JP4000022B2 - Method for producing polylactic acid-based long fiber nonwoven fabric - Google Patents

Method for producing polylactic acid-based long fiber nonwoven fabric Download PDF

Info

Publication number
JP4000022B2
JP4000022B2 JP2002202787A JP2002202787A JP4000022B2 JP 4000022 B2 JP4000022 B2 JP 4000022B2 JP 2002202787 A JP2002202787 A JP 2002202787A JP 2002202787 A JP2002202787 A JP 2002202787A JP 4000022 B2 JP4000022 B2 JP 4000022B2
Authority
JP
Japan
Prior art keywords
polylactic acid
nonwoven fabric
fiber nonwoven
long
biodegradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002202787A
Other languages
Japanese (ja)
Other versions
JP2004044017A (en
Inventor
篤 松永
典古 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2002202787A priority Critical patent/JP4000022B2/en
Publication of JP2004044017A publication Critical patent/JP2004044017A/en
Application granted granted Critical
Publication of JP4000022B2 publication Critical patent/JP4000022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自然環境下において生分解性を有するポリ乳酸系長繊維不織布の製造方法に関するものである。
【0002】
【従来の技術】
近年、自然環境下において、微生物により分解される生分解性を有する熱可塑性重合体からなる繊維および不織布は、環境の観点等から注目されている。そして、熱可塑性の生分解性重合体を用いた溶融紡糸法による生分解性繊維や生分解性不織布に関する研究開発が盛んとなっている。例えば、ポリ乳酸系重合体からなる長繊維不織布は一部実用化されつつある。
【0003】
しかし、上述のポリ乳酸系重合体からなる長繊維不織布は、汎用のポリエチレンテレフタレート等のポリエステル系ポリマーから形成される長繊維不織布に比べ機械的強力に劣るという欠点を有している。
【0004】
【発明が解決しようとする課題】
本発明の課題は、自然界で分解可能な長繊維不織布であって、従来の生分解性不織布と比較して機械的特性を改善した不織布を提供することにある。
【0005】
【課題を解決するための手段】
本発明者らは、前記課題を解決するために鋭意検討した結果、本発明に到達した。すなわち、本発明は、ポリ乳酸系長繊維が堆積してなるウエブあるいは不織布に、生分解性バインダーがポリ乳酸であり長繊維を構成するポリ乳酸系重合体の融点(Tm)より低い最低造膜温度を有する生分解性バインダー溶液を付与し、前記最低造膜温度よりも50℃高い温度以上であって、かつ(Tm−30)℃を超えない温度で乾燥処理を施すことにより、構成繊維同士の交点および/または隙間に、生分解性バインダーによる被膜が形成されているポリ乳酸系長繊維不織布を得ることを特徴とするポリ乳酸系長繊維不織布の製造方法を要旨とするものである。
【0006】
【発明の実施の形態】
次に本発明を詳細に説明する。
【0007】
本発明は、ポリ乳酸系長繊維が堆積してなる不織布の製造方法である。ポリ乳酸系重合体としては、ポリ(D−乳酸)、ポリ(L−乳酸)、D−乳酸とL−乳酸との共重合体、D−乳酸とヒドロキシカルボン酸との共重合体、L−乳酸とヒドロキシカルボン酸との共重合体の中から選ばれるいずれかの重合体あるいはこれらのブレンド体が挙げられる。
【0008】
ポリ乳酸系重合体の融点は、100℃以上であることが好ましく、さらに好ましくは120℃以上である。ポリ乳酸の場合、ポリ(L−乳酸)やポリ(D−乳酸)の融点は約180℃であるが、光学純度が低くなるとともに結晶化が低下し、融点降下が大きくなる傾向にある。従って、ポリ乳酸系重合体として前記共重合体を用いる場合には、共重合体の融点が120℃以上となるようにすることが好ましい。本発明においては、光学純度が90%以上のポリ乳酸を用いることが好ましい。
【0009】
本発明に用いるポリ乳酸系重合体の数平均分子量は約20,000以上好ましくは約40,000以上のものを用いることが、得られる繊維特性の点や長繊維不織布製造時の製糸性の点で好ましい。
【0010】
長繊維の単糸繊度は、特に限定されないが1〜12デシテックスであることが好ましい。単糸繊度が1デシテックス未満であると、紡糸・引取工程において単糸の切断が頻発するため操業性が劣るとともに、得られる不織布の強度も劣る傾向となる。一方、単糸繊度が12デシテックスを超えると、紡出糸条の冷却が不十分になって糸条同士が密着しやすく、また、得られる不織布の柔軟性が損なわれるため、用途が制限される。
【0011】
本発明における長繊維不織布は、構成繊維同士の交点および/または隙間に、生分解性バインダーによる被膜が形成されている。構成繊維同士の交点および/または隙間が、生分解性バインダーによる被膜により固定されることによって、不織布の機械的物性、特に不織布の横方向の強力が向上する。
【0012】
本発明に用いる生分解性バインダーを構成している樹脂は、ポリ乳酸である
【0013】
然環境下もしくは、コンポスト装置内において完全に低分子量にまで分解される樹脂、用途によっては、使用中に生分解性バインダーが分解して低分子量化すると、不織布の強力が低下し、使用に耐えない場合がある。例えば、農業用マルチやべたがけシート等の農業資材や、育苗や植樹ポット,根巻ロープや果樹用マルチ等の園芸資材は、土壌や水分と常に接触しているため、生分解性のバインダーが加水分解しやすい状態であり、バインダーによっては、使用中に分解されてしまう。本発明において、生分解性バインダーを構成する樹脂としては、分解性において比較的安定的であることから、ポリ乳酸を用いる。本発明における不織布を前記の農業資材や園芸資材(総合して農園芸資材)に使用する場合は、ポリ乳酸樹脂からなるバインダーを採用すると、使用中にバインダーが加水分解等を起こしにくくなるため、良好に強力を保つことができる。
【0014】
生分解性バインダーが繊維の質量に対して5〜25質量%付着していることが好ましい。バインダーの付着量が5質量%未満であると、長繊維不織布に付着する生分解樹脂の量が少なく、本発明の目的が達成されにくくなる。一方、付着量が25質量%を超えると、得られる長繊維不織布の引張強力は優れるものの、風合いが劣る傾向となり、不織布の用途が制限される。
【0015】
本発明におけるポリ乳酸系長繊維不織布は、長繊維が堆積してなる不織布であって、生分解性バインダーが付着することによってのみ形態保持してなるものであってもよいが、熱エンボス加工による部分的熱圧着部を有するもの、熱処理により少なくとも繊維の交点が熱接着してなるもの、ニードルパンチや水流絡合処理等による繊維同士が絡合してなるものであって、さらに生分解性バインダーが付着しているものであってもよい。
【0016】
次に、本発明のポリ乳酸系長繊維不織布の製造方法について説明する。
【0017】
本発明における長繊維不織布は、いわゆるスパンボンド法にて効率良く製造することができる。まず、ASTM−D−1238に準じて温度210℃で測定したメルトフローレート(MFR)が10〜100g/10分であるポリ乳酸系重合体を用い、このポリ乳酸系重合体の融点よりも20〜80℃高い温度で溶融し、所望の繊維横断面となる紡糸口金を介して紡糸し、得られた紡出糸条を公知の横型吹付や環状吹付等の冷却装置を用いて冷却した後、エアーサッカー等の吸引装置を用いて、3000〜6500m/分の気流で目的繊度となるように牽引細化する。引き続き、吸引装置から排出した糸条群を開繊させた後、スクリーンからなるコンベアーの如き移動堆積装置上に開繊堆積させてウエブとする。次いで、この移動堆積装置上に形成されたウエブを加圧もしくは低温で加圧することにより、形態保持させる。
【0018】
次いで、形態保持してなるウエブに生分解性バインダー溶液を付与するが、バインダー溶液を付与する前に、必要に応じて、形態保持してなるウエブに、熱エンボス加工、熱カレンダー加工、熱風加工等の熱処理を施したり、また、ニードルパンチや水流絡合等の絡合処理を施すこと形態保持性を向上した不織布の形態として、これに生分解性バインダー溶液を付与することが好ましい。
【0019】
本発明において用いる生分解性バインダー溶液の最低造膜温度は、長繊維を構成するポリ乳酸系重合体の融点(Tm)よりも低く、かつその差は30℃以上のものを用いる。より好ましくは、その差は60℃以上である。生分解性樹脂からなるバインダー溶液をウエブまたは不織布に付与した後、乾燥工程において、乾燥温度は最低造膜温度以上にしなければならない。従って、最低造膜温度と長繊維不織布を構成するポリ乳酸系重合体の融点との差が30℃未満であると、乾燥時に長繊維不織布自体に熱収縮が生じ、また、軟化・溶融する恐れがあるため好ましくない。
【0020】
生分解性バインダー溶液を付与する方法としては、含浸、塗布、コーティング、スプレーによる噴霧等が挙げられるが、不織布の内部まで均一に生分解性バインダーを付与することができることから、含浸による方法が好ましい。生分解性バインダー溶液を付与した後は、公知の乾燥装置を用いて生分解性バインダー溶液に含まれる水分あるいは溶剤を除去し、本発明のポリ乳酸系長繊維不織布を得る。
【0021】
乾燥装置を用いて生分解性バインダー溶液に含まれる水分あるいは溶剤を除去する際の乾燥温度は、生分解性バインダーの最低造膜温度よりも50℃以上高い温度であって、かつ長繊維を構成するポリ乳酸系重合体の融点をTm(℃)としたときに、(Tm−30)℃以下の温度に設定する。
【0022】
