JP3385174B2 - Cross section profile measurement method - Google Patents

Cross section profile measurement method

Info

Publication number
JP3385174B2
JP3385174B2 JP04533097A JP4533097A JP3385174B2 JP 3385174 B2 JP3385174 B2 JP 3385174B2 JP 04533097 A JP04533097 A JP 04533097A JP 4533097 A JP4533097 A JP 4533097A JP 3385174 B2 JP3385174 B2 JP 3385174B2
Authority
JP
Japan
Prior art keywords
cross
angle
optical axis
profile
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04533097A
Other languages
Japanese (ja)
Other versions
JPH10239026A (en
Inventor
実 松本
二郎 片山
善己 福高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP04533097A priority Critical patent/JP3385174B2/en
Publication of JPH10239026A publication Critical patent/JPH10239026A/en
Application granted granted Critical
Publication of JP3385174B2 publication Critical patent/JP3385174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、断面形状プロフィ
ル測定方法に関し、とくにレーザ距離計を用いて例えば
H形鋼の中間製品等断面形状の複雑な被測定物の断面形
状プロフィルを精度良く自動測定できる断面形状プロフ
ィル測定方法に関する。図4に三角測量方式のレーザ距
離計の構成を示す。距離計(レーザ距離計)5は、レー
ザ発振器51、集光レンズ52、受光素子53、距離演算装置
54を備え、レーザ発振器51から発し基点Sを経て被測定
物60上の点Pで反射したレーザ光が、集光レンズ52を介
して受光素子53上の点P’に集まり、点Pが光軸30上の
所定位置にある線分AB上を移動するとき点P’が受光
素子53の両端点A’,B’を両端とする線分A’B’上
を移動するように構成されている。そして距離演算装置
54は、受光した点P’についての位置情報(線分A’
P’の長さLA'P')を把握し、該位置情報から次式(1)
の関係を用いて線分SPの長さLを演算でき、これによ
り距離計5は被測定物60までの距離を認識できる。 【0002】 L=LSA+(LA'P'/LA'B')・LAB ………(1) ここに、LSA,LAB,LA'B'はそれぞれ線分SA, A
B, A’B’の長さであり、これらは機器校正時に設定
されていて既知である。いま、図5に示すように、距離
計5が走行線31に沿って走行しながら光軸30を被測定物
60に向けて光軸上の基点Sから被測定物60までの距離L
を認識するとき、距離計5が被測定物60を「走査する」
といい、光軸30と被測定物60との最初の交点Pを「走査
点」と称する。 【0003】任意に設けたXY座標軸に関して走査点P
の座標を(x,y)、基点Sの座標を(xS ,yS )、
光軸30と走行線31とのなす角度をθとすれば、これらは
次式(2) 、(3) によって関係づけられるので、基点Sの
位置、距離Lおよび角度θの経時変化を知ることにより
走査点Pの軌跡、すなわち被測定物60の断面形状プロフ
ィルを知ることができる。 【0004】|x−xS |=L・ cosθ ………(2) |y−yS |=L・ sinθ ………(3) 本発明は、この断面形状プロフィル測定原理を利用する
ものである。 【0005】 【従来の技術】上記測定原理を利用した断面形状プロフ
ィルの測定方法は、例えば特開平8-327329号公報に開示
されている。これは、レーザ距離計をH形鋼の両側(こ
の場合は上下)に往復走行可能に配置し、往路と復路で
光軸の向きを変更して水平往復走行させ、その間にH形
鋼を走査して、H形鋼までの距離、距離計の位置、水平
方向に対する光軸の振れの角度のデータを時系列的に採
取し、これらデータからH形鋼の断面形状プロフィルを
導出する方法である。 【0006】この方法によれば、1個の距離計でかつ往
路(または復路)のみでは走査できないH形鋼の断面輪
郭部分を別の距離計および復路(または往路)で走査で
き、各距離計の往路・復路での走査により導出されたプ
ロフィルを合成することにより、高能率で断面形状プロ
フィルの全貌を把握できる。また、同公報ではさらに、
H形鋼脇の所定位置(絶対位置)に校正片(形状寸法既
知)を配置し、往路と復路でこの校正片を走査して校正
片のプロフィルを導出し該プロフィルを用いて往路・復
路間での基準座標軸のずれを認識して、H形鋼プロフィ
ル合成の際にこのずれ分だけ補正して合成することが提
案されている。 【0007】なお、導出された断面形状プロフィルから
H形鋼における品質管理の重要諸元であるフランジ厚、
フランジ幅、ウエブ厚、ウエブ高さ、脚長(ウエブ面か
ら該ウエブ面側のフランジ端面までの距離)、中心偏り
(ウエブ両側の脚長差)などが自動的に演算される。 【0008】 【発明が解決しようとする課題】しかしながら、前記特
開平8-327329号公報でもそうであるように、従来のこの
種の測定方法においては、通常、距離計の光軸の振れの
角度が距離計に取り付けた角度検出器(図6参照)を用
いて検出されている。そのため以下に挙げるような種々
の問題点がある。 角度検出器を用いた場合、角度データ転送時の距離デ
ータとの同期処理も困難であるばかりか、計器本体およ
びデータサンプリング用ソフトウエアが高価である。 角度検出器は距離計と共に走行するので走行時の衝
撃、振動、走行レールの変形等の影響を受ける為、距離
計との相対位置関係がずれやすく、それがそのまま検出
誤差となる。 角度検出器自体が熱などの影響で故障しやすく、また
故障に至らないまでもそれによる誤差を生じやすい。 角度検出器の取り付け位置によって角度が決まること
から、位置決め精度が困難である。 【0009】なお、図6において、10は距離計5を搭載
する筐体、11および12は筐体の走行手段としての車輪お
よびレールである。本発明の目的は、上記従来技術の問
題に鑑み、レーザ距離計で被測定物を走査して、被測定
物の断面形状プロフィルを導出する方法において、角度
検出器を必要とせず安価で、かつ高精度に実施できる断
面形状プロフィル測定方法を提案することにある。 【0010】 【課題を解決するための手段】本発明は、レーザ距離計
を被測定物の両側に往復走行可能に配置し、往路と復路
でレーザ距離計を旋回させることにより光軸の向きを変
更して被測定物を走査し、光軸上の基点の位置、基点か
ら走査点までの距離、走行方向と光軸とのなす角度から
被測定物の断面形状プロフィルを導出する断面形状プロ
フィル測定方法において、被測定物の測定毎に形状既知
の校正片を走査し、校正片での走査点に対する位置と距
離とから、往路と復路でのレーザ距離計の旋回による走
行方向と光軸とのなす角度を求めて前記プロフィルを導
出することを特徴とする断面形状プロフィル測定方法で
ある。 【0011】 【発明の実施の形態】本発明によれば、被測定物の測定
毎に形状既知の校正片を走査して位置と距離のデータを
採取し、校正片についてのこれらデータから、被測定物
の断面形状プロフィル導出に用いる、往路と復路でのレ
ーザ距離計の旋回による、走行方向と光軸とのなす角度
のデータを導出するようにしたので、距離計に角度検出
器を取り付ける必要はなく、したがって安価に測定系を
構成することができ、良好な精度で被測定物の断面形状
プロフィルを測定することができる。 【0012】なお校正片の形状は直方体状とするのがよ
い。図1は、本発明による角度導出方法の説明図であ
る。なお、距離計を被測定物60の上方に水平に設けた走
行線31に沿って往復走行させて測定するときの往路の場
合について説明するが復路の場合や下方走行の場合も同
様である。図示のように、光軸30の向きを固定したうえ
で、所定位置に所定姿勢で配置した校正片1の鉛直面上
を走査し、該鉛直面の下端部と上端部における少なくと
も各1つの走査点P1 、P2 に対応する基点S1 、S2
についてその位置座標x1、x2 、および視距離L1
2 を検出し、これら検出値を次式(4) に代入して角度
θを導出する。 【0013】 θ= cos-1{(x2 −x1 )/(L1 −L2 )} ………(4) そして、この導出値を、往路において被測定物60のプロ
フィルを導出する際に前記(2),(3) 式のθに代入する。
復路において光軸の向きを変更したときも、上記同様に
して角度を導出する。なお、距離L1 、L2 の差が距離
計の測定誤差範囲内に入らないように、下端部、上端部
に走査点P1 、P2 が位置する鉛直面の高さを十分大き
くとっておくことが肝要であり、また、測定ばらつき回
避の観点から、下端部、上端部それぞれで複数の走査点
Pについて基点Sの位置座標xと距離Lを検出し、それ
らの平均値をそれぞれ(4) 式のx1 ,x2 ,L1 ,L2
にあてはめて角度θを求めるようにするのがよい。 【0014】ただし、走査点が校正片の垂直面からコー
ナ部を通過して水平面上にくると、角度の誤認識が発生
することから、走査点が水平面上にきたかどうかを判別
し、水平面上で検出データは捨てるようにする。この判
別には、例えば、水平走行では水平面走査時の距離Lの
変化は測定誤差範囲内となることを用いて、図2に示す
ように、時系列的に検出した相前後する距離の値Li
i+1 の差Qをとり、Qが数回続いて所定の閾値R未満
となったら走査点が水平面に移行したとみなし、これ以
前でQ≧Rを満たした検出データを用いて(4) 式で角度
を導出するといったアルゴリズムを用いればよい。 【0015】なお、距離計を鉛直方向に走行させながら
測定する形態においては、校正片の水平面を角度導出用
の走査面とすればよい。 【0016】 【実施例】H形鋼の中間製品製造ラインに本発明を実施
した。この実施例における測定系の構成図を図3に示
す。この測定系では、H形鋼2を水平搬送するテーブル
ローラ3の両側にフレーム19を立設し、搬送面の上下の
水平面内に搬送方向に直交して延長するレール12を上は
フレーム19で支持し、下はフロアに敷設してそれぞれ設
け、上下のレール12にそれぞれ車輪11で係合して往復走
行自在な筐体10を設け、各筐体10内にレーザ距離計5を
首振り旋回可能に搭載して、光軸30の向きを遠隔操作で
変更できるようにしている。 【0017】この首振り旋回動作は同筐体10に搭載され
た旋回用のモータ14により、また往復走行に係る前記車
輪11の正転・逆転動作は同筐体10に搭載された走行用の
モータ15によりそれぞれ付勢され、モータ14、15の回転
は演算制御装置18からの制御信号によって制御されるよ
うに構成した。また、レーザ距離計5からの距離信号、
およびフレーム19に固設され筐体10の位置(距離計の基
点とは一定の位置関係にある)を検出する位置検出セン
サ13からの位置信号は、それぞれ距離信号処理装置16、
および位置信号処理装置17に取り込まれ、演算に適した
データに変換されて演算制御装置18に送られる。演算制
御装置18はこれらのデータを用いて断面形状プロフィル
の全貌を導出し、この導出された断面形状プロフィルか
らH形鋼のフランジ厚、フランジ幅、ウエブ厚、ウエブ
高さ、脚長、中心偏りなどを自動的に演算する。 【0018】そして、この実施例では、H形鋼2両脇で
光軸30が通過する所定位置に、それぞれ一定寸法の直方
体を固定配置して校正片1A、1Bとし、往路(図3で
は左向き)では始めに校正片1Aの垂直面を走査して前
記(4) 式により往路用の角度の値を定めこの値を用いて
往路で走査されるH形鋼の断面形状プロフィルを導出
し、復路(図3では右向き)では光軸30の向きを変更し
たのち校正片1Bの垂直面(往路走査面の背面)を走査
して前記(4) 式により復路用の角度の値を定めこの値を
用いて復路で走査されるH形鋼の断面形状プロフィルを
導出するようにした。 【0019】これにより、角度検出器を使用して角度を
検出していた時期に比べて、距離計取り付け調整作業時
間が約50%短縮し、角度検出器のゼロ点調整不足や角度
の誤認識による断面形状のプロフィルの合成ずれが皆無
となり、また、角度検出器使用時に必要であった角度デ
ータの取り込み・同期処理等のソフトウエアが不要とな
った。 【0020】 【発明の効果】以上に述べたように、本発明によれば、
光学式距離計で被測定物を走査して、断面形状プロフィ
ルを導出する方法において、被測定物と同一測定機会に
校正片を走査して得た位置、距離のデータから角度を導
出し、この角度を被測定物のプロフィル導出に使用する
ようにしたから、角度検出器を必要とせず安価で、かつ
高精度に被測定物の断面形状プロフィルを測定できると
いう優れた効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a cross-sectional profile, and more particularly to a method for measuring a cross-sectional shape of an intermediate product such as an H-beam using a laser distance meter. The present invention relates to a cross-sectional shape profile measuring method capable of automatically and accurately measuring a cross-sectional shape profile of an object. FIG. 4 shows the configuration of a laser distance meter of the triangulation method. The distance meter (laser distance meter) 5 includes a laser oscillator 51, a condenser lens 52, a light receiving element 53, and a distance calculation device.
The laser light emitted from the laser oscillator 51 and reflected at the point P on the DUT 60 via the base point S is collected at a point P ′ on the light receiving element 53 via the condenser lens 52, and the point P When moving on a line segment AB at a predetermined position on the shaft 30, the point P 'moves on a line segment A'B' having both ends A 'and B' of the light receiving element 53 as both ends. I have. And distance calculation device
54 is the position information (line segment A ') about the received point P'
P ′ length L A′P ′ ) is grasped, and the following equation (1) is obtained from the position information.
Can be used to calculate the length L of the line segment SP, so that the distance meter 5 can recognize the distance to the measured object 60. [0002] L = L SA + (L A'P '/ L A'B') · L AB ......... (1) Here, L SA, L AB, L A'B ' respectively segments SA, A
B, A'B 'are the lengths, which are set at the time of instrument calibration and are known. Now, as shown in FIG. 5, the distance meter 5 moves along the traveling line 31 while moving the optical axis 30 to the object to be measured.
Distance L from base point S on optical axis to DUT 60 toward 60
The distance meter 5 "scans" the DUT 60 when recognizing
The first intersection point P between the optical axis 30 and the device under test 60 is referred to as a “scanning point”. [0003] The scanning point P with respect to an arbitrarily provided XY coordinate axis
The coordinates (x, y), the coordinates of the base point S (x S, y S) ,
Assuming that the angle between the optical axis 30 and the traveling line 31 is θ, these are related by the following equations (2) and (3). Therefore, it is necessary to know the temporal change of the position of the base point S, the distance L, and the angle θ. Thus, the locus of the scanning point P, that is, the cross-sectional profile of the DUT 60 can be known. | Xx S | = L · cos θ (2) | y S | = L · sin θ (3) The present invention utilizes the principle of measuring the cross-sectional profile. is there. [0005] A method of measuring a cross-sectional profile using the above-described measurement principle is disclosed, for example, in Japanese Patent Application Laid-Open No. 8-327329. In this method, a laser range finder is arranged so as to be able to reciprocate on both sides (in this case, up and down) of an H-section, and the direction of the optical axis is changed in the forward path and the return path to make horizontal reciprocation, during which the H-section is scanned In this method, data on the distance to the H-beam, the position of the range finder, and the angle of deflection of the optical axis with respect to the horizontal direction are sampled in time series, and the sectional shape profile of the H-beam is derived from these data. . According to this method, the cross-sectional profile of the H-shaped steel which cannot be scanned only by the forward path (or the return path) can be scanned by another distance meter and the return path (or the forward path). By synthesizing the profiles derived by the scanning on the outward and return paths, the entire profile of the cross-sectional profile can be grasped with high efficiency. In the same gazette,
A calibration piece (having a known shape and size) is arranged at a predetermined position (absolute position) beside the H-section steel, and the calibration piece is scanned on the outward and return paths to derive a profile of the calibration piece. It has been proposed to recognize the deviation of the reference coordinate axis in the above and correct the deviation by the amount of the deviation when synthesizing the H-section steel profile. [0007] From the derived cross-sectional profile, the flange thickness, which is an important factor for quality control of the H-section steel,
Flange width, web thickness, web height, leg length (distance from the web surface to the flange end surface on the web surface side), center deviation (leg length difference between both sides of the web) and the like are automatically calculated. [0008] However, as in the above-mentioned Japanese Patent Application Laid-Open No. 8-327329, in this type of conventional measuring method, the deflection angle of the optical axis of the distance meter is usually used. Is detected using an angle detector (see FIG. 6) attached to the distance meter. Therefore, there are various problems as described below. When an angle detector is used, not only is it difficult to synchronize with the distance data at the time of transferring the angle data, but also the instrument body and data sampling software are expensive. Since the angle detector travels together with the distance meter, it is affected by impacts, vibrations, deformation of the traveling rail, and the like during traveling, so that the relative positional relationship with the distance meter easily shifts, which directly becomes a detection error. The angle detector itself is likely to fail due to the influence of heat or the like, and even if it does not lead to a failure, an error due to it tends to occur. Since the angle is determined by the mounting position of the angle detector, positioning accuracy is difficult. In FIG. 6, reference numeral 10 denotes a housing on which the distance meter 5 is mounted, and reference numerals 11 and 12 denote wheels and rails as traveling means of the housing. An object of the present invention is to provide a method of deriving a cross-sectional profile of an object to be measured by scanning the object to be measured with a laser distance meter in view of the above-described problems of the related art, without requiring an angle detector, at low cost, and An object of the present invention is to propose a cross-sectional profile measurement method that can be performed with high accuracy. According to the present invention, a laser range finder is arranged on both sides of an object to be measured so as to be able to reciprocate, and the direction of an optical axis is changed by turning the laser range finder on a forward path and a return path. Cross-sectional profile measurement that scans the DUT by changing it and derives the cross-sectional shape profile of the DUT from the position of the base point on the optical axis, the distance from the base point to the scanning point, and the angle between the running direction and the optical axis In the method, a calibration piece having a known shape is scanned for each measurement of an object to be measured, and a position and a distance with respect to a scanning point on the calibration piece are used to determine a traveling direction and an optical axis of the laser range finder by turning the forward and backward paths. A cross-sectional shape profile measuring method, wherein the profile is derived by obtaining an angle to be formed. According to the present invention, a calibration piece having a known shape is scanned for each measurement of an object to be measured to acquire position and distance data. It is necessary to attach an angle detector to the distance meter because it derives the data of the angle between the traveling direction and the optical axis due to the turning of the laser distance meter on the outward path and the return path used for deriving the cross-sectional profile of the measured object Therefore, the measurement system can be configured at low cost, and the cross-sectional profile of the object to be measured can be measured with good accuracy. The shape of the calibration piece is preferably a rectangular parallelepiped. FIG. 1 is an explanatory diagram of an angle deriving method according to the present invention. In the following, a description will be given of the case of forward travel when the distance meter is reciprocated along a travel line 31 provided horizontally above the object 60 to be measured, but the same applies to the case of return travel and downward travel. As shown in the drawing, with the direction of the optical axis 30 fixed, scanning is performed on the vertical surface of the calibration piece 1 arranged at a predetermined position in a predetermined posture, and at least one scan is performed at the lower end and the upper end of the vertical surface. base point S 1, S 2 corresponding to the point P 1, P 2
, Its position coordinates x 1 , x 2 , and viewing distance L 1 ,
L 2 is detected, and these detected values are substituted into the following equation (4) to derive the angle θ. Θ = cos −1 {(x 2 −x 1 ) / (L 1 −L 2 )} (4) This derived value is used to derive the profile of the DUT 60 on the outward path. Is substituted for θ in the equations (2) and (3).
When the direction of the optical axis is changed in the return path, the angle is derived in the same manner as described above. Note that the height of the vertical plane where the scanning points P 1 and P 2 are located at the lower end and the upper end is set sufficiently large so that the difference between the distances L 1 and L 2 does not fall within the range of the measurement error of the distance meter. It is also important to detect the position coordinates x and the distance L of the base point S with respect to the plurality of scanning points P at the lower end and the upper end, respectively, from the viewpoint of avoiding measurement variations, and to calculate their average values respectively (4 ) X 1 , x 2 , L 1 , L 2
To obtain the angle θ. However, when the scanning point passes through the corner portion from the vertical plane of the calibration piece and comes on the horizontal plane, misrecognition of the angle occurs. Therefore, it is determined whether the scanning point is on the horizontal plane. Discard the detection data above. For this determination, for example, using the fact that the change in the distance L during horizontal scanning in the horizontal running is within the measurement error range, as shown in FIG. i ,
The difference Q of L i + 1 is taken, and if Q continues several times and becomes less than a predetermined threshold value R, it is considered that the scanning point has shifted to the horizontal plane, and detection data that satisfies Q ≧ R before this is used (4 An algorithm that derives an angle by the expression) may be used. In the case where the measurement is performed while the distance meter is traveling in the vertical direction, the horizontal plane of the calibration piece may be used as the scanning plane for deriving the angle. EXAMPLE The present invention was applied to an H-section intermediate product production line. FIG. 3 shows a configuration diagram of the measurement system in this embodiment. In this measuring system, frames 19 are erected on both sides of the table roller 3 for horizontally transporting the H-section steel 2, and rails 12 extending perpendicularly to the transport direction in horizontal planes above and below the transport surface are framed by the frame 19. Supported, laid on the floor below and provided respectively, and upper and lower rails 12 are respectively engaged with wheels 11 to provide reciprocally movable housings 10, and within each housing 10, the laser rangefinder 5 is swung and swung. It is mounted as possible so that the direction of the optical axis 30 can be changed by remote control. The swinging operation is performed by a turning motor 14 mounted on the housing 10, and the forward and reverse rotation operations of the wheels 11 related to the reciprocation are performed by the running motor 14 mounted on the housing 10. Each of the motors 15 is energized, and the rotation of the motors 14 and 15 is controlled by a control signal from the arithmetic and control unit 18. A distance signal from the laser distance meter 5;
And the position signal from the position detection sensor 13 fixed to the frame 19 and detecting the position of the housing 10 (which has a fixed positional relationship with the base point of the distance meter) is a distance signal processing device 16,
The data is taken into the position signal processing device 17, converted into data suitable for calculation, and sent to the calculation control device 18. The arithmetic and control unit 18 derives the whole picture of the cross-sectional profile using these data, and from this derived cross-sectional profile, the flange thickness, flange width, web thickness, web height, leg length, center deviation, etc. Is calculated automatically. In this embodiment, rectangular parallelepipeds having a fixed size are fixedly arranged at predetermined positions on both sides of the H-section steel 2 where the optical axis 30 passes to form calibration pieces 1A and 1B, respectively. First, the vertical surface of the calibration piece 1A is scanned to determine the value of the angle for the forward path according to the above equation (4), and using this value, the sectional shape profile of the H-beam to be scanned on the outward path is derived, and the return path is determined. In FIG. 3 (rightward in FIG. 3), after changing the direction of the optical axis 30, the vertical surface of the calibration piece 1B (the back surface of the forward scanning surface) is scanned to determine the value of the angle for the backward traveling according to the above equation (4), and this value is determined. In this case, the sectional shape profile of the H-section steel scanned in the return path is derived. As a result, the time required for adjusting the distance meter is reduced by about 50% as compared with the case where the angle is detected by using the angle detector, the zero point of the angle detector is insufficiently adjusted, and the angle is erroneously recognized. As a result, there is no deviation in the synthesis of the profile of the cross-sectional shape, and software for capturing and synchronizing angle data, which was necessary when using the angle detector, is no longer necessary. As described above, according to the present invention,
In the method of scanning the object to be measured with the optical distance meter and deriving the cross-sectional profile, the angle is derived from the position and distance data obtained by scanning the calibration piece at the same measurement opportunity as the object to be measured, and Since the angle is used for deriving the profile of the object to be measured, there is an excellent effect that the cross-sectional profile of the object to be measured can be measured at low cost and with high accuracy without requiring an angle detector.

【図面の簡単な説明】 【図1】本発明による角度の導出方法の説明図である。 【図2】校正片走査時に不適当な距離データを排除する
アルゴリズムの例を示すブロック図である。 【図3】実施例における測定系の構成図である。 【図4】レーザ距離計の説明図である。 【図5】レーザ距離計を用いた断面形状プロフィル測定
原理の説明図である。 【図6】角度検出器を使用した際の問題点の説明図であ
る。 【符号の説明】 1 校正片 2 H形鋼 3 テーブルローラ 5 距離計(レーザ距離計) 10 筐体 11 車輪 12 レール 13 位置検出センサ 14,15 モータ 16 距離信号処理装置 17 位置信号処理装置 18 演算制御装置 19 フレーム 20 角度検出器 30 光軸 31 走行線 51 レーザ発振器 52 集光レンズ 53 受光素子 54 距離演算装置 60 被測定物
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of an angle deriving method according to the present invention. FIG. 2 is a block diagram illustrating an example of an algorithm for eliminating inappropriate distance data when scanning a calibration piece. FIG. 3 is a configuration diagram of a measurement system in an embodiment. FIG. 4 is an explanatory diagram of a laser distance meter. FIG. 5 is an explanatory diagram of a principle of measuring a cross-sectional profile using a laser distance meter. FIG. 6 is an explanatory diagram of a problem when an angle detector is used. [Description of Signs] 1 Calibration piece 2 H-section steel 3 Table roller 5 Distance meter (laser distance meter) 10 Housing 11 Wheel 12 Rail 13 Position detection sensor 14, 15 Motor 16 Distance signal processing device 17 Position signal processing device 18 Calculation Controller 19 Frame 20 Angle detector 30 Optical axis 31 Travel line 51 Laser oscillator 52 Condenser lens 53 Light receiving element 54 Distance calculator 60 DUT

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−327329(JP,A) 特開 平8−43044(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-8-327329 (JP, A) JP-A-8-43044 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30

Claims (1)

(57)【特許請求の範囲】 【請求項1】 レーザ距離計を被測定物の両側に往復走
行可能に配置し、往路と復路でレーザ距離計を旋回させ
ることにより光軸の向きを変更して被測定物を走査し、
光軸上の基点の位置、基点から走査点までの距離、走行
方向と光軸とのなす角度から被測定物の断面形状プロフ
ィルを導出する断面形状プロフィル測定方法において、
被測定物の測定毎に形状既知の校正片を走査し、校正片
での走査点に対する位置と距離とから、往路と復路での
レーザ距離計の旋回による走行方向と光軸とのなす角度
を求めて前記プロフィルを導出することを特徴とする断
面形状プロフィル測定方法。
(57) [Claims 1] A laser range finder is arranged on both sides of an object to be measured so as to be able to reciprocate, and the direction of an optical axis is changed by turning the laser range finder on a forward path and a return path. Scan the object under test,
In the cross-sectional shape profile measuring method of deriving the cross-sectional shape profile of the measured object from the position of the base point on the optical axis, the distance from the base point to the scanning point, the angle between the traveling direction and the optical axis,
A calibration piece with a known shape is scanned for each measurement of the object to be measured, and the angle between the optical axis and the traveling direction due to the turning of the laser range finder on the outward path and the return path is determined from the position and distance from the scanning point on the calibration piece. A method for measuring a cross-sectional shape profile, wherein the profile is obtained and the profile is derived.
JP04533097A 1997-02-28 1997-02-28 Cross section profile measurement method Expired - Fee Related JP3385174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04533097A JP3385174B2 (en) 1997-02-28 1997-02-28 Cross section profile measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04533097A JP3385174B2 (en) 1997-02-28 1997-02-28 Cross section profile measurement method

Publications (2)

Publication Number Publication Date
JPH10239026A JPH10239026A (en) 1998-09-11
JP3385174B2 true JP3385174B2 (en) 2003-03-10

Family

ID=12716313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04533097A Expired - Fee Related JP3385174B2 (en) 1997-02-28 1997-02-28 Cross section profile measurement method

Country Status (1)

Country Link
JP (1) JP3385174B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626047B2 (en) * 2000-11-22 2011-02-02 Jfeスチール株式会社 Dimensional measurement method for H-section steel
JP4677810B2 (en) * 2005-03-30 2011-04-27 Jfeスチール株式会社 Dimensional measurement method for section steel
CN112595260B (en) * 2020-12-29 2022-05-31 广东三姆森科技股份有限公司 Method, system, storage medium and equipment for extracting irregular cambered surface contour

Also Published As

Publication number Publication date
JPH10239026A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
JP3031529B2 (en) Method and apparatus for measuring sectional dimensions of H-section steel
JP3897191B2 (en) Planar level difference measuring device
EP3141449A1 (en) Rail profile monitoring, e.g. geometry of the frogs
JP7227442B2 (en) Vehicle dimension measuring device and vehicle dimension measuring method
WO2014024812A1 (en) Support detection device using laser measurement
JP2002168617A (en) Device and system for measuring tubular object such as tunnel
JP2010169505A (en) Pantograph height measuring device and method for calibrating the same
JP3385174B2 (en) Cross section profile measurement method
JP2883236B2 (en) Three-dimensional shape measurement device for structures around railway tracks
JP3339624B2 (en) Dimension measurement method
KR102534613B1 (en) Measurement device and method of rail acoustic roughness using the laser scanning
JPH024843B2 (en)
US20040174543A1 (en) optoelectronic measuring method and distance measuring device for carrying out the method
CN108072326B (en) Method and device for observing light beam irradiation
JP3528733B2 (en) Method for measuring cross-sectional dimensions of H-section steel
JPH11271032A (en) Apparatus and method for measuring sectional profile
JPH11173840A (en) Device and method for measuring distance
JP2630844B2 (en) 3D shape and size measurement device
JPH08271226A (en) Method and device for measuring sectional dimensions of h-steel
JP3282745B2 (en) Plate width and meandering measurement device using two-dimensional distance meter
JPS603502A (en) Non-contacting type distance measuring method
JPH07218227A (en) Method and apparatus for measuring sectional shape
JPS63177011A (en) Method for measuring squareness of flange of h-shaped material
JPH0688711A (en) Apparatus for measuring amounts of rail expansion and contraction
US20010000021A1 (en) Optoelectronic measuring method and distance measuring device for carrying out the method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees