形成さ
れており、容器51下方から抜き出される液冷媒に、容器
51上部のガス冷媒を加えることで、ある一定の乾き度を
保つように機能する。液相の冷媒で満たされる容器51内
の下部にビーズ状乾燥剤52を乾燥剤保持部材により保持
するとともに、ビーズ状乾燥剤52間を自由に液冷媒が通
過できるようにしている。つまり、例えば網篭状の乾燥
剤保持部材53により乾燥剤52を保持している。このよう
に構成することにより、乾燥剤52は容器51内に流入して
分岐した速度の遅い液冷媒中に置かれるので微粉化する
ことがなく、吸着効率の良い液接触状態で使用できる。
また、本発明の気液分離器は、気液二相流で運転される
冷凍サイクルの液配管路中に設置されて、冷媒量を調節
する機能をも有する。尚、容器51内に挿入された2本の
配管54、55のいずれが冷媒導入管であっても全く上記実
施例と同様に作用することは言うまでもない。
As another modification of the dryer used in the two-phase flow,
An example using a gas-liquid separator is shown in FIG. FIG. 7 is a vertical sectional view of a gas-liquid separator provided with a desiccant. In this figure, in the sealed container 51, a refrigerant introduction pipe 54 that guides the refrigerant into the container 51 and a refrigerant discharge pipe 55 that guides the refrigerant from the container 51 to the outside of the container 51.
And the tips of these two tubes are
It reaches up to near the bottom of 51. Usually, the liquid-phase refrigerant is filled in the container up to an intermediate height of the container, and the upper part thereof is filled with the gas-phase refrigerant. Gas refrigerant mixing holes 56 and 57 are formed in the refrigerant introduction pipe 54 and the refrigerant discharge pipe 55, respectively, so that the liquid refrigerant extracted from below the container 51 is
51 By adding gas refrigerant on top, it functions to maintain a certain degree of dryness. A bead-shaped desiccant 52 is held by a desiccant holding member in a lower portion of a container 51 filled with a liquid-phase refrigerant, and the liquid refrigerant can freely pass between the bead-shaped desiccants 52. That is, the desiccant 52 is held by the net-cage-shaped desiccant holding member 53, for example. With this configuration, the desiccant 52 is placed in the liquid refrigerant that has flowed into the container 51 and branched and has a slow speed, so that it is not pulverized and can be used in a liquid contact state with good adsorption efficiency.
Further, the gas-liquid separator of the present invention is installed in the liquid pipe line of the refrigeration cycle operated by gas-liquid two-phase flow, and also has a function of adjusting the amount of refrigerant. Needless to say, even if either of the two pipes 54 and 55 inserted in the container 51 is a refrigerant introduction pipe, the same operation as in the above embodiment is performed.

【0019】 第8図は、第7図に示した気液分離器の変形例であ
る。本変形例は、冷媒が一方向のみに流れる場合に用い
るものである。この第8図において、密閉容器61内の下
部には液相の冷媒が満たされており、その上部には気相
の冷媒が満たされている。容器61上部に挿入された導入
管63から流入してきた気液二相になっている冷媒は容器
61内で液とガスに分離される。容器下部の液が充満して
いる部分に挿入された液冷媒のみが通過する液導出管64
に、従来用いられているドライヤ62を設置して、冷媒中
に含まれる水分を除去する。ドライヤ62の上部と容器61
の上部とはガス導出管65とにより連通されており、気液
分離器内に異常にガス冷媒が充満することを防止してい
る。このように構成することにより、ドライヤ62を流れ
る冷媒を液単相流にすることができ、液相流中で水分を
吸収できるので上記実施例と同様、効果的に水分吸収を
行えると共に、特別な低圧損構造を採用する必要がな
く、従来用いられてきたドライヤをそのまま使用できる
というメリットもある。
FIG. 8 is a modification of the gas-liquid separator shown in FIG. This modification is used when the refrigerant flows only in one direction. In FIG. 8, the lower portion of the closed container 61 is filled with a liquid-phase refrigerant, and the upper portion thereof is filled with a gas-phase refrigerant. The gas-liquid two-phase refrigerant flowing from the introduction pipe 63 inserted in the upper part of the container 61 is stored in the container.
In 61, it is separated into liquid and gas. Liquid outlet pipe 64 through which only the liquid refrigerant inserted in the liquid-filled portion at the bottom of the container passes
A conventionally used dryer 62 is installed in the above to remove the water contained in the refrigerant. Top of dryer 62 and container 61
It is connected to the upper part of the gas discharge pipe 65, and prevents the gas-liquid separator from being abnormally filled with the gas refrigerant. With such a configuration, the refrigerant flowing through the dryer 62 can be made into a liquid single-phase flow and can absorb water in the liquid-phase flow. There is also an advantage that a conventionally used dryer can be used as it is without having to adopt a low pressure loss structure.

【0020】 以上のいずれの実施態様においても、乾燥剤に加わる
冷媒流動による流体力は小さいので、摩擦や振動等で乾
燥剤が微粉化することが無く、微粉の細部詰りや空気調
和機の機構部への侵入を防止することができるので、信
頼性の高い空気調和機を実現できる。もちろん、上記空
気調和機の実施例と同様の構成を有する冷凍サイクルを
適用すれば、冷凍機やチラーユニットなどの冷凍装置で
も同様の効果を得ることができる。 なお、上述したすべての実施例において、冷媒として
HFC32を含む冷媒、例えばASHRAEにより付与されている
冷媒番号が、R407番台(HFC32/HFC125/HFC134aの3種混
合)、R410番台(HFC32/HFC125の2種混合)を用いる場
合は、乾燥剤として使用する合成ゼオライトは、吸着す
る分子の平均径が3.1オングストローム以下であること
が望ましい。ここで、分子径を3.1オングストローム以
下にした理由は、上記HFC冷媒の中で、HFC32が最も分子
の平均直径が小さく、3.3オングストロームであり、水
の分子径が2.8オングストロームであるから、その中間
の値としたものである。つまり、この値以下にすれば、
水の分子は必ず吸着されるのに対し、HFC冷媒は理論上
絶対にゼオライトに吸着されないからである。これによ
り、HFC32を含む冷媒であっても、合成ゼオライトにほ
とんど吸着されることが無く、乾燥剤の水分吸着性能を
低下させたり、冷媒の分解を生じさせることが無い。し
たがって、水分除去装置及びそれを用いた空気調和機の
信頼性を向上できる。
In any of the above-described embodiments, since the fluid force due to the refrigerant flow added to the desiccant is small, the desiccant is not pulverized due to friction, vibration, etc., and the fine powder clogging or the mechanism of the air conditioner is not performed. Since it is possible to prevent the air from entering the section, it is possible to realize a highly reliable air conditioner. Of course, if a refrigerating cycle having the same configuration as that of the embodiment of the air conditioner is applied, the same effect can be obtained even in a refrigerating device such as a refrigerator or a chiller unit. In all of the above-mentioned examples, as a refrigerant
When using a refrigerant containing HFC32, for example, the refrigerant number assigned by ASHRAE is R407 series (3 types of HFC32 / HFC125 / HFC134a mixed) and R410 series (2 types of HFC32 / HFC125 mixed), use as a desiccant In the synthetic zeolite described above, the average diameter of the adsorbed molecules is preferably 3.1 angstroms or less. Here, the reason for setting the molecular diameter to 3.1 angstroms or less is that, among the above HFC refrigerants, HFC32 has the smallest average molecular diameter, 3.3 angstroms, and the water molecular diameter is 2.8 angstroms, which is in between. It is a value. In other words, if you set below this value,
This is because water molecules are always adsorbed, whereas HFC refrigerant is theoretically never adsorbed on zeolite. As a result, even a refrigerant containing HFC32 is hardly adsorbed by the synthetic zeolite, and the moisture adsorption performance of the desiccant is not deteriorated or the refrigerant is decomposed. Therefore, the reliability of the moisture removing device and the air conditioner using the same can be improved.

【0021】[0021]