乾燥温度が最低造膜温度未満の温度であると、不織布の構成繊維同士の交点および/または隙間に被膜を形成させることができず、目的とするポリ乳酸系長繊維不織布を得ることができない。また、乾燥温度が、(Tm−30)℃を超えると、長繊維において熱収縮が生じ、長繊維不織布に皺が入り、また、ひどい場合は、不織布自体が溶融してしまい、得られる不織布の品位が損なわれる。
【0023】
【実施例】
以下、実施例により本発明を具体的に説明する。なお、本発明はこれらの実施例のみに限定されるものではない。下記の実施例および比較例において、各物性値は以下により求めた。
【0024】
(1)融点(℃):パーキンエルマー社製の示差走査熱量計DSC-7型を用いて、昇温速度を10℃/分で測定し、得られた融解吸熱曲線において極値を与える温度を融点とした。
【0025】
(2)MFR(g/10分):ASTM−D−1238に記載の方法に準じて温度210℃で測定した。
【0026】
(3)目付(g/m2):標準状態の試料から、縦10cm×横10cmの試料片を10点作製し、平行水分に至らしめた後、各試料片の質量(g)を秤量し、得られた値の平均値を単位面積あたりに換算して、目付(g/m2)とした。
【0027】
(4)引張強力(N/5cm幅):JIS L 1096に記載のストリップ法に準じて測定した。すなわち、試料長が20cm、試料幅が5cmの試料片各10点を作製し、定速伸張型引張試験機(オリエンテック社製、テンシロンUTM−4−1−100)を用いて、つかみ間隔10cm、引張速度20cm/分で伸張し、最大引張強力の平均値を引張強力(N/5cm幅)とした。不織布の縦方向(MD)、横方向(CD)について測定した。
【0028】
実施例1
融点171℃、MFR70g/10分のL−乳酸/D−乳酸共重合体(L−乳酸/D−乳酸=98.6/1.4(モル%))を用い、丸型の紡糸口金より、紡糸温度210℃、単孔吐出量1.67g/分で溶融紡糸した。次に紡出糸状を冷却空気流にて冷却した後、エアサッカーにて5000m/分で引き取り、これを開繊して移動するコンベアの捕集面上に堆積して、1対のローラにて加圧してウエブを形成した。次いで、このウエブをエンボスロールとフラットロールから熱エンボス装置に通し、ロール温度135℃、圧着面積率14.9%、圧着点密度21.9個/cm2、線圧588N/cmの条件にて部分的に熱圧着し、単糸繊度3.3デシテックスの長繊維からなる目付20g/m2の長繊維不織布を得た。
【0029】
次に、ポリ乳酸を樹脂成分とする最低造膜温度45℃の生分解性水溶性エマルジョン(第一工業製薬(株)製、商標名;プラセマL110)を含浸し、乾燥温度130℃にて乾燥させて、目付23g/m2(バインダー付着量は15質量%)のポリ乳酸系長繊維不織布を得た。得られた長繊維不織布は、構成繊維同士の交点および隙間に生分解性バインダーによる被膜が形成されていた。
【0031】
実施例
実施例1において、長繊維不織布の目付を50g/mとした以外は、実施例1と同様にしてポリ乳酸系長繊維不織布を得た。
【0032】
実施例
実施例1において、ウエブの目付を100g/mとしたこと、熱エンボス装置に通す際の条件を、ロール温度100℃、圧着面積率36.8%、圧着点密度64.0個/cm 、線圧294N/cmとしたこと、熱エンボス装置に通した後、パンチ密度90パンチ/cmの条件でニードルパンチ処理を施したこと以外は、実施例1と同様にして、ポリ乳酸系長繊維不織布を得た。
【0033】
実施例
実施例1において、ウエブの目付を100g/mとしたこと、熱エンボス装置に通す際の条件を、ロール温度100℃、圧着面積率36.8%、圧着点密度64.0個/cm 、線圧294N/cmとしたこと、熱エンボス装置に通した後に得られた不織布を2枚重ねて、パンチ密度90パンチ/cmの条件でニードルパンチ処理を施したこと以外は、実施例1と同様にして、ポリ乳酸系長繊維不織布を作成した。得られた不織布の物性および生分解性を表1に示す。
【0034】
実施例
実施例1において、生分解性バインダーの付着量を20質量%としたこと以外は、実施例1と同様にしてポリ乳酸系長繊維不織布を得た。
【0035】
実施例
実施例1において、乾燥温度を100℃としたこと以外は、実施例1と同様にしてポリ乳酸系長繊維不織布を得た。
【0037】
実施例
生分解性バインダーの付着量を3質量%としたこと以外は、実施例1と同様にしてポリ乳酸系長繊維不織布を得た。
【0038】
比較例1
実施例1において、乾燥温度を150℃としたこと以外は、実施例1と同様にして長繊維不織布を作成しようとしたところ、乾燥時に不織布が収縮して多数の皺が発生し、品位の劣るものであった。
【0039】
得られた実施例1〜の不織布の物性および生分解性を表1に示す。また、比較として生分解性バインダーが付着していない状態のものとして、実施例1におけるバインダー付与前のエンボス処理を施した長繊維不織布の機械的物性を「バインダーなし」として表1に示した。
【0040】
【表1】
【0041】
実施例1〜は、繊維の交点および/または隙間に生分解性バインダーによる被膜が形成されており、バインダーが付与されていないものと比較して機械的特性が向上しているものであった。
【0042】
