JP3396919B2 - Water recovery method from fluorine-containing water - Google Patents

Water recovery method from fluorine-containing water

Info

Publication number
JP3396919B2
JP3396919B2 JP23122693A JP23122693A JP3396919B2 JP 3396919 B2 JP3396919 B2 JP 3396919B2 JP 23122693 A JP23122693 A JP 23122693A JP 23122693 A JP23122693 A JP 23122693A JP 3396919 B2 JP3396919 B2 JP 3396919B2
Authority
JP
Japan
Prior art keywords
water
fluorine
containing water
packed tower
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23122693A
Other languages
Japanese (ja)
Other versions
JPH0780472A (en
Inventor
忠 高土居
伸 佐藤
俊 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP23122693A priority Critical patent/JP3396919B2/en
Publication of JPH0780472A publication Critical patent/JPH0780472A/en
Application granted granted Critical
Publication of JP3396919B2 publication Critical patent/JP3396919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフッ素含有水からの水回
収方法に係り、特に、半導体工場等から排出されるフッ
素含有水からフッ素を除去した後の水を純水として高い
回収率にて安価に回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering water from fluorine-containing water, and in particular, the water after fluorine is removed from fluorine-containing water discharged from semiconductor factories is used as pure water with high recovery rate. It relates to a method of recovering at low cost.

【0002】[0002]

【従来の技術】半導体工場等から排出されるフッ素含有
水は、一般に、塩化カルシウム(CaCl)や水酸化
カルシウム(Ca(OH))等のカルシウム塩をフッ
素濃度の2〜10倍当量添加し、生成するフッ化カルシ
ウム(CaF)を固液分離して無害化処理されてい
る。
Fluorine-containing water discharged from semiconductor factories is generally added with calcium salts such as calcium chloride (CaCl 2 ) and calcium hydroxide (Ca (OH) 2 ) in an amount of 2 to 10 times the fluorine concentration. Then, the generated calcium fluoride (CaF 2 ) is subjected to solid-liquid separation for detoxification treatment.

【0003】[0003]

【発明が解決しようとする課題】上記従来のフッ素含有
水の処理方法では、水中に過剰のカルシウムイオンや塩
素イオン等が溶解するため、処理水の塩分量が極めて多
い。このためこの処理水をイオン交換処理で純水化する
には、イオン交換樹脂の再生頻度が極めて高いものとな
り、従って、再生剤を多く必要とすることから経済的に
不利である。
In the above conventional method for treating fluorine-containing water, the amount of salt in the treated water is extremely large because excessive calcium ions and chlorine ions are dissolved in the water. Therefore, in order to purify this treated water by ion exchange treatment, the frequency of regeneration of the ion exchange resin becomes extremely high, and therefore a large amount of regenerant is required, which is economically disadvantageous.

【0004】このため、従来のフッ素含有水の処理にお
いては、処理水、即ち、フッ素含有水カルシウム塩を
添加し、フッ化カルシウムを固液分離した後の分離水
は、純水化のために回収再使用することなく、廃棄され
ていた。
For this reason, in the conventional treatment of fluorine-containing water, treated water, that is, separated water obtained by adding calcium salt to fluorine-containing water and performing solid-liquid separation of calcium fluoride, is used for purification. It was discarded without recovery and reuse.

【0005】なお、フッ素含有水のうち、フッ素をフッ
酸として含むものについては、弱塩基性陰イオン交換樹
脂を用いたイオン交換処理により純水化する試みがなさ
れている。しかしながら、この処理においては、イオン
交換樹脂の再生廃液として高濃度にフッ化ナトリウムを
含有する廃液が発生する。このため、この再生廃液のフ
ッ素除去や脱塩処理に莫大な費用がかかるという欠点が
ある。
Incidentally, among the fluorine-containing water, it has been attempted to purify water containing fluorine as hydrofluoric acid by ion exchange treatment using a weakly basic anion exchange resin. However, in this treatment, a waste liquid containing sodium fluoride at a high concentration is generated as a waste liquid for regeneration of the ion exchange resin. For this reason, there is a drawback that enormous cost is required for removing fluorine and desalting the recycled waste liquid.

【0006】本発明は上記従来の問題点を解決し、フッ
素含有水から高い水回収率にて安価に水を回収して再利
用することを可能とするフッ素含有水からの水回収方法
を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a method for recovering water from fluorine-containing water, which makes it possible to recover water from fluorine-containing water at a high water recovery rate at low cost and reuse it. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】請求項1のフッ素含有水
からの水回収方法は、フッ素含有水を炭酸カルシウム充
填塔に通水するフッ素含有水からの水回収方法であっ
て、フッ素含有水を該充填塔内の炭酸カルシウムが流動
する流通速度で上向流通水してフッ素をフッ化カルシウ
ムとして固定した後、前記通水によって前記充填塔内で
発生した炭酸イオンの脱炭酸処理及び脱塩処理を行う
ことを特徴とする。
According to a first aspect of the present invention, there is provided a method of recovering water from fluorine-containing water, which comprises charging the fluorine-containing water with calcium carbonate.
It is a method of collecting water from the fluorine-containing water that flows through the packing tower.
Te, fluorine containing water calcium carbonate in the packed column flow
Calcium fluoride is fluorinated by flowing water upward at a circulation speed
In the packed tower by the passage of water after fixing
Decarbonated of the generated carbonate ions, and <br/> be characterized for performing desalting.

【0008】請求項2のフッ素含有水からの水回収方法
は、フッ素含有水を炭酸カルシウム充填塔に通水するフ
ッ素含有水からの水回収方法であって、フッ素含有水
充填塔内の炭酸カルシウムが流動する流通速度で上向
流通水してフッ素をフッ化カルシウムとして固定した
後、陽イオン交換樹脂充填塔、前記通水によって前記充
填塔内で発生した炭酸イオンを除去するための脱炭酸
及び陰イオン交換樹脂充填塔の順に通水することを
特徴とする。
The method for recovering water from fluorine-containing water according to claim 2 is a method for passing the fluorine-containing water through a calcium carbonate packed tower.
A water recovery method from Tsu-containing water, the fluorine containing water
Upward at a velocity of calcium carbonate of said packed tower to flow
After flowing water to fix the fluorine as calcium fluoride , the cation-exchange resin packed tower and the water flow to fill the above
Decarbonation tower to remove carbonate ions generated in the Hamato, and characterized in that it passed through in the order of the anion-exchange resin packed column.

【0009】以下に本発明を図面を参照して詳細に説明
する。
The present invention will be described in detail below with reference to the drawings.

【0010】図1は本発明のフッ素含有水からの水回収
方法の一実施例方法を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a method for recovering water from fluorine-containing water according to the present invention.

【0011】図1において、1は炭酸カルシウム(Ca
CO)充填塔、2はH形陽イオン交換樹脂充填塔、3
は脱炭酸(CO)塔、4はOH形陰イオン交換樹脂充
填塔、11〜16の各符号は配管である。
In FIG. 1, 1 is calcium carbonate (Ca
CO 3 ) packed column, 2 is an H-type cation exchange resin packed column, 3
Is a decarboxylation (CO 2 ) tower, 4 is an OH type anion exchange resin packed tower, and 11 to 16 are pipes.

【0012】本実施例の方法においては、まず、原水で
あるフッ素含有水を配管11よりCaCO充填塔1に
通水して含有されるフッ素をフッ化カルシウム(CaF
)として固定、除去する。
In the method of this embodiment, first, the fluorine-containing water, which is raw water, is passed through the pipe 11 to the CaCO 3 packed tower 1 to contain the fluorine contained in calcium fluoride (CaF).
2 ) Fix and remove.

【0013】このCaCO充填塔1に充填するCaC
の粒径には特に制限はなく、フッ素との反応速度の
面からは小粒径であることが、また、取り扱い性の面か
らは大粒径であることが好ましく、これらの両特性の面
から通常の場合、粒径0.15〜1.0mm程度のもの
が好ましい。
CaC to be packed in this CaCO 3 packed tower 1
There is no particular limitation on the particle size of O 3 , and a small particle size is preferable from the viewpoint of reaction rate with fluorine, and a large particle size is preferable from the viewpoint of handleability. From the viewpoint of the above, in the usual case, a particle diameter of about 0.15 to 1.0 mm is preferable.

【0014】また、CaCO充填塔による処理は1塔
方式であっても、複数の充填塔を直列に配置して通水す
る多段方式であっても、また、複数直列配置した充填塔
の通水順序を順次変えてゆくメリーゴーランド方式であ
っても良い。
Further, the treatment with the CaCO 3 packed tower may be a one-column system or a multi-stage system in which a plurality of packed towers are arranged in series to pass water. A merry-go-round method in which the order of water is sequentially changed may be used.

【0015】このCaCO充填塔の通水方式は、C
COが反応によりCaFとなる過程で、粒子の固着
化現象が生起することを防止するため、上向流通水と
し、かつ、濾材(CaCO)を流動させる流通速度と
る。
[0015] The water flow system of the CaCO 3 packed column, C a
In the process of CO 3 is CaF 2 by the reaction, in order to prevent occurring the sticking phenomenon of the particles, the upward flow water and a flow rate of flowing the filter medium (CaCO 3) <br/> you.

【0016】CaCOとの反応で、フッ素が除去され
たCaCO充填塔1の流出水は、必要に応じて配管1
3より工業用水等を混合した後、配管12よりH形陽イ
オン交換樹脂充填塔2に通水する。次いで、配管14よ
り脱炭酸塔3に導入して処理し、更に配管15よりOH
形陰イオン交換樹脂充填塔4に通水する。
[0016] In reactions with CaCO 3, water flowing out of the CaCO 3 packed column 1 fluorine has been removed, pipe optionally 1
After mixing industrial water and the like from 3, the water is passed through the pipe 12 to the H-shaped cation exchange resin packed tower 2. Then, it is introduced into the decarbonation tower 3 through a pipe 14 for treatment, and further, an OH is fed through a pipe 15.
Water is passed through the shaped anion exchange resin packed tower 4.

【0017】このようなイオン交換処理により、CaC
充填塔1の流出水中の塩分は効率的に脱塩され、高
水質の純水が得られるため、このOH形陰イオン交換樹
脂充填塔4の流出水は、配管16より処理水として系外
に排出し、純水として、或いは超純水の製造工程の原水
として再利用することができる。
By such ion exchange treatment, CaC
Since the salt content in the outflow water of the O 3 packed tower 1 is efficiently desalted to obtain high-quality pure water, the outflow water of the OH type anion exchange resin packed tower 4 is treated as treated water through the pipe 16. It can be discharged to the outside and reused as pure water or raw water in the ultrapure water manufacturing process.

【0018】H形陽イオン交換樹脂充填塔2に充填する
陽イオン交換樹脂は、強酸性、弱酸性、或いはこれらの
混合系のいずれであっても良く、また、OH形イオン
交換樹脂充填塔4に充填する陰イオン交換樹脂として
も、強塩基性、弱塩基性或いはこれらの混合系のいずれ
であっても良い。
The cation exchange resin to be filled in H Katachihi ion exchange resin column 2, strongly acidic, weakly acidic, or may be any of these mixed systems, also, OH-type anion exchange resin packed column The anion exchange resin to be filled in No. 4 may be strongly basic, weakly basic, or a mixed system thereof.

【0019】炭酸塔3をH形陽イオン交換樹脂充填塔
2とOH形陰イオン交換樹脂充填塔4との間に設け、陽
イオン交換樹脂処理後の低pH水中の溶存COガスを
放出処理した後、陰イオン交換樹脂処理することによ
り、イオン交換樹脂に対するイオン負荷を低減すること
ができ、有利である。この脱炭酸塔3としては、空気曝
気塔、窒素曝気塔又は真空脱気塔を用いることができ
る。
The decarbonation tower 3 is provided between the H-type cation exchange resin packed tower 2 and the OH type anion exchange resin packed tower 4 to release the dissolved CO 2 gas in the low pH water after the cation exchange resin treatment. After the treatment, the anion exchange resin treatment is advantageous because the ion load on the ion exchange resin can be reduced. As the decarbonation tower 3, an air aeration tower, a nitrogen aeration tower, or a vacuum deaeration tower can be used.

【0020】なお、原水のフッ素含有水としては、高濃
度フッ素含有水と低濃度フッ素含有水とを分別して処理
しても、これらを混合して処理しても良い。また、Ca
CO充填塔の流出水には、図示の如く、希薄系低濃度
排水や河川水等の工業用水を混合して処理することもで
き、この場合、工業用水は、通常行なわれる凝集処理や
濾過処理を施してから、あるいは工業用水を混合後、凝
集処理や濾過処理を施してもよい。
As the fluorine-containing water of the raw water, the high-concentration fluorine-containing water and the low-concentration fluorine-containing water may be treated separately, or may be mixed and treated. Also, Ca
As shown in the figure, the effluent of the CO 3 packed tower can be treated by mixing it with industrial water such as dilute low-concentration waste water or river water. After the treatment or after mixing with industrial water, the flocculation treatment or the filtration treatment may be performed.

【0021】図示の方法は本発明の一実施例であって、
本発明はその要旨を超えない限り、何ら図示の実施例に
限定されるものではない。
The illustrated method is an embodiment of the present invention,
The present invention is not limited to the illustrated embodiments unless it exceeds the gist.

【0022】例えば、図1に示す方法では、CaCO
充填塔の流出水の脱塩処理としてイオン交換法を採用し
ているが、脱塩処理としては、イオン交換樹脂によるも
のの他、逆浸透膜分離処理、又は逆浸透膜分離処理とイ
オン交換処理との組み合せ、更には、蒸発処理などを採
用することができる。蒸発処理は、高濃度フッ素含有水
を分別して処理する場合に有利である。
For example, in the method shown in FIG. 1, CaCO 3
Ion exchange method is used for desalination treatment of the effluent of the packed tower. It is possible to employ a combination of the above, and further evaporation treatment. The evaporation treatment is advantageous when the high-concentration fluorine-containing water is separately treated.

【0023】[0023]

【作用】本発明は従来法の欠点である処理水中の塩分増
加を防いで、フッ素をCaFとして固定し、その処理
水をイオン交換処理等の脱塩処理によって純水化するも
のである。本発明によれば、原水中のフッ素イオンは次
の反応によって除去される。
The present invention prevents the increase of salt content in treated water, which is a drawback of the conventional method, fixes fluorine as CaF 2 , and purifies the treated water by desalting treatment such as ion exchange treatment. According to the present invention, fluoride ions in raw water are removed by the following reaction.

【0024】[0024]

【化1】 [Chemical 1]

【0025】フッ素とCaCOとの反応は、固定床、
流動床のどちらでもよいが、CaCOを反応槽に添加
し、フッ素と反応後に固液分離する流動床とすると、分
離された固形物はCaFとCaCOの混合系とな
り、CaCOの利用率が低く、CaFとしての純度
が低く再利用する場合の価値が低い。また、脱水処理が
必要等の欠点がある。このため、本発明においては、濾
過タイプの充填塔方式を採用する。
The reaction between fluorine and CaCO 3 is carried out in a fixed bed,
Either a fluidized bed may be used, but if CaCO 3 is added to the reaction tank and a fluidized bed is used in which solid-liquid separation is performed after the reaction with fluorine, the separated solid matter becomes a mixed system of CaF 2 and CaCO 3 , and the utilization of CaCO 3 Low rate, low purity as CaF 2 and low value for reuse. In addition, there are drawbacks such as the need for dehydration treatment. Therefore, in the present invention, we adopt a packed tower type filtration type.

【0026】CaCO充填塔流出水のフッ素含有量は
著しく低く、炭酸イオンの若干の増加はあるものの、そ
の他の塩分増加は殆どなく、このため、この流出水を
炭酸処理及び脱塩処理することにより、純水として高い
回収率で安価に水回収することができる。
The CaCO 3 fluorine content of the packed column effluent is significantly lower, although the slight increase in the carbonate ion present, the other salinity increases little, and therefore, removal of the effluent
By performing the carbonic acid treatment and the desalting treatment, water can be recovered as pure water at a high recovery rate at a low cost.

【0027】しかも、本発明方法では、CaCO充填
塔流出水中の塩分増加がないことから、クローズド処理
における灰分量の低減が図れ、また、CaCO充填塔
からフッ素含有汚泥を分別回収して再利用することもで
き、工業的に極めて有利である。
Moreover, in the method of the present invention, since the salt content in the CaCO 3 packed tower effluent does not increase, the amount of ash in the closed treatment can be reduced, and the fluorine-containing sludge is separated and recovered from the CaCO 3 packed tower to be recovered. It can also be used and is industrially extremely advantageous.

【0028】[0028]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0029】実施例1 半導体工場から排出された、表1に示す水質のフッ素含
有水の処理を図1に示す方法に従って行なった。各充填
塔の仕様は下記の通りである。また、脱炭酸塔としては
散気管による空気曝気塔を設けた。
Example 1 Fluorine-containing water of the water quality shown in Table 1 discharged from a semiconductor factory was treated according to the method shown in FIG. The specifications of each packed column are as follows. An air aeration tower using a diffuser was installed as the decarbonation tower.

【0030】CaCO充填塔 CaCO粒径 :直径0.32mm CaCO充填量:200ml(充填高さ280mm) 通水流量 :400ml/hr H形陽イオン交換樹脂充填塔 陽イオン交換樹脂:塩酸で再生、水洗したH形強酸性陽
イオン交換樹脂 樹脂充填量 :50ml 通水流量 :400ml/hr OH形陰イオン交換樹脂充填塔 陰イオン交換樹脂:苛性ソーダで再生、水洗したOH形
強塩基性陰イオン交換樹脂 樹脂充填量 :50ml 通水流量 :400ml/hr 48時間連続通水処理後のCaCO充填塔の流出水の
水質を表1に示す。
CaCO 3 packed tower CaCO 3 particle size: diameter 0.32 mm CaCO 3 packed amount: 200 ml (filling height 280 mm) Water flow rate: 400 ml / hr H type cation exchange resin packed tower cation exchange resin: hydrochloric acid Regenerated and washed H type strong acidic cation exchange resin resin filling amount: 50 ml Water flow rate: 400 ml / hr OH type anion exchange resin packed column Anion exchange resin: OH type strong basic anion regenerated with caustic soda Exchange resin Resin filling amount: 50 ml Water flow rate: 400 ml / hr Table 1 shows the water quality of the outflow water of the CaCO 3 packed tower after the continuous water treatment for 48 hours.

【0031】[0031]

【表1】 [Table 1]

【0032】また、処理水(OH形陰イオン交換樹脂充
填塔の流出水)の電気伝導度の経時変化(処理水量対
応)を表2に示す。
Table 2 shows the change with time (corresponding to the amount of treated water) in the electrical conductivity of the treated water (the water discharged from the OH type anion exchange resin packed tower).

【0033】比較例1 脱炭酸塔を設けなかったこと以外は実施例1と同様に行
なった。処理水の電気伝導度の経時変化を表2に示す。
[0033]Comparative Example 1 The same procedure as in Example 1 was repeated except that no decarbonation tower was provided.
became. Table 2 shows the changes over time in the electrical conductivity of the treated water.

【0034】比較例 CaCO充填塔及び脱炭酸塔を設けなかったこと以外
は実施例1と同様に行なった。処理水の電気伝導度の経
時変化を表2に示す。
Comparative ExampleTwo CaCOThreeOther than not having packed tower and decarbonation tower
Was performed in the same manner as in Example 1. Electric conductivity of treated water
Table 2 shows the changes over time.

【0035】比較例 表1に示す水質の原水に水酸化カルシウム7600mg
/l,硫酸5500mg/lを添加し、凝集沈澱処理に
より上澄水を得た。上澄水の濾過水はpH7.0,フッ
素9.2mg/l,電気伝導度13000μs/cmで
あった。この濾過水を実施例1で用いたと同様のH形陽
イオン交換樹脂塔とOH形陰イオン交換塔に同様の条件
で通水した。得られた処理水の電気伝導度の経時変化を
表2に示す。
Comparative ExampleThree 7600 mg of calcium hydroxide in raw water of the water quality shown in Table 1
/ L, sulfuric acid 5500mg / l was added for coagulation and precipitation treatment.
More clear water was obtained. The filtered water of the supernatant water has a pH of 7.0
Element 9.2 mg / l, electric conductivity 13000 μs / cm
there were. This filtered water was used in the same manner as in Example 1, namely H-type positive
Same conditions for ion exchange resin tower and OH type anion exchange tower
I passed water. Changes in the electrical conductivity of the resulting treated water over time
It shows in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】表2より、本発明の方法によれば、フッ素
含有水から、高純度の純水を長期にわたり高い回収率に
て安定に回収することができることがわかる。
From Table 2, it is understood that according to the method of the present invention, highly pure water can be stably recovered from the fluorine-containing water at a high recovery rate for a long period of time.

【0038】これに対して、CaCOによるフッ素除
去処理を行なわない比較例では、イオン交換による脱
塩が殆ど不可能である。
On the other hand, in Comparative Example 2 in which the fluorine removal treatment with CaCO 3 is not performed, desalting by ion exchange is almost impossible.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明のフッ素含有
水からの水回収方法によれば、半導体工場等から排出さ
れるフッ素含有水から、低コストで、容易に、しかも高
回収率で純度の良い水を回収することができる。このた
め、従来廃水として廃棄されていた水を有効に回収、再
利用することが可能とされ、水資源の有効活用が図れ
る。
As described above in detail, according to the method for recovering water from fluorine-containing water of the present invention, the fluorine-containing water discharged from a semiconductor factory or the like can be manufactured at low cost, easily and with high recovery rate. Water with high purity can be recovered. Therefore, it is possible to effectively collect and reuse the water that has been conventionally discarded as wastewater, and to effectively use the water resource.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフッ素含有水からの水回収方法の一実
施例方法を示す系統図である。
FIG. 1 is a system diagram showing a method of one embodiment of a method for recovering water from fluorine-containing water according to the present invention.

【符号の説明】[Explanation of symbols]

1 CaCO充填塔 2 H形陽イオン交換樹脂充填塔 3 脱炭酸塔 4 OH形陰イオン交換樹脂充填塔1 CaCO 3 packed tower 2 H type cation exchange resin packed tower 3 Decarbonation tower 4 OH type anion exchange resin packed tower

フロントページの続き (56)参考文献 特開 昭57−15885(JP,A) 特開 昭56−150482(JP,A) 特開 昭50−10798(JP,A) 特開 昭60−206485(JP,A) 特開 昭60−48191(JP,A) 特開 昭50−127872(JP,A) 特開 昭54−7762(JP,A) 特開 平1−304096(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/58 Continuation of the front page (56) Reference JP-A-57-15885 (JP, A) JP-A-56-150482 (JP, A) JP-A-50-10798 (JP, A) JP-A-60-206485 (JP , A) JP 60-48191 (JP, A) JP 50-127872 (JP, A) JP 54-7762 (JP, A) JP 1-304096 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C02F 1/58

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ素含有水を炭酸カルシウム充填塔に
通水するフッ素含有水からの水回収方法であって、フッ
素含有水を該充填塔内の炭酸カルシウムが流動する流通
速度で上向流通水してフッ素をフッ化カルシウムとして
固定した後、前記通水によって前記充填塔内で発生した
炭酸イオンの脱炭酸処理及び脱塩処理を行うことを特
徴とするフッ素含有水からの水回収方法。
1. Fluorine-containing water in a calcium carbonate packed tower
A method for recovering water from flowing fluorine-containing water , wherein the calcium carbonate in the packed tower flows through the fluorine-containing water.
Fluorine is converted to calcium fluoride by flowing water upward at a speed
After fixing , generated in the packed tower due to the water flow
Water recovery method of a fluorine-containing water, characterized in that the decarboxylation process carbonate ions, and a desalting treatment is performed.
【請求項2】 フッ素含有水を炭酸カルシウム充填塔に
通水するフッ素含有水からの水回収方法であって、フッ
素含有水を該充填塔内の炭酸カルシウムが流動する流通
速度で上向流通水してフッ素をフッ化カルシウムとして
固定した後、陽イオン交換樹脂充填塔、前記通水によっ
て前記充填塔内で発生した炭酸イオンを除去するための
脱炭酸塔及び陰イオン交換樹脂充填塔の順に通水する
ことを特徴とするフッ素含有水からの水回収方法。
2. Fluorine-containing water in a calcium carbonate packed tower
A method for recovering water from flowing fluorine-containing water , wherein the calcium carbonate in the packed tower flows through the fluorine-containing water.
Fluorine is converted to calcium fluoride by flowing water upward at a speed
After fixing , pass through the cation exchange resin packed tower and the water flow.
Water recovery method of a fluorine-containing water, characterized in that the water flow in the order of the <br/> decarbonation tower to remove carbonate ions generated in a packed column, and the anion exchange resin packed column Te.
【請求項3】 フッ素含有水を炭酸カルシウム充填塔へ
通水することによって、該充填塔流出水中のカルシウム
イオン濃度が増加しないことを特徴とする請求項1又は
2に記載のフッ素含有水からの水回収方法。
3. Fluorine-containing water to a calcium carbonate packed tower
By passing water, the calcium in the effluent of the packed tower
The ion concentration does not increase, or
2. A method for recovering water from fluorine-containing water according to 2.
JP23122693A 1993-09-17 1993-09-17 Water recovery method from fluorine-containing water Expired - Fee Related JP3396919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23122693A JP3396919B2 (en) 1993-09-17 1993-09-17 Water recovery method from fluorine-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23122693A JP3396919B2 (en) 1993-09-17 1993-09-17 Water recovery method from fluorine-containing water

Publications (2)

Publication Number Publication Date
JPH0780472A JPH0780472A (en) 1995-03-28
JP3396919B2 true JP3396919B2 (en) 2003-04-14

Family

ID=16920302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23122693A Expired - Fee Related JP3396919B2 (en) 1993-09-17 1993-09-17 Water recovery method from fluorine-containing water

Country Status (1)

Country Link
JP (1) JP3396919B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543482B2 (en) * 2000-03-06 2010-09-15 栗田工業株式会社 Fluorine-containing water treatment method

Also Published As

Publication number Publication date
JPH0780472A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
US3589999A (en) Deionization process
US9056784B2 (en) High efficiency water-softening process
JP4880656B2 (en) Water treatment apparatus and water treatment method
US5378366A (en) Hot lime precipitation of arsenic from wastewater or groundwater
WO2002000551A2 (en) A process and apparatus for brine purification
RU2724779C1 (en) Method for integrated processing of produced water of oil fields
JP3413883B2 (en) Pure water production equipment
JP2005193167A (en) Drainage purification method and purification method
JP2001096281A (en) Method of recovering desalted water from fluorine- containing waste water
JP3334142B2 (en) Treatment method for fluorine-containing water
JP2000070933A (en) Production of pure water
JPH05253576A (en) Treatment of fluorine-containing water
JP3396919B2 (en) Water recovery method from fluorine-containing water
JP3203745B2 (en) Fluorine-containing water treatment method
JP4110604B2 (en) Fluorine-containing water treatment method
JP3413882B2 (en) Pure water production method and apparatus
JP3622407B2 (en) Water treatment method
JP2006263553A (en) Method for treating anionic organic material-containing waste water
JP2003126866A (en) Removing method of fluorine in drainage and the system
JP3252521B2 (en) Rinse wastewater treatment method
JP3266309B2 (en) Treatment method for acidic fluorine-containing water
JP5023809B2 (en) Electrolysis method of aqueous sodium chloride solution
JPH06328070A (en) Recovery of purified water from drained water produced by cleaning semi-conductor
JP3473472B2 (en) Treatment method for fluorine-containing water
JP4021688B2 (en) Method and apparatus for treatment of wastewater containing fluorine and silicon

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees