JP3433076B2 - Non-sintered nickel electrode for sealed alkaline storage batteries - Google Patents

Non-sintered nickel electrode for sealed alkaline storage batteries

Info

Publication number
JP3433076B2
JP3433076B2 JP32048097A JP32048097A JP3433076B2 JP 3433076 B2 JP3433076 B2 JP 3433076B2 JP 32048097 A JP32048097 A JP 32048097A JP 32048097 A JP32048097 A JP 32048097A JP 3433076 B2 JP3433076 B2 JP 3433076B2
Authority
JP
Japan
Prior art keywords
nickel
electrode
discharge
cobalt
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32048097A
Other languages
Japanese (ja)
Other versions
JPH11144723A (en
Inventor
光紀 徳田
睦 矢野
伸 藤谷
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32048097A priority Critical patent/JP3433076B2/en
Publication of JPH11144723A publication Critical patent/JPH11144723A/en
Application granted granted Critical
Publication of JP3433076B2 publication Critical patent/JP3433076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、活物質としてのニ
ッケル水酸化物にオキシ水酸化コバルトが添加されてい
る密閉型アルカリ蓄電池用非焼結式ニッケル極及び活物
質としてのニッケル水酸化物の粒子表面がオキシ水酸化
コバルトで被覆されている密閉型アルカリ蓄電池用非焼
結式ニッケル極に係わり、詳しくは、高率放電での放電
容量(比容量)が大きいアルカリ蓄電池を与える非焼結
式ニッケル極を提供することを目的とした、活物質の改
良に関する。
TECHNICAL FIELD The present invention relates to a non-sintered nickel electrode for a sealed alkaline storage battery in which cobalt oxyhydroxide is added to nickel hydroxide as an active material, and nickel hydroxide as an active material. Related to non-sintered nickel electrode for sealed alkaline storage battery whose particle surface is coated with cobalt oxyhydroxide, more specifically, non-sintered type that gives alkaline storage battery with high discharge capacity (specific capacity) at high rate discharge The present invention relates to improvement of an active material for the purpose of providing a nickel electrode.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ニッケル−水素蓄電池、ニッケル−カドミウム蓄電池等
の密閉型アルカリ蓄電池の正極として、ニッケル粉末を
穿孔鋼板等に焼結させて得た焼結基板に活物質(水酸化
ニッケル)を含浸させてなる焼結式ニッケル極がよく知
られている。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a positive electrode of a sealed alkaline storage battery such as a nickel-hydrogen storage battery or a nickel-cadmium storage battery, a sintered substrate obtained by sintering nickel powder into a perforated steel plate or the like is impregnated with an active material (nickel hydroxide) and sintered. The formula nickel pole is well known.

【0003】焼結式ニッケル極において活物質の充填量
を多くするためには、多孔度の大きい焼結基板を用いる
必要がある。しかし、焼結によるニッケル粒子間の結合
は弱いので、焼結基板の多孔度を大きくするとニッケル
粒子が焼結基板から脱落し易くなる。従って、実用上
は、焼結基板の多孔度を80%より大きくすることがで
きず、それゆえ焼結式ニッケル極には、活物質の充填量
が少ないという問題がある。また、一般に、ニッケル粉
末の焼結体の孔径は10μm以下と小さいため、活物質
の焼結基板への充填を、煩雑な含浸工程を数回繰り返し
行う必要がある溶液含浸法により行わなければならない
という問題もある。
In order to increase the filling amount of the active material in the sintered nickel electrode, it is necessary to use a sintered substrate having high porosity. However, since the bond between the nickel particles due to sintering is weak, increasing the porosity of the sintered substrate makes it easier for the nickel particles to fall off the sintered substrate. Therefore, practically, the porosity of the sintered substrate cannot be made higher than 80%, and therefore, the sintered nickel electrode has a problem that the filling amount of the active material is small. In addition, since the pore size of the sintered body of nickel powder is generally as small as 10 μm or less, the filling of the active material into the sintered substrate must be performed by a solution impregnation method that requires repeated complicated impregnation steps several times. There is also a problem.

【0004】このようなことから、最近、ペースト式ニ
ッケル極に代表される非焼結式ニッケル極が提案されて
いる。ペースト式ニッケル極は、活物質(水酸化ニッケ
ル)と結着剤(メチルセルロース水溶液など)との混練
物(ペースト)を多孔度の大きい基板に充填することに
より作製される。ペースト式ニッケル極では、多孔度の
大きい基板を用いることができるので(多孔度95%以
上の基板を用いることができる)、活物質の充填量を多
くすることができるとともに、活物質の基板への充填が
容易である。
Under these circumstances, recently, a non-sintered nickel electrode represented by a paste nickel electrode has been proposed. The paste-type nickel electrode is prepared by filling a kneaded material (paste) of an active material (nickel hydroxide) and a binder (aqueous solution of methylcellulose etc.) into a substrate having a high porosity. In the paste nickel electrode, since a substrate having a high porosity can be used (a substrate having a porosity of 95% or more can be used), the filling amount of the active material can be increased and the active material substrate can be used. Is easy to fill.

【0005】しかしながら、ペースト式ニッケル極にお
いて活物質の充填量を多くするべく多孔度の大きい基板
を用いると、基板の集電性が悪くなり、活物質利用率が
低下する。
However, if a substrate having a high porosity is used in order to increase the filling amount of the active material in the paste type nickel electrode, the current collecting property of the substrate is deteriorated and the utilization rate of the active material is lowered.

【0006】そこで、ペースト式ニッケル極の活物質利
用率を高めるべく、水酸化ニッケルに導電剤として水酸
化コバルト(Co(OH)2 )を添加することが提案さ
れている(特開昭61−49374号公報参照)。コバ
ルト2価の水酸化コバルトは初回の充電によりコバルト
3価のオキシ水酸化コバルト(β−CoOOH)に酸化
され、これが導電性ネットワークを形成して、活物質利
用率を向上させる。
Therefore, it has been proposed to add cobalt hydroxide (Co (OH) 2 ) to nickel hydroxide as a conductive agent in order to increase the utilization rate of the active material of the paste type nickel electrode (Japanese Patent Laid-Open No. 61-61). (See Japanese Patent Publication No. 49374). The cobalt divalent cobalt hydroxide is oxidized to cobalt trivalent cobalt oxyhydroxide (β-CoOOH) by the first charge, which forms a conductive network and improves the utilization rate of the active material.

【0007】ところで、ニッケル・水素蓄電池やニッケ
ル・カドミウム蓄電池は、負極容量を正極容量に比べて
大きくして、正極が満充電されても負極には未充電部分
(以下、この未充電部分の理論容量を「充電リザーブ」
と称する。)が存在するように設計されている。この充
電リザーブは、充電末期及び過充電時に正極から発生す
る酸素ガス(2OH- ⇒1/2O2 +H2 O+e- )を
負極で吸収することにより(カドミウム極の場合:Cd
+1/2O2 +H2 O⇒Cd(OH)2 ;水素極の場
合:4MH+O2 ⇒4M+2H2 O)、密閉型電池の内
圧の上昇を抑制するために設けられるものあるが、高率
放電時の負極の活物質利用率の低下に因る放電容量の低
下を抑制する働きも有している。
By the way, in the nickel-hydrogen storage battery and the nickel-cadmium storage battery, the negative electrode capacity is made larger than the positive electrode capacity so that even when the positive electrode is fully charged, the negative electrode has an uncharged portion (hereinafter, the theory of this uncharged portion). "Charge reserve" capacity
Called. ) Is designed to exist. This charging reserve absorbs oxygen gas (2OH → 1 / 2O 2 + H 2 O + e ) generated from the positive electrode at the end of charging and overcharging at the negative electrode (in the case of cadmium electrode: Cd
+ 1 / 2O 2 + H 2 O ⇒ Cd (OH) 2 ; hydrogen electrode: 4MH + O 2 ⇒ 4M + 2H 2 O), which is provided to suppress the rise in internal pressure of the sealed battery, but at the time of high rate discharge It also has a function of suppressing a decrease in discharge capacity due to a decrease in the active material utilization rate of the negative electrode.

【0008】上記した従来のペースト式ニッケル極にお
ける充電時の水酸化コバルトからオキシ水酸化コバルト
への酸化は不可逆反応である。すなわち、充電により生
成したオキシ水酸化コバルトは放電時に還元されず、オ
キシ水酸化コバルトのままである。したがって、水酸化
コバルトからオキシ水酸化コバルトへの酸化に要した充
電電気量は、潜在的な放電電気量(以下、「放電リザー
ブ」と称する。)として負極に蓄えられることになる。
また、充電時の水酸化ニッケルからオキシ水酸化ニッケ
ルへの酸化も、完全な可逆反応ではない。すなわち、充
電により生成したオキシ水酸化ニッケルは、放電により
完全には還元されず、元の水酸化ニッケルには戻らな
い。すなわち、初回の充放電において正極活物質の酸化
に要した充電電気量と還元に要した放電電気量の差に等
しい電気量が放電リザーブとして負極に蓄えられる。
Oxidation of cobalt hydroxide to cobalt oxyhydroxide during charging in the above-mentioned conventional paste type nickel electrode is an irreversible reaction. That is, the cobalt oxyhydroxide generated by charging is not reduced during discharge and remains as cobalt oxyhydroxide. Therefore, the amount of charge electricity required to oxidize cobalt hydroxide to cobalt oxyhydroxide is stored in the negative electrode as a potential amount of discharge electricity (hereinafter, referred to as “discharge reserve”).
Also, the oxidation of nickel hydroxide to nickel oxyhydroxide during charging is not a completely reversible reaction. That is, the nickel oxyhydroxide generated by charging is not completely reduced by discharging and does not return to the original nickel hydroxide. That is, an amount of electricity equal to the difference between the amount of electricity charged for oxidation of the positive electrode active material and the amount of electricity discharged for reduction in the first charge / discharge is stored in the negative electrode as a discharge reserve.

【0009】このように負極容量に占める放電リザーブ
の割合が大きいと、その分だけ充電リザーブの割合が小
さくなるので、高率放電時の活物質利用率の低下に因る
放電容量の低下を充分に抑制することができない。放電
リザーブの生成に因る充電リザーブの減少を見込んで充
電リザーブを予め大きく設定すれば、高率放電時の放電
容量の低下割合を抑制することはできるが、充電リザー
ブを大きくするためには正極容量(正極活物質の充填
量)をさらに小さくしなければならないので、高率放電
時の放電容量の大きいアルカリ蓄電池を与えるペースト
式ニッケル極を得ることはできない。すなわち、上記し
た従来のペースト式ニッケル極には、高率放電での放電
容量が大きいアルカリ蓄電池を得ることが困難であると
いう問題があった。
As described above, when the ratio of the discharge reserve to the negative electrode capacity is large, the ratio of the charge reserve decreases accordingly, so that the decrease of the discharge capacity due to the decrease of the active material utilization rate at the high rate discharge is sufficiently caused. Can not be suppressed. If the charging reserve is set to a large value in anticipation of a decrease in the charging reserve due to the generation of the discharging reserve, it is possible to suppress the rate of decrease in the discharge capacity at high rate discharge, but in order to increase the charging reserve, Since the capacity (filling amount of the positive electrode active material) must be further reduced, it is not possible to obtain a paste-type nickel electrode that provides an alkaline storage battery with a large discharge capacity during high rate discharge. That is, the above-mentioned conventional paste-type nickel electrode has a problem that it is difficult to obtain an alkaline storage battery having a large discharge capacity at a high rate discharge.

【0010】しかし、放電リザーブには放電末期及び高
率放電時の負極電位の上昇を抑制する働きが有るので、
負極容量に占める放電リザーブの割合は、少な過ぎても
高率放電での放電容量は低下する。したがって、高率放
電での放電容量が大きいアルカリ蓄電池を与える非焼結
式ニッケル極を得るためには、放電リザーブが適正にな
るように、正極の不可逆反応量を設計する必要がある。
However, since the discharge reserve has a function of suppressing the rise of the negative electrode potential at the end of discharge and at the time of high rate discharge,
Even if the ratio of the discharge reserve to the negative electrode capacity is too small, the discharge capacity at high rate discharge decreases. Therefore, in order to obtain a non-sintered nickel electrode that provides an alkaline storage battery with a large discharge capacity at high rate discharge, it is necessary to design the irreversible reaction amount of the positive electrode so that the discharge reserve is appropriate.

【0011】放電リザーブを適正にするということは、
初回の充放電における充電電気量と放電電気量の差を適
正にすることに等しい。正極導電剤として、水酸化コバ
ルトに代えて、特公平8−24041号公報で提案され
ているオキシ水酸化コバルトを使用すれば、オキシ水酸
化コバルトは充放電により酸化も還元もされないから、
正極導電剤に由来して生成する放電リザーブを零(0)
にすることができる。
To make the discharge reserve proper means
This is equivalent to making the difference between the charged electricity amount and the discharged electricity amount in the first charge / discharge appropriate. If cobalt oxyhydroxide proposed in Japanese Patent Publication No. 8-24041 is used instead of cobalt hydroxide as the positive electrode conductive agent, the cobalt oxyhydroxide is neither oxidized nor reduced by charging and discharging,
Zero (0) discharge reserve generated due to positive electrode conductive agent
Can be

【0012】しかしながら、負極の放電リザーブは、正
極導電剤に由来して生成する放電リザーブと正極活物質
に由来して生成する放電リザーブとの合計量であるか
ら、正極導電剤に由来して生成する放電リザーブを零に
するだけでは不十分であり、正極活物質に由来して生成
する放電リザーブも減少させなければ、放電リザーブを
適正にすることはできない。
However, since the discharge reserve of the negative electrode is the total amount of the discharge reserve generated from the positive electrode conductive material and the discharge reserve generated from the positive electrode active material, it is generated from the positive electrode conductive agent. It is not sufficient to reduce the discharge reserve to zero, and the discharge reserve cannot be optimized unless the discharge reserve generated due to the positive electrode active material is also reduced.

【0013】したがって、本発明は、高率放電での放電
容量が大きいアルカリ蓄電池を作製することを可能にす
る、負極に適正な放電リザーブを生成せしめる非焼結式
ニッケル極を提供することを目的とする。
Therefore, an object of the present invention is to provide a non-sintered nickel electrode capable of producing an alkaline storage battery having a large discharge capacity at a high rate discharge and capable of producing an appropriate discharge reserve in the negative electrode. And

【0014】[0014]

【課題を解決するための手段】本発明に係る密閉型アル
カリ蓄電池用非焼結式ニッケル極(本発明電極)は、活
物質としてのニッケル水酸化物にオキシ水酸化コバルト
粉末が添加混合されており、ニッケル水酸化物に対する
オキシ水酸化コバルト粉末のコバルト原子換算での比率
が1〜10重量%であり、且つ初回の充放電前における
ニッケル水酸化物中のニッケルの平均価数が2.1〜
2.3価であることを特徴とするものである。
For sealed alkaline storage battery according to the present invention SUMMARY OF THE INVENTION The non-sintered nickel electrode (electrode of the present invention) is, cobalt oxyhydroxide in the nickel hydroxide as an active material
The powder is added and mixed , the ratio of cobalt oxyhydroxide powder to nickel hydroxide in terms of cobalt atom is 1 to 10% by weight, and in the nickel hydroxide before the first charge and discharge. Average valence of nickel is 2.1-
It is characterized by being trivalent.

【0015】本発明電極では、正極活物質として、ニッ
ケルの平均価数が2.1〜2.3価であるニッケル水酸
化物が使用される。ニッケルの平均価数が2.1未満の
場合は、充放電反応における正極の不可逆反応量が多く
なり、負極の放電リザーブが過多になる。その結果、高
率放電時の活物質利用率の低下に因る負極の放電容量の
低下を充電リザーブで充分に抑制することができなくな
り、高率放電での電池の放電容量が低下する。一方、ニ
ッケルの平均価数が2.3価を超える場合は、充放電反
応における可逆反応量が多くなり、放電リザーブが過少
になる。その結果、放電末期及び高率放電時の負極電位
の上昇を充分に抑制することができなくなり、高率放電
での電池の放電容量が低下する。
In the electrode of the present invention, nickel hydroxide having an average nickel valence of 2.1 to 2.3 is used as the positive electrode active material. When the average valence of nickel is less than 2.1, the irreversible reaction amount of the positive electrode in the charge / discharge reaction increases, and the discharge reserve of the negative electrode becomes excessive. As a result, the decrease in the discharge capacity of the negative electrode due to the decrease in the active material utilization rate during high rate discharge cannot be sufficiently suppressed by the charge reserve, and the discharge capacity of the battery during high rate discharge decreases. On the other hand, when the average valence of nickel exceeds 2.3, the amount of reversible reaction in the charge / discharge reaction increases and the discharge reserve becomes too small. As a result, it is not possible to sufficiently suppress the increase of the negative electrode potential at the end of discharge and at high rate discharge, and the discharge capacity of the battery at high rate discharge is reduced.

【0016】正極活物質として、ニッケル水酸化物に、
亜鉛、マグネシウム、カルシウム、マンガン、アルミニ
ウム、カドミウム、イットリウム、コバルト、ビスマス
及びランタノイドから選ばれた少なくとも1種の元素を
固溶させたものを使用してもよい。これらの元素を固溶
させることにより、正極活物質の膨化を抑制することが
できる。
Nickel hydroxide is used as the positive electrode active material,
A solid solution of at least one element selected from zinc, magnesium, calcium, manganese, aluminum, cadmium, yttrium, cobalt, bismuth and lanthanoid may be used. Swelling of the positive electrode active material can be suppressed by forming a solid solution with these elements.

【0017】ニッケルの平均価数が2.1〜2.3価で
あるニッケル水酸化物は、例えば、水酸化ニッケルを、
過酸化水素水、次亜塩素酸塩水溶液等の強酸化剤水溶液
に水酸化ナトリウム等のアルカリを添加した水溶液に、
攪拌しながら所定時間(通常、3〜50分間)浸漬する
ことにより容易に作製することができる。アルカリを添
加するのは、液のpHを高めて酸化を促進するためであ
る。
The nickel hydroxide having an average nickel valence of 2.1 to 2.3 is, for example, nickel hydroxide.
Aqueous solution of strong oxidizer such as hydrogen peroxide solution or hypochlorite solution to which alkali such as sodium hydroxide is added,
It can be easily prepared by immersing for a predetermined time (usually 3 to 50 minutes) with stirring. The reason for adding the alkali is to increase the pH of the solution and accelerate the oxidation.

【0018】本発明電極では、ニッケル水酸化物にオキ
シ水酸化コバルト粉末が添加混合されている。ニッケル
水酸化物に対するオキシ水酸化コバルトの添加量は、コ
バルト原子換算で、1〜10重量%である。同添加量が
1重量%未満の場合は活物質利用率が低下するため、ま
た同添加量10重量%を超えた場合はニッケル水酸化物
の充填量が減少するため、いずれの場合も放電容量が低
下する。
In the electrode of the present invention , cobalt oxyhydroxide powder is added to and mixed with nickel hydroxide . The amount of cobalt oxyhydroxide added to nickel hydroxide is 1 to 10% by weight in terms of cobalt atom. If the addition amount is less than 1% by weight, the utilization factor of the active material is lowered, and if the addition amount is more than 10% by weight, the filling amount of nickel hydroxide is reduced, and in any case, the discharge capacity is reduced. Is reduced.

【0019】オキシ水酸化コバルトは、例えば、水酸化
コバルトを、酸化剤水溶液に水酸化ナトリウムなどのア
ルカリを添加した水溶液に、攪拌しながら所定時間浸漬
して酸化することにより容易に作製することができる。
なお、水酸化コバルトの酸化には、過酸化水素、次亜塩
素酸塩等の強酸化剤の外、ペルオキソ二硫酸カリウムな
どの弱酸化剤も使用することができる。
Cobalt oxyhydroxide can be easily prepared, for example, by oxidizing cobalt hydroxide by immersing it in an aqueous solution of an oxidizing agent aqueous solution to which an alkali such as sodium hydroxide is added for a predetermined time while stirring. it can.
For the oxidation of cobalt hydroxide, strong oxidizing agents such as hydrogen peroxide and hypochlorite, and weak oxidizing agents such as potassium peroxodisulfate can be used.

【0020】水酸化ニッケルからニッケルの平均価数が
2.1〜2.3価であるニッケル水酸化物への酸化及び
水酸化コバルトからオキシ水酸化コバルトへの酸化は、
それぞれ別々に行ってもよく、また強酸化剤を使用して
一度に行ってもよい。
Oxidation of nickel hydroxide to nickel hydroxide having an average nickel valence of 2.1 to 2.3 and oxidation of cobalt hydroxide to cobalt oxyhydroxide are as follows.
They may be carried out separately, or may be carried out at once using a strong oxidant.

【0021】本発明を適用して好適な密閉型アルカリ蓄
電池用非焼結式ニッケル極としては、導電性芯体に、活
物質を含有するペーストを塗布し、乾燥してなるペース
ト式ニッケル極が挙げられる。このときの導電性芯体の
具体例としては、ニッケル発泡体、フェルト状金属繊維
多孔体及びパンチングメタルが挙げられる。この外、本
発明は、チューブ状の金属導電体の中に活物質を充填す
るチューブ式ニッケル極、ポケット状の金属導電体の中
に活物質を充填するポケット式ニッケル極、活物質を網
目状の金属導電体とともに加圧成形するボタン型電池用
ニッケル極などにも、適用して好適である。
As a non-sintered nickel electrode suitable for a sealed alkaline storage battery to which the present invention is applied, a paste nickel electrode obtained by applying a paste containing an active material to a conductive core and drying it. Can be mentioned. Specific examples of the conductive core at this time include a nickel foam, a felt-like metal fiber porous body, and a punching metal. In addition to the above, the present invention provides a tubular nickel electrode in which a tube-shaped metal conductor is filled with an active material, a pocket-shaped nickel electrode in which a pocket-shaped metal conductor is filled with an active material, and a mesh-shaped active material. It is also suitable to be applied to a nickel electrode for a button battery, which is pressure-molded together with the metal conductor.

【0022】本発明電極を正極として用いて好適な密閉
型アルカリ蓄電池の具体例としては、ニッケル−水素蓄
電池(負極:水素吸蔵合金電極)、ニッケル−カドミウ
ム蓄電池(負極:カドミウム電極)及びニッケル−亜鉛
蓄電池(負極:亜鉛電極)が挙げられる。
Specific examples of the sealed alkaline storage battery suitable for using the electrode of the present invention as the positive electrode include nickel-hydrogen storage battery (negative electrode: hydrogen storage alloy electrode), nickel-cadmium storage battery (negative electrode: cadmium electrode) and nickel-zinc. A storage battery (negative electrode: zinc electrode) is mentioned.

【0023】本発明電極は、正極活物質としてニッケル
の平均価数が2.1〜2.3価であるニッケル水酸化物
を、また導電剤としてオキシ水酸化コバルトを、それぞ
れ使用しているので、これを密閉型アルカリ蓄電池の正
極として使用した場合に、負極に適正な放電リザーブが
生成する。このため、本発明電極を使用した密閉型アル
カリ蓄電池は、高率放電での放電容量が大きい。
The electrode of the present invention uses nickel hydroxide having an average nickel valence of 2.1 to 2.3 as the positive electrode active material and cobalt oxyhydroxide as the conductive agent. When this is used as the positive electrode of a sealed alkaline storage battery, an appropriate discharge reserve is generated at the negative electrode. Therefore, the sealed alkaline storage battery using the electrode of the present invention has a large discharge capacity at high rate discharge.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0025】(実施例1) 水酸化ニッケル100gと水酸化コバルト7.8g(コ
バルト原子換算で5g)とを、30重量%水酸化ナトリ
ウム水溶液1000mlと12重量%次亜塩素酸ナトリ
ウム水溶液250mlとの混合水溶液に、攪拌しながら
10分間浸漬した後、ろ別し、水洗し、乾燥して、ニッ
ケル2.2価のニッケル水酸化物とオキシ水酸化コバル
トとを作製した。このようにして得たニッケル水酸化物
及びオキシ水酸化コバルト100重量部と、結着剤とし
ての1重量%メチルセルロース水溶液20重量部とを混
練してペーストを調製し、このペーストをニッケル発泡
体(多孔度95%、平均孔径200μm)の細孔内に充
填し、乾燥し、加圧成形して、非焼結式ニッケル極(
発明電極)を作製した。この非焼結式ニッケル極(正
極)、従来公知のペースト式カドミウム極(負極)、ポ
リアミド不織布(セパレータ)、30重量%水酸化カリ
ウム水溶液(電解液)、金属製の電池缶、金属製の電池
蓋などを用いて、AAサイズのアルカリ蓄電池(理論容
量:約1000mAh)A1を作製した。正極容量と負
極容量の比を1:2とした。以下の実施例及び比較例に
おいても、正極容量と負極容量の比は全て1:2とし
た。
Example 1 100 g of nickel hydroxide and 7.8 g of cobalt hydroxide (5 g in terms of cobalt atom) were mixed with 1000 ml of 30% by weight aqueous sodium hydroxide solution and 250 ml of 12% by weight aqueous sodium hypochlorite solution. After immersing in the mixed aqueous solution for 10 minutes while stirring, it was filtered, washed with water, and dried to prepare nickel 2.2-valent nickel hydroxide and cobalt oxyhydroxide. 100 parts by weight of the nickel hydroxide and cobalt oxyhydroxide thus obtained and 20 parts by weight of a 1% by weight methylcellulose aqueous solution as a binder were kneaded to prepare a paste. The non-sintered nickel electrode ( main body) was filled in the pores with a porosity of 95% and an average pore diameter of 200 μm, dried, pressure-molded.
The invention electrode ) was produced. This non-sintered nickel electrode (positive electrode), conventionally known paste type cadmium electrode (negative electrode), polyamide nonwoven fabric (separator), 30 wt% potassium hydroxide aqueous solution (electrolyte), metal battery can, metal battery An AA size alkaline storage battery (theoretical capacity: about 1000 mAh) A1 was produced using a lid and the like. The ratio between the positive electrode capacity and the negative electrode capacity was 1: 2. Also in the following examples and comparative examples, the ratio between the positive electrode capacity and the negative electrode capacity was all set to 1: 2.

【0026】[0026]

【0027】(実施例2) 水酸化ニッケル100gに代えて、亜鉛が0.5重量%
固溶した水酸化ニッケル100gを使用したこと以外は
実施例1と同様にして、非焼結式ニッケル極(本発明電
)及びアルカリ蓄電池A3を作製した。
( Example 2 ) Zinc was added in an amount of 0.5% by weight in place of 100 g of nickel hydroxide.
Except for using the solid solution nickel hydroxide 100g in the same manner as in Example 1, the non-sintered nickel electrode (present invention electrodeposition
Electrode ) and alkaline storage battery A3.

【0028】(実施例3) 12重量%次亜塩素酸ナトリウム水溶液250mlに代
えて、31重量%過酸化水素水250mlを使用したこ
と以外は実施例1と同様にして、非焼結式ニッケル極
本発明電極)及びアルカリ蓄電池A4を作製した。
Example 3 A non-sintered nickel electrode was prepared in the same manner as in Example 1 except that 250 ml of 31 wt% hydrogen peroxide solution was used instead of 250 ml of 12 wt% sodium hypochlorite aqueous solution. ( Invention electrode ) and alkaline storage battery A4 were produced.

【0029】(比較例1)水酸化ニッケル100重量部
と、水酸化コバルト7.9重量部(コバルト原子換算で
5重量部)と、結着剤としての1重量%メチルセルロー
ス水溶液20重量部とを混練してペーストを調製し、こ
のペーストをニッケル発泡体(多孔度95%、平均孔径
200μm)の細孔内に充填し、乾燥し、加圧成形し
て、非焼結式ニッケル極を作製した。この非焼結式ニッ
ケル極は、特開昭61−49374号公報に開示の従来
電極である。この非焼結式ニッケル極を正極として使用
したこと以外は実施例1と同様にして、アルカリ蓄電池
Xを作製した。
(Comparative Example 1) 100 parts by weight of nickel hydroxide, 7.9 parts by weight of cobalt hydroxide (5 parts by weight in terms of cobalt atom), and 20 parts by weight of a 1% by weight methylcellulose aqueous solution as a binder. A paste was prepared by kneading, and the paste was filled in the pores of a nickel foam (porosity 95%, average pore diameter 200 μm), dried, and pressure-molded to produce a non-sintered nickel electrode. . This non-sintered nickel electrode is a conventional electrode disclosed in JP-A-61-49374. An alkaline storage battery X was produced in the same manner as in Example 1 except that this non-sintered nickel electrode was used as the positive electrode.

【0030】(比較例2)水酸化ニッケル100gと、
一酸化コバルト6.3gとを、比重1.25の水酸化カ
リウム水溶液1000mlに投入した後、ペルオキソ二
硫酸カリウムを135g投入して1時間攪拌混合し、ろ
別し、水洗し、乾燥して、水酸化ニッケルの粒子表面を
オキシ水酸化コバルトで被覆してなる複合体粒子粉末を
作製した。この複合体粒子粉末100重量部と、結着剤
としての1重量%メチルセルロース水溶液20重量部と
を混練してペーストを調製し、このペーストをニッケル
発泡体(多孔度95%、平均孔径200μm)の細孔内
に充填し、乾燥し、加圧成形して、非焼結式ニッケル極
を作製した。この非焼結式ニッケル極は、特公平8−2
4041号公報に開示の従来電極である。この非焼結式
ニッケル極を正極として使用したこと以外は実施例1と
同様にして、アルカリ蓄電池Yを作製した。
Comparative Example 2 100 g of nickel hydroxide,
After adding 6.3 g of cobalt monoxide to 1000 ml of a potassium hydroxide aqueous solution having a specific gravity of 1.25, 135 g of potassium peroxodisulfate was added, and the mixture was stirred and mixed for 1 hour, filtered, washed with water and dried, A composite particle powder was prepared by coating the surface of nickel hydroxide particles with cobalt oxyhydroxide. A paste was prepared by kneading 100 parts by weight of the composite particle powder and 20 parts by weight of a 1% by weight methylcellulose aqueous solution as a binder, and the paste was prepared from nickel foam (porosity 95%, average pore diameter 200 μm). The non-sintered nickel electrode was prepared by filling the inside of the pores, drying and pressure-molding. This non-sintered nickel electrode is
This is a conventional electrode disclosed in Japanese Patent No. 4041. An alkaline storage battery Y was produced in the same manner as in Example 1 except that this non-sintered nickel electrode was used as the positive electrode.

【0031】〈各電池の高率放電特性〉各電池につい
て、25°Cにて0.1Cで16時間充電した後、25
°Cにて1Cで1.0Vまで放電する工程を1サイクル
とする充放電を10サイクル行い、各電池の10サイク
ル目の放電容量C1(mAh)を求めた。次いで、各電
池を25°Cにて0.1Cで16時間充電した後、25
°Cにて3Cで1.0Vまで放電して、各電池の11サ
イクル目の放電容量C2(mAh)を求めた。各電池に
ついて、放電容量C1に対する放電容量C2の比率P
(%)を算出した。比率Pは、各電池の高率放電特性の
良否を示す指標であり、この値が大きいほど、高率放電
特性が良い。結果を表1に示す。表1中の各電池の10
サイクル目の放電容量は、電池A1の10サイクル目の
放電容量を100とした相対指数である。
<High-rate discharge characteristics of each battery> Each battery was charged at 0.1 ° C at 25 ° C for 16 hours, and then charged at 25 ° C.
Ten cycles of charging and discharging, each cycle consisting of a step of discharging to 1.0 V at 1 C at ° C, were performed to obtain a discharge capacity C1 (mAh) at the 10th cycle of each battery. Then, after charging each battery at 0.1 ° C. for 16 hours at 25 ° C.,
The battery was discharged to 1.0 V at 3 C at ° C, and the discharge capacity C2 (mAh) at the 11th cycle of each battery was obtained. For each battery, the ratio P of the discharge capacity C2 to the discharge capacity C1
(%) Was calculated. The ratio P is an index indicating whether the high rate discharge characteristic of each battery is good or bad. The larger this value, the better the high rate discharge characteristic. The results are shown in Table 1. 10 of each battery in Table 1
The discharge capacity at the cycle is a relative index when the discharge capacity at the 10th cycle of the battery A1 is 100.

【0032】[0032]

【表1】 [Table 1]

【0033】表1に示すように、電池A1、A3、A4
は、電池X,Yに比べて、10サイクル目の放電容量が
大きく、しかも比率Pが大きい。この結果から、本発明
電極を使用することにより、従来電極を使用した場合に
比べて、高率放電での放電容量が大きいアルカリ蓄電池
が得られることが分かる。
As shown in Table 1, batteries A1, A3, A4
Has a larger discharge capacity at the 10th cycle and a larger ratio P than the batteries X and Y. From this result, it can be seen that by using the electrode of the present invention, an alkaline storage battery having a large discharge capacity at high rate discharge can be obtained as compared with the case of using the conventional electrode.

【0034】〔ニッケル水酸化物中のニッケルの平均価
数と高率放電特性の関係〕ニッケル水酸化物及びオキシ
水酸化コバルトを作製する際の浸漬時間を、10分に代
えて、1分、3分、5分、20分、30分、50分、6
0分、120分、180分及び200分としたこと以外
は実施例1と同様にして、ニッケルの平均価数が、順
に、2.0、2.1、2.2、2.2、2.2、2.
2、2.3、2.3、2.4及び2.4であるニッケル
水酸化物を作製した。ニッケルの平均価数は、酸化還元
滴定法により求めた。正極活物質としてこれらのニッケ
ル水酸化物を使用したこと以外は実施例1と同様にし
て、アルカリ蓄電池B1〜B10を作製した。各電池に
ついて、先と同じ条件の充放電サイクル試験を行い、各
電池の10サイクル目の放電容量C1に対する11サイ
クル目の放電容量の比率Pを求めた。結果を表2に示
す。表2には、電池A1の結果も示してあり、表2中の
Qは、電池A1の10サイクル目の放電容量C1に対す
る11サイクル目の放電容量の比率P(88%)を10
0とした相対指数である。Qの値が大きい電池ほど、高
率放電特性が良い。
[Relationship Between Average Valence of Nickel in Nickel Hydroxide and High Rate Discharge Characteristics] Immersion time for producing nickel hydroxide and cobalt oxyhydroxide was changed from 10 minutes to 1 minute, 3 minutes, 5 minutes, 20 minutes, 30 minutes, 50 minutes, 6
The average valence of nickel was 2.0, 2.1, 2.2, 2.2, and 2 in the same manner as in Example 1 except that 0 minutes, 120 minutes, 180 minutes, and 200 minutes were used. .2, 2.
Nickel hydroxides of 2, 2.3, 2.3, 2.4 and 2.4 were made. The average valence of nickel was determined by a redox titration method. Alkaline storage batteries B1 to B10 were produced in the same manner as in Example 1 except that these nickel hydroxides were used as the positive electrode active material. Each battery was subjected to a charge / discharge cycle test under the same conditions as above, and the ratio P of the discharge capacity at the 11th cycle to the discharge capacity C1 at the 10th cycle of each battery was determined. The results are shown in Table 2. Table 2 also shows the result of the battery A1, and Q in Table 2 represents the ratio P (88%) of the discharge capacity at the 11th cycle to the discharge capacity C1 at the 10th cycle of the battery A1 being 10%.
It is a relative index with 0. A battery having a larger Q value has better high rate discharge characteristics.

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示すように、電池A1,B2〜B8
は、電池B1,B9,B10に比べて、Qの値が大き
い。この結果から、高率放電特性が良いアルカリ蓄電池
を与える非焼結式ニッケル極を得るためには、ニッケル
の平均価数が2.1〜2.3価であるニッケル水酸化物
を使用する必要があることが分かる。
As shown in Table 2, batteries A1, B2 to B8
Has a larger Q value than the batteries B1, B9, and B10. From these results, in order to obtain a non-sintered nickel electrode that gives an alkaline storage battery with good high rate discharge characteristics, it is necessary to use nickel hydroxide having an average nickel valence of 2.1 to 2.3. I understand that there is.

【0037】〔ニッケル水酸化物に対するオキシ水酸化
コバルトのコバルト原子換算での比率と放電容量の関
係〕ニッケル水酸化物及びオキシ水酸化コバルトを作製
する際の水酸化コバルトの使用量を、7.8g(コバル
ト原子換算で5g)に代えて、0.47g、0.79
g、1.6g、4.7g、11.0g、15.8g、1
8.9g及び23.6g(コバルト原子換算で、順に、
0.3g、0.5g、1g、3g、7g、10g、12
g及び15g)としたこと以外は実施例1と同様にし
て、順にアルカリ蓄電池D1〜D8を作製した。各電池
について、先と同じ条件の充放電サイクル試験を行い、
各電池の10サイクル目の放電容量C1を求めた。結果
を図1に示す。図1は、ニッケル水酸化物に対するオキ
シ水酸化コバルトのコバルト原子換算での比率と10サ
イクル目の放電容量の関係を、縦軸に10サイクル目の
放電容量を、横軸にニッケル水酸化物に対するオキシ水
酸化コバルトのコバルト原子換算での比率(重量%)を
それぞれとって示したグラフである。図1には、電池A
1の結果も示してあり、図1の縦軸の10サイクル目の
放電容量は、電池A1の10サイクル目の放電容量を1
00とした相対指数である。
[Relationship between the ratio of cobalt oxyhydroxide to nickel hydroxide in terms of cobalt atoms and the discharge capacity] The amount of cobalt hydroxide used in producing nickel hydroxide and cobalt oxyhydroxide was determined as follows. 0.47g, 0.79 instead of 8g (5g in terms of cobalt atom)
g, 1.6 g, 4.7 g, 11.0 g, 15.8 g, 1
8.9g and 23.6g (in terms of cobalt atom, in order,
0.3g, 0.5g, 1g, 3g, 7g, 10g, 12
g and 15 g), and alkaline storage batteries D1 to D8 were produced in the same manner as in Example 1. For each battery, perform a charge-discharge cycle test under the same conditions as above,
The discharge capacity C1 at the 10th cycle of each battery was determined. The results are shown in Fig. 1. FIG. 1 shows the relationship between the ratio of cobalt oxyhydroxide to nickel hydroxide in terms of cobalt atoms and the discharge capacity at the 10th cycle, the vertical axis shows the discharge capacity at the 10th cycle, and the horizontal axis shows the discharge capacity with respect to nickel hydroxide. It is the graph which took and showed each ratio (weight%) in terms of cobalt atom of cobalt oxyhydroxide. In FIG. 1, the battery A
1 is also shown, and the discharge capacity at the 10th cycle on the vertical axis of FIG. 1 is the discharge capacity at the 10th cycle of battery A1.
The relative index is 00.

【0038】図1より、放電容量の大きい非焼結式ニッ
ケル極を得るためには、ニッケル水酸化物に対するオキ
シ水酸化コバルトのコバルト原子換算での比率を、1〜
10重量%とする必要があることが分かる。
From FIG. 1, in order to obtain a non-sintered nickel electrode having a large discharge capacity, the ratio of cobalt oxyhydroxide to nickel hydroxide in terms of cobalt atom should be 1 to.
It can be seen that the amount needs to be 10% by weight.

【0039】[0039]

【発明の効果】本発明により、高率放電での放電容量が
大きいアルカリ蓄電池を与える非焼結式ニッケル極が提
供される。
The present invention provides a non-sintered nickel electrode which provides an alkaline storage battery having a large discharge capacity at high rate discharge.

【図面の簡単な説明】[Brief description of drawings]

【図1】ニッケル水酸化物に対するオキシ水酸化コバル
トのコバルト原子換算での比率と放電容量の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the ratio of cobalt oxyhydroxide to nickel hydroxide in terms of cobalt atoms and the discharge capacity.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平8−203516(JP,A) 特開 平7−114920(JP,A) 特開 平8−22711(JP,A) 特開 平8−115722(JP,A) 特開 平10−74512(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/52 H01M 4/24 - 4/34 H01M 4/62 ─────────────────────────────────────────────────── --- Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-8-203516 (JP, A) JP 7-114920 (JP, A) JP 8-22711 (JP, A) JP 8-115722 (JP, A) JP 10-74512 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01M 4/52 H01M 4/24-4/34 H01M 4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】活物質としてのニッケル水酸化物にオキシ
水酸化コバルト粉末が添加混合されているアルカリ蓄電
池用非焼結式ニッケル極において、ニッケル水酸化物に
対するオキシ水酸化コバルト粉末のコバルト原子換算で
の比率が1〜10重量%であり、且つ初回の充放電前に
おけるニッケル水酸化物中のニッケルの平均価数が2.
1〜2.3価であることを特徴とする密閉型アルカリ蓄
電池用非焼結式ニッケル極。
1. A active material as nickel hydroxide for alkaline storage battery non-sintered nickel electrode cobalt powder oxyhydroxide is admixed, a cobalt atom in terms of cobalt oxyhydroxide powder to nickel hydroxide Is 1 to 10% by weight, and before the first charge and discharge.
The average valence of nickel in nickel hydroxide is 2.
A non-sintered nickel electrode for a sealed alkaline storage battery, which has a valence of 1 to 2.3.
【請求項2】ニッケル水酸化物に、亜鉛、マグネシウ
ム、カルシウム、マンガン、アルミニウム、カドミウ
ム、イットリウム、コバルト、ビスマス及びランタノイ
ドから選ばれた少なくとも1種の元素が固溶している請
求項1記載の密閉型アルカリ蓄電池用非焼結式ニッケル
極。
2. Nickel hydroxide, zinc, magnesium
Aluminum, calcium, manganese, aluminum, cadmium
Mu, yttrium, cobalt, bismuth and lanthanum
A solution containing at least one element selected from
A non-sintered nickel electrode for a sealed alkaline storage battery according to claim 1 .
JP32048097A 1997-11-05 1997-11-05 Non-sintered nickel electrode for sealed alkaline storage batteries Expired - Fee Related JP3433076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32048097A JP3433076B2 (en) 1997-11-05 1997-11-05 Non-sintered nickel electrode for sealed alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32048097A JP3433076B2 (en) 1997-11-05 1997-11-05 Non-sintered nickel electrode for sealed alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH11144723A JPH11144723A (en) 1999-05-28
JP3433076B2 true JP3433076B2 (en) 2003-08-04

Family

ID=18121924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32048097A Expired - Fee Related JP3433076B2 (en) 1997-11-05 1997-11-05 Non-sintered nickel electrode for sealed alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP3433076B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3448510B2 (en) * 1998-04-28 2003-09-22 三洋ジ−エスソフトエナジー株式会社 Nickel hydroxide powder for alkaline batteries and nickel hydroxide electrode using the same
JP3558590B2 (en) * 2000-07-14 2004-08-25 松下電器産業株式会社 Method for producing positive electrode active material for alkaline storage battery
JP3976482B2 (en) * 2000-08-08 2007-09-19 三洋電機株式会社 Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JP4556315B2 (en) * 2000-10-06 2010-10-06 株式会社Gsユアサ Alkaline storage battery
JP2002121029A (en) * 2000-10-10 2002-04-23 Tanaka Chemical Corp Conductive cobalt coated nickel hydroxide and method for manufacturing the same
JP4765195B2 (en) * 2001-05-10 2011-09-07 ソニー株式会社 Positive electrode active material, method for producing positive electrode active material, positive electrode for battery, and battery
JP2003068293A (en) * 2001-08-23 2003-03-07 Hitachi Maxell Ltd Nonsintered positive electrode, its manufacturing method and alkali storage battery using the positive electrode
US7635512B2 (en) 2001-09-03 2009-12-22 Yuasa Corporation Nickel electrode material, and production method therefor, and nickel electrode and alkaline battery
JP5399285B2 (en) * 2010-02-05 2014-01-29 株式会社Gsユアサ Manufacturing method of nickel metal hydride storage battery

Also Published As

Publication number Publication date
JPH11144723A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP3429741B2 (en) Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries
JP3433076B2 (en) Non-sintered nickel electrode for sealed alkaline storage batteries
JP3469766B2 (en) Non-sintered nickel electrodes and batteries for sealed alkaline storage batteries
JP3433050B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP2000173614A (en) Positive electrode active material for sealed type alkaline storage battery
JP3079303B2 (en) Activation method of alkaline secondary battery
JP3433049B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3249414B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3433083B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JP2975658B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP3543607B2 (en) Alkaline storage battery
JP3263511B2 (en) Alkaline secondary battery
JP3249366B2 (en) Paste nickel electrode for alkaline storage batteries
JP2003257425A (en) Nickel hydrogen storage battery and manufacturing method thereof
JP4366722B2 (en) Nickel hydroxide active material for alkaline storage battery
JP3229800B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3481068B2 (en) Method for producing non-sintered nickel electrode for alkaline storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JP3371472B2 (en) Paste cadmium cathode plate for alkaline storage batteries
JP4049484B2 (en) Sealed alkaline storage battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3433043B2 (en) Non-sintered nickel electrode for alkaline storage batteries

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350