JP3407319B2 - Toroidal type continuously variable transmission - Google Patents

Toroidal type continuously variable transmission

Info

Publication number
JP3407319B2
JP3407319B2 JP34109192A JP34109192A JP3407319B2 JP 3407319 B2 JP3407319 B2 JP 3407319B2 JP 34109192 A JP34109192 A JP 34109192A JP 34109192 A JP34109192 A JP 34109192A JP 3407319 B2 JP3407319 B2 JP 3407319B2
Authority
JP
Japan
Prior art keywords
disk
input
output
toroidal
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34109192A
Other languages
Japanese (ja)
Other versions
JPH06174033A (en
Inventor
英司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP34109192A priority Critical patent/JP3407319B2/en
Publication of JPH06174033A publication Critical patent/JPH06174033A/en
Application granted granted Critical
Publication of JP3407319B2 publication Critical patent/JP3407319B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/086CVT using two coaxial friction members cooperating with at least one intermediate friction member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/02Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members without members having orbital motion
    • F16H15/04Gearings providing a continuous range of gear ratios
    • F16H15/06Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B
    • F16H15/32Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line
    • F16H15/36Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface
    • F16H15/38Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces
    • F16H2015/383Gearings providing a continuous range of gear ratios in which a member A of uniform effective diameter mounted on a shaft may co-operate with different parts of a member B in which the member B has a curved friction surface formed as a surface of a body of revolution generated by a curve which is neither a circular arc centered on its axis of revolution nor a straight line with concave friction surface, e.g. a hollow toroid surface with two members B having hollow toroid surfaces opposite to each other, the member or members A being adjustably mounted between the surfaces with two or more sets of toroid gearings arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は,自動車等に適用
されるトロイダル型無段変速機に関し,特に,2組のト
ロイダル変速機構を同軸上に配置したダブルキャビティ
式のトロイダル型無段変速機に関する。 【0002】 【従来の技術】従来,トロイダル型無段変速機は,図4
に示すように,入力軸21,入力軸21と一体に符号A
方向に回転し且つ入力軸21に対して軸方向に摺動自在
に設けられた入力ディスク22,入力軸21に対して回
転自在に設けられ且つ符号B方向に回転する出力ディス
ク23,入力ディスク22と出力ディスク23の間に配
置されたパワーローラ24等からなるトロイダル変速機
構25を有している。なお,図4では出力ディスク23
から出力軸への連結構造については省略されている。パ
ワーローラ24と両ディスク22,23との間の動力伝
達は高圧力下の油のせん断力即ちトラクション力(粘着
摩擦力)によるが,所定のトラクション力を得るには,
パワーローラ24と両ディスク22,23の接触点にお
いて軸方向に非常に大きな押付力を必要とする。その押
付力Fは,ばね,カム,油圧装置などの押圧手段によっ
て,入力ディスク22に加えられる。また,その反力
は,入力軸21と出力ディスク23との間に配置された
スラスト軸受26で受けるように構成されている。とこ
ろが,このトロイダル型無段変速機は,軸方向に非常に
大きな押付力Fが加えられるので,その反力を受けるス
ラスト軸受26を大きなものにしなければならないうえ
に,スラスト軸受26での転がり抵抗が増大し,トロイ
ダル型無段変速機全体の効率が低下してしまうという問
題がある。 【0003】この問題の解決策として,近年,ダブルキ
ャビティ式のトロイダル型無段変速機が提案された。ダ
ブルキャビティ式のトロイダル型無段変速機としては,
例えば,図5に示すようなものがある。即ち,このトロ
イダル型無段変速機は,一対の入力ディスク22,27
と,それぞれの入力ディスク22,27に対向して配置
された出力ディスク23,28と,入力ディスク22,
27から出力ディスク23,28へトルクを伝達する傾
転可能なパワーローラ24,29とを有する2組のトロ
イダル変速機構25,30を入力軸21上に対向させて
配置したものである。また,入力軸21から入力ディス
ク22,27へ入力されたトルクの大きさに応じてパワ
ーローラ24,29の圧接力を変化させる押圧手段が,
一方のトロイダル変速機構25に設けられている。更
に,一対の出力ディスク23,28は,背面同士が相互
に連結され,一体に回転できるように構成されており,
その連結部分には出力歯車31が設けられている。図
中,符号Aは入力軸21の回転方向を示し,符号Bは出
力ディスク23の回転方向を示す。 【0004】ところで,上記ダブルキャビティ式のトロ
イダル型無段変速機を自動車等の変速機として用いる場
合,出力軸を入力軸21と同一軸線上に配置するのが普
通である。そのために,例えば,図6に示すように,出
力歯車31に噛み合う歯車を有する平行軸33を入力軸
21と平行に,トロイダル変速機構30を跨ぐように配
置すると共に,平行軸33と出力軸32との間に平歯車
機構34を配置している。図中,符号Aは入力軸21の
回転方向を示し,符号Bは出力ディスク23の回転方向
を示す。 【0005】或いは,図7に示すように,平行軸33と
出力軸32との間に遊星歯車機構35を配置したものも
ある。平歯車機構34や遊星歯車機構35などの歯車機
構を設ける代わりにチェーン等を用いたものもある。い
ずれにしろ,従来のトロイダル型無段変速機は,トロイ
ダル変速機構30を跨いでトルクを伝達することができ
るように,入力軸21と平行に平行軸33を設ける必要
があった。このため,従来のトロイダル型無段変速機
は,径方向に大型化し,車両への搭載性が損なわれると
いう問題があった。図中,符号Aは入力軸21の回転方
向を示し,符号Bは出力ディスク23の回転方向を示
す。 【0006】上記問題を解決したものとして,特開昭6
2−255655号公報に開示されたトロイダル型無段
変速機がある。このトロイダル型無段変速機は,図8に
示すように,2組のトロイダル変速機構25,30から
なる。一方のトロイダル変速機構25は入力軸21上に
設けられている。入力軸21と出力軸32は同軸線上に
配置されており,他方のトロイダル変速機構30は,出
力軸32に回転自在に嵌合した中空駆動軸36上に設け
られている。 【0007】隣り合う出力ディスク23,28は,相互
に連結され,一体に回転可能である。出力ディスク23
に対向して配置された入力ディスク22は,入力軸21
に回転自在に支持され,ローディングカム37を介して
入力軸21に駆動連結されている。これに対して,出力
ディスク28に対向して配置された入力ディスク27
は,中空駆動軸36に回転自在に支持されていて,ロー
ディングカム38を介して中空駆動軸36に駆動連結さ
れている。一対の対向する入力ディスク22と出力ディ
スク23との間にはパワーローラ24が配置され,入力
ディスク27と出力ディスク28との間にはパワーロー
ラ29が配置されている。パワーローラ24は,入力デ
ィスク22からトルクを受けて回転し,その回転を出力
ディスク23へ伝達するものであり,また,パワーロー
ラ29は,入力ディスク27からトルクを受けて回転
し,その回転を出力ディスク28へ伝達するものであ
り,両パワーローラ24,29は連動して傾転し,傾転
角度に応じて無段変速比を得ることができる。 【0008】一体化した出力ディスク23,28内は中
空になっており,そこに出力ディスク23,28のトル
クを出力軸32に伝達するダブルピニオン式の遊星歯車
機構35が内蔵されている。出力ディスク23,28の
内周面にはリングギヤ39が設けられていて,このリン
グギヤ39に噛み合う第1ピニオン40,この第1ピニ
オン40に噛み合う第2ピニオン41,この第2ピニオ
ン41と同軸一体の第3ピニオン42をそれぞれキャリ
ヤ43に回転自在に支持し,第3ピニオン42にサンギ
ヤ44を噛み合わせ,ダブルピニオン式の遊星歯車機構
を構成している。また,キャリヤ43は入力軸21と中
空駆動軸36を一体に連結しており,サンギヤ44は出
力軸32に連結されている。 【0009】 【発明が解決しようとする課題】しかしながら,特開昭
62−255655号公報に開示されたトロイダル型無
段変速機は,径方向に小型化されているものの,遊星歯
車機構35が出力ディスク23,28の内部に内蔵され
ているので,遊星歯車が1組の場合には,ダブルピニオ
ン式であろうがシングルピニオン式であろうが,出力デ
ィスク23,28はリングギヤ39に連結され,入力デ
ィスク22,27はキャリヤ43に連結され,出力軸3
2はサンギヤ44に連結される。このような構成では,
遊星歯車の歯数は,常に,リングギヤ39の方がサンギ
ヤ44よりも多いため,トロイダル変速機構25,30
の変速比幅に比べ,トロイダル型無段変速機全体の変速
比幅は非常に小さくならざるを得ない(変速比の計算式
及び計算結果については,本発明の実施例の欄を参照さ
れたい)。これを解決しようとするには,遊星歯車を2
組以上必要とし,装置が軸方向に長くなると共に,構造
が複雑になる。 【0010】この発明の目的は,上記課題を解決するこ
とであり,トロイダル変速機構の変速比幅は小さくて
も,トロイダル型無段変速機全体としては大きな変速比
幅を得ることができて,径方向に小型化したトロイダル
型無段変速機を提供することである。 【0011】 【課題を解決するための手段】この発明は,入力軸と一
体に回転する第1入力ディスク,該第1入力ディスクに
対向して配置され前記入力軸に対して回転自在に支持さ
れた第1出力ディスク,該第1出力ディスクと一体構造
の第2出力ディスク,該第2出力ディスクに対向して配
置された第2入力ディスク,前記第1入力ディスクと前
記第1出力ディスクの間及び前記第2入力ディスクと前
記第2出力ディスクとの間にそれぞれ配置された傾転可
能なパワーローラ,前記第2出力ディスクに一体に連結
され且つ前記入力軸に対して回転自在に嵌合して前記第
2入力ディスクを回転自在に支持する中空駆動軸,該中
空駆動軸に一体的に連結されたサンギヤ,前記入力軸と
前記第2入力ディスクとに一体的に連結され且つ前記サ
ンギヤと噛み合うピニオンを支持するキャリヤ,及び前
記ピニオンに噛み合うリングギヤに一体的に連結され且
つ前記入力軸と同軸上に配置された出力軸を有し,前記
ピニオンは,前記サンギヤと噛み合う第1ピニオン及び
該第1ピニオンに噛み合い且つ前記リングギヤに噛み合
う第2ピニオンから成るダブルピニオンから構成されて
いることから成るトロイダル型無段変速機に関する。 【0012】このトロイダル型無段変速機は,上記のよ
うに構成されているので,入力軸に入力されたトルク
は,第1入力ディスクと第2入力ディスクに伝達され
る。そして,第1入力ディスクと第2入力ディスクに伝
達されたトルクはパワーローラを介してそれぞれ第1出
力ディスクと第2出力ディスクに伝達される。第2出力
ディスクは,第2入力ディスクの中心孔に挿通された中
空駆動軸に一体に連結されているので,第2出力ディス
クのトルクは中空駆動軸に連結されたサンギヤに伝達さ
れる。サンギヤの回転力は,ピニオンを介してリングギ
ヤに伝達され,次いで,リングギヤに連結された出力軸
へと伝達される。このトロイダル型無段変速機は,特
に,ピニオンとして第1ピニオンと第2ピニオンを有す
るダブルピニオン式の遊星歯車機構に構成され,トルク
が歯数の少ないサンギヤから歯数の多いリングギヤへと
伝達されるように構成されているので,トロイダル変速
機構の変速比幅に比べて,トロイダル型無段変速機全体
の変速比幅が大きくなる。 【0013】このトロイダル型無段変速機は,入力軸と
出力軸を同一軸線上に配置し,中空駆動軸を入力軸に回
転自在に嵌合すると共に,中空駆動軸の一端を第2出力
ディスクに連結し,中空駆動軸を第2入力ディスクの中
心孔に挿通して,中空駆動軸の他端をサンギヤに連結し
たので,従来,第2入力ディスクを跨ぐように入力軸に
平行に配置されていた平行軸が不要となり,変速機自体
を径方向に小型化することができる。 【0014】 【発明の実施の形態】以下,図面を参照しながら,この
発明によるトロイダル型無段変速機の一実施例について
説明する。図1この発明によるトロイダル型無段変速機
の一実施例を示す半分略線図である。このトロイダル型
無段変速機は,2組のトロイダル変速機構15,16を
同軸上に対向して配置したダブルキャビティ式のトロイ
ダル型無段変速機である。第1トロイダル変速機構15
は,第1入力ディスク2と,第1入力ディスク2に対向
して配置された第1出力ディスク3と,第1入力ディス
ク2と第1出力ディスク3との間に配置され,両ディス
ク2,3に摩擦係合する第1パワーローラ6から構成さ
れている。第2トロイダル変速機構16も同様に,第2
入力ディスク4と,第2入力ディスク4に対向して配置
された第2出力ディスク5と,第2入力ディスク4と第
2出力ディスク5との間に配置され,両ディスク4,5
に摩擦係合する第2パワーローラ7から構成されてい
る。第1パワーローラ6及び第2パワーローラ7は,そ
れぞれ自己の回転軸線の周りに回転自在であり,且つこ
の回転軸線に直交する傾転軸線の周りに傾転運動する。 【0015】第1入力ディスク2は,入力軸1に対して
回転自在に支持されているが,図示しないローディング
カムを介して入力軸1に駆動連結され,入力軸1と一体
に回転することができる。第1入力ディスク2に対向す
る第1出力ディスク3は,入力軸1に対して回転自在に
支持されている。第1出力ディスク3は第2出力ディス
ク5と背面同士が相互に連結され,両出力ディスク3,
5は一体化されている。第2出力ディスク5に対向して
配置された第2入力ディスク4は,中空駆動軸8に回転
自在に支持されている。中空駆動軸8は入力軸1に嵌合
し,入力軸1に対して回転自在に支持されている。中空
駆動軸8は第2入力ディスク4の中心孔を貫通して延び
ており,中空駆動軸8の一端は第2出力ディスク5に一
体に連結されている。図中,符号Aは第1入力ディスク
2と第2入力ディスク4の回転方向を示し,また,符号
Bは第1出力ディスク3と第2出力ディスク5の回転方
向を示す。 【0016】トロイダル変速機構15,16は,遊星歯
車機構17を介して出力軸14に駆動連結されている。
出力軸14は入力軸1と同軸線上に配置されている。遊
星歯車機構17は,ダブルピニオン式の遊星歯車機構で
あって,中空駆動軸8の他端に一体に連結されたサンギ
ヤ9と,サンギヤ9に噛み合っている第1ピニオン10
及び第1ピニオン10に噛み合っている第2ピニオン1
1と,第1ピニオン10及び第2ピニオン11を回転自
在に支持すると共に,入力軸1及び第2入力ディスク4
に一体に連結されているキャリヤ12と,第2ピニオン
11と噛み合い且つ出力軸14に一体に連結されている
リングギヤ13とから構成されている。 【0017】次に,このトロイダル型無段変速機の作動
を説明する。エンジンの稼働に伴って,入力軸1にトル
クが入力されると,そのトルクはローディングカムを介
して第1入力ディスク2に伝達される。同時に,トルク
は入力軸1からキャリア12を介して第2入力ディスク
4に伝達される。トルクが第1入力ディスク2に伝達さ
れると,第1入力ディスク2は回転し,その回転によっ
てパワーローラ6が回転し,その回転が第1出力ディス
ク3に伝達する。また,第2入力ディスク4に伝達され
たトルクは,パワーローラ7を介して第2出力ディスク
5に伝達される。そして,第1出力ディスク3及び第2
出力ディスク5は一体に連結されているので,一体とな
って回転する。この伝動中に,パワーローラ6,7をそ
れぞれ同期させて傾転軸線周りに同角度だけ傾転させる
と,パワーローラ6,7と入力ディスク2,4及び出力
ディスク3,5との摩擦係合点が変化して,無段変速を
行うことができる。 【0018】第2出力ディスク5が回転すると,第2出
力ディスク5に連結されている中空駆動軸8も回転す
る。中空駆動軸8の他端にはサンギヤ9が設けられてい
るので,サンギヤ9の回転は遊星歯車機構17に伝達さ
れる。遊星歯車機構17内では,トルクはサンギヤ9か
ら第1ピニオン10,第2ピニオン11,リングギヤ1
3へと伝達し,更に,リングギヤ13から出力軸14へ
伝達される。 【0019】次に,変速比について,この発明によるト
ロイダル型無段変速機と特開昭62−255655号公
報に開示された従来のトロイダル型無段変速機とを比較
してみる。まず,次のように符号を定義することにす
る。 I : トロイダル型無段変速機全体の変速比 ICVT : トロイダル変速機構の変速比 ZS : サンギヤ歯数 ZR : リングギヤ歯数 このトロイダル型無段変速機の変速比Iは, I=−ZR ・ICVT /(ZS +ZS ・ICVT −ZR ・ICVT )───(1) で表現することができる。 【0020】これに対して,本発明のトロイダル型無段
変速機のダブルピニオン式の遊星歯車機構と同様にリン
グギヤから出力軸へ動力を伝達する遊星歯車機構を,シ
ングルピニオン式の遊星歯車機構を採用した従来例のリ
ングギヤ出力S/P式のトロイダル無段段変速機の変速
比Iは, I= R ・ICVT /( S S ・ICVT R ・ICVT ) ───(2) で表現することができる。また,特開昭62−2556
55号の第5図に記載されているサンギヤから出力軸へ
動力を伝達する遊星歯車機構にシングルピニオン式の遊
星歯車機構を備えた,従来例のサンギヤ出力S/P式の
トロイダル型無段変速機の変速比Iは, I=ZS ・ICVT /(ZR +ZR ・ICVT +ZS ・ICVT ) ───(3) で表現することができる。また,図8に記載されている
従来例のトロイダル型無段変速機のシングルピニオン式
の遊星歯車機構を,ダブルピニオン式の遊星歯車機構に
変更した場合のサンギヤ出力D/P式のトロイダル型無
段変速機の変速比Iは, I=−ZS ・ICVT /(ZR +ZR ・ICVT −ZS ・ICVT )───(4) で表現することができる。ここで,ZS <ZR ,ZS
0,ZR >0,ICVT >0であるから,(1)式だけが
特異点を持つことになる。 【0021】遊星歯車機構におけるサンギヤの歯数ZS
が40個,リングギヤの歯数ZR が105個の場合につ
いて,トロイダル変速機構の変速比ICVT が0.385
〜2.600の範囲について,上記(1)式〜(4)式
を用いてトロイダル型無段変速機の変速比Iを計算する
と,図2及び図3の結果を得ることができる。図2及び
図3はどちらも,縦軸にトロイダル型無段変速機の変速
比I(T/Mレシオ),横軸にトロイダル変速機構の変
速比ICVT (CVTレシオ)をとり,上記(1)式〜
(4)式を比較したものである。また,図3は図2の拡
大図である。これらの図から明らかなように,この発明
によるトロイダル型無段変速機は,従来のトロイダル型
無段変速機に比べて,大きな変速比を得ることができ
る。 【0022】また,変速比の変化する量,即ち,変速比
幅について見てみると,この発明によるトロイダル型無
段変速機の変速比幅は,従来のトロイダル型無段変速機
の変速比幅よりもかなり大きいことがわかる。更に,
の発明によるトロイダル型無段変速機では,正転から逆
転まで連続的に変速することができる。 【0023】なお,上記実施例のトロイダル型無段変速
機は,入力と出力を逆にして使用することもできる。そ
の場合には,当然のことながら,上記実施例において入
力軸が出力軸に,入力ディスクが出力ディスクに,出力
ディスクが入力ディスクになる。 【0024】 【発明の効果】この発明によるトロイダル型無段変速機
は,上記のように構成されているので,従来,第2入力
ディスクを跨ぐように入力軸に平行に配置されていた平
行軸が不要となり,径方向に小型化することができる。
また,平行軸が不要となるので,軸受の数を減ずること
ができ,機械効率の向上を図ることができる。また,こ
のトロイダル型無段変速機は,トルクが歯数の少ないサ
ンギヤから歯数の多いリングギヤへと伝達されるように
構成され,第1及び第2ピニオンを有するダブルピニオ
ン式の遊星歯車機構を採用したので,トロイダル変速機
構の変速比幅に比べて,かなり大きな変速比幅を得るこ
とができるようになる。このトロイダル型無段変速機
は,特に,ダブルピニオン式の遊星歯車を採用したの
で,出力軸は正転から逆転まで,連続的に変速すること
が可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a toroidal type continuously variable transmission applied to an automobile or the like, and more particularly to a double toroidal transmission in which two sets of toroidal transmission mechanisms are coaxially arranged. The present invention relates to a toroidal type continuously variable transmission of a cavity type. [0002] Conventionally, a toroidal type continuously variable transmission is shown in FIG.
As shown in FIG.
Disk 22, which is rotatably mounted on the input shaft 21 and is slidable in the axial direction with respect to the input shaft 21; And a toroidal speed change mechanism 25 including a power roller 24 and the like arranged between the power disk 24 and the output disk 23. In FIG. 4, the output disk 23
The connection structure from the to the output shaft is omitted. The power transmission between the power roller 24 and the disks 22, 23 is based on the shearing force of oil under high pressure, that is, traction force (adhesive friction force).
A very large pressing force is required in the axial direction at the point of contact between the power roller 24 and the disks 22, 23. The pressing force F is applied to the input disk 22 by pressing means such as a spring, a cam, and a hydraulic device. Further, the reaction force is received by a thrust bearing 26 disposed between the input shaft 21 and the output disk 23. However, in this toroidal type continuously variable transmission, since a very large pressing force F is applied in the axial direction, the thrust bearing 26 receiving the reaction force must be large, and the rolling resistance of the thrust bearing 26 must be increased. And the efficiency of the toroidal type continuously variable transmission as a whole decreases. As a solution to this problem, a double-cavity toroidal type continuously variable transmission has recently been proposed. As a double-cavity toroidal type continuously variable transmission,
For example, there is one as shown in FIG. That is, the toroidal-type continuously variable transmission has a pair of input disks 22, 27.
And output disks 23 and 28 arranged opposite the input disks 22 and 27, and input disks 22 and
Two sets of toroidal transmission mechanisms 25 and 30 having tiltable power rollers 24 and 29 for transmitting torque from 27 to output disks 23 and 28 are arranged on the input shaft 21 so as to face each other. Further, pressing means for changing the pressing force of the power rollers 24, 29 according to the magnitude of the torque input from the input shaft 21 to the input disks 22, 27,
One of the toroidal transmission mechanisms 25 is provided. Further, the pair of output disks 23 and 28 are configured such that the back surfaces thereof are connected to each other and can rotate integrally.
An output gear 31 is provided at the connection portion. In the figure, the symbol A indicates the rotation direction of the input shaft 21, and the symbol B indicates the rotation direction of the output disk 23. When the double-cavity toroidal type continuously variable transmission is used as a transmission for an automobile or the like, the output shaft is usually arranged on the same axis as the input shaft 21. For this purpose, for example, as shown in FIG. 6, a parallel shaft 33 having a gear meshing with the output gear 31 is arranged in parallel with the input shaft 21 so as to straddle the toroidal transmission mechanism 30, and the parallel shaft 33 and the output shaft 32 are arranged. And a spur gear mechanism 34 is disposed between them. In the figure, the symbol A indicates the rotation direction of the input shaft 21, and the symbol B indicates the rotation direction of the output disk 23. Alternatively, as shown in FIG. 7, a planetary gear mechanism 35 is disposed between a parallel shaft 33 and an output shaft 32. In some cases, a chain or the like is used instead of providing gear mechanisms such as the spur gear mechanism 34 and the planetary gear mechanism 35. In any case, in the conventional toroidal-type continuously variable transmission, it is necessary to provide the parallel shaft 33 in parallel with the input shaft 21 so that the torque can be transmitted across the toroidal transmission mechanism 30. For this reason, the conventional toroidal-type continuously variable transmission has a problem that the size thereof is increased in the radial direction, and the mountability to a vehicle is impaired. In the figure, the symbol A indicates the rotation direction of the input shaft 21, and the symbol B indicates the rotation direction of the output disk 23. As a solution to the above problem, Japanese Patent Laid-Open No.
There is a toroidal-type continuously variable transmission disclosed in Japanese Patent Application Laid-Open No. 2-255655. This toroidal-type continuously variable transmission includes two sets of toroidal transmission mechanisms 25 and 30 as shown in FIG. One toroidal transmission mechanism 25 is provided on the input shaft 21. The input shaft 21 and the output shaft 32 are coaxially arranged, and the other toroidal transmission mechanism 30 is provided on a hollow drive shaft 36 rotatably fitted to the output shaft 32. [0007] Adjacent output disks 23 and 28 are interconnected and rotatable together. Output disk 23
The input disk 22 arranged opposite to the input shaft 21
And is drivingly connected to the input shaft 21 via a loading cam 37. On the other hand, the input disk 27 arranged opposite to the output disk 28
Are rotatably supported by a hollow drive shaft 36 and are drivingly connected to the hollow drive shaft 36 via a loading cam 38. A power roller 24 is disposed between a pair of opposed input disks 22 and an output disk 23, and a power roller 29 is disposed between an input disk 27 and an output disk 28. The power roller 24 rotates by receiving torque from the input disk 22 and transmits the rotation to the output disk 23. The power roller 29 rotates by receiving torque from the input disk 27 and rotates the rotation. The power is transmitted to the output disk 28, and the two power rollers 24 and 29 are tilted in conjunction with each other, so that a continuously variable transmission ratio can be obtained according to the tilt angle. The integrated output disks 23 and 28 are hollow, and a double pinion type planetary gear mechanism 35 for transmitting the torque of the output disks 23 and 28 to the output shaft 32 is built therein. A ring gear 39 is provided on the inner peripheral surfaces of the output disks 23 and 28, a first pinion 40 meshing with the ring gear 39, a second pinion 41 meshing with the first pinion 40, and a coaxial integral member with the second pinion 41. Each of the third pinions 42 is rotatably supported by a carrier 43, and a sun gear 44 is meshed with the third pinion 42 to form a double pinion type planetary gear mechanism. The carrier 43 integrally connects the input shaft 21 and the hollow drive shaft 36, and the sun gear 44 is connected to the output shaft 32. However, in the toroidal type continuously variable transmission disclosed in Japanese Patent Application Laid-Open No. 62-255655, although the size is reduced in the radial direction, the output of the planetary gear mechanism 35 is small. The output disks 23 and 28 are connected to a ring gear 39, whether a double pinion type or a single pinion type, in the case of one set of planetary gears. The input disks 22, 27 are connected to the carrier 43, and the output shaft 3
2 is connected to the sun gear 44. In such a configuration,
Since the number of teeth of the planetary gear is always larger in the ring gear 39 than in the sun gear 44, the toroidal speed change mechanisms 25 and 30 are used.
The gear ratio width of the entire toroidal-type continuously variable transmission must be very small as compared with the gear ratio width of the present invention (for the formula for calculating the gear ratio and the calculation result, see the column of the embodiment of the present invention). ). In order to solve this, the planetary gear must be 2
More than one set is required, the device becomes longer in the axial direction, and the structure becomes complicated. SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem, and even if the speed ratio width of the toroidal transmission mechanism is small, it is possible to obtain a large speed ratio width as a whole of the toroidal type continuously variable transmission. An object of the present invention is to provide a toroidal-type continuously variable transmission that is reduced in size in the radial direction. According to the present invention, there is provided a first input disk which rotates integrally with an input shaft, and which is disposed to face the first input disk and is rotatably supported by the input shaft. A first output disk, a second output disk integrally formed with the first output disk, a second input disk disposed opposite to the second output disk, and a space between the first input disk and the first output disk. A tiltable power roller disposed between the second input disk and the second output disk, integrally connected to the second output disk, and rotatably fitted to the input shaft. A hollow drive shaft rotatably supporting the second input disk, a sun gear integrally connected to the hollow drive shaft, and a sun gear integrally connected to the input shaft and the second input disk. A carrier that supports a pinion that meshes with the pinion, and an output shaft that is integrally connected to a ring gear that meshes with the pinion and that is disposed coaxially with the input shaft. The pinion includes a first pinion that meshes with the sun gear, The present invention relates to a toroidal-type continuously variable transmission including a double pinion that meshes with the first pinion and meshes with the ring gear. [0012] Since the toroidal type continuously variable transmission is configured as described above, the torque input to the input shaft is transmitted to the first input disk and the second input disk. Then, the torque transmitted to the first input disk and the second input disk is transmitted to the first output disk and the second output disk via the power roller, respectively. Since the second output disk is integrally connected to the hollow drive shaft inserted through the center hole of the second input disk, the torque of the second output disk is transmitted to the sun gear connected to the hollow drive shaft. The rotational force of the sun gear is transmitted to the ring gear via a pinion, and then transmitted to an output shaft connected to the ring gear. This toroidal-type continuously variable transmission is particularly configured as a double pinion type planetary gear mechanism having a first pinion and a second pinion as a pinion, and torque is transmitted from a sun gear having a small number of teeth to a ring gear having a large number of teeth. As a result, the speed ratio width of the entire toroidal-type continuously variable transmission is larger than the speed ratio width of the toroidal transmission mechanism. In this toroidal type continuously variable transmission, an input shaft and an output shaft are arranged on the same axis, a hollow drive shaft is rotatably fitted to the input shaft, and one end of the hollow drive shaft is connected to a second output disk. And the hollow drive shaft is inserted into the center hole of the second input disk, and the other end of the hollow drive shaft is connected to the sun gear. Therefore, conventionally, the hollow drive shaft is arranged parallel to the input shaft so as to straddle the second input disk. The conventional parallel shaft becomes unnecessary, and the transmission itself can be downsized in the radial direction. An embodiment of a toroidal type continuously variable transmission according to the present invention will be described below with reference to the drawings. 1 is a half schematic diagram showing an embodiment of a toroidal type continuously variable transmission according to the present invention. This toroidal-type continuously variable transmission is a double-cavity toroidal-type continuously variable transmission in which two sets of toroidal transmission mechanisms 15 and 16 are coaxially arranged to face each other. First toroidal transmission mechanism 15
Are arranged between the first input disk 2, a first output disk 3 opposed to the first input disk 2 and the first input disk 2 and the first output disk 3, The first power roller 6 frictionally engages with the first power roller 3. Similarly, the second toroidal transmission mechanism 16
An input disk 4, a second output disk 5 disposed opposite to the second input disk 4, and a second output disk 5 disposed between the second input disk 4 and the second output disk 5;
And a second power roller 7 that frictionally engages with the second power roller 7. Each of the first power roller 6 and the second power roller 7 is rotatable around its own rotation axis and tilts around a tilt axis orthogonal to the rotation axis. The first input disk 2 is rotatably supported with respect to the input shaft 1. However, the first input disk 2 is drivingly connected to the input shaft 1 via a loading cam (not shown) and can rotate integrally with the input shaft 1. it can. The first output disk 3 facing the first input disk 2 is rotatably supported on the input shaft 1. The first output disk 3 is connected to the second output disk 5 on the back side, and both output disks 3,
5 is integrated. The second input disk 4 arranged opposite to the second output disk 5 is rotatably supported by the hollow drive shaft 8. The hollow drive shaft 8 is fitted on the input shaft 1 and is rotatably supported with respect to the input shaft 1. The hollow drive shaft 8 extends through the center hole of the second input disk 4, and one end of the hollow drive shaft 8 is integrally connected to the second output disk 5. In the figure, reference symbol A indicates the rotation direction of the first input disk 2 and the second input disk 4, and reference symbol B indicates the rotation direction of the first output disk 3 and the second output disk 5. The toroidal transmission mechanisms 15 and 16 are drivingly connected to the output shaft 14 via a planetary gear mechanism 17.
The output shaft 14 is arranged coaxially with the input shaft 1. The planetary gear mechanism 17 is a double pinion type planetary gear mechanism. The sun gear 9 is integrally connected to the other end of the hollow drive shaft 8, and the first pinion 10 meshes with the sun gear 9.
And the second pinion 1 meshing with the first pinion 10
1, the first pinion 10 and the second pinion 11 are rotatably supported, and the input shaft 1 and the second input disk 4
And a ring gear 13 which meshes with the second pinion 11 and is integrally connected to the output shaft 14. Next, the operation of the toroidal type continuously variable transmission will be described. When torque is input to the input shaft 1 with the operation of the engine, the torque is transmitted to the first input disk 2 via the loading cam. At the same time, the torque is transmitted from the input shaft 1 via the carrier 12 to the second input disk 4. When the torque is transmitted to the first input disk 2, the first input disk 2 rotates, and the rotation rotates the power roller 6, and the rotation is transmitted to the first output disk 3. Further, the torque transmitted to the second input disk 4 is transmitted to the second output disk 5 via the power roller 7. Then, the first output disk 3 and the second output disk 3
Since the output disk 5 is integrally connected, it rotates integrally. During this transmission, when the power rollers 6 and 7 are synchronized and tilted about the tilt axis by the same angle, the frictional engagement points between the power rollers 6 and 7 and the input disks 2 and 4 and the output disks 3 and 5 Is changed, so that a continuously variable transmission can be performed. When the second output disk 5 rotates, the hollow drive shaft 8 connected to the second output disk 5 also rotates. Since the sun gear 9 is provided at the other end of the hollow drive shaft 8, the rotation of the sun gear 9 is transmitted to the planetary gear mechanism 17. In the planetary gear mechanism 17, the torque is transmitted from the sun gear 9 to the first pinion 10, the second pinion 11, and the ring gear 1.
3 and further transmitted from the ring gear 13 to the output shaft 14. Next, the speed ratio of the toroidal type continuously variable transmission according to the present invention will be compared with the conventional toroidal type continuously variable transmission disclosed in Japanese Patent Application Laid-Open No. 62-255655. First, the code is defined as follows. I: Gear ratio I of the whole toroidal continuously variable transmission I CVT : Gear ratio Z of the toroidal transmission mechanism Z S : Number of sun gear teeth Z R : Number of ring gear teeth The gear ratio I of this toroidal continuously variable transmission is I = −Z R · I CVT / (Z S + Z S · I CVT −Z R · I CVT ) ─── (1) On the other hand, the planetary gear mechanism for transmitting power from the ring gear to the output shaft as in the double pinion type planetary gear mechanism of the toroidal type continuously variable transmission according to the present invention, and the single pinion type planetary gear mechanism for the toroidal type continuously variable transmission. speed ratio I of the toroidal continuously gradually transmission adopted conventional ring gear output S / P type is, I = Z R · I CVT / (Z S + Z S · I CVT + Z R · I CVT) ─── (2) can be expressed by Also, Japanese Patent Application Laid-Open No. 62-2556
A conventional sun gear output S / P type toroidal type continuously variable transmission having a single pinion type planetary gear mechanism in a planetary gear mechanism for transmitting power from a sun gear to an output shaft described in FIG. speed ratio of the machine I can be expressed by / I = Z S · I CVT (Z R + Z R · I CVT + Z S · I CVT) ─── (3). Further, a sun gear output D / P type toroidal type continuously variable transmission in which the single pinion type planetary gear mechanism of the conventional toroidal type continuously variable transmission shown in FIG. 8 is changed to a double pinion type planetary gear mechanism. The gear ratio I of the stepped transmission can be expressed as follows: I = −Z S · I CVT / (Z R + Z R · I CVT −Z S · I CVT ) ─── (4) Here, Z S <Z R , Z S >
Since 0, Z R > 0 and I CVT > 0, only equation (1) has a singular point. The number of teeth Z S of the sun gear in the planetary gear mechanism
But 40, the case number of teeth Z R of the ring gear is 105 pieces, the speed ratio I CVT of the toroidal speed change mechanism 0.385
When the gear ratio I of the toroidal-type continuously variable transmission is calculated using the above equations (1) to (4) in the range of up to 2.600, the results shown in FIGS. 2 and 3 can be obtained. Both 2 and 3, the gear ratio I (T / M ratio) of the continuously variable transmission on the vertical axis, taking the transmission ratio of the toroidal transmission mechanism I CVT (CVT ratio) on the horizontal axis, the (1 )formula~
This is a comparison of equation (4). FIG. 3 is an enlarged view of FIG. As is clear from these figures, the toroidal type continuously variable transmission according to the present invention can obtain a larger gear ratio than the conventional toroidal type continuously variable transmission. [0022] In addition, the amount of change of the gear ratio, that is, when we look at the gear ratio width, the gear ratio width of the toroidal-type continuously variable transmission according to the invention of this is, the gear ratio of the conventional toroidal-type continuously variable transmission It can be seen that it is much larger than the width . Further, in the toroidal type continuously variable transmission according to the present invention, the speed can be continuously changed from forward rotation to reverse rotation. The toroidal type continuously variable transmission of the above embodiment can be used with the input and output reversed. In that case, it goes without saying that in the above embodiment, the input shaft is the output shaft, the input disk is the output disk, and the output disk is the input disk. Since the toroidal-type continuously variable transmission according to the present invention is constructed as described above, the parallel shaft conventionally arranged in parallel with the input shaft so as to straddle the second input disk. Is not required, and the size can be reduced in the radial direction.
In addition, since a parallel shaft is not required, the number of bearings can be reduced, and mechanical efficiency can be improved. Further, the toroidal type continuously variable transmission is configured such that torque is transmitted from a sun gear having a small number of teeth to a ring gear having a large number of teeth, and a double pinion type planetary gear mechanism having first and second pinions is provided. As a result, a considerably large gear ratio width can be obtained as compared with the gear ratio width of the toroidal transmission mechanism. This toroidal-type continuously variable transmission employs, in particular, a double-pinion type planetary gear, so that the output shaft can continuously shift from forward rotation to reverse rotation.

【図面の簡単な説明】 【図1】この発明によるトロイダル型無段変速機の一実
施例を示す半分略線図である。 【図2】トロイダル変速機構の変速比ICVT に対するト
ロイダル型無段変速機の変速比Iを示すグラフである。 【図3】図2のグラフの拡大図である。 【図4】従来のトロイダル型無段変速機の一例を示す半
分略線図である。 【図5】従来のダブルキャビティ式のトロイダル型無段
変速機の一例を示す半分略線図である。 【図6】図5のトロイダル型無段変速機において,平行
軸と出力軸との間に平歯車機構を配置した例を示す半分
略線図である。 【図7】図5のトロイダル型無段変速機において,平行
軸と出力軸との間に遊星歯車機構を配置した例を示す半
分略線図である。 【図8】従来のダブルキャビティ式のトロイダル型無段
変速機の別の例を示す半分略線図である。 【符号の説明】 1 入力軸 2 第1入力ディスク 3 第1出力ディスク 4 第2入力ディスク 5 第2出力ディスク 6 第1パワーローラ 7 第2パワーローラ 8 中空駆動軸 9 サンギヤ 10 第1ピニオン 11 第2ピニオン 12 キャリヤ 13 リングギヤ 14 出力軸 15,16 トロイダル変速機構 17 遊星歯車機構
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a half schematic diagram showing an embodiment of a toroidal type continuously variable transmission according to the present invention. FIG. 2 is a graph showing a speed ratio I of a toroidal-type continuously variable transmission with respect to a speed ratio I CVT of a toroidal transmission mechanism. FIG. 3 is an enlarged view of the graph of FIG. 2; FIG. 4 is a half schematic diagram illustrating an example of a conventional toroidal-type continuously variable transmission. FIG. 5 is a half schematic diagram illustrating an example of a conventional double-cavity toroidal-type continuously variable transmission. 6 is a half schematic diagram showing an example in which a spur gear mechanism is arranged between a parallel shaft and an output shaft in the toroidal type continuously variable transmission shown in FIG. 7 is a half schematic diagram showing an example in which a planetary gear mechanism is arranged between a parallel shaft and an output shaft in the toroidal type continuously variable transmission shown in FIG. 5; FIG. 8 is a half schematic diagram showing another example of a conventional double-cavity toroidal type continuously variable transmission. [Description of Signs] 1 input shaft 2 first input disk 3 first output disk 4 second input disk 5 second output disk 6 first power roller 7 second power roller 8 hollow drive shaft 9 sun gear 10 first pinion 11 2 pinion 12 carrier 13 ring gear 14 output shaft 15, 16 toroidal transmission mechanism 17 planetary gear mechanism

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−134162(JP,A) 特開 昭58−131456(JP,A) 特開 昭61−99761(JP,A) 特開 昭62−255655(JP,A) 特開 昭63−219956(JP,A) 特開 平1−185960(JP,A) 特開 平4−272565(JP,A) (58)調査した分野(Int.Cl.7,DB名) F16H 37/02 F16H 15/35 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-53-134162 (JP, A) JP-A-58-131456 (JP, A) JP-A-61-99761 (JP, A) JP-A-62 255655 (JP, A) JP-A-63-119956 (JP, A) JP-A-1-185960 (JP, A) JP-A-4-272565 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F16H 37/02 F16H 15/35

Claims (1)

(57)【特許請求の範囲】 【請求項1】 入力軸と一体に回転する第1入力ディス
ク,該第1入力ディスクに対向して配置され前記入力軸
に対して回転自在に支持された第1出力ディスク,該第
1出力ディスクと一体構造の第2出力ディスク,該第2
出力ディスクに対向して配置された第2入力ディスク,
前記第1入力ディスクと前記第1出力ディスクの間及び
前記第2入力ディスクと前記第2出力ディスクとの間に
それぞれ配置された傾転可能なパワーローラ,前記第2
出力ディスクに一体に連結され且つ前記入力軸に対して
回転自在に嵌合し前記第2入力ディスクを回転自在に
支持する中空駆動軸,中空駆動軸に一体的に連結され
たサンギヤ,前記入力軸と前記第2入力ディスクに一
体的に連結され且つ前記サンギヤと噛み合うピニオンを
支持するキャリヤ,及び前記ピニオンに噛み合うリング
ギヤに一体的に連結され且つ前記入力軸と同軸上に配置
された出力軸を有し,前記ピニオンは,前記サンギヤと
噛み合う第1ピニオン及び該第1ピニオンに噛み合い且
つ前記リングギヤに噛み合う第2ピニオンから成るダブ
ルピニオンから構成されていることから成るトロイダル
型無段変速機。
(1) A first input disk that rotates integrally with an input shaft, and a first input disk that is disposed to face the first input disk and rotatably supported by the input shaft. A first output disk, a second output disk integrated with the first output disk,
A second input disk disposed opposite the output disk,
A tiltable power roller disposed between the first input disk and the first output disk and between the second input disk and the second output disk;
Hollow drive shaft rotatably fitted to rotatably support the second input disc with respect to and the input shaft integrally connected to the output disk, a sun gear which is integrally connected to the hollow drive shaft, said A carrier integrally connected to an input shaft and the second input disk and supporting a pinion meshing with the sun gear; and an output integrally connected to a ring gear meshing with the pinion and arranged coaxially with the input shaft. A shaft , and the pinion is connected to the sun gear.
A first pinion that meshes with the first pinion;
Dove comprising a second pinion meshing with the ring gear
A toroidal-type continuously variable transmission consisting of a lupinion .
JP34109192A 1992-11-30 1992-11-30 Toroidal type continuously variable transmission Expired - Lifetime JP3407319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34109192A JP3407319B2 (en) 1992-11-30 1992-11-30 Toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34109192A JP3407319B2 (en) 1992-11-30 1992-11-30 Toroidal type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH06174033A JPH06174033A (en) 1994-06-21
JP3407319B2 true JP3407319B2 (en) 2003-05-19

Family

ID=18343177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34109192A Expired - Lifetime JP3407319B2 (en) 1992-11-30 1992-11-30 Toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3407319B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607372A (en) * 1995-01-13 1997-03-04 The Torax Company, Inc. Co-axial drive for a toroidal drive type transmission
DE10021912A1 (en) * 2000-05-05 2001-11-08 Daimler Chrysler Ag Drive train for motor vehicle has second planet wheel with diameter such that for stepping up of variable speed gear contact point of second planet wheel with driven element corresponds to center of rotation of second planet wheel
JP4151300B2 (en) 2002-04-12 2008-09-17 日本精工株式会社 Continuously variable transmission
JP4581562B2 (en) * 2004-02-03 2010-11-17 日本精工株式会社 Continuously variable transmission
JP4474945B2 (en) 2004-02-26 2010-06-09 日本精工株式会社 Toroidal continuously variable transmission
JP4712593B2 (en) * 2006-03-31 2011-06-29 株式会社エクォス・リサーチ Continuously variable transmission
JP4687702B2 (en) * 2007-10-01 2011-05-25 日本精工株式会社 Continuously variable transmission

Also Published As

Publication number Publication date
JPH06174033A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
JP4062809B2 (en) Continuously variable transmission
US7217216B2 (en) Continuously variable transmission apparatus
US5888160A (en) Continuously variable transmission
EP1846672B1 (en) Drive mechanism for infinitely variable transmission
EP1846673B1 (en) Continously variable toroidal transmission
EP1188956A2 (en) Infinitely variable transmission
JP3391150B2 (en) Toroidal-type continuously variable transmission for four-wheel drive vehicles
JP3407319B2 (en) Toroidal type continuously variable transmission
US7326146B2 (en) Toroidal-type continuously variable transmission and continuously variable transmission apparatus
EP1239187A2 (en) Infinitely variable transmission
JP3447892B2 (en) Friction wheel type continuously variable transmission
JPH11280867A (en) Continously variable transmission
JP3738535B2 (en) Toroidal type continuously variable transmission
JPH06174036A (en) Toroidal type continuously variable transmission
JP3674264B2 (en) Continuously variable transmission
JP4696770B2 (en) Continuously variable transmission
JPH06174034A (en) Toroidal type continuously variable transmission
JP3697860B2 (en) Toroidal type continuously variable transmission
JP3534070B2 (en) Toroidal type continuously variable transmission
JP3000820B2 (en) Power transmission device for vehicles
JP4288987B2 (en) Continuously variable transmission
JP3448996B2 (en) Vehicle power transmission
JP3422503B2 (en) Continuously variable transmission
JP4178848B2 (en) Continuously variable transmission
JPH06174035A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10