実施例1で得られたポリ乳酸系長繊維不織布を所定の大きさに裁断し、農業用のべたがけシートを得て、農作物の栽培のために9月中旬に展張して2月下旬に回収した。展張期間中、良好に作物を栽培することができ、また、展張後、引っ張って回収する際にも破れ等が発生しなかった。回収後、引張強力を測定したところ、初期強力に対して80%以上の強力を保持していた。
【0043】
【発明の効果】
本発明の製造方法によって得られるポリ乳酸系長繊維不織布は、構成繊維の交点および/または隙間に生分解性バインダーによる被膜が形成されているため、これによって構成繊維が固定され、機械的特性に優れたものとなる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polylactic acid-based long fiber nonwoven fabric having biodegradability in a natural environment.
[0002]
[Prior art]
In recent years, fibers and non-woven fabrics made of thermoplastic polymers having biodegradability that are decomposed by microorganisms in a natural environment have attracted attention from the viewpoint of the environment. Research and development related to biodegradable fibers and biodegradable non-woven fabrics by melt spinning using thermoplastic biodegradable polymers have become active. For example, some long-fiber nonwoven fabrics made of polylactic acid polymers are being put into practical use.
[0003]
However, the long-fiber nonwoven fabric made of the above-mentioned polylactic acid-based polymer has a disadvantage that it is inferior in mechanical strength as compared to a long-fiber nonwoven fabric formed from a polyester-based polymer such as general-purpose polyethylene terephthalate.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a non-woven fabric that is naturally degradable and has improved mechanical properties as compared with conventional biodegradable non-woven fabrics.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention provides a web or non-woven fabric on which polylactic acid-based long fibers are deposited, and a minimum film-forming that is lower than the melting point (Tm) of the polylactic acid-based polymer whose biodegradable binder is polylactic acid and constitutes the long fibers. By providing a biodegradable binder solution having a temperature and performing a drying treatment at a temperature not lower than (Tm-30) ° C. that is 50 ° C. higher than the minimum film- forming temperature, The gist of the present invention is a method for producing a polylactic acid-based long-fiber non-woven fabric, characterized in that a polylactic acid-based long-fiber non-woven fabric having a coating film formed of a biodegradable binder at intersections and / or gaps is obtained .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail.
[0007]
The present invention is a method for producing a nonwoven fabric in which polylactic acid-based long fibers are deposited. Examples of the polylactic acid-based polymer include poly (D-lactic acid), poly (L-lactic acid), a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, L- Examples thereof include any polymer selected from copolymers of lactic acid and hydroxycarboxylic acid, and blends thereof.
[0008]
The melting point of the polylactic acid polymer is preferably 100 ° C. or higher, more preferably 120 ° C. or higher. In the case of polylactic acid, the melting point of poly (L-lactic acid) or poly (D-lactic acid) is about 180 ° C., but the optical purity is lowered and crystallization is lowered and the melting point drop tends to be increased. Therefore, when using the said copolymer as a polylactic acid-type polymer, it is preferable to make it melting | fusing point of a copolymer be 120 degreeC or more. In the present invention, it is preferable to use polylactic acid having an optical purity of 90% or more.
[0009]
The number average molecular weight of the polylactic acid-based polymer used in the present invention is about 20,000 or more, preferably about 40,000 or more. Is preferable.
[0010]
The single yarn fineness of the long fiber is not particularly limited, but is preferably 1 to 12 dtex. When the single yarn fineness is less than 1 dtex, the single yarn is frequently cut in the spinning and take-up process, so that the operability is inferior and the strength of the resulting nonwoven fabric tends to be inferior. On the other hand, when the single yarn fineness exceeds 12 dtex, the spinning yarns are not sufficiently cooled, and the yarns tend to adhere to each other, and the flexibility of the resulting nonwoven fabric is impaired, so the use is limited. .
[0011]
In the long-fiber nonwoven fabric in the present invention, a coating with a biodegradable binder is formed at intersections and / or gaps between constituent fibers. By fixing the intersections and / or gaps between the constituent fibers with a coating of a biodegradable binder, the mechanical properties of the nonwoven fabric, particularly the lateral strength of the nonwoven fabric, is improved.
[0012]
Tree fat constituting the biodegradable binder for use in the present invention is a polylactic acid.
[0013]
Under natural environment or resins decomposed completely low molecular weight in the compost apparatus, in some applications, the biodegradable binder in use to reduce the molecular weight by decomposition, reduces the strength of the nonwoven fabric, use May not be able to withstand. For example, agricultural materials such as agricultural mulches and bedding sheets, and horticultural materials such as seedlings, planting pots, root winding ropes and fruit tree mulches are always in contact with soil and moisture, so there is a biodegradable binder. It is in a state of being easily hydrolyzed, and depending on the binder, it is decomposed during use. In the present invention, polylactic acid is used as the resin constituting the biodegradable binder because it is relatively stable in degradability. When using the non-woven fabric in the present invention for the above-mentioned agricultural materials and horticultural materials (integrated agricultural and horticultural materials), when a binder made of a polylactic acid resin is employed, the binder is less likely to cause hydrolysis or the like during use. Good strength can be kept.
[0014]
The biodegradable binder is preferably attached in an amount of 5 to 25% by mass with respect to the mass of the fiber. When the adhesion amount of the binder is less than 5% by mass, the amount of biodegradable resin adhering to the long-fiber nonwoven fabric is small, and the object of the present invention is hardly achieved. On the other hand, when the adhesion amount exceeds 25% by mass, although the tensile strength of the obtained long-fiber nonwoven fabric is excellent, the texture tends to be inferior, and the use of the nonwoven fabric is limited.
[0015]
The polylactic acid-based long fiber non-woven fabric in the present invention is a non-woven fabric in which long fibers are deposited, and the shape may be maintained only by attaching a biodegradable binder. One having a partial thermocompression bonding part, one in which at least the intersection of fibers is thermally bonded by heat treatment, one in which fibers are entangled with each other by needle punching or hydroentanglement treatment, and further a biodegradable binder May be attached.
[0016]
It will be described manufacturing method of the polylactic acid-based long fiber nonwoven fabric of the present invention.
[0017]
The long fiber nonwoven fabric in the present invention can be efficiently produced by a so-called spunbond method. First, a polylactic acid polymer having a melt flow rate (MFR) of 10 to 100 g / 10 minutes measured at a temperature of 210 ° C. according to ASTM-D-1238 is used, and the melting point of this polylactic acid polymer is 20 After melting at a high temperature of -80 ° C., spinning through a spinneret having a desired fiber cross section, and cooling the obtained spun yarn using a cooling device such as a known horizontal spray or annular spray, Using a suction device such as an air soccer, it is pulled and thinned so as to achieve the desired fineness with an air flow of 3000 to 6500 m / min. Subsequently, the yarn group discharged from the suction device is opened, and then spread and deposited on a moving deposition device such as a conveyor made of a screen to form a web. Next, the web is formed on the moving deposition apparatus, and the form is maintained by pressurizing or pressurizing at a low temperature.
[0018]
Next, the biodegradable binder solution is applied to the web having the shape maintained. Before the binder solution is applied, the web having the shape maintained may be subjected to hot embossing, thermal calendering, hot air processing, if necessary. It is preferable to apply a biodegradable binder solution to the non-woven fabric with improved form retention by performing heat treatment such as needle punching or hydroentanglement.
[0019]
The minimum film forming temperature of the biodegradable binder solution used in the present invention is lower than the melting point (Tm) of the polylactic acid polymer constituting the long fiber, and the difference is 30 ° C. or higher. More preferably, the difference is 60 ° C. or more. After the binder solution made of biodegradable resin is applied to the web or nonwoven fabric, the drying temperature must be above the minimum film-forming temperature in the drying step. Therefore, if the difference between the minimum film-forming temperature and the melting point of the polylactic acid polymer constituting the long-fiber nonwoven fabric is less than 30 ° C., the long-fiber nonwoven fabric itself may undergo thermal shrinkage during drying and may be softened / melted. This is not preferable.
[0020]
Examples of the method for applying the biodegradable binder solution include impregnation, coating, coating, spraying by spraying, etc., but since the biodegradable binder can be uniformly applied to the inside of the nonwoven fabric, the method by impregnation is preferable. . After applying the biodegradable binder solution, the water or solvent contained in the biodegradable binder solution is removed using a known drying apparatus to obtain the polylactic acid-based long fiber nonwoven fabric of the present invention.
[0021]
The drying temperature at the time of removing water or solvent contained in the biodegradable binder solution using a drying apparatus, a minimum film-forming temperature by remote 50 ° C. or more higher than the temperature of the biodegradable binder and long fibers Is set to a temperature of (Tm−30) ° C. or lower, where Tm (° C.) is the melting point of the polylactic acid-based polymer.
[0022]
When the drying temperature is lower than the minimum film-forming temperature, a film cannot be formed at the intersections and / or gaps between the constituent fibers of the nonwoven fabric, and the intended polylactic acid-based long fiber nonwoven fabric cannot be obtained. In addition, when the drying temperature exceeds (Tm-30) ° C., heat shrinkage occurs in the long fibers, wrinkles enter the long fiber nonwoven fabric, and in severe cases, the nonwoven fabric itself melts, The quality is impaired.
[0023]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention is not limited only to these Examples. In the following Examples and Comparative Examples, each physical property value was determined as follows.
[0024]
(1) Melting point (° C.): Using a differential scanning calorimeter DSC-7 manufactured by Perkin Elmer Co., Ltd., the temperature rising rate was measured at 10 ° C./min, and the temperature giving the extreme value in the obtained melting endotherm curve The melting point.
[0025]
(2) MFR (g / 10 min): Measured at a temperature of 210 ° C. according to the method described in ASTM-D-1238.
[0026]
(3) Weight per unit area (g / m 2 ): Ten sample pieces each having a length of 10 cm and a width of 10 cm were prepared from a sample in a standard state, and after reaching to parallel moisture, the weight (g) of each sample piece was weighed. The average value of the obtained values was converted per unit area to obtain a basis weight (g / m 2 ).
[0027]
(4) Tensile strength (N / 5 cm width): Measured according to the strip method described in JIS L 1096. That is, 10 sample pieces each having a sample length of 20 cm and a sample width of 5 cm were prepared, and using a constant speed extension type tensile tester (manufactured by Orientec Co., Ltd., Tensilon UTM-4-1-100), the grip interval was 10 cm. The film was stretched at a tensile speed of 20 cm / min, and the average value of the maximum tensile strength was taken as the tensile strength (N / 5 cm width). It measured about the longitudinal direction (MD) of a nonwoven fabric, and the horizontal direction (CD).
[0028]
Example 1
Using a L-lactic acid / D-lactic acid copolymer (L-lactic acid / D-lactic acid = 98.6 / 1.4 (mol%)) having a melting point of 171 ° C. and an MFR of 70 g / 10 min, Melt spinning was performed at a spinning temperature of 210 ° C. and a single hole discharge rate of 1.67 g / min. Next, the spun yarn shape is cooled with a cooling air flow, taken up at 5000 m / min with an air soccer ball, opened and deposited on a collecting surface of a moving conveyor, and a pair of rollers. A web was formed by pressing. Next, the web is passed from the embossing roll and the flat roll to a hot embossing apparatus, and the roll temperature is 135 ° C., the crimping area ratio is 14.9%, the crimping point density is 21.9 pieces / cm 2 , and the linear pressure is 588 N / cm. Partially thermocompression bonding was carried out to obtain a long fiber nonwoven fabric having a basis weight of 20 g / m 2 and comprising a long fiber having a single yarn fineness of 3.3 dtex.
[0029]
Next, it is impregnated with a biodegradable water-soluble emulsion (trade name; Prasema L110, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) having a minimum film-forming temperature of 45 ° C. containing polylactic acid as a resin component, and dried at a drying temperature of 130 ° C. As a result, a polylactic acid-based long-fiber nonwoven fabric having a basis weight of 23 g / m 2 (a binder adhesion amount of 15 mass%) was obtained. In the obtained long fiber nonwoven fabric, a coating film of a biodegradable binder was formed at the intersections and gaps between the constituent fibers.
[0031]
Example 2
In Example 1, a polylactic acid-based long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the basis weight of the long fiber nonwoven fabric was 50 g / m 2 .
[0032]
Example 3
In Example 1, the basis weight of the web was set to 100 g / m 2, and the conditions for passing through the hot embossing device were as follows: roll temperature 100 ° C., crimp area ratio 36.8%, crimp point density 64.0 / cm 2. In the same manner as in Example 1, except that the linear pressure was set to 294 N / cm, the needle was punched under the condition of a punch density of 90 punch / cm 2 after passing through the hot embossing apparatus, A fiber nonwoven fabric was obtained.
[0033]
Example 4
In Example 1, the basis weight of the web was set to 100 g / m 2, and the conditions for passing through the hot embossing device were as follows: roll temperature 100 ° C., crimp area ratio 36.8%, crimp point density 64.0 / cm 2. Example 1 except that the linear pressure was set to 294 N / cm, and two nonwoven fabrics obtained after passing through the hot embossing device were stacked and subjected to needle punching under conditions of a punch density of 90 punch / cm 2. In the same manner, a polylactic acid-based long fiber nonwoven fabric was prepared. Table 1 shows the physical properties and biodegradability of the obtained nonwoven fabric.
[0034]
Example 5
In Example 1, a polylactic acid long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the amount of biodegradable binder deposited was 20% by mass.
[0035]
Example 6
In Example 1, a polylactic acid-based long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the drying temperature was 100 ° C.
[0037]
Example 7
A polylactic acid long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the amount of the biodegradable binder deposited was 3% by mass.
[0038]
Comparative Example 1
In Example 1, except that the drying temperature was set to 150 ° C., an attempt was made to produce a long-fiber nonwoven fabric in the same manner as in Example 1. As a result, the nonwoven fabric contracted during drying, resulting in numerous wrinkles and poor quality. It was a thing.
[0039]
Table 1 shows the physical properties and biodegradability of the obtained nonwoven fabrics of Examples 1 to 7 . In addition, as a comparison, the mechanical properties of the long-fiber nonwoven fabric subjected to the embossing treatment before applying the binder in Example 1 are shown in Table 1 as “no binder”, in a state where the biodegradable binder is not attached.
[0040]
[Table 1]
[0041]
In Examples 1 to 7 , a coating with a biodegradable binder was formed at the intersections and / or gaps of the fibers, and the mechanical properties were improved compared to those without the binder. .
[0042]
The polylactic acid-based non-woven fabric obtained in Example 1 is cut into a predetermined size to obtain an agricultural solid sheet, which is spread in mid-September for crop cultivation and collected in late February. did. Crop was able to be cultivated well during the extension period, and no tearing or the like occurred when it was pulled and collected after the extension. When the tensile strength was measured after the recovery, the strength was 80% or more of the initial strength.
[0043]
【The invention's effect】
Since the polylactic acid-based long-fiber nonwoven fabric obtained by the production method of the present invention has a coating film formed of a biodegradable binder at the intersections and / or gaps of the constituent fibers, the constituent fibers are fixed and mechanical properties are improved. It will be excellent.

Claims (1)

ポリ乳酸系長繊維が堆積してなるウエブあるいは不織布に、生分解性バインダーがポリ乳酸であり長繊維を構成するポリ乳酸系重合体の融点(Tm)より低い最低造膜温度を有する生分解性バインダー溶液を付与し、前記最低造膜温度よりも50℃高い温度以上であって、かつ(Tm−30)℃を超えない温度で乾燥処理を施すことにより、構成繊維同士の交点および/または隙間に、生分解性バインダーによる被膜が形成されているポリ乳酸系長繊維不織布を得ることを特徴とするポリ乳酸系長繊維不織布の製造方法。A biodegradable material having a minimum film-forming temperature lower than the melting point (Tm) of a polylactic acid-based polymer constituting a long fiber on a web or non-woven fabric on which polylactic acid-based long fibers are deposited and whose biodegradable binder is polylactic acid . By applying a drying treatment at a temperature not lower than (Tm-30) ° C. above the minimum film- forming temperature by applying a binder solution and at least 50 ° C. higher than the minimum film- forming temperature, and / or gaps between constituent fibers A method for producing a polylactic acid-based long-fiber nonwoven fabric, characterized in that a polylactic acid-based long-fiber nonwoven fabric having a film formed of a biodegradable binder is obtained .
JP2002202787A 2002-07-11 2002-07-11 Method for producing polylactic acid-based long fiber nonwoven fabric Expired - Lifetime JP4000022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002202787A JP4000022B2 (en) 2002-07-11 2002-07-11 Method for producing polylactic acid-based long fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002202787A JP4000022B2 (en) 2002-07-11 2002-07-11 Method for producing polylactic acid-based long fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2004044017A JP2004044017A (en) 2004-02-12
JP4000022B2 true JP4000022B2 (en) 2007-10-31

Family

ID=31708878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002202787A Expired - Lifetime JP4000022B2 (en) 2002-07-11 2002-07-11 Method for producing polylactic acid-based long fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4000022B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951210B2 (en) * 2005-04-07 2012-06-13 旭化成せんい株式会社 Biodegradable herbicidal sheet
PL2758183T4 (en) 2011-09-18 2022-10-10 Bio Plasmar Ltd Bio-degradable plant pot or foodware
JP2017035085A (en) * 2016-08-26 2017-02-16 バイオ プラズマー リミテッド Bio-degradable compositions and use thereof

Also Published As

Publication number Publication date
JP2004044017A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JPH07310236A (en) Thermofusible polylactic acid fiber
JP3434628B2 (en) Polylactic acid-based long-fiber nonwoven fabric and method for producing the same
JP4000022B2 (en) Method for producing polylactic acid-based long fiber nonwoven fabric
JP2004263344A (en) Nonwoven fabric for simple mask and simple mask
JPH0995847A (en) Nonwoven fabric of polylactate-based filament and its production
JP3573612B2 (en) Biodegradable weed control sheet
JP3150217B2 (en) Biodegradable short fiber non-woven fabric
JP3938950B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
WO2023032763A1 (en) Biodegradable nonwoven fabric and use of same
JP3150218B2 (en) Biodegradable short fiber non-woven fabric
JP2000273750A (en) Biodegradable filament nonwoven cloth and its production
JP4582886B2 (en) Weatherproof long fiber nonwoven fabric
JP2007143945A (en) Primary ground fabric for tufted carpet
JP3966768B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP4212264B2 (en) Method for producing polylactic acid-based long fiber nonwoven fabric and method for producing polylactic acid-based long fiber
JP3710175B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP3208403B2 (en) Biodegradable nonwoven fabric and method for producing the same
JP3461648B2 (en) Biodegradable seedling root cover
JP2000333542A (en) Biodegradable cover material for agriculture
JP3556089B2 (en) Biodegradable long-fiber nonwoven fabric and method for producing the same
JP2006291375A (en) Biodegradable weedproof sheet
JP2000282357A (en) Biodegradable filament nonwoven cloth and its production
JP2008057057A (en) Polylactic acid-based fiber and polylactic acid-based non-woven fabric
JP4091781B2 (en) Degradable nonwoven fabric and method for producing the same
JP4716589B2 (en) Biodegradable seedling root cover and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4000022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

EXPY Cancellation because of completion of term