【発明の効果】【The invention's effect】

本発明によれば、オゾン層を破壊しない冷媒を用いか
つその封入冷媒量を削減できるとともに、複雑な構成を
用いることなく冷凍サイクル中の水分を低減できる。そ
して、地球環境に与える影響を最小限にし、安価で信頼
性の高い空気調和機を実現できる。 また本発明によれば、液配管内の冷媒が気液二相状態
であっても、気液分離器と水分除去装置を組み合わせる
ことにより、特別な圧力損失低減構造を必要とせず、乾
燥剤の微粉化や劣化を生じないので、従来用いられてい
るドライヤ製造設備を流用できるので、安価に製造でき
る効果がある。
According to the present invention, it is possible to use a refrigerant that does not destroy the ozone layer and reduce the amount of the enclosed refrigerant, and it is possible to reduce the water content in the refrigeration cycle without using a complicated configuration. In addition, it is possible to realize an inexpensive and highly reliable air conditioner with minimal influence on the global environment. Further, according to the present invention, even if the refrigerant in the liquid pipe is in the gas-liquid two-phase state, by combining the gas-liquid separator and the water removal device, a special pressure loss reduction structure is not required, and the desiccant Since there is no pulverization or deterioration, the conventionally used dryer manufacturing equipment can be diverted, and there is an effect that manufacturing can be performed at low cost.

【0022】 さらに本発明によれば、乾燥剤に吸着される冷媒の量
を十分小さく出来るので、冷媒が分解されて酸を発生さ
せることがなく、空気調和機や水分除去装置の機構部の
化学摩耗や乾燥剤の分解を抑え、信頼性の高い空気調和
機を実現できる。 さらに本発明によれば、乾燥剤の働きを確認でき、ま
た乾燥剤の交換に要する時間を低減できるので、空気調
和機や水分除去装置の信頼性を確実かつ容易に高めるこ
とができる。 [図面の簡単な説明]
Further, according to the present invention, since the amount of the refrigerant adsorbed on the desiccant can be made sufficiently small, the refrigerant is not decomposed to generate an acid, and the chemistry of the mechanical portion of the air conditioner or the water removal device is not generated. A highly reliable air conditioner can be realized by suppressing wear and decomposition of desiccant. Further, according to the present invention, the function of the desiccant can be confirmed, and the time required for exchanging the desiccant can be reduced, so that the reliability of the air conditioner and the water removal device can be reliably and easily enhanced. [Brief description of drawings]

【図1】 本発明の空気調和機の一実施例の模式図。FIG. 1 is a schematic diagram of an embodiment of an air conditioner of the present invention.

【図2】 図1に示したドライヤ(水分除去手段)の一
実施例の縦断面図。
FIG. 2 is a vertical sectional view of an embodiment of the dryer (water removing means) shown in FIG.

【図3】 本発明の空気調和機の変形例の模式図。FIG. 3 is a schematic diagram of a modified example of the air conditioner of the present invention.

【図4】 ドライヤの変形例の縦断面図。FIG. 4 is a vertical sectional view of a modification of the dryer.

【図5】 ドライヤの変形例の縦断面図。FIG. 5 is a vertical sectional view of a modification of the dryer.

【図6】 ドライヤの変形例の縦断面図。FIG. 6 is a vertical cross-sectional view of a modification of the dryer.

【図7】 図1に示した気液分離器の一実施例の縦断面
図。
7 is a vertical cross-sectional view of an embodiment of the gas-liquid separator shown in FIG.

【図8】 本発明の気液分離器の変形例の部分断面図。FIG. 8 is a partial cross-sectional view of a modified example of the gas-liquid separator of the present invention.

【符号の説明】[Explanation of symbols]

1…冷媒圧縮機、3…四方弁、4…室外熱交換器、6
…室外膨脹装置、7…水分除去手段、11…室外機、12…
室内機、13…ガス配管、14…液配管。
1 ... Refrigerant compressor, 3 ... Four-way valve, 4 ... Outdoor heat exchanger, 6
... outdoor expansion device, 7 ... water removing means, 11 ... outdoor unit, 12 ...
Indoor unit, 13 ... Gas piping, 14 ... Liquid piping.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−271072(JP,A) 特開 平5−248735(JP,A) 実開 昭49−90954(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 43/00 ─────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-63-271072 (JP, A) JP-A-5-248735 (JP, A) Actual development Sho-49-90954 (JP, U) (58) Investigation Field (Int.Cl. 7 , DB name) F25B 43/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】冷媒圧縮機、四方弁、室外熱交換器、室外
膨張装置、が配管接続された室外機と、室内膨脹装置と
室内熱交換器とが配管接続された室内機と、を液冷媒配
管及びガス冷媒配管で接続して冷凍サイクルを形成し、
少なくとも1種類の塩素原子を含まない弗化炭化水素か
らなる冷媒を用い、前記四方弁の切り換えにより冷房運
転と暖房運転を切り換えるヒートポンプ式の空気調和機
において、 前記冷凍サイクル中の水分濃度を低減する水分除去手段
を前記室外膨張装置と前記室内膨脹装置との間に配置
し、該水分除去手段に冷媒の流動通路と水分吸収剤保持
部とを区画する区画手段を設け、前記室内熱交換器又は
前記室外熱交換器で凝縮した後の冷媒を気液二相流とな
るように前記室外膨脹装置あるいは前記室内膨脹装置を
制御することを特徴とする空気調和機。
1. A liquid compressor comprising an outdoor unit in which a refrigerant compressor, a four-way valve, an outdoor heat exchanger, and an outdoor expansion device are connected by piping, and an indoor unit in which an indoor expansion device and an indoor heat exchanger are connected by piping. A refrigeration cycle is formed by connecting with a refrigerant pipe and a gas refrigerant pipe,
A heat pump type air conditioner in which at least one kind of a fluorocarbon containing no chlorine atom is used to switch between a cooling operation and a heating operation by switching the four-way valve, and the water concentration in the refrigeration cycle is reduced. Moisture removing means is disposed between the outdoor expansion device and the indoor expansion device, the water removing means is provided with partition means for partitioning the refrigerant flow passage and the water absorbent holding portion, and the indoor heat exchanger or An air conditioner, wherein the outdoor expansion device or the indoor expansion device is controlled so that the refrigerant condensed in the outdoor heat exchanger becomes a gas-liquid two-phase flow.
【請求項2】請求項1に記載のものにおいて、前記水分
除去手段は、気液分離器と、この気液分離器内の下部に
設けた乾燥剤と該乾燥剤を保持する部材とを有すること
を特徴とする空気調和機。
2. The device according to claim 1, wherein the water removing means has a gas-liquid separator, a desiccant provided in a lower part of the gas-liquid separator, and a member for holding the desiccant. An air conditioner characterized by that.
【請求項3】請求項1に記載のものにおいて、前記水分
除去手段は、吸着分子の平均直径が3.1オングストロー
ム以下の合成ゼオライトを内蔵していることを特徴とす
る空気調和機。
3. The air conditioner according to claim 1, wherein the water removing means contains a synthetic zeolite having an average diameter of adsorbed molecules of 3.1 angstroms or less.
【請求項4】請求項1に記載のものにおいて、前記水分
除去手段に、該水分除去手段内の水分濃度を表示する表
示手段を設けたことを特徴とする空気調和機。
4. The air conditioner according to claim 1, wherein the water removing means is provided with a display means for displaying a water concentration in the water removing means.
【請求項5】請求項1に記載のものにおいて、前記水分
除去手段は水分保持部材を有し、該水分保持部材は前記
水分除去手段に着脱自在に設けられていることを特徴と
する空気調和機。
5. The air conditioner according to claim 1, wherein the water removing means has a water holding member, and the water holding member is detachably attached to the water removing means. Machine.
【請求項6】請求項1に記載のものにおいて、前記水分
除去装置は、配管が接続される密封容器と、該密封容器
内に設けられ前記配管と連通する流路を区画する内部管
と、該内部管と密封容器間に保持された水分吸収剤とを
備え、前記水分吸収剤は吸着分子の平均直径が3.1オン
グストローム以下の合成ゼオライトであることを特徴と
する空気調和機。
6. The water removing apparatus according to claim 1, wherein the moisture removing device includes a sealed container to which a pipe is connected, and an internal pipe that is provided in the sealed container and defines a flow path communicating with the pipe. An air conditioner comprising: a water absorbent held between the inner tube and a sealed container, wherein the water absorbent is a synthetic zeolite having an average diameter of adsorbed molecules of 3.1 angstroms or less.
JP52825496A 1995-03-17 1995-03-17 Sorachi Harmonizer Expired - Fee Related JP3435164B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000481 WO1996029554A1 (en) 1995-03-17 1995-03-17 Air conditioner and moisture removing device for use with the air conditioner

Publications (1)

Publication Number Publication Date
JP3435164B2 true JP3435164B2 (en) 2003-08-11

Family

ID=14125765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52825496A Expired - Fee Related JP3435164B2 (en) 1995-03-17 1995-03-17 Sorachi Harmonizer

Country Status (5)

Country Link
EP (1) EP0816779B1 (en)
JP (1) JP3435164B2 (en)
DE (1) DE69531631T2 (en)
ES (1) ES2202353T3 (en)
WO (1) WO1996029554A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY125381A (en) 2000-03-10 2006-07-31 Sanyo Electric Co Refrigerating device utilizing carbon dioxide as a refrigerant.
DE60213371T2 (en) * 2002-05-08 2006-11-23 Finber S.P.A., Scarzara Collector dryer
CN1678873A (en) 2002-08-31 2005-10-05 贝洱两合公司 Manifold for cooling agent, heat exchanger, cooling agent closed circuit and method for producing a manifold
MX2013001592A (en) * 2012-02-09 2014-01-09 Manitowoc Foodservice Co Inc Low cost high efficiency ice machine.
US10151522B2 (en) 2016-01-27 2018-12-11 Haier Us Appliance Solutions, Inc. Microchannel condenser and dual evaporator refrigeration system
US11619405B1 (en) 2022-01-27 2023-04-04 Greg Drenik Airflow moisture reduction system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4514235B1 (en) * 1967-10-19 1970-05-21
JPS4619878Y1 (en) * 1968-06-11 1971-07-10
US4177145A (en) * 1978-05-03 1979-12-04 Virginia Chemicals Inc. Two-way filter-drier for heat pump systems
IT1166574B (en) * 1979-02-06 1987-05-05 Ind Riunite Eurodomestici Ire IMPROVEMENTS IN OR RELATED TO COMPRESSOR REFRIGERANT CIRCUITS
US4480446A (en) * 1981-07-08 1984-11-06 Margulefsky Allen L Method and apparatus for rehabilitating refrigerant
DE3222641A1 (en) * 1982-06-16 1983-12-22 Erich Schultze KG, 1000 Berlin Refrigeration plant
JPS61195272U (en) * 1985-05-28 1986-12-05
JPS6369961U (en) 1986-10-27 1988-05-11
US5136855A (en) * 1991-03-05 1992-08-11 Ontario Hydro Heat pump having an accumulator with refrigerant level sensor
JPH0566075A (en) 1991-09-05 1993-03-19 Hitachi Ltd Refrigeration cycle
JP3334222B2 (en) * 1992-11-20 2002-10-15 ダイキン工業株式会社 Air conditioner
JPH06288662A (en) * 1993-04-05 1994-10-18 Matsushita Refrig Co Ltd Refrigeration system
JPH074789A (en) * 1993-06-17 1995-01-10 Sanyo Electric Co Ltd Filter for removing impurity refrigerating cycle using refrigerant of hfc series

Also Published As

Publication number Publication date
WO1996029554A1 (en) 1996-09-26
EP0816779A1 (en) 1998-01-07
ES2202353T3 (en) 2004-04-01
DE69531631D1 (en) 2003-10-02
EP0816779B1 (en) 2003-08-27
DE69531631T2 (en) 2004-06-17
EP0816779A4 (en) 1998-08-05

Similar Documents

Publication Publication Date Title
WO2010047116A1 (en) Cooling cycle device
KR100564869B1 (en) Refrigerant collecting device, refrigerant collecting method, refrigerator having refrigerant collecting device, control method for refrigerant in refrigerant circuit or regeneration device and regeneration method for refrigerant collecting device
KR100519150B1 (en) Refrigeration cycle apparatus
US6044649A (en) Air conditioner
JP3435164B2 (en) Sorachi Harmonizer
JP3735399B2 (en) Refrigeration cycle
JPH11108507A (en) Air conditioner
JPH11201588A (en) Refrigeration system
JPH08189731A (en) Refrigeration cycle
JPH09138014A (en) Air conditioner
JPH1114204A (en) Impurity removing filter and refrigerating system using the same
JP3280295B2 (en) Water removal system and water removal method for separation type air conditioner
JP3093295B2 (en) Refrigeration system
JP3601442B2 (en) Refrigeration equipment
JPH10111034A (en) Refrigerating cycle with drying device
JP3379426B2 (en) Thermal storage type air conditioner
JPH10205936A (en) Drier and refrigerating device equipped with the same
KR100200388B1 (en) Refrigerating cycle with dryer
JPH04302967A (en) Refrigerating system
JP2001132987A (en) Air-conditioner
JPH10338891A (en) Refrigerating apparatus
JP2000337739A (en) Air-conditioner
JPH074787A (en) Accumulator
JPH08327187A (en) Air conditioner
JPH11132578A (en) Refrigerating cycle system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees