JP3339212B2 - FRP cylinder and method of manufacturing the same - Google Patents

FRP cylinder and method of manufacturing the same

Info

Publication number
JP3339212B2
JP3339212B2 JP26138394A JP26138394A JP3339212B2 JP 3339212 B2 JP3339212 B2 JP 3339212B2 JP 26138394 A JP26138394 A JP 26138394A JP 26138394 A JP26138394 A JP 26138394A JP 3339212 B2 JP3339212 B2 JP 3339212B2
Authority
JP
Japan
Prior art keywords
thickness
cylinder
frp
winding
winding angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26138394A
Other languages
Japanese (ja)
Other versions
JPH0899373A (en
Inventor
幸胤 木本
靖之 豊田
寛 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP26138394A priority Critical patent/JP3339212B2/en
Publication of JPH0899373A publication Critical patent/JPH0899373A/en
Application granted granted Critical
Publication of JP3339212B2 publication Critical patent/JP3339212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、FRP筒体およびその
製造方法に関し、とくに、両端部に他部材が接合される
FRP筒体、たとえばプロペラシャフト等に用いて好適
なFRP筒体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FRP cylinder and a method of manufacturing the same, and more particularly, to an FRP cylinder suitable for use in an FRP cylinder having other members joined at both ends, for example, a propeller shaft, and a method of manufacturing the same. About the method.

【0002】[0002]

【従来の技術】最近、各種産業分野でFRP(繊維強化
プラスチック)筒体が使われてきつつある。たとえば近
年、燃費の向上や環境保全といった観点から自動車の軽
量化が強く望まれているが、それを達成する一手段とし
てプロペラシャフトのFRP化が検討され、一部で既に
採用されるに至っている。そのようなFRP製プロペラ
シャフトは、FRP製本体と、この本体の各端部に接合
して設けた金属製継手とを有している。
2. Description of the Related Art Recently, FRP (fiber reinforced plastic) cylinders have been used in various industrial fields. For example, in recent years, there has been a strong demand for weight reduction of automobiles from the viewpoints of fuel efficiency improvement and environmental conservation, but as a means of achieving this, the use of FRP for propeller shafts has been studied, and some of them have already been adopted. . Such an FRP propeller shaft has an FRP main body and a metal joint provided at each end of the main body.

【0003】ところで、自動車のプロペラシャフトは、
エンジンで発生するトルクを捩りトルクとして駆動輪に
伝達するものであるから、100〜400kgf・m程
度の捩り強度を必要とする。また、高速回転時に共振を
起こさないよう、危険回転数が5,000〜15,00
0rpm程度であることも要求される。そのため、これ
らの基本的要求が満たされるよう、FRP製プロペラシ
ャフトの本体は、強化繊維の種類、含有量や、強化繊維
の配列方向、層構成や、外径、内径、肉厚等のパラメー
タを考慮した設計がなされる。
[0003] By the way, the propeller shaft of an automobile is
Since the torque generated by the engine is transmitted to the drive wheels as torsional torque, a torsional strength of about 100 to 400 kgfm is required. In order to prevent resonance at high speed rotation, the critical rotation speed is set to 5,000 to 15,000.
It is also required to be about 0 rpm. Therefore, in order to satisfy these basic requirements, the main body of the FRP propeller shaft has parameters such as the type and content of the reinforcing fibers, the arrangement direction of the reinforcing fibers, the layer configuration, the outer diameter, the inner diameter, and the wall thickness. The design is taken into account.

【0004】たとえば、強化繊維の配列方向の選定に
は、次のようなことが考慮される。すなわち、主として
捩り強度に関しては、強化繊維を本体の筒軸方向に対し
て±45°の角度で配列するのが最も効果的であるが、
主として捩り座屈強度に関しては、筒軸方向に対して±
80〜90°の角度で配列するのが最も効果的である。
また、主として危険回転数に関しては、強化繊維を可能
な限り筒軸方向に配列して筒軸方向における曲げ弾性率
を大きくし、高い曲げ共振周波数が得られるようにす
る。
[0004] For example, the following is considered when selecting the arrangement direction of the reinforcing fibers. That is, regarding the torsional strength, it is most effective to arrange the reinforcing fibers at an angle of ± 45 ° with respect to the cylinder axis direction of the main body,
Mainly regarding torsional buckling strength, ±
It is most effective to arrange at an angle of 80 to 90 °.
In addition, mainly with respect to the critical rotation speed, reinforcing fibers are arranged in the cylinder axis direction as much as possible to increase the bending elastic modulus in the cylinder axis direction so that a high bending resonance frequency can be obtained.

【0005】このように、本体においては、捩り強度と
危険回転数といった基本的要求に関して最も効果的な強
化繊維の配列方向が存在するので、通常、これらの要求
に好適な配列方向を組み合わせた層構成を採ることにし
ている。たとえば、筒軸方向に対して±80〜90°の
層と±45°および±5〜20°の層を交互に積層した
り、他の角度の層を加えて適当な積層構成としたり、さ
らに、端部の継手との接合部に±80〜90°の層を付
加したりしている。
[0005] As described above, in the main body, there is the most effective arrangement direction of the reinforcing fibers with respect to the basic requirements such as the torsional strength and the critical rotation speed. We will adopt a configuration. For example, layers of ± 80 to 90 ° and layers of ± 45 ° and ± 5 to 20 ° with respect to the cylinder axis direction are alternately laminated, or a layer having another angle is added to form an appropriate laminated structure. And a layer of ± 80 ° to 90 ° is added to the joint with the joint at the end.

【0006】ところが、このような強化繊維の配列角度
の異なる層を複数層積層した構成においては、各層間
に、強化繊維の配列角度が急激に変わるため機械的特性
が急激に変わる境界部分が生じる。このような層間部位
では、過度の曲げ荷重や捩り荷重が加わった際、層間剥
離や層間破壊を生じやすく、他の部位、つまり層中の部
位に比べ強度が低い。したがって、FRP筒体の設計
上、このような層間剥離や層間破壊を生じさせる荷重が
強度上の律則となり、所定の強化繊維の配列や積層構成
による、目標とした強度特性を満たすことができないこ
とがある。
However, in such a configuration in which a plurality of layers having different arrangement angles of the reinforcing fibers are laminated, a boundary portion in which the mechanical characteristics change abruptly occurs between the respective layers because the arrangement angle of the reinforcing fibers changes rapidly. . In such an interlayer portion, when an excessive bending load or torsional load is applied, delamination or interlayer destruction is likely to occur, and the strength is lower than other portions, that is, portions in the layer. Therefore, in the design of the FRP cylinder, a load that causes such delamination or interlayer destruction becomes a rule on strength, and cannot satisfy a target strength characteristic due to a predetermined reinforcing fiber arrangement or lamination structure. Sometimes.

【0007】一方、別の問題として、大部分のFRP筒
体はその端部に他部材が接合され、他部材を介して捩り
荷重や曲げ荷重がFRP筒体の本体に伝達される方法で
使用されるが、本体の筒軸方向にみて、本体中央部と、
他部材との接合部とに要求される機械的特性は必ずしも
同じではない。たとえば、本体端部内に圧入や接着によ
り他部材が接合される場合には、本体端部には、接合強
度や端部自身の強度を確保するために、中央部に比べよ
り高い拡径方向強度や捩り強度が要求され、本体中央部
には、端部に比べより高い曲げ強度が要求される。前述
のような、単に配列角度の異なる強化繊維層を順に重ね
ていく積層構成では、このような要求を十分に満たせる
とは言い難い。
On the other hand, as another problem, most FRP cylinders are used in such a manner that another member is joined to the end thereof and torsional load or bending load is transmitted to the main body of the FRP cylinder via the other member. However, when viewed in the cylinder axis direction of the main body,
The mechanical properties required for a joint with another member are not necessarily the same. For example, when other members are joined into the body end by press-fitting or bonding, the body end has a higher strength in the radial direction than the center in order to secure the bonding strength and the strength of the end itself. High torsional strength is required, and higher bending strength is required at the center of the main body than at the ends. It is difficult to say that such a requirement can be sufficiently satisfied by the above-described laminated configuration in which the reinforcing fiber layers having different arrangement angles are simply laminated in order.

【0008】このような要求に関して、実公平3−76
06号公報には、FRP製本体の強化繊維配列角度を、
筒軸方向に対して、中央部で0〜15°、継手が接合さ
れる両端部に向けて漸増させ該両端部で40°〜50°
に設定した動力伝達軸が開示されているが、筒軸方向各
部位の強度特性、とくに端部における強度特性が十分に
最適化されているとは言い難い。またこの動力伝達軸
は、筒軸方向に全長にわたって均一な肉厚に形成されて
いるので、上記強化繊維の配列角度を変化させたことに
よる筒軸方向強度特性変更効果以上の効果はなく、得ら
れる効果には限界がある。
[0008] With respect to such a request, Japanese Utility Model 3-76
No. 06, the reinforcing fiber array angle of the body made of FRP,
0 to 15 ° at the center, gradually increasing toward both ends where the joint is joined, and 40 ° to 50 ° at both ends with respect to the cylinder axis direction.
However, it is difficult to say that the strength characteristics of each part in the cylinder axis direction, especially the strength characteristics at the end, are sufficiently optimized. Further, since the power transmission shaft is formed to have a uniform thickness over the entire length in the cylinder axis direction, there is no more effect than the effect of changing the strength characteristic in the cylinder axis direction by changing the arrangement angle of the reinforcing fibers, and it is obtained. There are limits to the effect that can be obtained.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、従来
のFRP筒体の上述した問題点を解決し、基本的に層間
を生じさせずに目標とした強度特性を正確にかつ効果的
に発現させることができ、かつ、筒軸方向にみた各部位
にそれぞれ、最も高い効果が得られる最適な強度特性を
効率よく付与した、FRP筒体およびその製造方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional FRP cylinder, and to accurately and effectively achieve a target strength characteristic without forming any interlayer. An object of the present invention is to provide an FRP cylinder and a method of manufacturing the FRP cylinder, wherein the FRP cylinder can be expressed, and each part viewed in the cylinder axis direction is efficiently provided with an optimum strength characteristic for obtaining the highest effect.

【0010】[0010]

【課題を解決するための手段】この目的に沿う本発明の
FRP筒体は、筒軸方向に往復動されながらヘリカル巻
された、連続繊維からなる強化繊維で強化された樹脂か
らなるFRP筒体において、FRP筒体の筒軸方向両端
部における強化繊維の巻角度Aが±80〜90°、FR
P筒体の筒軸方向中央部における強化繊維の巻角度Bが
±5〜20°、両端部と中央部との間における巻角度が
巻角度Aから巻角度Bに徐々に変化する巻角度Cであ
り、かつ、往復動により積層された強化繊維の各巻き付
け層の巻角度は筒軸方向全長にわたり個々の部位におい
て順次積層された各巻き付け層間で一致しており、さら
に、FRP筒体の筒軸方向両端部における肉厚tA が中
央部における肉厚tB よりも大きく、両端部と中央部と
の間における肉厚が肉厚tAから肉厚tB に徐々に変化
する肉厚tC であることを特徴とするものからなる。
According to the present invention, there is provided an FRP cylindrical body made of a resin reinforced by a continuous fiber, which is helically wound while being reciprocated in a cylindrical axis direction. , The winding angle A of the reinforcing fibers at both ends in the cylinder axis direction of the FRP cylinder is ± 80 to 90 °, FR
The winding angle B of the reinforcing fiber at the center of the P cylindrical body in the axial direction is ± 5 to 20 °, and the winding angle C between both ends and the center gradually changes from the winding angle A to the winding angle B. , and the and the individual sites odor winding angle of each winding layer of the reinforcing fibers are stacked to Ri cotton in the cylinder axis direction entire length by reciprocating
Coincides with the winding layers which are sequentially laminated Te, further, larger than the thickness t B the thickness t A in the cylinder axial direction end portions of the FRP tubular body at the central portion, between the end portions and the central portion Is a thickness t C that gradually changes from the thickness t A to the thickness t B.

【0011】[0011]

【0012】[0012]

【0013】上記のような本発明に係るFRP筒体は、
とくにFRP製プロペラシャフトに適用して有効である
が、プロペラシャフト以外にも、両端部に他部材が接合
される、FRP製の配管パイプ、トラス等に適用可能で
ある。接合される他部材(プロペラシャフトの場合には
継手)の接合方法は特に限定されず、圧入や接着による
接合、その他の方法のいずれであってもよい。
[0013] The FRP cylinder according to the present invention as described above,
The present invention is particularly effective when applied to an FRP propeller shaft. However, the present invention is also applicable to an FRP piping pipe, truss, or the like in which other members are joined to both ends in addition to the propeller shaft. The joining method of another member (joint in the case of a propeller shaft) to be joined is not particularly limited, and may be any of a press-fitting, a bonding by adhesion, and other methods.

【0014】また、上記のようなFRP筒体は、次のよ
うな方法で製造できる。すなわち、本発明に係るFRP
筒体の製造方法は、マンドレル上に、樹脂を含浸した強
化繊維束をマンドレル軸方向に往復動させながらヘリカ
ル巻してFRP筒体を成形するに際し、前記強化繊維束
の巻角度を、両端部においては±80〜90°、中央部
においては±5〜20°、両端部と中央部との間におい
ては±80〜90°から±5〜20°に徐々に変化さ
せ、かつ、前記往復動により積層されていく強化繊維の
各巻き付け層の巻角度をマンドレル軸方向全長にわた
個々の部位において順次積層した各巻き付け層間で一致
させ、さらに、FRP筒体の筒軸方向両端部における肉
厚tA が中央部における肉厚tB よりも大きく、両端部
と中央部との間における肉厚が肉厚tA から肉厚tB
徐々に変化する肉厚tC となるように成形することを特
徴とする方法からなる。
The above-described FRP cylinder can be manufactured by the following method. That is, the FRP according to the present invention
The method of manufacturing the tubular body is such that, on a mandrel, the reinforcing fiber bundle impregnated with the resin is helically wound while being reciprocated in the mandrel axis direction to form an FRP tubular body. ± 80 to 90 ° at the center, ± 5 to 20 ° at the center, and gradually change from ± 80 to 90 ° to ± 5 to 20 ° between both ends and the center, and the reciprocating motion Ri cotton winding angle of each winding layer of the reinforcing fibers will be stacked on the mandrel axis the total length by
Match each wound layers sequentially stacked in individual sites, further larger than the thickness t B the thickness t A in the cylinder axial direction end portions of the FRP tubular body at the central portion, between the end portions and the central portion Is formed so as to have a wall thickness t C that gradually changes from the wall thickness t A to the wall thickness t B.

【0015】[0015]

【作用】このようなFRP筒体は、連続繊維からなる強
化繊維で強化された樹脂から構成され、まず、筒軸方向
両端部における強化繊維の巻角度Aが±80〜90°、
筒軸方向中央部における強化繊維の巻角度Bが±5〜2
0°、両端部と中央部との間における巻角度が巻角度A
から巻角度Bに徐々に変化する巻角度Cに設定される。
筒軸方向両端部における上記巻角度Aは、いわゆるフー
プ巻と呼ばれるもので、高い捩り強度、拡径方向に高い
強度を発揮するのに最適な巻角度である。また中央部に
おける巻角度Bは、主として高い曲げ強度や曲げ弾性率
を発揮するのに最適な巻角度である。したがって、筒軸
方向にみて、両端部が高い捩り強度や他部材との高い接
合強度および接合部強度を発揮するのに最も適した強化
繊維の配列とされ、中央部が高い危険回転数等を得るの
に最も適した強化繊維の配列とされ、両者間でこれらの
特性が徐々に変化するように設定される。
Such an FRP cylinder is made of a resin reinforced with reinforcing fibers composed of continuous fibers. First, the winding angle A of the reinforcing fibers at both ends in the cylinder axis direction is ± 80 to 90 °,
The winding angle B of the reinforcing fiber at the center in the cylinder axis direction is ± 5 to 2
0 °, the winding angle between both ends and the center is the winding angle A
Is set to the winding angle C which gradually changes from the winding angle B to the winding angle B.
The winding angle A at both ends in the cylinder axis direction is a so-called hoop winding, and is an optimum winding angle for exhibiting a high torsional strength and a high strength in the radially expanding direction. The winding angle B at the central portion is an optimum winding angle for mainly exhibiting high bending strength and bending elastic modulus. Therefore, when viewed in the axial direction of the cylinder, both ends are arranged to be the most suitable for exhibiting high torsional strength and high joining strength with other members and the joining portion strength, and the central portion has a high dangerous rotation speed and the like. The arrangement of the reinforcing fibers is the most suitable to obtain, and these characteristics are set so as to gradually change between them.

【0016】その結果、FRP筒体は、その筒軸方向に
みて各部位に要求される機能に最も適した強度特性をそ
れぞれ有することになり、FRP筒体全体として、使用
上最も都合のよい特性を、バランスよくかつ効率よく発
揮することが可能となる。
As a result, the FRP cylinder has strength characteristics most suitable for the functions required for each part as viewed in the direction of the cylinder axis, and the FRP cylinder as a whole has the most convenient characteristics in use. Can be exhibited in a well-balanced and efficient manner.

【0017】また、上記各部位に最適な強化繊維の巻角
度は、連続繊維からなる強化繊維によって達成され、か
つ、往復動により積層構成とされる場合、個々の部位に
おいては、積層される各層は、上記最適な角度範囲内に
おいて同じ巻角度を有するから(つまり、積層された強
化繊維の各巻き付け層の巻角度は筒軸方向全長にわたっ
て各部位毎に一致しているから)、本発明に係るFRP
筒体には巻角度の異なった層間が存在しない。したがっ
て、巻角度の異なった層の積層構成における層間剥離や
層間破壊の発生を防止でき、それらに起因する強度特性
の低下を防止できる。つまり、強化繊維の配列等によ
る、目標とした強度特性を正確にかつ効率よく得ること
ができ、従来の積層構成品に比べ、強度を向上できる。
In addition, the optimum winding angle of the reinforcing fibers for each of the above-mentioned portions is achieved by the reinforcing fibers composed of continuous fibers, and when the laminating structure is formed by reciprocating motion , each layer is laminated at each layer. Have the same winding angle within the above-mentioned optimum angle range (that is,
The winding angle of each wound layer of the synthetic fiber extends over the entire length in the cylinder axial direction.
The FRP according to the present invention.
There are no layers with different winding angles in the cylinder. Accordingly, it is possible to prevent the occurrence of delamination or delamination in the laminated structure of the layers having different winding angles, and to prevent the deterioration of the strength characteristics due to them. In other words, it is possible to accurately and efficiently obtain the target strength characteristics due to the arrangement of the reinforcing fibers and the like, and to improve the strength as compared with the conventional laminated component.

【0018】また、FRP筒体の筒軸方向両端部におけ
る肉厚tA が中央部における肉厚tB よりも大きく、両
端部と中央部との間おける肉厚がtA からtB に徐々に
変化する肉厚tC とされるから、中央部に所望の曲げ強
度や曲げ弾性率をもたせつつ、両端部においては、より
高い捩り強度や他部材との接合強度および接合部強度を
発揮することが可能となる。したがって、筒軸方向にみ
て、FRP筒体の各部位に、より最適な強度特性をもた
せることができる。
The thickness t A at both ends of the FRP cylinder in the axial direction is larger than the thickness t B at the center, and the thickness between both ends and the center gradually increases from t A to t B. The thickness t C is varied to give a desired bending strength and bending elastic modulus at the center portion, and at both ends, higher torsional strength and bonding strength with other members and bonding portion strength are exhibited. It becomes possible. Therefore, each part of the FRP cylinder can have more optimal strength characteristics when viewed in the cylinder axis direction.

【0019】上記のようなFRP筒体は、単一の成形工
程で製造することが可能である。すなわち、マンドレル
軸方向に往復動させながら、樹脂を含浸した強化繊維束
をマンドレル上にヘリカル巻していくことによりFRP
筒体が成形されるが、強化繊維束をマンドレル上に案内
するガイド、たとえばキャリッジの移動速度を変化さ
せ、FRP筒体の筒軸方向両端部では遅く、中央部では
速く、その中間位置では両速度間を徐々に変化するよう
に移動速度を制御することにより、前述の如き巻角度
A、巻角度B、巻角度Cを達成できる。
The above FRP cylinder can be manufactured in a single molding step. That is, while reciprocating in the axial direction of the mandrel, the reinforcing fiber bundle impregnated with the resin is helically wound on the mandrel to thereby increase the FRP.
A cylindrical body is formed, but a guide for guiding the reinforcing fiber bundle on the mandrel, for example, changing the moving speed of the carriage, is slow at both ends in the axial direction of the FRP cylindrical body, fast at the central part, and fast at the middle position. By controlling the moving speed so as to gradually change between the speeds, the winding angle A, the winding angle B, and the winding angle C as described above can be achieved.

【0020】またこのとき、巻角度Aの両端部において
は、筒軸方向と略直交する方向に、送られてきた強化繊
維束が略そのままの状態で巻き付けられ、巻角度Bの中
央部においては、上記筒軸方向と直交する方向から大き
く傾けられて斜めに強化繊維束が巻き付けられることに
なる。その結果、両端部における巻き付け層数が中央部
における巻き付け層数よりも多くなり、形成される筒体
の厚みは、両端部においては相対的に厚く、中央部にお
いては相対的に薄く、その中間部位においては厚みが徐
々に変化することになる。その結果、前述の両端部肉厚
A が大きく、中央部肉厚tB が小さく、中間部肉厚t
C がtA からtB に徐々に変化するFRP筒体が、強化
繊維束の筒軸方向の移動速度の変更制御により、実質的
に自然に得られることになる。
At this time, at both ends of the winding angle A, the sent reinforcing fiber bundle is wound substantially in the direction substantially perpendicular to the cylinder axis direction, and at the center of the winding angle B, The reinforcing fiber bundle is wound obliquely at a large angle from the direction perpendicular to the cylinder axis direction. As a result, the number of winding layers at both ends is greater than the number of winding layers at the center, and the thickness of the formed cylinder is relatively thick at both ends, relatively thin at the center, and intermediate between the two. At the site, the thickness will gradually change. As a result, large both ends thickness t A of the aforementioned small central thickness t B, an intermediate portion thickness t
C is FRP tubular body gradually changes to t B from t A is, the cylinder axis direction change control of the speed of movement of the reinforcing fiber bundles will essentially be naturally obtained.

【0021】[0021]

【実施例】以下に、本発明のFRP筒体およびその製造
方法の望ましい実施例を、図面を参照して説明する。図
1は、本発明の一実施例に係るFRP筒体を示してお
り、本発明をFRP製プロペラシャフトに適用したもの
を示している。図において、1はFRP筒体としてのF
RP製本体筒を示している。本体筒1の両端部には、金
属製継手2が圧入接合されている。本体筒1は、炭素繊
維、ガラス繊維、ポリアラミド繊維等の高強度、高弾性
率強化繊維でエポキシ樹脂、不飽和ポリエステル樹脂、
フェノール樹脂、ビニルエステル樹脂、ポリイミド樹脂
等の熱硬化性樹脂や、ポリアラミド樹脂、ポリカーボネ
ート樹脂、ポリエーテルイミド樹脂等の熱可塑性樹脂を
強化してなるものである。このプロペラシャフトは、長
さ方向中心からみて対称形である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the FRP cylinder of the present invention and a method for manufacturing the same will be described below with reference to the drawings. FIG. 1 shows an FRP cylinder according to an embodiment of the present invention, in which the present invention is applied to an FRP propeller shaft. In the figure, reference numeral 1 denotes F as an FRP cylinder.
The RP main body tube is shown. Metal joints 2 are press-fitted to both ends of the main body cylinder 1. The main body tube 1 is made of a high-strength, high-modulus reinforcing fiber such as carbon fiber, glass fiber, or polyaramid fiber, and is made of epoxy resin, unsaturated polyester resin,
It is obtained by reinforcing a thermosetting resin such as a phenol resin, a vinyl ester resin, or a polyimide resin, or a thermoplastic resin such as a polyaramid resin, a polycarbonate resin, or a polyetherimide resin. This propeller shaft is symmetrical when viewed from the longitudinal center.

【0022】FRP製本体筒1は、ヘリカル巻された、
連続繊維からなる強化繊維3で強化された樹脂からなっ
ている。強化繊維3の巻角度は、本体筒1の筒軸方向両
端部、つまり継手2との接合部を主として構成している
両端部領域RA では、筒軸方向に対して±80〜90°
の巻角度A、筒軸方向中央部領域RB では、筒軸方向に
対して±5〜20°の巻角度B、それらの中間の領域R
C では、巻角度Aから巻角度Bに徐々に変化する巻角度
Cになっている。
The main body tube 1 made of FRP is helically wound.
It is made of a resin reinforced with reinforcing fibers 3 made of continuous fibers. The winding angle of the reinforcing fiber 3 is ± 80 to 90 ° with respect to the cylinder axis direction in both end regions RA of the main body cylinder 1 in the cylinder axis direction, that is, both end regions RA mainly constituting a joint with the joint 2.
Winding angle A, the cylinder axis direction central region R B, winding angle B of ± 5 to 20 ° with respect to the cylinder axis, of their intermediate region R
At C , the winding angle C gradually changes from the winding angle A to the winding angle B.

【0023】また、本体筒1の肉厚は、両端部領域RA
では最も大きい肉厚tA 、中央部領域RB では最も小さ
い肉厚tB 、それらの中間領域RC では肉厚tA から肉
厚tB に徐々に変化する肉厚tC になっている。中間領
域RC における肉厚tC は、筒軸方向に直線状に変化し
てもよく、曲線状に変化してもよい。
The thickness of the main body cylinder 1 is set at the both end regions R A.
In the largest thickness t A, has become central region R smallest thickness t B in B, the thickness t C gradually changing from their intermediate region R C in the thickness t A in the thickness t B . Thickness t C in the intermediate region R C may be varied linearly in the cylinder axis direction, it may vary in a curve.

【0024】これら本体筒1の筒軸方向における強化繊
維3の巻角度および本体筒1の肉厚を模式的に示すと、
図2に示すようになる。このような巻角度および肉厚の
変更は、次のような方法で制御できる。
The winding angle of the reinforcing fibers 3 and the wall thickness of the main body cylinder 1 in the cylinder axis direction of the main body cylinder 1 are schematically shown as follows.
As shown in FIG. Such a change in the winding angle and the wall thickness can be controlled by the following method.

【0025】すなわち、図3に示すように、マンドレル
4上に樹脂を含浸した強化繊維束5をらせん状に(ヘリ
カル巻しながら)、かつガイド手段6による案内によっ
てマンドレル4の軸方向(筒軸方向)に往復させながら
巻き付けていく。このとき、ガイド手段6を停止する
と、強化繊維束5はマンドレル4の軸方向と直交する方
向にそのまま巻き付けられ、ガイド手段6を移動させる
と、強化繊維束5はヘリカル巻されていく。そして、移
動速度が大きいと、巻き付けられる強化繊維束5のマン
ドレル4の軸方向(つまり筒軸方向)に対する巻角度が
小さくなり、移動速度が小さいと、強化繊維束の巻角度
は大きくなる。したがって、ガイド手段6の往復移動速
度を変更し、強化繊維束5のマンドレル4の軸方向の往
復移動速度を変化させることにより、成形される本体筒
1の筒軸方向各位置における強化繊維の巻角度を変化さ
せることができる。
That is, as shown in FIG. 3, the reinforcing fiber bundle 5 impregnated with resin is spirally wound (while helically wound) on the mandrel 4 and guided by the guide means 6 in the axial direction of the mandrel 4 (the cylindrical shaft). Direction). At this time, when the guide means 6 is stopped, the reinforcing fiber bundle 5 is wound as it is in a direction orthogonal to the axial direction of the mandrel 4, and when the guide means 6 is moved, the reinforcing fiber bundle 5 is wound helically. When the moving speed is high, the winding angle of the reinforcing fiber bundle 5 to be wound with respect to the axial direction of the mandrel 4 (that is, the cylinder axis direction) becomes small, and when the moving speed is low, the winding angle of the reinforcing fiber bundle becomes large. Therefore, by changing the reciprocating speed of the guide means 6 and changing the reciprocating speed of the reinforcing fiber bundle 5 in the axial direction of the mandrel 4, the winding of the reinforcing fibers at each position in the axial direction of the main body tube 1 to be formed. The angle can be changed.

【0026】本体筒1の筒軸方向両端部領域RA では、
ガイド手段6の移動速度を低く制御して、強化繊維束5
をマンドレルの周方向あるいはそれに近い方向に巻き付
けることにより、筒軸方向に対して±80〜90°の巻
角度Aを得る。中間領域RCでは、端部領域RA から中
央部領域RB に向かうにしたがって徐々にガイド手段6
の移動速度を速め、筒軸方向に対する巻角度Cを徐々に
小さくしていく。中央部領域RB においては、ガイド手
段6の移動速度を最高速度まで速め、強化繊維束5を筒
軸方向に対して±5〜20°の最小巻角度Bで巻き付け
ていく。強化繊維は連続繊維からなっているので、本体
筒1の端縁位置まで移動されてきた強化繊維束5は、同
じ速度にて折り返すことにより、自然に同一角度でかつ
正負逆転した巻角度となる。端部領域RA では、強化繊
維束5の移動速度は極めて遅いので、方向転換(折り返
し)は円滑に行われる。ガイド手段6を所定回数往復動
させることにより、強化繊維の所定の積層構成を有す
る、所定肉厚の本体筒1を得る。マンドレル4上に形成
された本体筒1のマトリクス樹脂を硬化させることによ
り本体筒1が成形され、それをマンドレル4から引き抜
くことにより所定の本体筒1が得られる。
In both end regions RA of the main body cylinder 1 in the cylinder axis direction,
By controlling the moving speed of the guide means 6 to be low, the reinforcing fiber bundle 5 is controlled.
Is wound in the circumferential direction of the mandrel or in a direction close to the circumferential direction of the mandrel to obtain a winding angle A of ± 80 to 90 ° with respect to the cylinder axis direction. In the intermediate region R C , the guide means 6 gradually increases from the end region R A toward the center region R B.
And the winding angle C with respect to the cylinder axis direction is gradually reduced. In the central region R B, accelerating the moving speed of the guide means 6 to a maximum speed, it will wound at minimum winding angle B of ± 5 to 20 ° reinforcing fiber bundle 5 with respect to the cylinder axis. Since the reinforcing fibers are made of continuous fibers, the reinforcing fiber bundles 5 that have been moved to the edge position of the main body tube 1 are naturally turned to the same angle and the winding angles reversed in the positive and negative directions by being turned back at the same speed. . In the end region RA , since the moving speed of the reinforcing fiber bundle 5 is extremely slow, the direction change (turning back) is performed smoothly. By reciprocating the guide means 6 a predetermined number of times, the main body cylinder 1 having a predetermined laminated structure of the reinforcing fibers and a predetermined thickness is obtained. The main body tube 1 is formed by curing the matrix resin of the main body tube 1 formed on the mandrel 4, and the predetermined main body tube 1 is obtained by pulling it out of the mandrel 4.

【0027】上記成形においては、強化繊維束5の移動
速度に応じて成形される筒体の厚みが変化する。すなわ
ち、移動速度が遅いときには、巻き付けられる強化繊維
束5の巻き付け層数が多くなり、巻角度が筒軸方向に対
して小さくなり移動速度が速くなると、巻き付け層数が
少なくなる。その結果、マンドレル4の回転数が一定で
あっても、強化繊維束5が積層巻き付けされて形成され
る本体筒1の肉厚は、マンドレル4の軸方向(つまり筒
軸方向)に、強化繊維束5の移動速度に応じて変化する
ことになる。つまり、移動速度の遅い両端部領域RA
おいてはより厚く、中央部領域RB においてはより薄
く、中間領域RC においては徐々に変化する肉厚とな
り、前述の肉厚tA 、tB 、tC を有する本体筒1が自
然に成形される。
In the above molding, the thickness of the molded cylinder changes according to the moving speed of the reinforcing fiber bundle 5. That is, when the moving speed is slow, the number of winding layers of the reinforcing fiber bundle 5 to be wound increases, and when the winding angle decreases in the cylinder axis direction and the moving speed increases, the number of winding layers decreases. As a result, even when the rotational speed of the mandrel 4 is constant, the thickness of the main body tube 1 formed by laminating and winding the reinforcing fiber bundles 5 is such that the reinforcing fibers are in the axial direction of the mandrel 4 (that is, in the cylindrical axis direction). It will change according to the moving speed of the bundle 5. In other words, thicker in the slow end regions R A of the moving speed, thinner in the central region R B, become thicker gradually changing in the intermediate region R C, the aforementioned thickness t A, t B, The main body cylinder 1 having t C is naturally formed.

【0028】このように形成されたプロペラシャフトで
は、継手2との高い接合強度や接合部自身の強度、継手
2からのトルクを良好に伝達するために高い捩り強度が
要求される本体筒1の端部領域RA においては、±80
〜90°の巻角度A、つまり周方向に近い角度で強化繊
維が巻かれているので、目標とする強度特性が容易に得
られる。また、この端部領域RA では、本体筒1の肉厚
A も大きく設定されているので、一層高い強度が得ら
れる。
In the propeller shaft formed in this manner, the main cylinder 1 is required to have a high joint strength with the joint 2, the strength of the joint itself, and a high torsional strength in order to transmit the torque from the joint 2 satisfactorily. In the end region RA , ± 80
Since the reinforcing fiber is wound at a winding angle A of up to 90 °, that is, at an angle close to the circumferential direction, target strength characteristics can be easily obtained. Further, in the end region R A, because it is set larger thickness t A of the main body tube 1, a higher strength can be obtained.

【0029】中央部領域RB においては、±5〜20°
の巻角度B、つまり比較的筒軸方向に近い角度で強化繊
維が巻かれているので、この部位に要求される、筒軸方
向における高い曲げ強度や曲げ弾性率が効率よく得られ
る。また、この領域RB では、肉厚tB が不必要に厚く
なることが防止され、本体筒1全体の軽量化がはかられ
る。中間部領域RC においては、巻角度が徐々に変化し
ているので、強度特性は、上記端部領域RA における特
性から中央部領域RB における特性まで徐々に変化す
る。このように、筒軸方向にみて、各領域RA 、RB
C にそれぞれ最も適した強度特性が現出される。
[0029] In the central region R B, ± 5~20 °
Since the reinforcing fiber is wound at a winding angle B, that is, an angle relatively close to the cylinder axis direction, high bending strength and bending elasticity in the cylinder axis direction required for this portion can be efficiently obtained. Further, in the region R B, it is possible to prevent the thickness t B is increased unnecessarily, weight of the entire main body tube 1 is worn. In the intermediate region R C, since the winding angle is gradually changed, strength properties, gradually changes from the characteristics in the end region R A to characteristics in the central area R B. Thus, when viewed in the cylinder axis direction, each of the regions R A , R B ,
The strength characteristics most suitable for each of R C appear.

【0030】また、図3に示したように強化繊維束5が
複数回筒軸方向に往復する際、その移動速度は、各往復
毎に、各領域RA 、RB 、RC においてそれぞれ同一速
度になるように制御される。したがって、個々の領域に
おいては、強化繊維束5は実質的に同じ巻角度で順に積
層されていくことになる。その結果、強化繊維の巻角度
の異なる層が積層されることがなくなり、巻角度の異な
った層間部位が生じなくなる。層間が存在しないと、基
本的に層間剥離や層間破壊は生じないので、それらによ
る強度低下が防止され、目標とする設計通りの強度特性
が正確に効率よく発揮されることになる。
As shown in FIG. 3, when the reinforcing fiber bundle 5 reciprocates a plurality of times in the cylinder axis direction, the moving speed is the same in each region R A , R B , R C for each reciprocation. It is controlled so as to be the speed. Therefore, in each area, the reinforcing fiber bundles 5 are sequentially laminated at substantially the same winding angle. As a result, layers having different winding angles of the reinforcing fibers are not laminated, and interlayer portions having different winding angles are not generated. If there is no interlayer, delamination or interlayer destruction does not basically occur, so that a reduction in strength is prevented, and the intended strength characteristics as designed are accurately and efficiently exhibited.

【0031】さらに、マンドレル4上の強化繊維束5の
巻き付けにおいては、端部領域RAにおいて、殆ど周方
向巻き付けに近い状態で強化繊維束5の移動方向を反転
させることになるので、強化繊維束5を積層していく際
にも、その折り返し部を精度よく揃えることが可能とな
る。折り返し端が精度よく揃えられると、そのままの状
態で、あるいは若干加工を加えることにより、折り返し
端を実質的にそのまま本体筒1の端縁として使用するこ
とが可能になる。従来、折り返し端を揃えることが難し
かったので、本体筒を長目に成形しており、余分な部分
を後で切り取っていたが、本発明ではこのような切り取
り工程の不要化が可能となり、使用する強化繊維の収率
も100%に近づけることが可能となる。
Further, in the winding of the reinforcing fiber bundle 5 on the mandrel 4, the movement direction of the reinforcing fiber bundle 5 is reversed in a state close to the circumferential winding in the end region RA . When stacking the bundle 5, the folded portions can be aligned with high accuracy. When the folded ends are accurately aligned, the folded ends can be used as they are as the edges of the main body tube 1 as they are or with some processing. Conventionally, it was difficult to align the folded ends, so the main body cylinder was formed longer, and excess parts were cut out later.In the present invention, such a cutting step can be made unnecessary, and It is also possible to make the yield of the reinforcing fibers approaching 100%.

【0032】なお、以上の実施例はFRP製プロペラシ
ャフトについて説明したが、本発明は、プロペラシャフ
トに限らず、両端部に他部材が接合される他のFRP筒
体、例えばFRP製トラスやFRP製配管パイプ等にも
好適に適用できる。
Although the above embodiments have been described with reference to a propeller shaft made of FRP, the present invention is not limited to a propeller shaft, but may be applied to other FRP cylinders to which other members are joined at both ends, for example, a truss made of FRP or an FRP. It can also be suitably applied to piping pipes and the like.

【0033】[0033]

【発明の効果】以上説明したように、本発明のFRP筒
体およびその製造方法によるときは、筒軸方向にみた各
部位にそれぞれ最適な強度特性を効率よく発揮させるこ
とができ、かつ、層間破壊を生じさせることなく目標と
した強度特性を正確にしかも最も効果的に発現させるこ
とができ、全体にわたって所望の特性をバランスよく有
するFRP筒体を実現できる。
As described above, according to the FRP cylinder and the method of manufacturing the same according to the present invention, optimal strength characteristics can be efficiently exhibited at each part viewed in the cylinder axis direction, and the interlayer strength is improved. The desired strength characteristics can be accurately and most effectively expressed without causing breakage, and an FRP cylinder having desired characteristics over the entire body in a well-balanced manner can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係るFRP筒体(プロペラ
シャフト)の部分縦断面図である。
FIG. 1 is a partial longitudinal sectional view of an FRP cylinder (propeller shaft) according to an embodiment of the present invention.

【図2】図1のプロペラシャフトのFRP製本体筒の特
性を表わした模式図である。
FIG. 2 is a schematic view showing characteristics of an FRP main body cylinder of the propeller shaft of FIG.

【図3】図2の本体筒成形の様子を示す斜視図である。FIG. 3 is a perspective view showing a state of molding the main body cylinder of FIG. 2;

【符号の説明】[Explanation of symbols]

1 FRP製本体筒(FRP筒体) 2 継手 3 強化繊維 4 マンドレル 5 樹脂含浸強化繊維束 6 ガイド手段 DESCRIPTION OF SYMBOLS 1 FRP main cylinder (FRP cylinder) 2 Joint 3 Reinforcing fiber 4 Mandrel 5 Resin impregnated reinforcing fiber bundle 6 Guide means

フロントページの続き (56)参考文献 特開 平3−223513(JP,A) 特開 昭58−45926(JP,A) 特開 昭63−167184(JP,A) 実開 平1−91118(JP,U) (58)調査した分野(Int.Cl.7,DB名) B29C 70/00 - 70/88 F16C 3/00 - 3/30 Continuation of the front page (56) References JP-A-3-223513 (JP, A) JP-A-58-45926 (JP, A) JP-A-63-167184 (JP, A) JP-A-1-91118 (JP) , U) (58) Fields investigated (Int. Cl. 7 , DB name) B29C 70/00-70/88 F16C 3/00-3/30

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 筒軸方向に往復動されながらヘリカル巻
された、連続繊維からなる強化繊維で強化された樹脂か
らなるFRP筒体において、FRP筒体の筒軸方向両端
部における強化繊維の巻角度Aが±80〜90°、FR
P筒体の筒軸方向中央部における強化繊維の巻角度Bが
±5〜20°、両端部と中央部との間における巻角度が
巻角度Aから巻角度Bに徐々に変化する巻角度Cであ
り、かつ、往復動により積層された強化繊維の各巻き付
け層の巻角度は筒軸方向全長にわたり個々の部位におい
て順次積層された各巻き付け層間で一致しており、さら
に、FRP筒体の筒軸方向両端部における肉厚tA が中
央部における肉厚tB よりも大きく、両端部と中央部と
の間における肉厚が肉厚tA から肉厚tB に徐々に変化
する肉厚tC であることを特徴とするFRP筒体。
1. An FRP cylinder made of a resin reinforced by a continuous fiber and reinforced by a continuous fiber while being reciprocated in a cylinder axis direction, wherein the reinforcing fiber is wound at both ends of the FRP cylinder in the cylinder axis direction. Angle A is ± 80-90 °, FR
The winding angle B of the reinforcing fiber at the center of the P cylindrical body in the axial direction is ± 5 to 20 °, and the winding angle C between both ends and the center gradually changes from the winding angle A to the winding angle B. , and the and the individual sites odor winding angle of each winding layer of the reinforcing fibers are stacked to Ri cotton in the cylinder axis direction entire length by reciprocating
Coincides with the winding layers which are sequentially laminated Te, further, larger than the thickness t B the thickness t A in the cylinder axial direction end portions of the FRP tubular body at the central portion, between the end portions and the central portion FRP cylinder, wherein the wall thickness of the wall thickness t C gradually changing from the thickness t a in the thickness t B in the.
【請求項2】 FRP筒体がプロペラシャフトであり、
FRP筒体の両端部に継手が接合されている、請求項1
のFRP筒体。
2. The FRP cylinder is a propeller shaft,
The joint is joined to both ends of the FRP cylinder.
FRP cylinder.
【請求項3】 マンドレル上に、樹脂を含浸した強化繊
維束をマンドレル軸方向に往復動させながらヘリカル巻
してFRP筒体を成形するに際し、前記強化繊維束の巻
角度を、両端部においては±80〜90°、中央部にお
いては±5〜20°、両端部と中央部との間においては
±80〜90°から±5〜20°に徐々に変化させ、か
つ、前記往復動により積層されていく強化繊維の各巻き
付け層の巻角度をマンドレル軸方向全長にわたり個々の
部位において順次積層した各巻き付け層間で一致させ、
さらに、FRP筒体の筒軸方向両端部における肉厚tA
が中央部における肉厚tB よりも大きく、両端部と中央
部との間における肉厚が肉厚tA から肉厚tB に徐々に
変化する肉厚tC となるように成形することを特徴とす
る、FRP筒体の製造方法。
3. When forming an FRP cylinder by helically winding a reinforcing fiber bundle impregnated with resin on a mandrel while reciprocating in a mandrel axial direction, the winding angle of the reinforcing fiber bundle is set at both ends. ± 80 to 90 °, ± 5 to 20 ° at the center, and gradually change from ± 80 to 90 ° to ± 5 to 20 ° between both ends and the center, and laminating by the reciprocation Ri individual to cotton a winding angle of each winding layer of the reinforcing fibers will be in the mandrel axial direction overall length
Match between each winding layer sequentially laminated at the site ,
Further, the thickness t A at both ends of the FRP cylinder in the cylinder axis direction.
Is larger than the thickness t B at the central portion, and the thickness between both ends and the central portion is a thickness t C that gradually changes from the thickness t A to the thickness t B. A method for producing an FRP cylinder, which is characterized in that:
JP26138394A 1994-09-30 1994-09-30 FRP cylinder and method of manufacturing the same Expired - Fee Related JP3339212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26138394A JP3339212B2 (en) 1994-09-30 1994-09-30 FRP cylinder and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26138394A JP3339212B2 (en) 1994-09-30 1994-09-30 FRP cylinder and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0899373A JPH0899373A (en) 1996-04-16
JP3339212B2 true JP3339212B2 (en) 2002-10-28

Family

ID=17361094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26138394A Expired - Fee Related JP3339212B2 (en) 1994-09-30 1994-09-30 FRP cylinder and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3339212B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101714164B1 (en) 2015-07-01 2017-03-23 현대자동차주식회사 Fiber reinforced plastic member of vehicle and method for producing the same
GB2598094A (en) * 2020-08-10 2022-02-23 Lentus Composites Ltd Drive shaft
CN115107262B (en) * 2022-08-30 2023-01-03 浙江大学 Rigidity-variable metal-lining-free carbon fiber reinforced hydraulic cylinder

Also Published As

Publication number Publication date
JPH0899373A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
US4605385A (en) Fibre reinforced plastics power transmission shaft
JP2001047883A (en) Power transmission shaft
JP2002235726A (en) Fiber-reinforced resin pipe and power transmission shaft using the resin pipe
JP4771209B2 (en) FRP cylinder and manufacturing method thereof
JP3339212B2 (en) FRP cylinder and method of manufacturing the same
JP2007271079A (en) Torque transmission shaft
JP3269287B2 (en) FRP cylinder and manufacturing method thereof
JP3296116B2 (en) FRP cylinder and manufacturing method thereof
JP2620607B2 (en) Drive shaft made of fiber reinforced resin and method of manufacturing the same
JP2020159534A (en) FRP composite molded product
JP2003001717A (en) Frp pipe for propeller shaft
JP5699657B2 (en) Propeller shaft and manufacturing method thereof
JP6581737B1 (en) Tube for power transmission shaft and power transmission shaft
JP3433850B2 (en) FRP cylinder and manufacturing method thereof
JPH041374Y2 (en)
JPH08205649A (en) Transmission shaft for bush cutter, its production and operation stick for bush cutter
JP3183432B2 (en) Propeller shaft and method of manufacturing the same
JP4631428B2 (en) FRP cylinder, shaft-like component using the same, and propeller shaft
JP3391298B2 (en) Propeller shaft
JP3183433B2 (en) Propeller shaft and method of manufacturing the same
JP3191528B2 (en) Propeller shaft and method of manufacturing the same
JPH08105429A (en) Frp cylinder body and manufacture of it
JP4771208B2 (en) FRP cylinder and manufacturing method thereof
JP2019163823A (en) Power transmission shaft
JP2004293716A (en) Shaft for power transmission

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080816

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090816

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees