JP3434628B2 - Polylactic acid-based long-fiber nonwoven fabric and method for producing the same - Google Patents

Polylactic acid-based long-fiber nonwoven fabric and method for producing the same

Info

Publication number
JP3434628B2
JP3434628B2 JP25167995A JP25167995A JP3434628B2 JP 3434628 B2 JP3434628 B2 JP 3434628B2 JP 25167995 A JP25167995 A JP 25167995A JP 25167995 A JP25167995 A JP 25167995A JP 3434628 B2 JP3434628 B2 JP 3434628B2
Authority
JP
Japan
Prior art keywords
polylactic acid
nonwoven fabric
acid
lactic acid
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25167995A
Other languages
Japanese (ja)
Other versions
JPH0995849A (en
Inventor
孝一 長岡
文夫 松岡
直次 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17226406&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3434628(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP25167995A priority Critical patent/JP3434628B2/en
Priority to EP05022050.8A priority patent/EP1612314B2/en
Priority to EP99108935A priority patent/EP0949371B1/en
Priority to EP96114791A priority patent/EP0765959B1/en
Priority to KR1019960042661A priority patent/KR100406244B1/en
Publication of JPH0995849A publication Critical patent/JPH0995849A/en
Priority to US09/324,368 priority patent/US6787493B1/en
Priority to US09/351,413 priority patent/US6607996B1/en
Publication of JP3434628B2 publication Critical patent/JP3434628B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自然環境下におい
て分解性を有する長繊維不織布およびその製造方法に関
する。さらに詳しくは、ポリ乳酸系重合体を用いて特定
条件により得られる優れた柔軟性を有する分解性長繊維
不織布およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long-fiber nonwoven fabric having degradability in a natural environment and a method for producing the same. More specifically, it relates to a degradable long-fiber nonwoven fabric having excellent flexibility obtained by using a polylactic acid-based polymer under specific conditions, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、分解性を有する不織布として
は、例えば天然繊維又は再生繊維由来の生分解性不織布
として、コットン、麻、羊毛、レーヨン、キチン、アル
ギン酸等からなる不織布が知られている。
2. Description of the Related Art Conventionally, as a non-woven fabric having degradability, for example, a non-woven fabric made of cotton, hemp, wool, rayon, chitin, alginic acid or the like is known as a biodegradable non-woven fabric derived from natural fibers or recycled fibers. .

【0003】しかし、これらの生分解性不織布は一般的
に親水性かつ吸水性であることから、例えば使い捨てお
むつのトップシートのように疎水性かつ低吸水性を要し
湿潤時のドライ感が要求される用途には適さない。ま
た、これらの不織布は湿潤環境下での強力や寸法安定性
の低下が著しく一般産業用資材用途としての展開には限
界があった。さらに、これらの不織布は非熱可塑性であ
ることから、熱成形性を有さず加工性に劣るものであっ
た。
However, since these biodegradable non-woven fabrics are generally hydrophilic and water-absorbing, they require hydrophobicity and low water-absorption like a top sheet of a disposable diaper, and require a dry feeling when wet. It is not suitable for the intended use. Further, the strength and dimensional stability of these non-woven fabrics are remarkably deteriorated in a wet environment, and there has been a limit in their development as general industrial material applications. Further, since these nonwoven fabrics are non-thermoplastic, they have no thermoformability and are inferior in processability.

【0004】そこで、近年、熱可塑性かつ疎水性の生分
解性重合体を用いた溶融紡糸法による生分解性繊維や生
分解性不織布に関する研究開発が盛んとなっている。例
えば、脂肪族ポリエステルと総称される一群のポリマー
は生分解性能を有することから、とりわけ注目されてい
る。具体的には、微生物ポリエステルに代表されるポリ
−β−ヒドロキシアルカノエート、ポリカプロラクトン
に代表されるポリ−ω−ヒドロキシアルカノエート、例
えばポリブチレンサクシネートのようなグリコールとジ
カルボン酸との重縮合体からなるポリアルキレンジカル
ボキシレートまたはこれらの共重合体が挙げられる。そ
のなかで、ポリ−L−乳酸に代表されるようなポリ−α
−オキシ酸も、近年、高重合度のポリマーを効率的に製
造しうる新しい重合法が開発されるにおよび、その繊維
化ならびに不織布化が種々検討されている。特に、ポリ
乳酸は前記の脂肪族ポリエステルのなかで融点が比較的
高く、その不織布は耐熱性を要する用途において有用で
あるため、ポリ乳酸不織布の実用化が期待されている。
Therefore, in recent years, research and development on biodegradable fibers and biodegradable nonwoven fabrics by a melt spinning method using a thermoplastic and hydrophobic biodegradable polymer have become popular. For example, a group of polymers collectively referred to as aliphatic polyesters are of particular interest because of their biodegradability. Specifically, poly-β-hydroxyalkanoates represented by microbial polyesters, poly-ω-hydroxyalkanoates represented by polycaprolactone, for example, polycondensates of glycols and dicarboxylic acids such as polybutylene succinate. A polyalkylene dicarboxylate or a copolymer thereof. Among them, poly-α represented by poly-L-lactic acid
With respect to oxyacids, recently, as a new polymerization method capable of efficiently producing a polymer having a high degree of polymerization has been developed, various studies have been made on its formation into fibers and non-woven fabrics. In particular, polylactic acid has a relatively high melting point among the above-mentioned aliphatic polyesters, and since the nonwoven fabric is useful in applications requiring heat resistance, it is expected that the polylactic acid nonwoven fabric will be put to practical use.

【0005】これまでにポリ乳酸を用いた不織布として
は、特開平7−126970号公報にポリ乳酸を主成分
とする短繊維不織布が示されており、また、ポリ乳酸短
繊維不織布の製造に有用なポリ乳酸の短繊維が特開平6
−212511号公報に開示されている。しかし、この
ような短繊維不織布は、繊維の溶融紡糸から不織布化ま
でに多数の製造工程を要することから、製造コストの低
減に限界がある。
As a non-woven fabric using polylactic acid, Japanese Unexamined Patent Publication (Kokai) No. 7-126970 discloses a short fiber non-woven fabric containing polylactic acid as a main component, and is useful for producing a polylactic acid short fiber non-woven fabric. Polylactic acid short fiber
-212511. However, such a short-fiber non-woven fabric requires a large number of production steps from melt spinning of fibers to non-woven fabric, and thus there is a limit in reducing the production cost.

【0006】一方、溶融押出法により糸条を押出してス
クリーン上にウエブを堆積させる、いわゆるスパンボン
ド法により、ポリ乳酸を用いて製造した長繊維不織布に
関しては、特開平7−48769号公報、特開平6−2
64343号公報、International Nonwovens Journal,
第7巻,2号,69頁(1995年)および欧州特許公
開0637641(A1)号に示唆されている。しか
し、特開平7−48769号公報においては、ポリ乳酸
重合体からスパンボンド法により不織布を作ることが可
能である旨が示唆されているのみで具体的な製造方法や
得られる不織布の物性については何ら記載されていな
い。また、特開平6−264343号公報は生分解性農
業用繊維集合体に関するものであるが、最も重要な製造
条件である引取速度その他詳細な記載がなく、得られた
不織布の物性についても不明である。また、Internatio
nal Nonwovens Journal,第7巻,2号,69頁(199
5年)では、板状の硬くてもろいポリ乳酸スパンボンド
不織布しか得られていない。さらに、欧州特許公開06
37641(A1)号でも、本発明のように柔軟にして
機械的強度に優れたポリ乳酸スパンボンド不織布は得ら
れていない。
On the other hand, a long-fiber non-woven fabric produced by using polylactic acid by a so-called spunbond method, in which a yarn is extruded by a melt extrusion method to deposit a web on a screen, is disclosed in JP-A-7-48769. Kaihei 6-2
64343, International Nonwovens Journal,
Vol. 7, No. 2, p. 69 (1995) and EP-A-0 637 641 (A1). However, JP-A-7-48769 only suggests that a non-woven fabric can be produced from a polylactic acid polymer by a spunbond method, and the specific production method and the physical properties of the obtained non-woven fabric are not described. No description is given. Further, Japanese Patent Laid-Open No. 6-264343 relates to a biodegradable agricultural fiber assembly, but there is no detailed description of the take-up speed or other important production conditions, and the physical properties of the resulting nonwoven fabric are unknown. is there. Also, Internatio
nal Nonwovens Journal, Vol. 7, No. 2, p. 69 (199
In 5 years), only a plate-like hard and brittle polylactic acid spunbonded nonwoven fabric is obtained. Furthermore, European Patent Publication 06
No. 37641 (A1) has not obtained a polylactic acid spunbonded nonwoven fabric which is flexible and has excellent mechanical strength as in the present invention.

【0007】[0007]

【発明が解決しようとする課題】以上のように、ポリ乳
酸を用いた不織布は分解性を有しかつ一般に他の脂肪族
ポリエステルに比べて融点が高いため耐熱性にも優れる
という有用性をもつが、反面、ポリ乳酸樹脂自体は結晶
性が良好であるものの、前記International Nonwovens
Journal,第7巻,2号,69頁(1995年)でも明ら
かなように、通常の紡糸条件下では結晶化速度が遅く、
紡出・冷却された糸条がウエブの堆積工程でも粘着感を
有しているため得られるウエブを構成する長繊維同士が
交叉点で結合し、その結果、柔軟性に欠ける不織布しか
得られない。また、例えばポリ乳酸を用いた短繊維不織
ウエブを、柔軟性を損なわないように加減してボンディ
ングした場合には、毛羽立ちが発生したり機械的強度に
劣り、実用に耐えないものとなる。
As described above, the non-woven fabric using polylactic acid has decomposability and generally has a high melting point as compared with other aliphatic polyesters, so that it has the usefulness that it is also excellent in heat resistance. However, on the other hand, although the polylactic acid resin itself has good crystallinity, the above-mentioned International Nonwovens
As is clear from Journal, Vol. 7, No. 2, p. 69 (1995), the crystallization rate is slow under normal spinning conditions,
Since the spun and cooled yarn has a sticky feeling even during the web deposition process, the long fibers that make up the web are bonded at the crossing points, and as a result, only a nonwoven fabric lacking flexibility is obtained. . Further, for example, when a short-fiber non-woven web made of polylactic acid is moderately bonded so as not to impair flexibility, fluffing occurs or mechanical strength is poor and it becomes unusable for practical use.

【0008】本発明は、このような問題を解決するもの
で、自然環境下において分解性を有し、しかも実用に供
し得る機械的強度を保持しつつ優れた柔軟性を具備する
ポリ乳酸系長繊維不織布を提供しようとするものであ
る。
The present invention solves such a problem, and is a polylactic acid-based length which has decomposability in a natural environment and has excellent flexibility while maintaining mechanical strength for practical use. It is intended to provide a fibrous nonwoven fabric.

【0009】[0009]

【課題を解決するための手段】前記の問題を解決するた
めに、本発明は以下の構成を要旨とするものである。1.ASTM−D−1238(E)に準じて温度190
℃で測定したメルトフローレート値が20〜100g/
10分であるポリ乳酸系重合体をスパンボンド法により
引取速度3500〜6000m/分で牽引細化した長繊
維にて構成され、前記ポリ乳酸系重合体は、ポリ(D−
乳酸)と、ポリ(L−乳酸)と、D−乳 酸とL−乳酸と
の共重合体と、D−乳酸とヒドロキシカルボン酸との共
重合体と、L−乳酸とヒドロキシカルボン酸との共重合
体との群から選ばれる重合体のうち融点が100℃以上
の重合体あるいはこれらのブレンド体であり、前記長繊
維は、前記ポリ乳酸系重合体の一成分にて形成され、前
記構成長繊維どうしが部分的に熱圧着されていることを
特徴とするポリ乳酸系長繊維不織布。
In order to solve the above problems, the present invention has the following structures. 1. Temperature 190 according to ASTM-D-1238 (E)
Melt flow rate value measured at 0 ° C is 20 to 100 g /
10 minutes polylactic acid based polymer by spunbond method
Long fibers pulled and thinned at a take-up speed of 3500 to 6000 m / min
The polylactic acid-based polymer is composed of poly (D-
Lactic acid), poly (L- lactic acid), and D- lactate and L- lactic acid
Copolymer of D-lactic acid and hydroxycarboxylic acid
Copolymerization of polymer with L-lactic acid and hydroxycarboxylic acid
Among polymers selected from the group of body and body, melting point is 100 ° C or higher
A polymer or a blend thereof,
Fiber is formed of one component of the polylactic acid-based polymer,
Note that the constituent long fibers are partially thermocompressed.
A characteristic polylactic acid-based long-fiber non-woven fabric.

【0010】2.ASTM−D−1238(E)に準じ
て温度190℃で測定したメルトフローレート値が20
〜100g/10分であるポリ乳酸系重合体であって、
ポリ(D−乳酸)と、ポリ(L−乳酸)と、D−乳酸と
L−乳酸との共重合体と、D−乳酸とヒドロキシカルボ
ン酸との共重合体と、L−乳酸とヒドロキシカルボン酸
との共重合体との群から選ばれる重合体のうち融点が1
00℃以上の重合体あるいはこれらのブレンド体のいず
れか一成分を、この重合体の融点をTm℃としたときに
(Tm+15)℃〜(Tm+50)℃の温度で溶融して
口金から吐出させ、この吐出糸条を吸引装置にて350
0〜6000m/分の引取速度で牽引細化した後に、移
動式捕集面上に開繊させながら堆積させてウエブを形成
し、このウエブを部分熱圧着装置を用いて前記重合体の
融点よりも10℃以上低い温度で部分的に熱圧着させる
ことを特徴とするポリ乳酸系長繊維不織布の製造方法。
2. According to ASTM-D-1238 (E)
The melt flow rate value measured at a temperature of 190 ° C is 20
A polylactic acid-based polymer having an amount of ˜100 g / 10 minutes,
Poly (D-lactic acid), poly (L-lactic acid), D-lactic acid
Copolymer with L-lactic acid, D-lactic acid and hydroxycarbohydrate
Copolymer with acid, L-lactic acid and hydroxycarboxylic acid
And a copolymer selected from the group of copolymers with
Any polymer or blends of those with a temperature above 00 ° C
When the melting point of this polymer is Tm ° C,
Melt at a temperature of (Tm + 15) ° C to (Tm + 50) ° C
Discharge from the spinneret, and use this suction yarn with a suction device.
After pulling and thinning at a take-up speed of 0 to 6000 m / min, transfer
A web is formed by depositing while opening the fiber on the dynamic collection surface.
Then, the web was applied to the polymer using a partial thermocompression bonding apparatus.
Partial thermocompression bonding at a temperature lower than the melting point by 10 ° C or more
A method for producing a polylactic acid-based long-fiber non-woven fabric, comprising:

【0011】以上の構成により、本発明の不織布は、ポ
リ乳酸系長繊維がその交叉点において結合せずに部分的
に熱圧着されることにより不織布としての形態が保持さ
れているので、従来のポリ乳酸系不織布が有していた硬
くてもろい特性に反して、実用に供し得る機械的強度を
保持しつつ優れた柔軟性を備えるものである。しかも、
ポリ乳酸系長繊維を構成繊維としていることから、本発
明の不織布は自然環境下で分解し得るものとなる。
With the above-mentioned structure, the non-woven fabric of the present invention retains its form as a non-woven fabric because the polylactic acid-based long fibers are partially bonded by thermocompression without bonding at the crossing points. Contrary to the hard and brittle characteristics of the polylactic acid-based nonwoven fabric, it has excellent flexibility while maintaining mechanical strength that can be put to practical use. Moreover,
Since the polylactic acid-based long fibers are used as the constituent fibers, the nonwoven fabric of the present invention can be decomposed in a natural environment.

【0012】[0012]

【発明の実施の形態】本発明に適用される長繊維はポリ
乳酸系重合体からなるものである。ポリ乳酸系重合体
は、ポリ(D−乳酸)と、ポリ(L−乳酸)と、D−乳
酸とL−乳酸との共重合体と、D−乳酸とヒドロキシカ
ルボン酸との共重合体と、L−乳酸とヒドロキシカルボ
ン酸との共重合体との群から選ばれる重合体のうち融点
が100℃以上の重合体あるいはこれらのブレンド体
らなる
BEST MODE FOR CARRYING OUT THE INVENTION The long fibers applied to the present invention are made of a polylactic acid polymer. Polylactic acid polymer
Is poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, and L-lactic acid. Among polymers selected from the group of copolymers with hydroxycarboxylic acids, polymers having a melting point of 100 ° C. or higher or blends thereof .
Consists of

【0013】ポリ乳酸系重合体としてポリ(D−乳酸)
やポリ(L−乳酸)のようなホモポリマーを用いる場合
には特に、製糸工程での製糸性の改善と得られる繊維並
びに不織布の柔軟性の向上を目的として、可塑剤を添加
することが望ましい。この場合の可塑剤としては、トリ
アセチン、乳酸オリゴマー、ジオクチルフタレート等が
用いられ、その添加量としては1〜30重量%、好まし
くは5〜20重量%とするのが良い。
Poly (D-lactic acid) as a polylactic acid polymer
Especially when a homopolymer such as poly (L-lactic acid) is used, it is desirable to add a plasticizer for the purpose of improving the spinnability in the spinning step and improving the flexibility of the obtained fiber and nonwoven fabric. . As the plasticizer in this case, triacetin, lactic acid oligomer, dioctyl phthalate and the like are used, and the addition amount thereof is 1 to 30% by weight, preferably 5 to 20% by weight.

【0014】本発明においては、不織布の構成繊維の融
点が100℃以上であることが、得られた不織布の耐熱
性等の観点から必要であり、従って、これを形成するポ
リ乳酸系重合体の融点が100℃以上であることが重要
である。すなわち、ポリ乳酸のホモポリマーであるポリ
(L−乳酸)やポリ(D−乳酸)の融点は約180℃で
あるが、ポリ乳酸系重合体として前記コポリマーを用い
る場合には、コポリマーの融点が100℃以上となるよ
うにモノマー成分の共重合量比を決定することが重要と
なる。コポリマーにおいてL−乳酸あるいはD−乳酸の
共重合量比が特定の範囲よりも低いと、ポリ乳酸系重合
体の融点ひいては不織布の構成繊維の融点が100℃未
満となるかあるいは重合体が非晶性ポリマーとなるため
に、製糸時の冷却性が低下するとともに、得られた不織
布の耐熱性が損なわれるためその使用用途が制限される
こととなる
In the present invention, it is necessary for the constituent fibers of the nonwoven fabric to have a melting point of 100 ° C. or higher from the viewpoint of the heat resistance of the resulting nonwoven fabric. Therefore, the polylactic acid-based polymer forming the nonwoven fabric is required . It is important that the melting point is 100 ° C. or higher. That is, the melting point of poly (L-lactic acid) or poly (D-lactic acid), which is a homopolymer of polylactic acid, is about 180 ° C., but when the copolymer is used as the polylactic acid-based polymer, the melting point of the copolymer is It is important to determine the copolymerization ratio of the monomer components so that the temperature is 100 ° C. or higher. When the copolymerization amount ratio of L-lactic acid or D-lactic acid in the copolymer is lower than a specific range, the melting point of the polylactic acid-based polymer and thus the melting point of the constituent fibers of the nonwoven fabric becomes less than 100 ° C., or the polymer is amorphous. Since it becomes a water-soluble polymer, the cooling property during spinning is lowered, and the heat resistance of the resulting nonwoven fabric is impaired, limiting its intended use.
It will be .

【0015】また、乳酸とヒドロキシカルボン酸との共
重合体である場合におけるヒドロキシカルボン酸として
は、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草
酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸、ヒ
ドロキシヘプタン酸、ヒドロキシオクタン酸等が挙げら
れるが、これらの中でも特に、ヒドロキシカプロン酸ま
たはグリコール酸が分解性能および低コストの点から好
ましい。
The hydroxycarboxylic acid in the case of a copolymer of lactic acid and hydroxycarboxylic acid includes glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, hydroxycaproic acid, hydroxyheptanoic acid and hydroxyoctanoic acid. Among these, hydroxycaproic acid or glycolic acid is particularly preferable from the viewpoints of decomposition performance and low cost.

【0016】また、本発明におけるポリ乳酸系重合体と
しては、以上のポリ乳酸系重合体を単独で用いるほか、
二種以上のポリ乳酸系重合体を混合してブレンド体とし
て用いることもできる。ブレンド体として用いる場合に
は、製糸性等を勘案して、混合種、混合量等の条件を適
宜設定すると良い。
Further, the polylactic acid polymer definitive to the present invention
In addition to using the above polylactic acid-based polymer alone,
Two or more kinds of polylactic acid-based polymers may be mixed and used as a blend. When used as a blended body, it is advisable to appropriately set the conditions such as mixing type and mixing amount in consideration of spinnability and the like.

【0017】なお、本発明において適用される前記重合
体には、各々、必要に応じて、例えば艶消し剤、顔料、
結晶核剤などの各種添加剤を本発明の効果を損なわない
範囲内で添加しても良い。とりわけ、タルク、窒化ホウ
素、炭酸カルシウム、酸化チタン等の結晶核剤は、紡出
・冷却工程での糸条間の融着(ブロッキング)を防止す
るために、0.1〜3重量%の範囲で用いると有用であ
る。
The polymers applied in the present invention may each contain, for example, a matting agent, a pigment,
Various additives such as a crystal nucleating agent may be added within a range that does not impair the effects of the present invention. In particular, a crystal nucleating agent such as talc, boron nitride, calcium carbonate, and titanium oxide is contained in a range of 0.1 to 3% by weight in order to prevent fusion (blocking) between yarns in the spinning / cooling process. It is useful when used in.

【0018】本発明に適用される長繊維は、中実断面、
その他任意の繊維横断面形態を採用しうるのであるが、
特に、中空断面、異形断面のうちのいずれかであること
が好ましい。
The long fiber applied to the present invention has a solid cross section,
Although any other fiber cross-sectional shape can be adopted,
In particular, it is preferably either a hollow cross section or a modified cross section .

【0019】長繊維の繊維横断面が図1に示すような中
空断面である場合、得られた不織布に優れた分解性能を
付与することができる。これは、外周部分から侵食をは
じめた微生物や水分が中空部1に侵入して貫通する孔が
形成される結果、単位ポリマー重量当りの表面積が大き
くなるため、微生物等による分解速度が促進されるから
である。さらに、中空断面繊維においては、製糸の際に
単位時間当りに冷却領域を通過するポリマー重量が少な
いため、また内部に比熱が小さい空気を含んでいるた
め、紡糸糸条の冷却性を向上させるに著しい効果を発揮
する。
When the fiber cross section of the long fiber has a hollow cross section as shown in FIG. 1, it is possible to impart excellent decomposition performance to the obtained nonwoven fabric. This is because microorganisms such as erosion starting from the outer peripheral portion and water penetrate into the hollow portion 1 to form a penetrating hole, and as a result, the surface area per unit weight of the polymer is increased, so that the decomposition rate by microorganisms is accelerated. Because. Further, in the hollow cross-section fiber, since the weight of the polymer passing through the cooling region per unit time during spinning is small, and the air containing a small specific heat is contained inside, it is possible to improve the cooling property of the spun yarn. It has a remarkable effect.

【0020】長繊維の繊維横断面が図2および図3に示
すような多角形状の異形断面あるいは扁平形状の異形断
面である場合にも、製糸の際の紡出糸条の冷却性、開繊
性に優れるとともに、得られた不織布の分解性能も向上
する。なぜなら、異形断面繊維においても、単位ポリマ
ー重量当りの表面積は大きくなるからである。
Even when the fiber cross section of the long fiber has a polygonal modified cross section or a flat modified cross section as shown in FIGS. 2 and 3, the spinnability of the spun yarn during spinning is improved and the fiber is opened. In addition to having excellent properties, the decomposition performance of the obtained nonwoven fabric is also improved. This is because the surface area per unit weight of the polymer is large even in the modified cross-section fiber.

【0021】なお、本発明においては、前述の断面以外
に、例えば三角型、四角型、六角型、扁平型、Y字型、
T字型など種々の異形断面であっても差し支えない。本
発明の長繊維不織布は、構成長繊維同士が交叉点で結合
することなくウエブが部分的に熱圧着されて、不織構造
を有するシート状形態を保持しているものである。すな
わち、本発明の不織布は、部分的に形成される点状融着
区域のみが接着されているものであるため、優れた柔軟
性を具備するものである。
In the present invention, in addition to the above-mentioned cross section, for example, a triangular shape , a square shape, a hexagonal shape, a flat shape, a Y shape,
Various modified cross sections such as a T-shape may be used. The long-fiber nonwoven fabric of the present invention is one in which the web is partially thermocompressed without the constituent long-fibers being bonded to each other at the crossing points, and the sheet-like form having a non-woven structure is retained. That is, the non-woven fabric of the present invention has excellent flexibility because only the spot-shaped fused regions that are partially formed are adhered.

【0022】本発明の不織布の構成長繊維の単糸繊度は
0.5〜10デニールであることが好ましい。単糸繊度
が0.5デニール未満であると、紡糸・引取工程におい
て単糸切断が頻発し、操業性とともに得られる不織布の
強度も劣る傾向となる。逆に、単糸繊度が10デニール
を超えると、紡出糸条の冷却が不十分になるとともに、
得られる不織布の柔軟性が損なわれることとなり好まし
くない。
The single filament fineness of the constituent long fibers of the nonwoven fabric of the present invention is preferably 0.5 to 10 denier. If the single yarn fineness is less than 0.5 denier, single yarn cutting frequently occurs in the spinning and take-up steps, and the nonwoven fabric obtained tends to be inferior in strength as well as operability. On the other hand, if the single yarn fineness exceeds 10 denier, the spun yarn will not be sufficiently cooled, and
This is not preferable because the flexibility of the obtained nonwoven fabric is impaired.

【0023】本発明の不織布は前記の単糸繊度を満足す
る長繊維で構成され、かつ、その目付が10〜100g
/m2 の範囲にあることが好ましい。目付が10g/m
2未満であると、地合いおよび機械的強力に劣り実用に
耐えないものとなる。逆に、目付が100g/m2 を超
えると、柔軟性が損なわれることとなり好ましくない。
The nonwoven fabric of the present invention is composed of long fibers satisfying the above-mentioned single yarn fineness and has a basis weight of 10 to 100 g.
It is preferably in the range of / m 2 . Unit weight is 10g / m
When it is less than 2 , the texture and the mechanical strength are poor and it cannot be used practically. On the other hand, if the fabric weight exceeds 100 g / m 2 , flexibility is impaired, which is not preferable.

【0024】本発明の不織布は、目付100g/m2
換算時の引張強力が8kg/5cm幅以上が好ましい。
ここで、引張強力とは、JIS−L−1096に準じて
測定した場合における引張破断強力の経方向および緯方
向の平均値を意味し、本発明においてはこれを目付10
0g/m2 に比例換算したもので得られた不織布を評価
する。不織布の引張強力が8kg/5cm幅未満である
と、余りにも機械的強度に欠けるため、実用に耐えない
場合がある。
The nonwoven fabric of the present invention preferably has a tensile strength of 8 kg / 5 cm width or more when converted to a basis weight of 100 g / m 2 .
Here, the tensile strength means the average value of the tensile rupture strength in the warp direction and the weft direction when measured according to JIS-L-1096, and in the present invention, this is the basis weight 10.
The non-woven fabric obtained is evaluated in proportion to 0 g / m 2 . If the tensile strength of the non-woven fabric is less than 8 kg / 5 cm width, it may not be practically usable because it has too low mechanical strength.

【0025】本発明の不織布は、柔軟性の指標である目
付当たりの圧縮剛軟度が5g/(g/m2 )以下であ
る。ここで、圧縮剛軟度は、試料長が10cm、試料幅
が5cmの試料片を横方向に曲げて円筒状物としたもの
を、その軸方向について圧縮速度5cm/分で圧縮し、
得られた最大荷重値(g)を目付けで割った値を5回求
めて平均したものであり、値が小さいほど柔軟であるこ
とを意味する。本発明においては、ウエブを部分的に熱
圧着していることから、得られる不織布は柔軟性に優
れ、圧縮剛軟度が5g/(g/m2 )以下となる。圧縮
剛軟度が5g/(g/m2 )を超えると、不織布の風合
いが硬くなり、柔軟性を要求される衛生材料等の用途に
は不適当となるため好ましくない。
The nonwoven fabric of the present invention has a compression bending resistance per unit weight, which is an index of flexibility, of 5 g / (g / m 2 ) or less. Here, the compression stiffness is obtained by bending a sample piece having a sample length of 10 cm and a sample width of 5 cm in the lateral direction into a cylindrical object, and compressing it at a compression rate of 5 cm / min in the axial direction,
A value obtained by dividing the obtained maximum load value (g) by the basis weight was found 5 times and averaged. A smaller value means more flexibility. In the present invention, since the web is partially thermocompression-bonded, the resulting nonwoven fabric has excellent flexibility and a compression stiffness of 5 g / (g / m 2 ) or less. If the compression stiffness is more than 5 g / (g / m 2 ), the texture of the non-woven fabric becomes hard and unsuitable for use in sanitary materials requiring flexibility.

【0026】次に、本発明のポリ乳酸系長繊維不織布の
製造方法について説明する。本発明の長繊維不織布は、
いわゆるスパンボンド法にて効率良く製造することがで
きる。すなわち、ASTM−D−1238(E)に準じ
て温度190℃で測定したメルトフローレート値が20
〜100g/10分である前述のポリ乳酸系重合体組成
物を用いて、この重合体の融点をTm℃としたときに
(Tm+15)℃〜(Tm+50)℃の範囲の紡糸温度
で溶融して、所望の繊維横断面となる紡糸口金を介して
紡糸し、得られた紡出糸条を従来公知の横型吹付や環状
吹付等の冷却装置を用いて冷却せしめた後、エアーサッ
カー等の吸引装置を用いて、3500〜6000m/分
の高速気流で目的繊度となるように牽引細化させ、引き
続き、吸引装置から排出された糸条群を開繊させた後、
スクリーンからなるコンベアーの如き移動堆積装置上に
開繊堆積させてウエブとする。次いで、この移動堆積装
置上に形成されたウエブに、部分熱圧着装置を用いて、
前記重合体のうち最も低い融点を有する重合体の融点よ
りも10℃以上低い温度で部分的に熱圧着を施すことに
より、長繊維不織布を得ることができる。
Next, a method for producing the polylactic acid-based long-fiber nonwoven fabric of the present invention will be described. The long fiber non-woven fabric of the present invention,
It can be efficiently manufactured by a so-called spun bond method. That is, the melt flow rate value measured at a temperature of 190 ° C. according to ASTM-D-1238 (E) is 20.
When the melting point of this polymer is Tm ° C., it is melted at a spinning temperature in the range of (Tm + 15) ° C. to (Tm + 50) ° C., using the above-mentioned polylactic acid-based polymer composition of ˜100 g / 10 min. , After spinning through a spinneret having a desired fiber cross-section, and cooling the obtained spun yarn using a conventionally known cooling device such as horizontal spraying or annular spraying, a suction device such as an air sucker By using, to draw and thin to a target fineness with a high-speed air flow of 3500 to 6000 m / min, and subsequently to open the yarn group discharged from the suction device,
A web is obtained by spreading and depositing fibers on a moving depositing device such as a conveyor made of a screen. Then, using a partial thermocompression bonding device on the web formed on this moving deposition device,
A long-fiber nonwoven fabric can be obtained by partially performing thermocompression bonding at a temperature 10 ° C. or more lower than the melting point of the polymer having the lowest melting point among the above polymers.

【0027】本発明において適用されるポリ乳酸系重合
体組成物のメルトフローレート値(以下、MFR値と称
す)は、前述のように、ASTM−D−1238(E)
に記載の方法に準じて190℃で測定して20〜100
g/10分であることが重要である。MFR値が20
/10分未満であると、溶融粘度が高過ぎるために高速
製糸性に劣る結果となり、逆に、MFR値が100g/
10分を超えると、溶融粘度が低すぎるために曳糸性が
劣ることとなり、安定した操業が困難となる。
The melt flow rate value (hereinafter referred to as MFR value) of the polylactic acid polymer composition applied in the present invention is, as described above, ASTM-D-1238 (E).
20 to 100 measured at 190 ° C. according to the method described in 1.
It is important that it is g / 10 minutes. MFR value is 20 g
If it is less than / 10 minutes, the melt viscosity is too high, resulting in inferior high-speed spinnability, and conversely, the MFR value is 100 g /
If it exceeds 10 minutes, the melt viscosity will be too low and the spinnability will be poor, making stable operation difficult.

【0028】本発明において溶融紡糸の際には、前述の
ように、用いる重合体の融点をTm℃としたときに(T
m+15)℃〜(Tm+50)℃の範囲の温度で溶融し
なければならない。但し、二種以上のポリ乳酸系重合体
のブレンド体を用いる場合、ブレンド体を構成する重合
体のうち最も高い融点を有する重合体の融点をTm℃と
する。紡糸温度が(Tm+15)℃より低いと、高速気
流による曳糸・引取性に劣り、逆に、(Tm+50)℃
を超えると、冷却過程での結晶化が遅れ、フィラメント
間で融着を生じたり開繊性に劣ったりするばかりでな
く、ポリマー自体の熱分解も進行するため、柔軟で均一
な地合いの不織布を得ることが困難となる。
In the present invention, during melt spinning, as described above, when the melting point of the polymer used is Tm ° C. (T
It must melt at a temperature in the range of m + 15) ° C to (Tm + 50) ° C. However, when a blend of two or more polylactic acid-based polymers is used, the melting point of the polymer having the highest melting point among the polymers constituting the blend is Tm ° C. If the spinning temperature is lower than (Tm + 15) ° C, the high-speed air flow will result in poor pulling and take-up properties, and conversely, (Tm + 50) ° C.
If it exceeds the above, not only the crystallization in the cooling process is delayed, fusion between filaments occurs and the openability is inferior, but also the thermal decomposition of the polymer itself proceeds, so a nonwoven fabric with a soft and uniform texture is formed. Hard to get.

【0029】本発明において吸引装置を用いて紡出糸条
を牽引細化する際には、前述のように、引取速度が35
00〜6000m/分となるようにすることが重要であ
る。吸引装置の引取速度は重合体のMFR値に応じて適
宜選択すればいいが、引取速度が3500m/分未満で
は、重合体の配向結晶化が促進されず糸条間で粘着を起
こし、得られる不織布は硬くて機械的強度が劣ったもの
となる傾向にある。逆に、引取速度が6000m/分を
超えると、曳糸限界を超えて糸切れが発生して、安定操
業性を損なうこととなる。
In the present invention, when the spun yarn is pulled and thinned by using the suction device, the take-up speed is set to 35 as described above.
It is important to set it to 00 to 6000 m / min. The take-up speed of the suction device may be appropriately selected according to the MFR value of the polymer, but if the take-up speed is less than 3500 m / min, oriented crystallization of the polymer is not promoted and sticking occurs between the yarns, resulting in The resulting nonwoven fabric tends to be hard and inferior in mechanical strength. On the other hand, when the take-up speed exceeds 6000 m / min, the yarn breakage occurs, exceeding the towing limit, and stable operability is impaired.

【0030】本発明においてウエブの部分的熱圧着と
は、エンボス加工又は超音波融着処理によって点状融着
区域を形成するものをいい、具体的には、加熱されたエ
ンボスロールと表面が平滑な金属ロールとの間にウエブ
を通して長繊維間に点状融着区域を形成する方法が採用
される。
In the present invention, the term "partial thermocompression bonding" of a web means that a point-like fused area is formed by embossing or ultrasonic welding. Specifically, the heated embossing roll and the surface are smooth. A method of forming a spot-shaped fused area between long fibers by passing a web between the long fibers is used.

【0031】さらに詳しくは、前記部分的な熱圧着と
は、ウエブの全表面積に対して特定の領域、すなわち
0.2〜15mm2 の面積を有し、個々の熱圧着領域が
丸型,楕円型,菱型,三角型,T字型,井型等の任意の
形状である領域を有し、その密度、すなわち圧着点密度
が4〜100点/cm2 であるのが良い。圧着点密度が
4点/cm2 未満であると得られる不織布の機械的強力
や形態保持性が向上せず、逆に、圧着点密度が100点
/cm2 を超えると得られる不織布が疎剛化して柔軟性
を損なう傾向にあり、いずれも好ましくない。また、ウ
エブの全表面積に対する全熱圧着領域の面積の比、すな
わち圧着面積率は個々の圧着点面積に依存するが、4〜
50%であるのが良い。この圧着面積率が4%未満であ
ると得られる不織布の機械的強力や形態保持性が向上せ
ず、逆に、圧着面積率が50%を超えると、得られる不
織布が疎剛化して柔軟性を損なう傾向にあり、いずれも
好ましくない。
More specifically, the partial thermocompression bonding has a specific area with respect to the total surface area of the web, that is, an area of 0.2 to 15 mm 2 , and each thermocompression bonding area is round or elliptical. It is preferable to have a region having an arbitrary shape such as a die, a rhombus, a triangle, a T-shape, and a well, and its density, that is, the density of crimping points is 4 to 100 points / cm 2 . If the density of crimping points is less than 4 points / cm 2 , the mechanical strength and shape retention of the resulting nonwoven fabric are not improved, and conversely, if the density of crimping points exceeds 100 points / cm 2 , the resulting nonwoven fabric is sparse Tend to be lost and the flexibility is impaired, which is not preferable. Further, the ratio of the area of the total thermocompression bonding area to the total surface area of the web, that is, the pressure bonding area ratio depends on the area of each pressure bonding point,
It should be 50%. When the pressure-bonding area ratio is less than 4%, the mechanical strength and shape retention of the resulting nonwoven fabric are not improved, and conversely, when the pressure-bonding area ratio exceeds 50%, the resulting nonwoven fabric becomes sparsely rigid and flexible. Which is not preferable.

【0032】熱圧着を施す際の加工温度、すなわちエン
ボスロールの表面温度は、前述のように、用いる重合体
の融点よりも10℃以上低い温度で行わなければならな
い。但し、熱圧着を施すウエブが、二種以上のポリ乳酸
系重合体のブレンド体よりなる長繊維から形成されてい
る場合には、ブレンド体を構成する重合体のうち最も低
い融点を有する重合体の融点を基準にすることとし、こ
の融点よりも10℃以上低い加工温度としなければなら
ない。この温度を超えると、熱圧着装置に重合体が固着
し操業性を著しく損なうばかりか、不織布の風合いが硬
くなり柔軟な不織布が得られないこととなる。
As described above, the processing temperature for thermocompression bonding, that is, the surface temperature of the embossing roll, must be 10 ° C. or more lower than the melting point of the polymer used. However, the web to which thermocompression bonding is applied should be made of two or more kinds of polylactic acid.
Made from long fibers consisting of a blend of polymer
The lowest of the polymers that make up the blend,
Based on the melting point of a polymer with a high melting point,
The processing temperature must be 10 ° C lower than the melting point of
Absent. If this temperature is exceeded, not only will the polymer stick to the thermocompression bonding device, impairing operability, but also the texture of the non-woven fabric will become hard and a soft non-woven fabric will not be obtained.

【0033】熱圧着処理については、前述の加熱された
エンボスロールを用いる方法のほか、超音波融着装置を
用いパターンロール上で超音波による高周波を印加して
パターン部の長繊維間に点状融着区域を形成する方法を
採用することもできる。さらに詳しくは、超音波融着装
置とは、周波数が約20kHzの通常ホーンと呼称され
る超音波発振器と、円周上に点状または帯状に凸状突起
部を具備するパターンロールとからなる装置である。前
記超音波発振器の下部に前記パターンロールが配設さ
れ、ウエブを超音波発振器とパターンロールとの間に通
すことにより部分的に熱融着することができる。このパ
ターンロールに配設される凸状突起部1列あるいは複数
列であっても良く、またその配設が複数列の場合には、
並列あるいは千鳥型のいずれの配列でも良い。
Regarding the thermocompression bonding treatment, in addition to the method using the above-mentioned heated embossing roll, a high-frequency ultrasonic wave is applied on the pattern roll using an ultrasonic fusing device to form a dot pattern between the long fibers of the pattern portion. It is also possible to employ a method of forming a fusion zone. More specifically, the ultrasonic fusing device is a device including an ultrasonic oscillator having a frequency of about 20 kHz, which is usually called a horn, and a pattern roll having convex protrusions in a dot or band shape on the circumference. Is. The pattern roll is disposed below the ultrasonic oscillator, and the web can be partially heat-sealed by passing the web between the ultrasonic oscillator and the pattern roll. There may be one row or a plurality of rows of convex protrusions arranged on this pattern roll, and when the arrangement is a plurality of rows,
Either parallel or staggered arrangement may be used.

【0034】なお、このエンボスロールあるいは超音波
融着装置を用いる部分的な熱圧着処理は、連続工程ある
いは別工程のいずれであっても良く、またいずれの方法
を採用するかは、不織布の使用用途に応じ適宜選択すれ
ば良い。
The partial thermocompression bonding process using the embossing roll or the ultrasonic fusing device may be a continuous process or a separate process. Which method is adopted depends on whether a non-woven fabric is used or not. It may be appropriately selected depending on the application.

【0035】[0035]

【実施例】以下、実施例により本発明を具体的に説明す
る。なお、本発明はこれらの実施例のみに限定されるも
のではない。
EXAMPLES The present invention will be specifically described below with reference to examples. The present invention is not limited to these examples.

【0036】実施例において、各物性値は次のようにし
て求めた。 ・メルトフローレート値(g/10分);ASTM−D
−1238(E)に記載の方法に準じて温度190℃で
測定した。 ・融点(℃);パーキンエルマ社製示差走査型熱量計D
SC−2型を用い、試料重量を5mg、昇温速度を20
℃/分として測定して得た融解吸熱曲線の極値を与える
温度を融点(℃)とした。 ・目付(g/m2 );標準状態の試料から縦10cm×
横10cmの試料片各10点を作製し平衡水分に至らし
めた後、各試料片の重量(g)を秤量し、得られた値の
平均値を単位面積当たりに換算し、目付(g/m2 )と
した。 ・KGSM引張強力(kg/5cm幅);JIS−L−
1096に記載のストリップ方法に準じて測定した。す
なわち、試料長が10cm、試料幅が5cmの試料片各
10点を作製し、各試料片毎に不織布の経および緯方向
について、定速伸張型引張試験機(東洋ボールドウィン
社製テンシロンUTM−4−1−100)を用いて引張
速度10cm/分で伸張し、得られた切断時荷重値(k
g/5cm幅)の平均値を100g/m2 の目付に換算
した値をKGSM引張強力(kg/5cm幅)とした。 ・不織布の圧縮剛軟度(g/(g/m2 ));試料長が
10cm、試料幅が5cmの試料片計5点を作製し、各
試料片毎に横方向に曲げて円筒状物とし、各々その端部
を接合したものを圧縮剛軟度測定試料とした。次いで、
測定試料毎に各々その軸方向について、定速伸長型引張
り試験機(東洋ボールドウィン社製テンシロンUTM−
4−1−100)を用い、圧縮速度5cm/分で圧縮
し、得られた最大荷重値(g)を目付けで割った値の平
均を圧縮剛軟度(g/(g/m2 ))とした。従って、
この圧縮剛軟度の値が小さいほど柔軟性が優れることを
意味する。 ・生分解性能;不織布を約58℃に維持された熟成コン
ポスト中に埋設し、3ヶ月後に取り出し、不織布がその
形態を保持していない場合、あるいは、その形態を保持
していても引張強力が埋設前の強力初期値に対して50
%以下に低下している場合、生分解性能が良好であると
し、強力が埋設前の強力初期値に対して50%を超える
場合、生分解性能が不良であると評価した。
In the examples, each physical property value was determined as follows. Melt flow rate value (g / 10 minutes); ASTM-D
It measured at the temperature of 190 degreeC according to the method as described in -1238 (E). -Melting point (° C); Differential scanning calorimeter D manufactured by Perkin Elma
Using SC-2 type, sample weight 5 mg, temperature rising rate 20
The temperature that gives the extreme value of the melting endothermic curve obtained by measuring as ° C / min was defined as the melting point (° C).・ Basis weight (g / m 2 ); 10 cm long from the standard sample
After each 10 points of a 10 cm wide sample piece was prepared and allowed to reach equilibrium water content, the weight (g) of each sample piece was weighed, and the average value of the obtained values was converted per unit area to give a basis weight (g / m 2 ).・ KGSM tensile strength (kg / 5cm width); JIS-L-
It was measured according to the strip method described in 1096. That is, 10 pieces each of a sample piece having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Tensilon UTM-4 manufactured by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp and weft directions of the nonwoven fabric. -1-100) was used to stretch at a tensile speed of 10 cm / min, and the obtained load value (k) at cutting was obtained.
The value obtained by converting the average value of (g / 5 cm width) into a basis weight of 100 g / m 2 was defined as KGSM tensile strength (kg / 5 cm width).・ Compressive bending resistance (g / (g / m 2 )) of non-woven fabric; a total of 5 sample pieces with a sample length of 10 cm and a sample width of 5 cm were prepared, and each sample piece was bent laterally to form a cylindrical object. Each of which was joined at its end was used as a sample for measuring compression stiffness. Then
Constant velocity extension type tensile tester (Tensilon UTM-manufactured by Toyo Baldwin Co., Ltd.)
4-1-100) was used for compression at a compression speed of 5 cm / min, and the average of values obtained by dividing the maximum load value (g) obtained by the basis weight was compression stiffness (g / (g / m 2 )). And Therefore,
The smaller the value of this compression stiffness is, the better the flexibility is.・ Biodegradability: The non-woven fabric is embedded in an aged compost maintained at about 58 ° C and taken out after 3 months. When the non-woven fabric does not retain its morphology, or even if it retains its morphology, the tensile strength is 50 against the strong initial value before burial
If the strength is less than 50%, the biodegradability is considered to be good, and if the strength exceeds 50% of the initial strength before embedding, the biodegradability is evaluated to be poor.

【0037】実施例1 融点が168℃、MFR値が20g/10分であるL−
乳酸/ヒドロキシカプロン酸=90/10モル%のL−
乳酸−ヒドロキシカプロン酸共重合体を用い、孔径0.
5mmで48孔を有する丸型の紡糸口金より紡糸温度1
95℃、単孔吐出量1.35g/分で溶融紡糸した。次
に、紡出糸条を温度が20℃の冷却空気流にて冷却した
後、引き続いてエアーサッカーにて引取速度3500m
/分で引取り、開繊し、移動するコンベアーの捕集面上
に堆積させてウエブを形成した。次いで、このウエブを
エンボスロールからなる部分熱圧着装置に通し、ロール
温度を重合体の融点より20℃低い温度(148℃)と
し、圧着面積率が7.6%の条件にて部分的に熱圧着
し、単糸繊度が3.5デニールの長繊維からなる、目付
30g/m2 の長繊維不織布を得た。製造条件、操業性
および不織布の物性、生分解性能を表1に示す。
Example 1 L- having a melting point of 168 ° C. and an MFR value of 20 g / 10 minutes
Lactic acid / hydroxycaproic acid = 90/10 mol% L-
A lactic acid-hydroxycaproic acid copolymer was used, and the pore size was 0.
Spinning temperature 1 from a round spinneret with 5 mm and 48 holes
Melt spinning was performed at 95 ° C. and a single hole discharge rate of 1.35 g / min. Next, the spun yarn is cooled with a cooling air flow having a temperature of 20 ° C., and subsequently, with an air sucker, a take-up speed of 3500 m.
The web was formed by picking up the fiber at a speed of 1 / min, opening the fiber, and depositing it on the collecting surface of the moving conveyor. Next, this web was passed through a partial thermocompression bonding apparatus consisting of embossing rolls, the roll temperature was set to a temperature 20 ° C lower than the melting point of the polymer (148 ° C), and the heating was partially performed under the condition that the compression bonding area ratio was 7.6%. By pressure bonding, a continuous fiber nonwoven fabric having a unit weight of 30 g / m 2 and having a single fiber fineness of 3.5 denier was obtained. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0038】実施例2 L−乳酸−ヒドロキシカプロン酸共重合体におけるL−
乳酸とヒドロキシカプロン酸との共重合量比および紡糸
温度、エンボス温度を表1に示すように変更した以外
は、実施例1と同様にして長繊維不織布を得た。製造条
件、操業性および不織布の物性、生分解性能を表1に示
す。
Example 2 L- in L-lactic acid-hydroxycaproic acid copolymer
A long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the copolymerization ratio of lactic acid and hydroxycaproic acid, the spinning temperature, and the embossing temperature were changed as shown in Table 1. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0039】実施例3および実施例4 L−乳酸とD−乳酸との共重合体を用いて、その共重合
量比および紡糸温度、エンボス温度を表1に示すように
変更した以外は、実施例1と同様にして長繊維不織布を
得た。製造条件、操業性および不織布の物性、生分解性
能を表1に示す。
Example 3 and Example 4 Example 3 and Example 4 were carried out except that the copolymer of L-lactic acid and D-lactic acid was used and the copolymerization amount ratio, spinning temperature and embossing temperature were changed as shown in Table 1. A long fiber nonwoven fabric was obtained in the same manner as in Example 1. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0040】実施例5 ポリ(L−乳酸)重合体を用い、紡糸温度およびエンボ
ス温度を表1に示すように変更したこと以外は、実施例
1と同様にして長繊維不織布を得た。製造条件、操業性
および不織布の物性、生分解性能を表1に示す。
Example 5 A long-fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the spinning temperature and the embossing temperature were changed as shown in Table 1 using a poly (L-lactic acid) polymer. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0041】実施例6 ポリ(L−乳酸)重合体に結晶核剤としてタルクを1重
量%添加した組成物を用いたこと以外は、実施例5と同
様にして長繊維不織布を得た。製造条件、操業性および
不織布の物性、生分解性能を表1に示す。
Example 6 A long-fiber nonwoven fabric was obtained in the same manner as in Example 5 except that a composition obtained by adding 1% by weight of talc as a crystal nucleating agent to a poly (L-lactic acid) polymer was used. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0042】実施例7 単孔吐出量を5.78g/分とし、引取速度を4500
m/分としたこと以外は、実施例1と同様にして、単糸
繊度が5.4デニールの長繊維からなる長繊維不織布を
得た。製造条件、操業性および不織布の物性、生分解性
能を表1に示す。
Example 7 The single hole discharge rate was 5.78 g / min, and the take-up speed was 4500.
A long fiber nonwoven fabric made of long fibers having a single yarn fineness of 5.4 denier was obtained in the same manner as in Example 1 except that m / min was set. Table 1 shows production conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0043】[0043]

【表1】 [Table 1]

【0044】表1から明らかなように、実施例1〜7
得られた長繊維不織布は、いずれも実用に耐えうるだけ
の強力を有しており、しかも圧縮剛軟度が5g/(g/
2)以下であり柔軟性に優れるものであった。また、
これらの不織布は生分解性能についても非常に良好であ
り、コンポスト中への埋設後に取り出したところ、いず
れの不織布も重量減少率、形態変化が大きく、強力保持
率が著しく低下していた。
As is clear from Table 1, all the long-fiber nonwoven fabrics obtained in Examples 1 to 7 have sufficient strength to withstand practical use, and have compression stiffness of 5 g / (g). /
It was less than m 2 ) and was excellent in flexibility. Also,
These non-woven fabrics also had very good biodegradability, and when they were taken out after being embedded in compost, all the non-woven fabrics had a large weight loss rate, a large morphological change, and a markedly low strength retention rate.

【0045】比較例1および比較例2 引取速度を表2に示すように変更した以外は、実施例1
と同様にして長繊維不織布を得た。製造条件および操業
性を表2に示す。
Comparative Example 1 and Comparative Example 2 Example 1 except that the take-up speed was changed as shown in Table 2.
A long fiber nonwoven fabric was obtained in the same manner as in. Table 2 shows the production conditions and operability.

【0046】比較例3および比較例4 重合体のMFR値を表2に示すように変更した以外は、
実施例1と同様にして長繊維不織布を得た。製造条件お
よび操業性を表2に示す。 比較例5および比較例6 紡糸温度を表2に示すように変更した以外は、実施例1
と同様にして長繊維不織布を得た。製造条件および操業
性を表2に示す。
Comparative Example 3 and Comparative Example 4 Except that the MFR value of the polymer was changed as shown in Table 2,
A long fiber nonwoven fabric was obtained in the same manner as in Example 1. Table 2 shows the production conditions and operability. Comparative Example 5 and Comparative Example 6 Example 1 except that the spinning temperature was changed as shown in Table 2.
A long fiber nonwoven fabric was obtained in the same manner as in. Table 2 shows the production conditions and operability.

【0047】比較例7 熱圧着の際のエンボス温度を105℃としたこと以外
は、実施例4と同様にして長繊維からなる長繊維不織布
を得た。製造条件、操業性および不織布の物性、生分解
性能を表2に示す。
Comparative Example 7 A long fiber nonwoven fabric made of long fibers was obtained in the same manner as in Example 4 except that the embossing temperature during thermocompression bonding was 105 ° C. Table 2 shows manufacturing conditions, operability, physical properties of the nonwoven fabric, and biodegradability.

【0048】[0048]

【表2】 [Table 2]

【0049】一方、表2から明らかなように、比較例1
においては、引取速度が3500m/分よりも低いの
で、フィラメント間での融着が発生し、開繊性が不良と
なり、地合いの良好なシートが得られなかった。
On the other hand, as is clear from Table 2, Comparative Example 1
In the above, since the take-up speed was lower than 3500 m / min , fusion between filaments occurred, the openability became poor, and a sheet with good texture could not be obtained.

【0050】比較例2においては、引取速度が6000
m/分よりも高いので、高速気流による曳糸性に劣り、
糸切れが多発してシート化ができなかった。比較例3に
おいては、MFR値が100g/10分を超えるため、
高速気流による曳糸性に劣り、糸切れが多発してシート
化ができなかった。
In Comparative Example 2, the take-up speed is 6000.
Since it is higher than m / min, it has poor spinnability due to high-speed air flow,
Thread breakage occurred frequently and it could not be made into a sheet. In Comparative Example 3, since the MFR value exceeds 100 g / 10 minutes,
The spinnability due to high-speed air flow was inferior, and yarn breakage occurred frequently, making it impossible to form a sheet.

【0051】比較例4においては、MFR値が20g/
10分未満であるため、高速気流による曳糸・引取性に
劣り、操業性を損なう結果となった。比較例5において
は、紡糸温度が重合体の融点をTmとしたときに(Tm
+15)℃よりも低いので、高速気流による曳糸・引取
性に劣り、操業性を損なう結果となった。
In Comparative Example 4, the MFR value was 20 g /
Since it was less than 10 minutes , the drawability and take-up property by the high-speed air flow were inferior, and the operability was impaired. In Comparative Example 5, when the spinning temperature was Tm, the melting point of the polymer was (Tm
Since the temperature is lower than +15) ° C, the drawability and take-up property by the high-speed air flow are inferior, and the operability is impaired.

【0052】比較例6においては、紡糸温度が重合体の
融点をTmとしたときに(Tm+50)℃よりも高いの
で、冷却過程での結晶化が遅くなり、重合体の熱分解も
進行して、フィラメント間での融着が発生し、開繊性が
不良となり、地合いの良好なシートが得られなかった。
In Comparative Example 6, since the spinning temperature was higher than (Tm + 50) ° C. when the melting point of the polymer was Tm, crystallization was slowed during the cooling process and thermal decomposition of the polymer proceeded. However, fusion between filaments occurred, the openability became poor, and a sheet with a good texture could not be obtained.

【0053】比較例7においては、エンボス温度を重合
体の融点よりも7℃低いだけとしたため、得られた不織
布は、柔軟性および地合いに欠けるものであった。
In Comparative Example 7, the embossing temperature was only 7 ° C. lower than the melting point of the polymer, so that the obtained nonwoven fabric lacked flexibility and texture.

【0054】[0054]

【発明の効果】本発明によれば、ポリ乳酸系長繊維が部
分的に熱圧着されることにより不織布としての形態が保
持されているので、自然環境下で分解し得ると同時に、
硬くてもろいというポリ乳酸樹脂自体の特性に反して、
実用に供し得る機械的強度を保持しつつ優れた柔軟性を
備える不織布を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, since the polylactic acid-based long fibers are partially thermocompressed to retain the shape of the nonwoven fabric, they can be decomposed in a natural environment and at the same time,
Contrary to the characteristic of polylactic acid resin itself that it is hard and brittle,
It is possible to provide a nonwoven fabric having excellent flexibility while maintaining mechanical strength that can be put to practical use.

【0055】従って、本発明の不織布は、例えば、おむ
つや生理用品等の衛生材料用素材、使い捨ておしぼりや
ワイピングクロス、パップ材基布、家庭用又は業務用の
生塵捕集用袋又はフィルター、植生補助シートや植木コ
ンテナのような農・園芸資材、水平又は垂直ドレーンシ
ートのような土木用資材、その他廃棄物処理材等の生活
関連用素材のような分解性および柔軟性が要求される用
途において有効に適用することができ、自然環境保護の
観点から有益なものである。
Therefore, the non-woven fabric of the present invention is, for example, a material for sanitary materials such as diapers and sanitary products, disposable hand towels, wiping cloths, base cloths for paps, household or commercial dust collection bags or filters, Agricultural and horticultural materials such as vegetation auxiliary sheets and plant containers, civil engineering materials such as horizontal or vertical drain sheets, and other applications that require degradability and flexibility such as life-related materials such as waste treatment materials It can be effectively applied in, and is beneficial from the viewpoint of protecting the natural environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の不織布を構成する長繊維の一例を示す
中空断面長繊維の繊維横断面のモデル図である。
FIG. 1 is a model view of a fiber cross section of a hollow cross section long fiber showing an example of a long fiber constituting a nonwoven fabric of the present invention.

【図2】本発明の不織布を構成する長繊維の他の例を示
す異形断面長繊維の繊維横断面のモデル図である。
FIG. 2 is a model view of a fiber cross section of a modified cross-section long fiber showing another example of the long fiber constituting the nonwoven fabric of the present invention.

【図3】本発明の不織布を構成する長繊維のさらに他の
例を示す異形断面長繊維の繊維横断面のモデル図であ
る。
FIG. 3 is a model view of a fiber cross section of a modified cross section long fiber showing still another example of the long fiber constituting the nonwoven fabric of the present invention.

【符号の説明】[Explanation of symbols]

1 中空部 1 hollow part

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−133511(JP,A) 特開 平7−34369(JP,A) 特開 平7−48769(JP,A) 特開 平8−35121(JP,A) 特開 平9−13256(JP,A) 特開 平7−125128(JP,A) (58)調査した分野(Int.Cl.7,DB名) D04H 1/00 - 18/00 D01F 1/00 - 13/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-133511 (JP, A) JP-A-7-34369 (JP, A) JP-A-7-48769 (JP, A) JP-A-8- 35121 (JP, A) JP 9-13256 (JP, A) JP 7-125128 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) D04H 1 / 00-18 / 00 D01F 1/00-13/04

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ASTM−D−1238(E)に準じて
温度190℃で測定したメルトフローレート値が20〜
100g/10分であるポリ乳酸系重合体をスパンボン
ド法により引取速度3500〜6000m/分で牽引細
化した長繊維にて構成され、前記ポリ乳酸系重合体は、
ポリ(D−乳酸)と、ポリ(L−乳酸)と、D−乳酸と
L−乳酸との共重合体と、D−乳酸とヒドロキシカルボ
ン酸との共重合体と、L−乳酸とヒドロキシカルボン酸
との共重合体との群から選ばれる重合体のうち融点が1
00℃以上の重合体あるいはこれらのブレンド体であ
り、前記長繊維は、前記ポリ乳酸系重合体の一成分にて
形成され、前記構成長繊維どうしが部分的に熱圧着され
ていることを特徴とするポリ乳酸系長繊維不織布。
1. A melt flow rate value measured according to ASTM-D-1238 (E) at a temperature of 190 ° C. is 20 to.
The polylactic acid-based polymer, which is 100 g / 10 min, is composed of long fibers drawn and thinned by a spunbond method at a take-up speed of 3500 to 6000 m / min.
Poly (D-lactic acid), poly (L-lactic acid), copolymer of D-lactic acid and L-lactic acid, copolymer of D-lactic acid and hydroxycarboxylic acid, L-lactic acid and hydroxycarboxylic acid Among polymers selected from the group of copolymers with acids, the melting point is 1
A polymer having a temperature of 00 ° C. or higher or a blend thereof, wherein the long fibers are formed of one component of the polylactic acid-based polymer, and the constituent long fibers are partially thermocompression bonded. Polylactic acid type long fiber non-woven fabric.
【請求項2】 ポリ乳酸系重合体に結晶核剤が添加され
ていることを特徴とする請求項1記載のポリ乳酸系長繊
維不織布。
2. The polylactic acid-based long-fiber nonwoven fabric according to claim 1, wherein a crystal nucleating agent is added to the polylactic acid-based polymer.
【請求項3】 構成長繊維の繊維横断面が、中実断面あ
るいは中空断面であることを特徴とする請求項1または
2記載のポリ乳酸系長繊維不織布。
3. The polylactic acid-based long-fiber nonwoven fabric according to claim 1, wherein the fiber cross section of the constituent long fiber is a solid cross section or a hollow cross section.
【請求項4】 構成長繊維の繊維横断面が、多角形状ま
たは扁平形状の異形断面であることを特徴とする請求項
1から3までのいずれか1項記載のポリ乳酸系長繊維不
織布。
4. The polylactic acid-based long fiber non-woven fabric according to claim 1, wherein the fiber cross section of the constituent long fibers is a polygonal or flat irregular cross section.
【請求項5】 構成長繊維の単糸繊度が0.5〜10デ
ニールであり、かつ不織布の目付が10〜100g/m
2 であることを特徴とする請求項1から4までのいずれ
か1項記載のポリ乳酸系長繊維不織布。
5. A single yarn fineness of the constituent long fibers is 0.5 to 10 denier, and a basis weight of the nonwoven fabric is 10 to 100 g / m.
The polylactic acid-based long-fiber non-woven fabric according to any one of claims 1 to 4, characterized in that it is 2 .
【請求項6】 目付100g/m2 に換算時の不織布の
引張強力が8kg/5cm幅以上であることを特徴とす
る請求項1から5までのいずれか1項記載のポリ乳酸系
長繊維不織布。
6. The polylactic acid-based long-fiber nonwoven fabric according to any one of claims 1 to 5, wherein the tensile strength of the nonwoven fabric when converted to a basis weight of 100 g / m 2 is 8 kg / 5 cm width or more. .
【請求項7】 目付当たりの不織布の圧縮剛軟度が5g
/(g/m2 )以下であることを特徴とする請求項1か
ら6までのいずれか1項に記載のポリ乳酸系長繊維不織
布。
7. The compression bending resistance of the nonwoven fabric per unit weight is 5 g.
The polylactic acid-based long-fiber non-woven fabric according to any one of claims 1 to 6, which has a ratio of / (g / m 2 ) or less.
【請求項8】 ASTM−D−1238(E)に準じて
温度190℃で測定したメルトフローレート値が20〜
100g/10分であるポリ乳酸系重合体であって、ポ
リ(D−乳酸)と、ポリ(L−乳酸)と、D−乳酸とL
−乳酸との共重合体と、D−乳酸とヒドロキシカルボン
酸との共重合体と、L−乳酸とヒドロキシカルボン酸と
の共重合体との群から選ばれる重合体のうち融点が10
0℃以上の重合体あるいはこれらのブレンド体のいずれ
か一成分を、この重合体の融点をTm℃としたときに
(Tm+15)℃〜(Tm+50)℃の温度で溶融して
口金から吐出させ、この吐出糸条を吸引装置にて350
0〜6000m/分の引取速度で牽引細化した後に、移
動式捕集面上に開繊させながら堆積させてウエブを形成
し、このウエブを部分熱圧着装置を用いて前記重合体の
融点よりも10℃以上低い温度で部分的に熱圧着させる
ことを特徴とするポリ乳酸系長繊維不織布の製造方法。
8. A melt flow rate value measured according to ASTM-D-1238 (E) at a temperature of 190 ° C. is 20 to.
A polylactic acid-based polymer having a weight of 100 g / 10 minutes, wherein poly (D-lactic acid), poly (L-lactic acid), D-lactic acid and L
-A polymer selected from the group consisting of a copolymer of lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, and a copolymer of L-lactic acid and hydroxycarboxylic acid, having a melting point of 10
Any one component of the polymer having a temperature of 0 ° C. or higher or a blend thereof is melted at a temperature of (Tm + 15) ° C. to (Tm + 50) ° C. when the melting point of the polymer is Tm ° C. and discharged from the die, This discharge thread is 350
After being drawn and thinned at a take-up speed of 0 to 6000 m / min, a web was formed by depositing while opening the fibers on the movable collection surface, and the web was formed from the melting point of the polymer by using a partial thermocompression bonding device. Also, a method for producing a polylactic acid-based long-fiber non-woven fabric, which comprises partially thermocompressing at a temperature lower than 10 ° C.
JP25167995A 1995-09-29 1995-09-29 Polylactic acid-based long-fiber nonwoven fabric and method for producing the same Expired - Lifetime JP3434628B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP25167995A JP3434628B2 (en) 1995-09-29 1995-09-29 Polylactic acid-based long-fiber nonwoven fabric and method for producing the same
EP05022050.8A EP1612314B2 (en) 1995-09-29 1996-09-16 Filament nonwoven fabrics and method of fabricating the same
EP99108935A EP0949371B1 (en) 1995-09-29 1996-09-16 Filament nonwoven fabrics and method of fabricating the same
EP96114791A EP0765959B1 (en) 1995-09-29 1996-09-16 Filament nonwoven fabrics and method of fabricating the same
KR1019960042661A KR100406244B1 (en) 1995-09-29 1996-09-25 Long-fiber nonwoven fabric and manufacturing method
US09/324,368 US6787493B1 (en) 1995-09-29 1999-06-02 Biodegradable formable filament nonwoven fabric and method of producing the same
US09/351,413 US6607996B1 (en) 1995-09-29 1999-07-09 Biodegradable filament nonwoven fabric and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25167995A JP3434628B2 (en) 1995-09-29 1995-09-29 Polylactic acid-based long-fiber nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0995849A JPH0995849A (en) 1997-04-08
JP3434628B2 true JP3434628B2 (en) 2003-08-11

Family

ID=17226406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25167995A Expired - Lifetime JP3434628B2 (en) 1995-09-29 1995-09-29 Polylactic acid-based long-fiber nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP3434628B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012780A (en) 2009-04-24 2012-02-10 제이엔씨 주식회사 Biodegradable nonwoven fabric and fiber product using the same
KR20230121643A (en) 2022-02-11 2023-08-21 한화첨단소재 주식회사 Composite material containing biodegradable polymer, manufacturing method thereof, and spunbond nonwoven fabric containing the composite material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787493B1 (en) * 1995-09-29 2004-09-07 Unitika, Ltd. Biodegradable formable filament nonwoven fabric and method of producing the same
US6607996B1 (en) * 1995-09-29 2003-08-19 Tomoegawa Paper Co., Ltd. Biodegradable filament nonwoven fabric and method of producing the same
ES2276193T3 (en) * 1999-06-18 2007-06-16 Toray Industries, Inc. POLYACTIC ACID RESIN, TEXTILE PRODUCTS OBTAINED FROM THE SAME AND PROCEDURES TO PRODUCE TEXTILE PRODUCTS.
JP2002105829A (en) * 2000-09-21 2002-04-10 Unitika Ltd Method for softning processing of biodegradable nonwoven fabric
JP2002129459A (en) * 2000-10-23 2002-05-09 Unitika Ltd Biodegradable nonwoven fabric and method for producing the same
CA2411004A1 (en) * 2001-11-14 2003-05-14 Kuraray Co., Ltd. Biodegradable fibers and fabrics, and method for controlling their biodegradability
JP4493275B2 (en) * 2003-01-29 2010-06-30 旭化成せんい株式会社 Long fiber nonwoven fabric with excellent transparency
TWI760850B (en) 2019-09-20 2022-04-11 日商旭化成股份有限公司 non-woven
CN115323614B (en) * 2022-09-07 2023-09-15 河南省驼人医疗科技有限公司 Tough fully-degradable polylactic acid melt-blown cloth and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120012780A (en) 2009-04-24 2012-02-10 제이엔씨 주식회사 Biodegradable nonwoven fabric and fiber product using the same
KR20230121643A (en) 2022-02-11 2023-08-21 한화첨단소재 주식회사 Composite material containing biodegradable polymer, manufacturing method thereof, and spunbond nonwoven fabric containing the composite material

Also Published As

Publication number Publication date
JPH0995849A (en) 1997-04-08

Similar Documents

Publication Publication Date Title
EP1612314B1 (en) Filament nonwoven fabrics and method of fabricating the same
US6607996B1 (en) Biodegradable filament nonwoven fabric and method of producing the same
US5688582A (en) Biodegradable filament nonwoven fabrics and method of manufacturing the same
JP3434628B2 (en) Polylactic acid-based long-fiber nonwoven fabric and method for producing the same
EP1057915A1 (en) Biodegradable filament nonwoven fabric and method of producing the same
JPH0995847A (en) Nonwoven fabric of polylactate-based filament and its production
JP3938950B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP2000273750A (en) Biodegradable filament nonwoven cloth and its production
JP3804999B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP3710175B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JPH0734369A (en) Biodegradable filament non-woven fabric
JP3150218B2 (en) Biodegradable short fiber non-woven fabric
JP4582886B2 (en) Weatherproof long fiber nonwoven fabric
JP3556089B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP2002129459A (en) Biodegradable nonwoven fabric and method for producing the same
JPH0941223A (en) Biodegradable conjugated fiber convertible into fine fiber and fiber sheet using the same
JP5235783B2 (en) Polylactic acid latent crimp fiber
JP2000282357A (en) Biodegradable filament nonwoven cloth and its production
JPH0995852A (en) Polylactate-based laminated nonwoven fabric and its production
JP4000022B2 (en) Method for producing polylactic acid-based long fiber nonwoven fabric
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH10325064A (en) Biodegradable nonwoven fabric with excellent stretching property and its production
JP3553722B2 (en) Biodegradable nonwoven fabric and method for producing the same
JPH0913259A (en) Biodegradable staple fiber nonwoven fabric and its production
JP4117916B2 (en) Biodegradable nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 11

EXPY Cancellation because of completion of term