JP2004293716A - Shaft for power transmission - Google Patents

Shaft for power transmission Download PDF

Info

Publication number
JP2004293716A
JP2004293716A JP2003089243A JP2003089243A JP2004293716A JP 2004293716 A JP2004293716 A JP 2004293716A JP 2003089243 A JP2003089243 A JP 2003089243A JP 2003089243 A JP2003089243 A JP 2003089243A JP 2004293716 A JP2004293716 A JP 2004293716A
Authority
JP
Japan
Prior art keywords
wound
fiber bundle
resin
power transmission
transmission shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003089243A
Other languages
Japanese (ja)
Inventor
Toshihiro Gotou
稔裕 後藤
Yasunori Nonogaki
保紀 野々垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2003089243A priority Critical patent/JP2004293716A/en
Publication of JP2004293716A publication Critical patent/JP2004293716A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaft for power transmission, eliminating a need for fitting end members therein, reducing weight of a wound part compared with a metal or resin wound member, and reducing a cost of the wound part compared with a resin wound member. <P>SOLUTION: A propeller shaft 11 comprises: an FRP tube member 12; a first end member 13 joined to a first end of the FPR tube member; and a second member 14 joined to a second end of the FPR tube member; a wound member 15 disposed inside of the tube member 12 and between the first end member 13 and the second end member 14. The wound member 15 is formed in a cylindrical shape, and made of paper. The paper wound member 15 is connected to the first and second end members 13, 14, while their ends are fit to outer circumferences of fitting tube parts 13c, 14c. The tube member 12 is molded on wounded parts 13a, 14a of fiber bundles of the first and second end members 13, 14, and a peripheral face 15a of the wound member 15. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化プラスチック(以下、FRPという)製の筒部材の少なくとも一端に端部部材が結合されている動力伝達用シャフトに関する。
【0002】
【従来の技術】
従来、車両の軽量化を図るために各構造部材のさらなる軽量化が要求され、プロペラシャフトにおいてもFRP製のものに切り替えることによる軽量化が一部実施されている。FRP製のプロペラシャフトは、FRP製の筒部材とその両端に継手(ヨーク)や駆動力を伝達するための他部品(例えば、スプラインギヤ付きシャフト)等を備える。このFRP製のプロペラシャフトを製造するには、一般にフィラメントワインディング法が用いられる。
【0003】
FRP製プロペラシャフトを製造する方法として、図9に示すように、FRP製プロペラシャフト70として、FRP製パイプ71の両端に、FRP製パイプ71を駆動軸や従動軸等と連結する金属製の継手(ヨーク)72を圧入して接合した構造のものが一般的である(例えば、特許文献1参照。)。
【0004】
継手72にはFRP製パイプ71との接合部となる外周面に、FRP製パイプ71の端部内径より大きな外径のセレーション73が形成されている。そして、FRP製パイプ71に継手72の接合部を圧入することで、継手72のセレーション73の歯によって、FRP製パイプ71の内周面に溝が刻設され、歯が溝に食い込むことで継手72とFRP製パイプ71とが一体回転するための接合強度が確保される。
【0005】
マンドレルを使用しない製造方法として、図10(a)に示すように、外側端に中心軸74を突設した端部部材75を両端にそれぞれ嵌着したプラスチック又は金属製の薄肉円筒状の被巻付け部材76を使用して製造する方法が提案されている(例えば、特許文献2参照。)。この方法では、図10(b)に示すように、フィラメントワインディング法により樹脂含浸繊維を端部部材75から被巻付け部材76にかけて連続して巻き付けて樹脂含浸繊維層を形成し、そのまま硬化成形した後、必要により中心軸74を除去してFRP製プロペラシャフトを製造する。
【0006】
また、図11に示すように、FRP製の内側軸部材77の両端に、端面部の中心から軸部78が突出する継手79を嵌合させ、内側軸部材77及び継手79の筒部にフィラメントワインディング法により樹脂含浸繊維を巻き付けてFRP製プロペラシャフトを製造する方法も提案されている(例えば、特許文献3参照。)。
【0007】
【特許文献1】
特開平5−139170号公報(明細書の段落[0014]、[0018]、[0020]、図1、図2)
【特許文献2】
特開昭55−118831号公報(第2頁、図3,4)
【特許文献3】
特開昭59−050216号公報(第2,3頁、図1)
【0008】
【発明が解決しようとする課題】
しかし、特許文献1に記載の方法では、圧入時にFRP製パイプ71に掛かる多大な応力の対策が必要である。また、FRP製パイプ71の内面とセレーション73の溝の底部との間に隙間が存在するため、FRP製パイプ71の端面から水分が侵入するのを防止するために圧入部分をシール等する必要がある。また、FRP製パイプ71をフィラメントワインディング法で製造する際に、マンドレルの脱型工程が必要であり、引き抜く手間があった。
【0009】
また、継手のような端部部材の圧入が不要な方法として特許文献2及び特許文献3の方法により製造されたFRP製プロペラシャフトは、被巻付け部材が金属製の場合、合成樹脂に比べ重量が重いという問題がある。また、被巻付け部が樹脂製の場合、樹脂含浸繊維を巻き付けた後、加熱硬化するため、被巻付け部材に加熱温度で軟化しない樹脂を使用する必要がある。しかし、このような樹脂で筒状の被巻付け部材を形成すると金属製の被巻付け部材よりコストが高くなり、FRP製プロペラシャフトのコストが高くなるという問題がある。
【0010】
本発明は、上記問題点を解決するためになされたものであって、その目的は、端部部材の圧入が不要であり、被巻付け部材が金属製及び樹脂製の場合に比べ軽量化できるとともに、被巻付け部材が樹脂製の場合に比べ低コスト化することができる動力伝達用シャフトを提供することにある。
【0011】
【課題を解決するための手段】
上記問題点を解決するために、請求項1に記載の発明は、筒状の被巻付け部材の少なくとも一端に端部部材を備え、前記被巻付け部材及び端部部材の外周面に繊維強化プラスチック製の筒部材が成形されている動力伝達用シャフトであって、前記被巻付け部材が紙製である。この発明によれば、端部部材の圧入が不要なため、圧入部分のシールが不要となる。また、被巻付け部材を紙製にすることで従来の金属製及び樹脂製の場合に比べ軽量化することができる。また、紙製であるため、樹脂製に比べ安価であり、コストを低減することができる。
【0012】
請求項2に記載の発明は、請求項1に記載の発明において、前記端部部材は前記外周面に係止部を備え、前記筒部材の強化繊維は前記外周面において複数の層を構成するように前記端部部材に巻き付けられ、かつ最内層を構成する繊維束は互いに交差しない層であり、その最内層を構成する繊維束が前記係止部により前記端部部材に対する相対移動が規制された状態で成形されるとともに全長にわたって連続している。
【0013】
この発明によれば、FRP製の筒部材を構成する繊維束は、端部部材の外周面に形成された係止部により端部部材に対する周方向への相対移動が規制され、また、全長にわたって連続しているため、即ち切断されていないため、回転トルクが確実に伝達される。
【0014】
請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記係止部は、前記筒部材のうち最内層を構成する繊維束の配列を案内するように規則的に配列された複数の凸部で構成されている。この発明によれば、最内層を構成する繊維束が同一層において交差する配列状態でも、互いに平行となる配列状態のいずれであっても端部部材と筒部材との結合が良好になされる。
【0015】
請求項4に記載の発明は、請求項2又は請求項3に記載の発明において、前記繊維束は同一層においては互いに平行に配列されており、前記係止部は前記最内層の繊維束の配列方向に沿って延びる複数の凸条で構成されている。この発明によれば、最内層を構成する全ての繊維束の配列方向と、係止部としての凸条の延びる方向とが平行なため、端部部材とFRP製の筒部材との相対移動の規制機能が高まる。
【0016】
請求項5に記載の発明は、請求項4に記載の発明において、前記係止部は、セレーションで構成されている。この発明によれば、前記係止部の加工が容易となる。
【0017】
請求項6に記載の発明は、請求項1〜請求項5のいずれか一項に記載の発明において、前記被巻付け部材の内部に前記被巻付け部材の軸方向と直角となる状態の補強部材を備える。この発明によれば、被巻付け部材の内部に補強部材を有するため、ねじり強度、疲労強度を向上させることができる。
【0018】
請求項7に記載の発明は、請求項6に記載の発明において、前記被巻付け部材は前記補強部材に対応する位置に孔を備え、該孔内及び該孔と前記補強部材との間には接着剤が充填されている。この発明によれば、補強部材は、被巻付け部材内の所定の位置に接着剤により確実に固定される。
【0019】
【発明の実施の形態】
(第1の実施形態)
以下、本発明をFRP製プロペラシャフト(以下、プロペラシャフトという)に具体化した第1の実施の形態を図1〜図5を参照して説明する。
【0020】
図1はFRP製プロペラシャフトの模式断面図を示す。プロペラシャフト11は、FRP製の筒部材12と、その第1端部に接合された第1の端部部材13と、第2端部に接合された第2の端部部材14と、筒部材12の内側で第1の端部部材13及び第2の端部部材14間に配設された被巻付け部材15とを備えている。第1の端部部材13には自在継手を構成する継手としてのヨークが使用され、第2の端部部材14には金属製の滑り継手が使用されている。
【0021】
第1の端部部材13及び第2の端部部材14は、筒部材12との結合部分となる円筒状の繊維束被巻付け部13a,14aを備え、その外周面には係止部としてのセレーション16が形成されている。筒部材12の強化繊維は複数の層を構成するように巻き付けられた繊維束からなり、最内層にヘリカル巻層が設けられている。繊維束は同一層においては互いに平行に配列されており、セレーション16の歯は繊維束の配列方向に沿って延びるように形成されている。ヘリカル巻層を構成する繊維束は、セレーション16により端部部材13,14に対する周方向への相対移動が規制されるとともに筒部材12の全長にわたって連続している。即ち、セレーション16が形成された端部部材をFRP製のパイプに後から圧入する構成と異なり、セレーション16と係合する繊維束が切断されていない。
【0022】
セレーション16の歯は、最内層のヘリカル巻層を構成する繊維束が第1及び第2の端部部材13,14の軸方向と成す角度(配列角度)に等しい角度で、第1及び第2の端部部材13,14の軸方向に対して延びるように形成されている。また、セレーション16の歯の高さ、即ち溝の深さは1層分の繊維束の厚さとほぼ同じに形成されている。
【0023】
第1の端部部材13は、繊維束被巻付け部13aの一端側に継手部13bが突設され、他端側に繊維束被巻付け部13aより小径の嵌合筒部13cが突設されている。継手部13bには、例えば、ユニバーサルジョイントを取り付けるための孔13dが形成されている。第2の端部部材14は、繊維束被巻付け部14aの一端側にシャフト状の継手部14bが突設され、他端側に繊維束被巻付け部14aより小径の嵌合筒部14cが突設されている。シャフト状の継手部14bには、筒部材12をフィラメントワインディング法(以下、FW法という)で形成する際に使用する治具の固定に使用するねじ穴14dが先端に形成されている。第1及び第2の端部部材13,14の繊維束被巻付け部13a,14aと継手部13b,14bとの間には、環状の溝17が形成されている。
【0024】
被巻付け部材15は円筒状に形成されており、紙製(この実施の形態ではボール紙製)である。被巻付け部材15は、その端部が嵌合筒部13c、14cの外周に嵌合され、第1及び第2の端部部材13,14と被巻付け部材15の軸が一致した状態で連結されている。被巻付け部材15の外周面15a上に筒部材12が成形されている。
【0025】
筒部材12は、第1及び第2の端部部材13,14との結合部分が肉厚に形成されている。筒部材12はFW法によって形成される。筒部材12は、主にヘリカル巻で構成されているが、結合部分及びその近くにはフープ巻が形成されている。また、筒部材12の最外層にはポリエステル糸が全長に渡ってフープ巻で巻き付けられている。
【0026】
次に前記のように構成されたプロペラシャフトの製造方法について説明する。図2は第1の端部部材、第2の端部部材、被巻付け部材及び治具の関係を示す模式分解斜視図であり、図3は第1の端部部材、第2の端部部材、被巻付け部材及び治具が組み付けられた状態の一部破断模式断面図である。
【0027】
プロペラシャフト11を製造するには、マンドレルを使用せず、治具18を使用して第1及び第2の端部部材13,14が両端に結合された被巻付け部材15をフィラメントワインディング装置(以下、FW装置という)に支持してフィラメントワインディングが行われる。
【0028】
図3に示すように、治具18は第1及び第2の端部部材13,14の樹脂含浸繊維束が密着して巻き付けられる部分を除いた部分を覆うとともに、FW時に樹脂含浸繊維の一部が巻き付けられる筒状のカバー部19を備えている。カバー部19は一端側が小径に形成され、FW装置の回転支持部に支持可能な軸部20がカバー部19の小径側の端部に連続して一体的に形成されている。また、カバー部19の周面には周方向に沿ってピン21が一定間隔で設けられている。
【0029】
第1の端部部材13に組み付けられる治具18は、第1の端部部材13を軸部20と被巻付け部材15の回転中心とが同軸となる状態で支持可能で、軸部20と一体回転可能な支持部22を備えている。支持部22は、一側端に第1の端部部材13に取り外し可能に固定されるT字状部22aが設けられたシャフトで構成され、他端側に雄ねじ部22bが形成されている。そして、T字状部22aが孔13dに挿通された状態で、軸部20から突出した雄ねじ部22bに螺合されるナット24が締め付けられることにより、軸部20の端部に一体に形成された座金部25を介して軸部20に固定されるようになっている。図3に示すように、治具18はカバー部19の端部内面が、継手部13bの段部に嵌合されて、治具18の芯出しが行われるようになっている。
【0030】
第2の端部部材14に組み付けられる治具18は、第2の端部部材14を軸部20と被巻付け部材15の回転中心とが同軸となる状態で支持可能で、軸部20と一体回転可能なボルト23を備えている。ボルト23は先端部に雄ねじ23aが設けられ、雄ねじ23aがねじ穴14dに螺合される状態で締め付けられることにより、軸部20の端部に一体に形成された座金部25を介して軸部20に固定されるようになっている。図3に示すように、治具18はカバー部19の端部内面が、継手部14bの基端の段部に嵌合されて、治具18の芯出しが行われるようになっている。
【0031】
両端に第1及び第2の端部部材13,14が取り付けられた被巻付け部材15にフィラメントワインディングを行う場合は、まず第1及び第2の端部部材13,14にそれぞれ治具18を組み付ける。第1の端部部材13に治具18を組み付ける際は、支持部22のT字状部22aを孔13dに挿通した後、支持部22をカバー部19の大径部側から軸部20に挿通する。そして、軸部20から突出した雄ねじ部22bにナット24を螺合させて締め付けることにより軸部20の端面とナット24との間に介在された座金部25を介して軸部20を第1の端部部材13に押圧し、支持部22を介して治具18が第1の端部部材13に組み付けられる。
【0032】
第2の端部部材14に治具18を組み付ける際は、カバー部19を第2の端部部材14の継手部14b側を覆うように第2の端部部材14に当接させ、ボルト23を座金部25に挿通して軸部20側からカバー部19に挿通する。そして、雄ねじ23aを第2の端部部材14のねじ穴14dに螺合させて締め付けることにより、軸部20の端面とボルト23の頭部との間に介在された座金部25を介して治具18が第2の端部部材14に組み付けられる。そして、図3に示すように、第1の端部部材13、第2の端部部材14、被巻付け部材15及び治具18が組み付けられると、FW装置の一組のチャック間に支持される被繊維束巻付け部材26を構成する。
【0033】
図4は巻付けヘッドの模式図である。FW装置は、本願出願人が先に提案した装置(特開2002−283467号公報に開示された装置)と同様な巻付けヘッド(ヘリカル巻用ヘッド及びフープ巻用ヘッド)27を備え、図4ではヘリカル巻用ヘッドのみが図示されている。巻付けヘッド27はベースプレート上に設けられたレール28上を図示しないチャックに支持された被繊維束巻付け部材26に沿って、図示しない駆動手段により移動可能となっている。
【0034】
巻付けヘッド27は被繊維束巻付け部材26に貫通される孔29を有する支持板30を備える。ヘリカル巻用ヘッドの支持板30には、複数本の繊維束Rを同時に被繊維束巻付け部材26に対してヘリカル巻で巻き付け可能とするため、図4に示すように、複数のガイド31が被繊維束巻付け部材26の周方向に沿って配列された状態で設けられている。フープ巻部を備えたフープ巻用ヘッドは、繊維束Rを被繊維束巻付け部材26に対して2本同時にフープ巻で巻き付け可能とするためのガイドを備えている。ヘリカル巻用ヘッドとフープ巻用ヘッドとは一体的な移動と、独立した状態での移動とが可能に構成されている。そして、複数本の繊維束Rを同時に被繊維束巻付け部材26に対してヘリカル巻で巻き付け可能となり、ヘリカル巻用ヘッドが被繊維束巻付け部材26に沿って一回往動又は復動することで被繊維束巻付け部材26の全周にわたって繊維束Rがヘリカル巻で巻き付けられる。
【0035】
作業者によりFW装置のチャックに被繊維束巻付け部材26が支持された状態にセットされた後、FW装置により被繊維束巻付け部材26に繊維束が巻き付けられる。FW装置が駆動されると、被繊維束巻付け部材26が一定方向に回転され、巻付けヘッド27が被繊維束巻付け部材26の軸方向に沿って往復移動される。そして、巻付けヘッド27により繊維束Rは最内層となる一層目がヘリカル巻層を形成するように、軸方向となす角度が所定の角度となるように巻き付けられる。巻き付け角度は製品のプロペラシャフトに要求される、曲げ、ねじり、振動等の特性を満足する所定の値(例えば、10〜15°)に設定される。そして、この巻き付け角度がセレーション16の歯の延びる方向と軸方向とのなす角と同じであるため、繊維束Rがセレーション16の溝内に沿って配列されるように巻き付けられる。また、樹脂含浸繊維はカバー部19に設けられたピン21の間を通過するように巻き付けられ、ピン21によってカバー部19の周方向への移動が規制された状態で巻き付けられる。その後、さらにヘリカル巻やフープ巻層が必要な強度を得られように積層され、複数の層が形成される。
【0036】
そして、巻き付けが終了した成形品32の両端部を、ピン21の突設位置より繊維束被巻付け部13a,14a寄りの治具18と対面する位置でそれぞれ切断する。第1の端部部材13の切断位置は、図5に示すA位置において、カッター33により切断される。第2の端部部材14においても同様の位置で切断される。そして、成形品32が形成された被繊維束巻付け部材26がFW装置のチャックから取り外され、成形品32の未硬化の段階で前記切断位置より軸部20側に巻き付けられた樹脂含浸繊維束が除去される。
【0037】
その後、成形品32は加熱炉に入れられ、所定の温度で樹脂が硬化される。加熱硬化後、繊維束被巻付け部13a,14aとカバー部19の大径側の端との間に対応する位置に設けられた溝17の箇所で切断される。切断は、同じくカッター33により行われる。次に、両治具18が取り外されることにより、被巻付け部材15の外周面15a上に筒部材12が形成されるとともに、筒部材12の端部に第1及び第2の端部部材13,14が結合されたFRP製のプロペラシャフト11が完成する。治具18を取り外す場合、第1の端部部材13側ではナット24を緩めて支持部22から取り外す。第2の端部部材14の場合は、ボルト23の雄ねじ23aと第2の端部部材14のねじ穴14dとの螺合を解除した後、取り外す。
【0038】
この実施の形態では以下の効果を有する。
(1)紙製の被巻付け部材15の両端に端部部材13,14が取り付けられ、その状態でFW装置により樹脂含浸繊維束が巻き付けられてプロペラシャフト11が製造される。このため、端部部材の圧入が不要となる。また、プロペラシャフト11を構成する被巻付け部材15が紙製であるため、被巻付け部材15が金属製及び樹脂製の場合に比べ軽量化することができる。また、被巻付け部材15が樹脂製の場合に比べてコストを低減することができる。
【0039】
(2)被巻付け部材15が紙製であるため、径の異なる被巻付け部材15を製造する場合、例えば径の異なる金属製の筒部材等に紙を巻き付けることで被巻付け部材15の製造が可能である。このため、金属製の被巻付け部材を製造したり、マンドレルに樹脂含浸繊維等を巻き付けて加熱硬化し、脱型して熱硬化性樹脂製の被巻付け部材を製造したりする場合に比べ、被巻付け部材15のサイズ変更が容易で、種々の径のプロペラシャフトに対応しやすい。
【0040】
(3)被巻付け部材15が紙製で軽量であるため、金属や熱硬化性樹脂製の被巻付け部材を使用した場合に比べプロペラシャフトの共振点が高くなる。
(4)治具18で繊維束を折り返して樹脂含浸繊維を巻き付けた。このため、従来技術の特許文献2及び3と異なり端部部材に軸部を設ける必要がなく、ヨークタイプの端部部材を使用することもできる。
【0041】
(5)筒部材12を構成する繊維束のうち最内層を構成する全ての繊維束は、第1及び第2の端部部材13,14の外周面に形成されたセレーション16の溝内に沿って配列されるように巻き付けられている。このため、筒部材12は第1及び第2の端部部材13,14に対する周方向への相対移動が規制され、回転トルクの伝達が確実に行われる。また、全長にわたって樹脂含浸繊維束が連続しており、切断されていないため、回転トルクの伝達が良好に行われる。また、セレーション16であるため、加工が容易である。
【0042】
(第2の実施の形態)
次に、本発明を補強部材としてのバルクヘッドを有するプロペラシャフトに具体化した第2の実施の形態について図6を参照して説明する。なお、本実施の形態は、被巻付け部材の内部にバルクヘッドが固定されている点で異なり、その他は前記第1の実施の形態と基本的に同じである。
【0043】
図6(a)はプロペラシャフトの模式図、(b)はバルクヘッドの模式斜視図である。バルクヘッド40は、金属の板で構成され、プロペラシャフト41を製造する際に、挿入されて固定される。バルクヘッド40は中央部に孔42を備える。バルクヘッド40は挿入される被巻付け部材15の内部に嵌合している。
【0044】
次に、本実施形態におけるプロペラシャフトの製造方法について説明する。
バルクヘッド40は、被巻付け部材15に端部部材13,14を取り付ける前に又は端部部材13,14のいずれか一方を取り付けた後に、被巻付け部材15内の所定の位置に挿入される。バルクヘッド40の挿入には、例えば孔42に係止して押し込み可能な挿入棒(図示略)が用いられる。この際、バルクヘッド40は、被巻付け部材15の内部に嵌合した状態で挿入される。上記のようにして、3つのバルクヘッド40が等間隔に挿入される。
【0045】
次に、バルクヘッド40を内部に有する被巻付け部材15、第1及び第2の端部部材13,14及び治具18が組み付けられて一体となった被繊維束巻付け部材(図示略)が構成された後、その被繊維束巻付け部材がFW装置にセットされ、樹脂含浸繊維束が巻き付けられる。そして、被繊維束巻付け部材に樹脂含浸繊維束が巻き付けられた後、前記実施形態と同様、図5に示すように、A位置で樹脂含浸繊維束が切断される。そして、加熱炉にて樹脂が硬化される。樹脂はこの硬化する際に収縮する。このため、樹脂含浸繊維束が外周面15aに形成されている被巻付け部材15もそれに伴い収縮する。そして、その収縮により、被巻付け部材15の径が縮むため、バルクヘッド40は被巻付け部材15の内部においてその収縮する力により所定の位置に固定される。これ以後は、上記第1の実施の形態と同様にしてプロペラシャフト41が製造される。
【0046】
この実施の形態では第1の実施の形態の効果(1)〜(5)と同様の効果を有する他に以下の効果を有する。
(6)バルクヘッド40が紙製の被巻付け部材15の内部に固定されている。このため、プロペラシャフト41のねじり強度及び疲労強度を向上させることができる。
【0047】
(第3の実施の形態)
次に、本発明を補強部材としてのバルクヘッドを有するプロペラシャフトに具体化した第3の実施の形態について図7を参照して説明する。なお、上記第2の実施の形態と異なる点を中心に説明する。
【0048】
図7(a)はバルクヘッドの正面図、(b)はバルクヘッドが固定されたプロペラシャフトの要部模式断面図である。
プロペラシャフト50には図7(a)に示す形状のバルクヘッド51が固定されている。バルクヘッド51は、中央に孔52を有する2枚の金属製の円板53,54が例えばスポット溶接で接合されて一体化されたものである。2枚の円板53,54の周縁には、接合面とは反対側に円弧状に屈曲した屈曲部53a,54aを備え、その屈曲部53a,54aの間に溝部55が形成されている。
【0049】
被巻付け部材15にはバルクヘッド51が固定される位置に対応して孔56が形成されている。孔56の個数は特に限定されないが、この実施の形態ではバルクヘッド51が固定される位置に被巻付け部材15の周方向に沿って4つの孔56が形成されている。図7(b)では、そのうち2つを示す。溝部55と孔56とは対向する位置にあり、それぞれに接着剤57が充填されている。
【0050】
被巻付け部材15の外周面には、バルクヘッド51と対向する箇所を除いた部分に樹脂の浸透を防止するフィルム58が巻き付けられており、バルクヘッド51と対向する箇所以外はフィルム58上に筒部材12が成形されている。
【0051】
次に、この実施の形態のプロペラシャフトの製造方法について説明する。
まず、固定されるバルクヘッド51に対向する孔56及び孔56の周辺を除く外周面にフィルム58が巻き付けられた状態の被巻付け部材15にバルクヘッド51が挿入される。バルクヘッド51は、第2の実施の形態と同様に図示しない挿入棒により被巻付け部材15に嵌合した状態で被巻付け部材15の孔56と溝部55とが対向する位置まで挿入される。そして、4つの孔56からディスペンサ等で熱硬化性の接着剤57が流し込まれ、孔56及び溝部55に接着剤57が充填される。
【0052】
次に、バルクヘッド51を内部に有する被巻付け部材15、第1及び第2の端部部材13,14及び治具18が組み付けられて一体となった被繊維束巻付け部材(図示略)が構成された後、その被繊維束巻付け部材がFW装置にセットされ、樹脂含浸繊維束が巻き付けられる。そして、被繊維束巻付け部材に樹脂含浸繊維束が巻き付けられた後、第1の実施の形態と同様、図5に示すように、A位置で樹脂含浸繊維束が切断される。そして、加熱炉にて樹脂が熱硬化される。この際、接着剤57も熱硬化性であるため熱により硬化し、バルクヘッド51がその位置に固定される。これ以後は、上記第1の実施の形態と同様にしてプロペラシャフト50が製造される。
【0053】
この実施の形態では、第1の実施の形態の効果(1)〜(5)及び第2の実施の形態の効果(6)に加え以下のような効果を有する。
(7)プロペラシャフト50は、バルクヘッド51が固定される位置に孔56を備え、その孔56及びバルクヘッド51の溝部55には接着剤57が充填されている。このため、バルクヘッド51は、接着剤57により被巻付け部材15内の所定の位置に確実に固定される。
【0054】
(8)バルクヘッド51が固定される位置に孔56が形成された被巻付け部材15内に該孔56と対応する位置にバルクヘッド51を嵌合した状態で挿入し、孔56からディスペンサ等により接着剤57を孔56及び溝部55に充填した状態でフィラメントワインディングを行う。従って、容易に接着剤57を充填することができる。
【0055】
(9)バルクヘッド51が備える屈曲部53a,54aは、接合面とは反対側に円弧状に屈曲しているため、周縁部に角がない。従って、バルクヘッド51が被巻付け部材15に挿入される際に、被巻付け部材15の内面がバルクヘッド51により削られることがない。
【0056】
(10)プロペラシャフト50は、被巻付け部材15に形成されている孔56及びその周辺を除く箇所にフィルム58が巻き付けらており、そのフィルム58上に筒部材12が成形されている。このため、被巻付け部材15のフィルム58が巻かれている箇所では樹脂含浸繊維束の樹脂が浸透していない状態で筒部材12が成形されている。従って、筒部材12の振動を吸収して抑制する効果が期待できる。
【0057】
なお、実施の形態は上記に限定されるものではなく、例えば次のように具体化してもよい。
○被巻付け部材15は、樹脂含浸繊維束を巻き付ける時につぶれない程度の強度を持つ紙であれば特に限定されない。
【0058】
○第1及び第2の実施の形態において、被巻付け部材15の外周面15aに樹脂の浸透防止のためのコーティングを施してもよい。例えば樹脂コーティングを施してもよい。また、外周面15aにシートやフィルムを巻いてもよい。これにより、樹脂含浸繊維束を巻き付ける際に、樹脂が紙製の被巻付け部材15に浸透しない。このため、加熱炉で樹脂を硬化する際に、被巻付け部材15に浸透した樹脂が硬化することで被巻付け部材15と筒部材12と一体となることがなく、筒部材12の振動を吸収して抑制する効果が期待できる。
【0059】
○被巻付け部材15に中空構造を備える紙を使用してもよい。例えば、段ボールのようにコルゲート構造の紙を用いてもよい。この場合、上記のように樹脂の浸透防止のためのコーティングを施してもよい。
【0060】
○治具18を用いてプロペラシャフト11,41,50を製造していたが、従来技術の図10に示すように端部部材に直接樹脂含浸繊維を巻き付ける製造方法であってもよい。また、図11に示すような製造方法において、FRP製の内側軸部材の代わりに紙製の被巻付け部材を使用して製造してもよい。
【0061】
○治具18を使用して、一層分の複数本の繊維束を同時に被繊維束巻付け部材に対してヘリカル巻で巻き付けるのではなく、一本の樹脂含浸繊維をFW法によりヘリカル巻で巻き付けて製造してもよい。この場合、係止部としてピン等の凸部を設ける。
【0062】
○製品のプロペラシャフトに要求される、曲げ、ねじり、振動等の特性等を考慮して、フープ巻の廃止、巻き層数の削減、巻き付け範囲(軸方向における範囲)低減、付着の樹脂量の削減等を実施してもよい。これらによれば、プロペラシャフト11,41,50をより軽量化することができる。
【0063】
○係止部はセレーション16に限らない。最内層のヘリカル巻を構成する繊維束の配列を案内するように規則的に配列された複数の凸部であってもよく、その数も特に限定されない。また、繊維束の配列方向に沿って延びる複数の凸条であってもよく、その数も特に限定されない。これらによっても、筒部材12は、第1及び第2の端部部材13,14に対する周方向への相対移動が規制されるため、回転トルクが確実に伝達される。
【0064】
○セレーション16の歯の高さ、即ち溝の深さは1層分の繊維束の厚さとほぼ同じに限らず、最内層の繊維束の厚さの1/4層程度〜1層分あれば十分である。
【0065】
○第2の端部部材14に取り付ける治具18の芯出しは、カバー部19の端部内面を、継手部14bの基端の段部に嵌合することにより行う構成に代えて、継手部14bの軸部が治具18の軸部20の内面と嵌合することで芯出しが行われる構成としてもよい。
【0066】
○治具18と端部部材13,14とを固定する方法は、上記実施の形態に限らない。例えば、第1の端部部材13を固定する方法として、カバー部19にヨークタイプの継手部13bに形成されている孔13dと対応する孔を形成する。そして、カバー部19が継手部13bの段部と嵌合した状態で、その孔及び孔13dが対応し、その状態で孔及び孔13dを貫通するようにピンを挿入して、治具18と第1の端部部材13とを固定してもよい。
【0067】
また、第2の端部部材14と治具18とを固定する場合、継手部14bのシャフト部にねじ穴14dを設けずに、第2の端部部材14と治具18とを固定する補助部材を使用する。補助部材は板材の両端が直角に折り曲げられて形成され、継手部14bのシャフト部の中間位置に形成された溝部に係止される係止部が一端に形成され、ボルト23の雄ねじ23aが螺合されるねじ孔が他端に形成されている。そして、係止部が前記溝部に係止されて第2の端部部材14に固定された状態で、ボルト23の雄ねじ23aがねじ孔に螺合されることにより第2の端部部材14と治具18とが固定される。
【0068】
○筒部材12の最内層を構成し、互いに交差せずに配列される繊維束は、ヘリカル巻に限らず、フープ巻であってもよい。この場合、第1及び第2の端部部材13,14の繊維束被巻付け部13a,14aの外周面に形成される係止部として、ねじ状の溝が形成される。また、フープ巻の範囲はFRP製の筒部材12の全長にわたってもよいし、繊維束被巻付け部13a,14aを覆う部分のみでもよい。
【0069】
○補強部材としてのバルクヘッド51は、上記実施の形態の構成に限らず軸方向に直角な状態で固定されているならば特にその形状は限定されない。例えば、図8(a)に示すように、リング状で、溝部59を備える金属製のバルクヘッド60であってもよい。この構成の場合、金属製のパイプに周方向に走る溝部59を複数形成し、その溝部59を1つずつ有するようにパイプをリング状に切断することでバルクヘッド60を製造できるため、上記実施の形態のバルクヘッド51に比べ製造が容易である。また、図8(b)に示すような断面形状を有する金属製のバルクヘッド61であってもよい。このバルクヘッド61は、周縁に溝部62を備えるように鋳造や鍛造により製造される。また、バルクヘッド61に限らず金属製のバルクヘッドの場合、鋳造や鍛造を目的に応じて使い分けて製造することができる。
【0070】
○バルクヘッドの材質は金属に限らない。例えば、高剛性の樹脂を使用することもでき、一例としてポリアセタール、ポリイミド、ポリエチレンテレフタート、ポリアミド(ナイロン)、ポリブチレンテレフタート、ガラス繊維入り樹脂等を使用してもよい。
【0071】
○熱硬化性の接着剤57ではなく、熱可塑性の接着剤であってもよい。ただし、樹脂含浸繊維束の樹脂を熱硬化させる際に、その温度で溶けない熱可塑性の接着剤が好ましい。
【0072】
○接着剤は、市販の接着剤に限らず接着性のあるものであれば特に限定されない。例えば、バルクヘッド51を固定するために孔56及び溝部55に接着性のある熱硬化性樹脂を接着剤として充填してもよい。熱硬化性樹脂は樹脂含浸繊維束の樹脂と同じものであってもよい。熱硬化性樹脂を接着剤として用いた場合、FW法により樹脂含浸繊維束が巻き付けられてその樹脂が熱硬化させられる際に、孔56内及び溝部55に充填されている樹脂も熱硬化させられ、バルクヘッド51が所定の位置に確実に固定される。
【0073】
○接着剤として樹脂含浸繊維束の樹脂と同じものを使用する場合は、樹脂含浸繊維束の樹脂を孔56から溝部55に進入させ、その樹脂を熱硬化させることでバルクヘッド51を固定してもよい。この場合、樹脂含浸繊維束の樹脂が溝部55に進入し易いように溝部55内の空気を抜くための孔をバルクヘッド51等に形成するとともに、孔56の数を多くすることが望ましいが、被巻付け部材15の強度も考えて好適な孔56の数にする必要がある。この場合、接着剤57等を充填する作業を特に行う必要がない。
【0074】
○バルクヘッド40は所定の位置に嵌合した状態で挿入されていたが、接着剤により所定の位置に固定されてもよい。
○第2及び第3の実施の形態において、被巻付け部材15は紙製ではなく熱硬化性樹脂製であってもよく、同じくバルクヘッド40が挿入された状態でFW装置により樹脂含浸繊維束が巻き付けられる。また、半硬化の熱硬化性樹脂製の被巻付け部材15であってもよく、樹脂含浸繊維束の樹脂が熱硬化される際に同じく被巻付け部材15も硬化することになり、被巻付け部材15は成形される成形品32と一体になる。このため、被巻付け部材15によっても、回転トルクの伝達が可能となる。
【0075】
○FW装置により樹脂含浸繊維束を巻き付けて、樹脂を硬化した後、溝17の位置において成形品32を切断していたが、樹脂の硬化前に樹脂含浸繊維束を切断してもよい。この場合、樹脂含浸繊維束を巻き付けた後にそのまま切断すると、まだ樹脂が硬化していないため繊維が乱れる。このため、硬化前に切断する際には、切断する箇所にテープを巻き付け、その巻き付けた状態でテープごと樹脂含浸繊維束を溝17の位置において切断する。そして、加熱炉で樹脂を硬化させた後、テープの除去を行う。
【0076】
○両端に端部部材13,14を備えるような動力伝達用シャフトに限らず、どちらか一端にのみ端部部材を備える動力伝達用シャフトに本発明を適用してもよい。
【0077】
○動力伝達用シャフトはプロペラシャフトに限定されず、その他の動力伝達用シャフトに適用してもよい。
○第2の実施の形態において、バルクヘッド40の形状は、中央部に孔42を有する構成に限らない。例えば、円盤状やリング状であってもよく、その形状は特に限定されない。また、周縁に凹凸を有するようなバルクヘッドであってもよい。
【0078】
○バルクヘッド40の数は3つに限らない。1つであってもよく、3つ以外の複数個であってもよい。
次に、上記各実施の形態から把握できる技術的思想について以下に記載する。
【0079】
(1)前記被巻付け部材の外周面には樹脂の浸透を防止するコーティング処理が施されている請求項1〜7のいずれか一項に記載の動力伝達用シャフト。
(2)前記被巻付け部材は中空構造を有する紙で構成されている請求項1〜請求項7及び前記技術的思想(1)のいずれか一項に記載の動力伝達用シャフト。
【0080】
(3)繊維強化プラスチック製の筒部材の両端に端部部材が結合された動力伝達用シャフトの製造方法であって、
筒状の被巻付け部材の内部に該被巻付け部材の軸方向と直角となるように補強部材を挿入し、その状態で外周面に係止部が形成された繊維束被巻付け部を備える端部部材を前記被巻付け部材の両端に取り付け、該端部部材の前記繊維束被巻付け部を除いた箇所を覆うカバー部を備えた治具を前記端部部材に対して前記被巻付け部材との結合部と反対側から取り外し可能に連結し、前記治具を介してフィラメントワインディング装置の回転支持部に一体回転可能に支持し、その状態でフィラメントワインディングを行った後、巻き付けられた樹脂含浸繊維束を硬化前又は硬化後に切断し、前記治具と端部部材との連結を解除して前記治具を取り外す動力伝達用シャフトの製造方法。
【0081】
(4)繊維強化プラスチック製の筒部材の両端に端部部材が結合された動力伝達用シャフトの製造方法であって、所定の位置に孔が形成された筒状の被巻付け部材の内部に前記孔に対応する位置で該被巻付け部材の軸方向と直角となるように補強部材を挿入し、前記被巻付け部材の両端に端部部材を取り付け、かつ、前記孔内及び前記孔と前記補強部材との間に接着剤を充填した状態でフィラメントワインディングを行った後、巻き付けられた樹脂含浸繊維束を硬化させる動力伝達用シャフトの製造方法。
【0082】
【発明の効果】
以上詳述したように、本発明によれば、端部部材の圧入が不要で、被巻付け部材が金属製及び樹脂製の場合に比べ軽量化できるとともに、樹脂製の場合に比べ低コスト化することができる。
【図面の簡単な説明】
【図1】FRP製プロペラシャフトの模式断面図。
【図2】第1の端部部材、第2の端部部材、被巻付け部材及び治具の関係を示す模式分解斜視図。
【図3】第1の端部部材、第2の端部部材、被巻付け部材及び治具が組み付けられた状態の一部破断模式断面図。
【図4】巻付けヘッドの模式図。
【図5】成形品の切断位置を示す模式断面図。
【図6】(a)はFRP製のプロペラシャフトの模式図、(b)はバルクヘッドの模式斜視図。
【図7】(a)はバルクヘッドの正面図、(b)はバルクヘッドが固定されたプロペラシャフトの要部模式断面図。
【図8】(a)は別の実施の形態におけるバルクヘッドの斜視図、(b)は別の実施の形態におけるバルクヘッドの断面図。
【図9】従来のFRP製プロペラシャフトの分解部分断面図。
【図10】(a)及び(b)は従来のFRP製プロペラシャフトの製造方法を示す模式図。
【図11】従来のFRP製プロペラシャフトの断面図。
【符号の説明】
R…繊維束、11,41,50…動力伝達用シャフトとしてのFRP製プロペラシャフト(プロペラシャフト)、12…筒部材、13…第1の端部部材、13a…繊維束被巻付け部、14…第2の端部部材、14a…繊維束被巻付け部、15…被巻付け部材、15a…外周面、16…係止部としてのセレーション、40,51,61…補強部材としてのバルクヘッド、56…孔、57…接着剤。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power transmission shaft in which an end member is connected to at least one end of a tubular member made of fiber reinforced plastic (hereinafter, referred to as FRP).
[0002]
[Prior art]
Conventionally, further weight reduction of each structural member has been required in order to reduce the weight of a vehicle, and some of the propeller shafts have also been reduced in weight by switching to those made of FRP. The FRP propeller shaft includes an FRP tubular member, and a joint (yoke) and other components (for example, a shaft with a spline gear) for transmitting a driving force at both ends thereof. In order to manufacture the FRP propeller shaft, a filament winding method is generally used.
[0003]
As a method of manufacturing an FRP propeller shaft, as shown in FIG. 9, a metal joint for connecting the FRP pipe 71 to a drive shaft, a driven shaft, or the like at both ends of the FRP pipe 71 as an FRP propeller shaft 70. A structure in which a (yoke) 72 is press-fitted and joined is generally used (for example, see Patent Document 1).
[0004]
A serration 73 having an outer diameter larger than the inner diameter of the end of the FRP pipe 71 is formed on the outer peripheral surface of the joint 72 which is to be joined to the FRP pipe 71. Then, by press-fitting the joint portion of the joint 72 into the FRP pipe 71, a groove is engraved on the inner peripheral surface of the FRP pipe 71 by the teeth of the serrations 73 of the joint 72, and the teeth bite into the groove. The joint strength for integrally rotating the 72 and the FRP pipe 71 is ensured.
[0005]
As a manufacturing method not using a mandrel, as shown in FIG. 10A, a plastic or metal thin-walled cylindrical wound member in which end members 75 each having a central shaft 74 protruding from an outer end are fitted to both ends, respectively. A method of manufacturing using the attachment member 76 has been proposed (for example, see Patent Document 2). In this method, as shown in FIG. 10B, a resin-impregnated fiber layer is formed by continuously winding the resin-impregnated fiber from the end member 75 to the member to be wound 76 by a filament winding method, and then cured and formed as it is. Thereafter, if necessary, the central shaft 74 is removed to manufacture an FRP propeller shaft.
[0006]
As shown in FIG. 11, a joint 79 having a shaft portion 78 protruding from the center of the end face portion is fitted to both ends of an inner shaft member 77 made of FRP, and a filament is attached to the cylindrical portion of the inner shaft member 77 and the joint 79. A method of manufacturing an FRP propeller shaft by winding a resin impregnated fiber by a winding method has also been proposed (for example, see Patent Document 3).
[0007]
[Patent Document 1]
JP-A-5-139170 (paragraphs [0014], [0018], [0020] of the specification, FIGS. 1 and 2)
[Patent Document 2]
JP-A-55-11883 (page 2, FIGS. 3 and 4)
[Patent Document 3]
JP-A-59-050216 (pages 2, 3; FIG. 1)
[0008]
[Problems to be solved by the invention]
However, in the method described in Patent Document 1, it is necessary to take measures against a large stress applied to the FRP pipe 71 at the time of press fitting. In addition, since there is a gap between the inner surface of the FRP pipe 71 and the bottom of the groove of the serration 73, it is necessary to seal the press-fitted portion or the like to prevent moisture from entering from the end surface of the FRP pipe 71. is there. Further, when the FRP pipe 71 is manufactured by the filament winding method, a step of removing the mandrel is required, and it is troublesome to pull out the mandrel.
[0009]
Further, the FRP propeller shaft manufactured by the method of Patent Literature 2 and Patent Literature 3 as a method that does not require press-fitting of an end member such as a joint has a greater weight than a synthetic resin when the member to be wound is made of metal. There is a problem that is heavy. Further, when the wound portion is made of a resin, it is heated and hardened after winding the resin-impregnated fiber. Therefore, it is necessary to use a resin that does not soften at the heating temperature for the wound member. However, when a tubular member to be wound is formed of such a resin, there is a problem that the cost is higher than that of a metal member to be wound, and the cost of the FRP propeller shaft is higher.
[0010]
The present invention has been made in order to solve the above problems, and an object of the present invention is to eliminate the need for press-fitting an end member, and to reduce the weight as compared with a case where a member to be wound is made of metal and resin. It is another object of the present invention to provide a power transmission shaft that can be reduced in cost as compared with a case where the wound member is made of resin.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 includes an end member at at least one end of a tubular member to be wound, and a fiber reinforced outer peripheral surface of the member to be wound and the end member. A power transmission shaft formed by molding a plastic tubular member, wherein the wound member is made of paper. According to the present invention, since press-fitting of the end member is unnecessary, sealing of the press-fitted portion is unnecessary. Further, by making the wound member made of paper, the weight can be reduced as compared with the conventional case made of metal or resin. Further, since it is made of paper, it is inexpensive as compared with resin, and the cost can be reduced.
[0012]
According to a second aspect of the present invention, in the first aspect of the present invention, the end member has a locking portion on the outer peripheral surface, and the reinforcing fibers of the tubular member constitute a plurality of layers on the outer peripheral surface. As described above, the fiber bundles wound around the end member and constituting the innermost layer are layers that do not intersect each other, and the relative movement of the fiber bundle constituting the innermost layer with respect to the end member is regulated by the locking portion. It is formed in a state of being bent and is continuous over the entire length.
[0013]
According to the present invention, the fiber bundle constituting the FRP tubular member is restricted from moving relative to the end member in the circumferential direction by the locking portion formed on the outer peripheral surface of the end member, and also extends over the entire length. Since they are continuous, that is, they are not cut, the rotational torque is reliably transmitted.
[0014]
According to a third aspect of the present invention, in the first or second aspect of the present invention, the locking portions are regularly arranged so as to guide an arrangement of fiber bundles constituting an innermost layer of the tubular member. It is composed of a plurality of convex portions arranged. According to the present invention, the end member and the tubular member can be connected well regardless of the arrangement state in which the fiber bundles constituting the innermost layer intersect in the same layer or the arrangement state in which the fiber bundles are parallel to each other.
[0015]
According to a fourth aspect of the present invention, in the second or third aspect, the fiber bundles are arranged parallel to each other in the same layer, and the locking portion is formed of the fiber bundle of the innermost layer. It is composed of a plurality of ridges extending along the arrangement direction. According to the present invention, since the arrangement direction of all the fiber bundles constituting the innermost layer is parallel to the extending direction of the ridge as the locking portion, the relative movement of the end member and the FRP cylinder member is reduced. Regulatory functions increase.
[0016]
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, the locking portion is formed of serrations. According to the present invention, the processing of the locking portion is facilitated.
[0017]
The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the reinforcement is provided inside the member to be wound in a state perpendicular to the axial direction of the member to be wound. A member is provided. According to this invention, since the reinforcing member is provided inside the member to be wound, the torsional strength and the fatigue strength can be improved.
[0018]
The invention according to claim 7 is the invention according to claim 6, wherein the wound member has a hole at a position corresponding to the reinforcing member, and inside the hole and between the hole and the reinforcing member. Is filled with an adhesive. According to this invention, the reinforcing member is securely fixed to the predetermined position in the member to be wound by the adhesive.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, a first embodiment in which the present invention is embodied in a propeller shaft made of FRP (hereinafter, referred to as a propeller shaft) will be described with reference to FIGS.
[0020]
FIG. 1 is a schematic sectional view of a propeller shaft made of FRP. The propeller shaft 11 includes an FRP tubular member 12, a first end member 13 joined to a first end thereof, a second end member 14 joined to a second end thereof, and a tubular member 12. And a member to be wound 15 disposed between the first end member 13 and the second end member 14 inside the inner member 12. A yoke as a joint constituting a universal joint is used for the first end member 13, and a metal sliding joint is used for the second end member 14.
[0021]
The first end member 13 and the second end member 14 include cylindrical fiber bundle wrapped portions 13a and 14a to be joined to the tubular member 12, and the outer peripheral surfaces thereof serve as locking portions. Are formed. The reinforcing fibers of the tubular member 12 are formed of a fiber bundle wound so as to form a plurality of layers, and a helical winding layer is provided on the innermost layer. The fiber bundles are arranged in parallel in the same layer, and the teeth of the serrations 16 are formed so as to extend along the direction in which the fiber bundles are arranged. The fiber bundle constituting the helical winding layer is regulated by the serrations 16 to restrict the relative movement in the circumferential direction with respect to the end members 13 and 14 and is continuous over the entire length of the tubular member 12. That is, unlike the configuration in which the end member having the serrations 16 formed therein is later pressed into an FRP pipe, the fiber bundle that engages with the serrations 16 is not cut.
[0022]
The teeth of the serrations 16 have an angle equal to the angle (arrangement angle) between the fiber bundles constituting the innermost helical winding layer and the axial direction of the first and second end members 13 and 14, and the teeth of the first and second teeth. Are formed so as to extend in the axial direction of the end members 13, 14. The height of the teeth of the serration 16, that is, the depth of the groove is formed to be substantially the same as the thickness of the fiber bundle for one layer.
[0023]
The first end member 13 has a joint portion 13b projecting from one end of the fiber bundle wound portion 13a and a fitting cylindrical portion 13c having a smaller diameter than the fiber bundle wound portion 13a projecting from the other end. Have been. For example, a hole 13d for attaching a universal joint is formed in the joint portion 13b. The second end member 14 has a shaft-shaped joint portion 14b protruding at one end of the fiber bundle wound portion 14a, and a fitting cylindrical portion 14c having a smaller diameter than the fiber bundle wound portion 14a at the other end. Is protruding. A threaded hole 14d used for fixing a jig used when the cylindrical member 12 is formed by the filament winding method (hereinafter, referred to as FW method) is formed at the tip of the shaft-shaped joint portion 14b. An annular groove 17 is formed between the fiber bundle wound portions 13a, 14a of the first and second end members 13, 14, and the joint portions 13b, 14b.
[0024]
The wound member 15 is formed in a cylindrical shape, and is made of paper (in this embodiment, made of cardboard). The end of the wound member 15 is fitted to the outer circumference of the fitting cylindrical portions 13c, 14c, and the first and second end members 13, 14 and the axis of the wound member 15 are aligned. Are linked. The cylindrical member 12 is formed on the outer peripheral surface 15a of the wound member 15.
[0025]
The connecting portion of the cylindrical member 12 with the first and second end members 13 and 14 is formed thick. The cylindrical member 12 is formed by the FW method. The tubular member 12 is mainly formed by a helical winding, but a hoop winding is formed at and near the connection portion. A polyester yarn is wound around the outermost layer of the tubular member 12 through a hoop winding over the entire length.
[0026]
Next, a method for manufacturing the propeller shaft configured as described above will be described. FIG. 2 is a schematic exploded perspective view showing a relationship between a first end member, a second end member, a member to be wound, and a jig. FIG. 3 is a first end member, a second end portion. FIG. 4 is a partially broken schematic cross-sectional view showing a state where a member, a member to be wound, and a jig are assembled.
[0027]
In order to manufacture the propeller shaft 11, the mandrel is not used, and the member to be wound 15 having the first and second end members 13, 14 coupled to both ends is not used with the jig 18 but to the filament winding device ( In the following, the filament winding is performed while supported by a FW device.
[0028]
As shown in FIG. 3, the jig 18 covers portions of the first and second end members 13 and 14 except for a portion where the resin-impregnated fiber bundle is tightly wound and one of the resin-impregnated fibers at the time of FW. A cylindrical cover 19 around which the portion is wound is provided. One end of the cover portion 19 has a small diameter, and a shaft portion 20 that can be supported by a rotation support portion of the FW device is formed integrally and continuously with an end portion of the cover portion 19 on the small diameter side. Further, pins 21 are provided at regular intervals on the peripheral surface of the cover 19 along the circumferential direction.
[0029]
The jig 18 assembled to the first end member 13 can support the first end member 13 in a state where the shaft 20 and the rotation center of the member 15 to be wound are coaxial. A support portion 22 that can rotate integrally is provided. The support portion 22 is formed of a shaft provided with a T-shaped portion 22a detachably fixed to the first end member 13 at one end, and a male screw portion 22b at the other end. Then, in a state where the T-shaped portion 22a is inserted into the hole 13d, the nut 24 screwed into the male screw portion 22b protruding from the shaft portion 20 is tightened, so that the nut 24 is integrally formed at the end of the shaft portion 20. The shaft 20 is fixed via the washer 25. As shown in FIG. 3, the jig 18 is configured such that the inner surface of the end portion of the cover portion 19 is fitted to the step portion of the joint portion 13b so that the jig 18 is centered.
[0030]
The jig 18 assembled to the second end member 14 can support the second end member 14 in a state where the shaft portion 20 and the rotation center of the wound member 15 are coaxial. It is provided with a bolt 23 that can rotate integrally. The bolt 23 is provided with a male screw 23a at the tip, and is tightened in a state where the male screw 23a is screwed into the screw hole 14d, so that the bolt 23 is formed through the washer 25 integrally formed at the end of the shaft 20. 20. As shown in FIG. 3, the inner surface of the end of the cover 19 of the jig 18 is fitted to the step at the base end of the joint 14b, so that the jig 18 is centered.
[0031]
When filament winding is performed on the wound member 15 having the first and second end members 13 and 14 attached to both ends, first, the jigs 18 are respectively attached to the first and second end members 13 and 14. Assemble. When assembling the jig 18 to the first end member 13, after inserting the T-shaped part 22 a of the support part 22 into the hole 13 d, the support part 22 is connected to the shaft part 20 from the large diameter side of the cover part 19. Insert. Then, the nut 24 is screwed into the male screw portion 22 b protruding from the shaft portion 20 and tightened, so that the shaft portion 20 is connected to the first screw through the washer 25 interposed between the end surface of the shaft portion 20 and the nut 24. The jig 18 is pressed against the end member 13 and assembled to the first end member 13 via the support portion 22.
[0032]
When assembling the jig 18 to the second end member 14, the cover 19 is brought into contact with the second end member 14 so as to cover the joint 14 b side of the second end member 14, and the bolt 23 Is inserted into the washer portion 25 and into the cover portion 19 from the shaft portion 20 side. Then, the male screw 23 a is screwed into the screw hole 14 d of the second end member 14 and tightened, whereby the male screw 23 a is fixed via the washer 25 interposed between the end face of the shaft 20 and the head of the bolt 23. A tool 18 is assembled to the second end member 14. Then, as shown in FIG. 3, when the first end member 13, the second end member 14, the wound member 15 and the jig 18 are assembled, they are supported between a pair of chucks of the FW device. The fiber bundle winding member 26 is formed.
[0033]
FIG. 4 is a schematic view of the winding head. The FW device includes a winding head (helical winding head and hoop winding head) 27 similar to the device (the device disclosed in JP-A-2002-283467) previously proposed by the present applicant. In the figure, only the helical winding head is shown. The winding head 27 is movable on a rail 28 provided on a base plate along a fiber bundle winding member 26 supported by a chuck (not shown) by driving means (not shown).
[0034]
The winding head 27 includes a support plate 30 having a hole 29 penetrated by the fiber bundle winding member 26. As shown in FIG. 4, a plurality of guides 31 are provided on the support plate 30 of the helical winding head so that a plurality of fiber bundles R can be wound helically around the fiber bundle winding member 26 at the same time. It is provided in a state of being arranged along the circumferential direction of the fiber bundle winding member 26. The hoop winding head provided with the hoop winding portion has a guide for enabling two fiber bundles R to be simultaneously wound around the fiber bundle winding member 26 by the hoop winding. The helical winding head and the hoop winding head are configured to be able to move integrally and independently. Then, the plurality of fiber bundles R can be simultaneously wound by helical winding on the fiber bundle winding member 26, and the helical winding head moves forward or backward once along the fiber bundle winding member 26. Thus, the fiber bundle R is wound by helical winding over the entire circumference of the fiber bundle winding member 26.
[0035]
After the worker sets the fiber bundle winding member 26 on the chuck of the FW device, the fiber bundle is wound around the fiber bundle winding member 26 by the FW device. When the FW device is driven, the fiber bundle winding member 26 is rotated in a certain direction, and the winding head 27 is reciprocated along the axial direction of the fiber bundle winding member 26. Then, the fiber bundle R is wound by the winding head 27 so that the angle between the fiber bundle R and the axial direction becomes a predetermined angle so that the innermost layer forms a helical wound layer. The winding angle is set to a predetermined value (for example, 10 to 15 °) that satisfies the characteristics such as bending, torsion, and vibration required for the propeller shaft of the product. Since the winding angle is the same as the angle between the direction in which the teeth of the serrations 16 extend and the axial direction, the fiber bundles R are wound so as to be arranged along the grooves of the serrations 16. Further, the resin-impregnated fiber is wound so as to pass between the pins 21 provided on the cover 19, and is wound with the pins 21 restricting the movement of the cover 19 in the circumferential direction. Thereafter, a helical winding or hoop winding layer is further laminated so as to obtain a necessary strength, and a plurality of layers are formed.
[0036]
Then, both ends of the molded product 32 having been wound are cut at positions facing the jig 18 near the fiber bundle wound portions 13a and 14a from the projecting position of the pin 21. The cutting position of the first end member 13 is cut by the cutter 33 at the position A shown in FIG. The second end member 14 is also cut at a similar position. Then, the fiber bundle winding member 26 on which the molded product 32 is formed is detached from the chuck of the FW device, and the resin-impregnated fiber bundle wound around the shaft portion 20 from the cutting position in an uncured stage of the molded product 32. Is removed.
[0037]
Thereafter, the molded article 32 is placed in a heating furnace, and the resin is cured at a predetermined temperature. After the heat curing, the fiber bundle is cut at a groove 17 provided at a position corresponding to a position between the fiber bundle wound portions 13a and 14a and the large-diameter end of the cover portion 19. Cutting is also performed by the cutter 33. Next, by removing both jigs 18, the cylindrical member 12 is formed on the outer peripheral surface 15 a of the member 15 to be wound, and the first and second end members 13 are attached to the end of the cylindrical member 12. , 14 are coupled to each other to complete the propeller shaft 11 made of FRP. When removing the jig 18, the nut 24 is loosened on the first end member 13 side and removed from the support 22. In the case of the second end member 14, the male screw 23a of the bolt 23 and the screw hole 14d of the second end member 14 are released and then removed.
[0038]
This embodiment has the following effects.
(1) End members 13 and 14 are attached to both ends of a paper-wound member 15, and in this state, a resin impregnated fiber bundle is wound by an FW device to manufacture a propeller shaft 11. Therefore, press-fitting of the end member is not required. Further, since the wound member 15 constituting the propeller shaft 11 is made of paper, the weight can be reduced as compared with the case where the wound member 15 is made of metal or resin. Further, the cost can be reduced as compared with the case where the wound member 15 is made of resin.
[0039]
(2) Since the wound member 15 is made of paper, when manufacturing the wound member 15 having a different diameter, for example, the paper is wound around a metal tubular member having a different diameter to form the wound member 15. Manufacturing is possible. For this reason, compared to a case where a metal wound member is manufactured or a resin-impregnated fiber or the like is wound around a mandrel, heated and cured, and then removed from the mold to manufacture a thermosetting resin wound member. In addition, the size of the wound member 15 can be easily changed, and it can be easily adapted to propeller shafts having various diameters.
[0040]
(3) Since the wound member 15 is made of paper and lightweight, the resonance point of the propeller shaft is higher than when a wound member made of metal or thermosetting resin is used.
(4) The fiber bundle was folded back by the jig 18 and the resin-impregnated fiber was wound. For this reason, unlike the prior arts 2 and 3, there is no need to provide a shaft on the end member, and a yoke type end member can be used.
[0041]
(5) All of the fiber bundles constituting the innermost layer of the fiber bundles constituting the tubular member 12 extend along the grooves of the serrations 16 formed on the outer peripheral surfaces of the first and second end members 13 and 14. It is wound so that it is arranged. For this reason, the relative movement of the cylindrical member 12 in the circumferential direction with respect to the first and second end members 13 and 14 is restricted, and the transmission of the rotational torque is reliably performed. In addition, since the resin-impregnated fiber bundle is continuous over the entire length and is not cut, the transmission of the rotational torque is favorably performed. Further, since the serrations 16 are used, the processing is easy.
[0042]
(Second embodiment)
Next, a second embodiment in which the present invention is embodied in a propeller shaft having a bulkhead as a reinforcing member will be described with reference to FIG. This embodiment is different from the first embodiment in that the bulkhead is fixed inside the member to be wound, and the other parts are basically the same as the first embodiment.
[0043]
FIG. 6A is a schematic view of a propeller shaft, and FIG. 6B is a schematic perspective view of a bulkhead. The bulkhead 40 is made of a metal plate, and is inserted and fixed when the propeller shaft 41 is manufactured. The bulkhead 40 has a hole 42 in the center. The bulkhead 40 is fitted inside the wound member 15 to be inserted.
[0044]
Next, a method for manufacturing the propeller shaft according to the present embodiment will be described.
The bulkhead 40 is inserted into a predetermined position in the wound member 15 before attaching the end members 13 and 14 to the wound member 15 or after attaching one of the end members 13 and 14. You. For insertion of the bulkhead 40, for example, an insertion rod (not shown) that can be pushed into the hole 42 while being engaged therewith is used. At this time, the bulkhead 40 is inserted in a state of being fitted inside the wound member 15. As described above, the three bulkheads 40 are inserted at equal intervals.
[0045]
Next, a fiber bundle winding member (not shown) in which the wound member 15 having the bulkhead 40 therein, the first and second end members 13 and 14, and the jig 18 are assembled and integrated. Is configured, the fiber bundle winding member is set in the FW device, and the resin-impregnated fiber bundle is wound. After the resin-impregnated fiber bundle is wound around the fiber bundle-wound member, the resin-impregnated fiber bundle is cut at the position A as shown in FIG. Then, the resin is cured in the heating furnace. The resin shrinks during this curing. For this reason, the wound member 15 in which the resin-impregnated fiber bundle is formed on the outer peripheral surface 15a also contracts accordingly. Since the diameter of the wound member 15 is reduced by the contraction, the bulkhead 40 is fixed at a predetermined position inside the wound member 15 by the contracting force. Thereafter, the propeller shaft 41 is manufactured in the same manner as in the first embodiment.
[0046]
This embodiment has the following effects in addition to the effects (1) to (5) of the first embodiment.
(6) The bulkhead 40 is fixed inside the wound member 15 made of paper. For this reason, the torsional strength and fatigue strength of the propeller shaft 41 can be improved.
[0047]
(Third embodiment)
Next, a third embodiment in which the present invention is embodied in a propeller shaft having a bulkhead as a reinforcing member will be described with reference to FIG. The following description focuses on the differences from the second embodiment.
[0048]
FIG. 7A is a front view of the bulkhead, and FIG. 7B is a schematic cross-sectional view of a main part of a propeller shaft to which the bulkhead is fixed.
A bulkhead 51 having a shape shown in FIG. 7A is fixed to the propeller shaft 50. The bulkhead 51 is formed by integrating two metal disks 53 and 54 having a hole 52 in the center by, for example, spot welding. The periphery of the two disks 53, 54 is provided with bent portions 53a, 54a bent in an arc shape on the side opposite to the joint surface, and a groove 55 is formed between the bent portions 53a, 54a.
[0049]
Holes 56 are formed in the wound member 15 at positions corresponding to the positions where the bulkhead 51 is fixed. Although the number of the holes 56 is not particularly limited, in this embodiment, four holes 56 are formed along the circumferential direction of the wound member 15 at positions where the bulkhead 51 is fixed. FIG. 7B shows two of them. The groove 55 and the hole 56 are located at positions facing each other, and each is filled with an adhesive 57.
[0050]
On the outer peripheral surface of the member to be wound 15, a film 58 for preventing resin from penetrating is wound around a portion other than the portion facing the bulkhead 51, and the film 58 is placed on the film 58 except for the portion facing the bulkhead 51. The cylindrical member 12 is formed.
[0051]
Next, a method of manufacturing the propeller shaft of this embodiment will be described.
First, the bulkhead 51 is inserted into the wound member 15 with the film 58 wound around the hole 56 facing the fixed bulkhead 51 and the outer peripheral surface excluding the periphery of the hole 56. The bulkhead 51 is inserted to a position where the hole 56 and the groove 55 of the wound member 15 face each other in a state where the bulkhead 51 is fitted to the wound member 15 by an insertion rod (not shown) as in the second embodiment. . Then, a thermosetting adhesive 57 is poured from the four holes 56 with a dispenser or the like, and the holes 57 and the groove 55 are filled with the adhesive 57.
[0052]
Next, a fiber bundle winding member (not shown) in which the wound member 15 having the bulkhead 51 therein, the first and second end members 13 and 14, and the jig 18 are assembled and integrated. Is configured, the fiber bundle winding member is set in the FW device, and the resin-impregnated fiber bundle is wound. Then, after the resin-impregnated fiber bundle is wound around the fiber bundle winding member, the resin-impregnated fiber bundle is cut at the position A, as shown in FIG. 5, as in the first embodiment. Then, the resin is thermally cured in a heating furnace. At this time, since the adhesive 57 is also thermosetting, it is cured by heat, and the bulkhead 51 is fixed at that position. After that, the propeller shaft 50 is manufactured in the same manner as in the first embodiment.
[0053]
This embodiment has the following effects in addition to the effects (1) to (5) of the first embodiment and the effect (6) of the second embodiment.
(7) The propeller shaft 50 has a hole 56 at a position where the bulkhead 51 is fixed, and the hole 56 and the groove 55 of the bulkhead 51 are filled with an adhesive 57. Therefore, the bulkhead 51 is securely fixed at a predetermined position in the wound member 15 by the adhesive 57.
[0054]
(8) The bulkhead 51 is inserted into the wound member 15 in which the hole 56 is formed at a position where the bulkhead 51 is fixed, at a position corresponding to the hole 56 in a state where the bulkhead 51 is fitted. The filament winding is performed in a state in which the adhesive 57 is filled in the hole 56 and the groove 55 by the above method. Therefore, the adhesive 57 can be easily filled.
[0055]
(9) Since the bent portions 53a and 54a of the bulkhead 51 are bent in an arc shape on the side opposite to the joint surface, there is no corner at the peripheral edge. Therefore, when the bulkhead 51 is inserted into the member to be wound 15, the inner surface of the member to be wound 15 is not shaved by the bulkhead 51.
[0056]
(10) In the propeller shaft 50, a film 58 is wound around the hole 56 formed in the member to be wound 15 and a portion other than the hole 56, and the cylindrical member 12 is formed on the film 58. For this reason, the tubular member 12 is formed in a state where the resin of the resin-impregnated fiber bundle has not penetrated at the portion of the wound member 15 where the film 58 is wound. Therefore, the effect of absorbing and suppressing the vibration of the cylindrical member 12 can be expected.
[0057]
The embodiment is not limited to the above, and may be embodied as follows, for example.
The member 15 to be wound is not particularly limited as long as it is a paper having such a strength as not to be crushed when the resin-impregnated fiber bundle is wound.
[0058]
In the first and second embodiments, a coating for preventing resin from penetrating may be applied to the outer peripheral surface 15a of the member 15 to be wound. For example, a resin coating may be applied. Further, a sheet or a film may be wound around the outer peripheral surface 15a. Thereby, when winding the resin-impregnated fiber bundle, the resin does not penetrate into the paper-wound member 15. Therefore, when the resin is hardened in the heating furnace, the resin that has permeated the wound member 15 is hardened, so that the wound member 15 and the cylindrical member 12 are not integrated, and the vibration of the cylindrical member 12 is reduced. The effect of absorption and suppression can be expected.
[0059]
O Paper having a hollow structure may be used for the wound member 15. For example, paper with a corrugated structure such as corrugated cardboard may be used. In this case, a coating for preventing penetration of the resin may be applied as described above.
[0060]
Although the propeller shafts 11, 41, and 50 were manufactured using the jig 18, a manufacturing method in which resin-impregnated fibers are directly wound around end members as shown in FIG. 10 of the prior art may be used. Further, in the manufacturing method as shown in FIG. 11, a paper wound member may be used instead of the inner shaft member made of FRP.
[0061]
○ Using a jig 18, instead of helically winding one layer of a plurality of fiber bundles around the fiber bundle winding member, one resin impregnated fiber is helically wound by the FW method. May be manufactured. In this case, a projection such as a pin is provided as a locking portion.
[0062]
○ In consideration of the characteristics such as bending, torsion, and vibration required for the propeller shaft of the product, hoop winding is eliminated, the number of winding layers is reduced, the winding range (range in the axial direction) is reduced, and the amount of adhered resin is reduced. Reduction may be performed. According to these, the weight of the propeller shafts 11, 41, 50 can be further reduced.
[0063]
The locking portion is not limited to the serrations 16. A plurality of projections may be regularly arranged so as to guide the arrangement of the fiber bundles constituting the innermost helical winding, and the number thereof is not particularly limited. Further, a plurality of ridges extending along the arrangement direction of the fiber bundles may be used, and the number thereof is not particularly limited. Even with these, the relative movement of the cylindrical member 12 in the circumferential direction with respect to the first and second end members 13 and 14 is regulated, so that the rotational torque is reliably transmitted.
[0064]
The height of the teeth of the serrations 16, that is, the depth of the groove is not limited to almost the same as the thickness of the fiber bundle of one layer, and if it is about 1 / of the thickness of the innermost fiber bundle to one layer It is enough.
[0065]
The centering of the jig 18 attached to the second end member 14 is performed by fitting the inner surface of the end of the cover 19 to the step at the base end of the joint 14b instead of the joint. The centering may be performed by fitting the shaft portion 14 b to the inner surface of the shaft portion 20 of the jig 18.
[0066]
The method of fixing the jig 18 and the end members 13 and 14 is not limited to the above embodiment. For example, as a method of fixing the first end member 13, a hole corresponding to the hole 13 d formed in the yoke type joint 13 b is formed in the cover 19. Then, in a state where the cover portion 19 is fitted with the step portion of the joint portion 13b, the hole and the hole 13d correspond, and in this state, a pin is inserted so as to penetrate the hole and the hole 13d, and The first end member 13 may be fixed.
[0067]
Further, when fixing the second end member 14 and the jig 18, an auxiliary fixing the second end member 14 and the jig 18 without providing the screw hole 14 d in the shaft portion of the joint portion 14 b. Use components. The auxiliary member is formed by bending both ends of the plate material at right angles, has a locking portion formed at one end to be locked in a groove formed at an intermediate position of the shaft portion of the joint portion 14b, and has a male screw 23a of a bolt 23 screwed. A screw hole to be combined is formed at the other end. Then, the male screw 23a of the bolt 23 is screwed into the screw hole in a state where the locking portion is locked in the groove portion and fixed to the second end member 14, so that the second end member 14 The jig 18 is fixed.
[0068]
The fiber bundles constituting the innermost layer of the tubular member 12 and arranged without crossing each other are not limited to helical windings, but may be hoop windings. In this case, a thread-shaped groove is formed as a locking portion formed on the outer peripheral surface of the fiber bundle wound portions 13a, 14a of the first and second end members 13, 14. Further, the hoop winding range may be the entire length of the FRP tubular member 12, or may be only the portion that covers the fiber bundle wound portions 13a and 14a.
[0069]
The shape of the bulkhead 51 as a reinforcing member is not particularly limited as long as it is fixed in a state perpendicular to the axial direction without being limited to the configuration of the above embodiment. For example, as shown in FIG. 8A, a ring-shaped metal bulkhead 60 having a groove 59 may be used. In the case of this configuration, the bulkhead 60 can be manufactured by forming a plurality of grooves 59 running in the circumferential direction in a metal pipe and cutting the pipe into a ring shape so as to have one groove 59 at a time. It is easier to manufacture than the bulkhead 51 of the embodiment. Alternatively, a metal bulkhead 61 having a sectional shape as shown in FIG. 8B may be used. The bulkhead 61 is manufactured by casting or forging so as to have a groove 62 on the periphery. In addition, in the case of a metal bulkhead as well as the bulkhead 61, casting and forging can be selectively used according to the purpose.
[0070]
○ The material of the bulkhead is not limited to metal. For example, a resin having high rigidity can be used. For example, polyacetal, polyimide, polyethylene terephthalate, polyamide (nylon), polybutylene terephthalate, a resin containing glass fiber, or the like may be used.
[0071]
○ Instead of the thermosetting adhesive 57, a thermoplastic adhesive may be used. However, when the resin of the resin-impregnated fiber bundle is thermoset, a thermoplastic adhesive that does not melt at that temperature is preferable.
[0072]
○ The adhesive is not particularly limited as long as it is not limited to a commercially available adhesive and has adhesiveness. For example, the hole 56 and the groove 55 may be filled with an adhesive thermosetting resin as an adhesive to fix the bulkhead 51. The thermosetting resin may be the same as the resin of the resin-impregnated fiber bundle. When a thermosetting resin is used as the adhesive, when the resin-impregnated fiber bundle is wound by the FW method and the resin is thermoset, the resin filled in the holes 56 and the grooves 55 is also thermoset. The bulkhead 51 is securely fixed at a predetermined position.
[0073]
When the same resin as the resin of the resin-impregnated fiber bundle is used as the adhesive, the resin of the resin-impregnated fiber bundle enters the groove 55 from the hole 56, and the resin is thermally cured to fix the bulkhead 51. Is also good. In this case, it is desirable to form holes for bleeding air in the groove 55 in the bulkhead 51 and the like so that the resin of the resin-impregnated fiber bundle easily enters the groove 55, and it is desirable to increase the number of holes 56. The number of holes 56 needs to be set to a suitable number in consideration of the strength of the wound member 15. In this case, there is no need to particularly perform the work of filling the adhesive 57 and the like.
[0074]
The bulkhead 40 is inserted in a state where it is fitted at a predetermined position, but may be fixed at a predetermined position with an adhesive.
In the second and third embodiments, the member to be wound 15 may be made of a thermosetting resin instead of paper, and similarly, the resin impregnated fiber bundle is loaded by the FW device with the bulkhead 40 inserted. Is wound. Alternatively, the member to be wound 15 made of a semi-cured thermosetting resin may be used. When the resin of the resin-impregnated fiber bundle is thermally cured, the member to be wound 15 is also cured, and The attaching member 15 is integrated with the molded product 32 to be molded. Therefore, the rotation torque can be transmitted also by the wound member 15.
[0075]
The resin-impregnated fiber bundle is wound at the position of the groove 17 after the resin-impregnated fiber bundle is wound by the FW device and cured, but the resin-impregnated fiber bundle may be cut before the resin is cured. In this case, if the resin-impregnated fiber bundle is wound and then cut as it is, the fibers are disturbed because the resin is not yet cured. For this reason, when cutting before curing, a tape is wound around the cut point, and the resin-impregnated fiber bundle together with the tape is cut at the position of the groove 17 in the wound state. Then, after the resin is cured in a heating furnace, the tape is removed.
[0076]
The present invention may be applied not only to the power transmission shaft having the end members 13 and 14 at both ends but also to the power transmission shaft having only one end member at one end.
[0077]
The power transmission shaft is not limited to the propeller shaft, and may be applied to other power transmission shafts.
In the second embodiment, the shape of the bulkhead 40 is not limited to the configuration having the hole 42 at the center. For example, the shape may be a disk shape or a ring shape, and the shape is not particularly limited. Further, a bulk head having a concavo-convex shape on the periphery may be used.
[0078]
The number of bulkheads 40 is not limited to three. The number may be one or a plurality other than three.
Next, technical ideas that can be grasped from the above embodiments will be described below.
[0079]
(1) The power transmission shaft according to any one of claims 1 to 7, wherein a coating treatment is performed on an outer peripheral surface of the wound member to prevent penetration of resin.
(2) The power transmission shaft according to any one of claims 1 to 7 and the technical idea (1), wherein the wound member is made of paper having a hollow structure.
[0080]
(3) A method for manufacturing a power transmission shaft in which end members are joined to both ends of a fiber-reinforced plastic tubular member,
A reinforcing member is inserted into the tubular member to be wound so as to be perpendicular to the axial direction of the member to be wound, and in this state, a fiber bundle wound portion having a locking portion formed on an outer peripheral surface is formed. The end member provided is attached to both ends of the wound member, and a jig provided with a cover portion for covering a portion of the end member excluding the fiber bundle wound portion is covered with the jig with respect to the end member. It is removably connected from the side opposite to the joint with the winding member, and is supported by the jig to be rotatable integrally with the rotation support portion of the filament winding device. In that state, the filament winding is performed. A method for manufacturing a power transmission shaft in which the resin-impregnated fiber bundle is cut before or after curing, the jig is disconnected from the end member, and the jig is removed.
[0081]
(4) A method for manufacturing a power transmission shaft in which end members are coupled to both ends of a fiber-reinforced plastic cylindrical member, wherein a cylindrical member to be wound having a hole formed in a predetermined position is provided inside the cylindrical member to be wound. A reinforcing member is inserted so as to be perpendicular to the axial direction of the wound member at a position corresponding to the hole, end members are attached to both ends of the wound member, and the inside of the hole and the hole. A method for manufacturing a power transmission shaft, comprising: performing filament winding in a state in which an adhesive is filled between the reinforcing member and the reinforcing member, and then curing the wound resin-impregnated fiber bundle.
[0082]
【The invention's effect】
As described above in detail, according to the present invention, press-fitting of the end member is unnecessary, the weight of the member to be wound can be reduced as compared with the case where the member is made of metal and resin, and the cost can be reduced as compared with the case where the member is made of resin. can do.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a propeller shaft made of FRP.
FIG. 2 is a schematic exploded perspective view showing a relationship between a first end member, a second end member, a member to be wound, and a jig.
FIG. 3 is a partially broken schematic cross-sectional view showing a state where a first end member, a second end member, a member to be wound, and a jig are assembled.
FIG. 4 is a schematic diagram of a winding head.
FIG. 5 is a schematic sectional view showing a cutting position of a molded product.
6A is a schematic view of a propeller shaft made of FRP, and FIG. 6B is a schematic perspective view of a bulkhead.
FIG. 7A is a front view of a bulkhead, and FIG. 7B is a schematic cross-sectional view of a main part of a propeller shaft to which the bulkhead is fixed.
FIG. 8A is a perspective view of a bulkhead according to another embodiment, and FIG. 8B is a cross-sectional view of the bulkhead according to another embodiment.
FIG. 9 is an exploded partial sectional view of a conventional FRP propeller shaft.
FIGS. 10A and 10B are schematic diagrams showing a conventional method of manufacturing an FRP propeller shaft.
FIG. 11 is a sectional view of a conventional FRP propeller shaft.
[Explanation of symbols]
R: fiber bundle; 11, 41, 50: propeller shaft (propeller shaft) made of FRP as power transmission shaft, 12: cylindrical member, 13: first end member, 13a: fiber bundle wound portion, 14 ··· Second end member, 14a ··· Fiber bundle wound portion, 15 ··· Winded member, 15a ··· Outer peripheral surface, 16 ··· Serration as locking portion, 40, 51, 61 ··· Bulkhead as reinforcing member , 56 ... holes, 57 ... adhesive.

Claims (7)

筒状の被巻付け部材の少なくとも一端に端部部材を備え、前記被巻付け部材及び端部部材の外周面に繊維強化プラスチック製の筒部材が成形されている動力伝達用シャフトであって、前記被巻付け部材が紙製である動力伝達用シャフト。A power transmission shaft comprising an end member at at least one end of a tubular wound member, and a fiber-reinforced plastic tubular member formed on an outer peripheral surface of the wound member and the end member, A power transmission shaft in which the wound member is made of paper. 前記端部部材は前記外周面に係止部を備え、前記筒部材の強化繊維は前記外周面において複数の層を構成するように前記端部部材に巻き付けられ、かつ最内層を構成する繊維束は互いに交差しない層であり、その最内層を構成する繊維束が前記係止部により前記端部部材に対する相対移動が規制された状態で成形されるとともに全長にわたって連続している請求項1に記載の動力伝達用シャフト。The end member has a locking portion on the outer peripheral surface, and the reinforcing fibers of the tubular member are wound around the end member so as to form a plurality of layers on the outer peripheral surface, and a fiber bundle constituting an innermost layer 2. The layers which do not intersect with each other, and the fiber bundle constituting the innermost layer is formed in a state where the relative movement with respect to the end member is restricted by the locking portion and is continuous over the entire length. Power transmission shaft. 前記係止部は、前記筒部材のうち最内層を構成する繊維束の配列を案内するように規則的に配列された複数の凸部で構成されている請求項1又は請求項2に記載の動力伝達用シャフト。The said engaging part is comprised by the several convex part regularly arranged so that arrangement | positioning of the fiber bundle which comprises the innermost layer among the said cylindrical members may be comprised. Power transmission shaft. 前記繊維束は同一層においては互いに平行に配列されており、前記係止部は前記最内層の繊維束の配列方向に沿って延びる複数の凸条で構成されている請求項2又は請求項3に記載の動力伝達用シャフト。The said fiber bundle is arranged mutually parallel in the same layer, The said latching | locking part is comprised by the convex line which extends along the arrangement | sequence direction of the fiber bundle of the said innermost layer. 2. The power transmission shaft according to item 1. 前記係止部は、セレーションで構成されている請求項4に記載の動力伝達用シャフト。The power transmission shaft according to claim 4, wherein the locking portion is formed by serrations. 前記被巻付け部材の内部に前記被巻付け部材の軸方向と直角となる状態の補強部材を備えている請求項1〜請求項5のいずれか一項に記載の動力伝達用シャフト。The power transmission shaft according to any one of claims 1 to 5, further comprising a reinforcing member in a state perpendicular to an axial direction of the wound member inside the wound member. 前記被巻付け部材は前記補強部材に対応する位置に孔を備え、該孔内及び該孔と前記補強部材との間には接着剤が充填されている請求項6に記載の動力伝達用シャフト。The power transmission shaft according to claim 6, wherein the wound member has a hole at a position corresponding to the reinforcing member, and an adhesive is filled in the hole and between the hole and the reinforcing member. .
JP2003089243A 2003-03-27 2003-03-27 Shaft for power transmission Pending JP2004293716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003089243A JP2004293716A (en) 2003-03-27 2003-03-27 Shaft for power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089243A JP2004293716A (en) 2003-03-27 2003-03-27 Shaft for power transmission

Publications (1)

Publication Number Publication Date
JP2004293716A true JP2004293716A (en) 2004-10-21

Family

ID=33403167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089243A Pending JP2004293716A (en) 2003-03-27 2003-03-27 Shaft for power transmission

Country Status (1)

Country Link
JP (1) JP2004293716A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022643A1 (en) * 2007-08-10 2009-02-19 Toyota Jidosha Kabushiki Kaisha Process for producing tube member made of fiber-reinforced resin
GB2454958A (en) * 2007-11-23 2009-05-27 Crompton Technology Group Ltd A connector for a composite tubular shaft
CN109571998A (en) * 2018-12-14 2019-04-05 武汉理工大学 University student's equation motorcycle race is formed with carbon fiber driving shaft and preparation method
JP2020138364A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing pipe body used in power transmission shaft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009022643A1 (en) * 2007-08-10 2009-02-19 Toyota Jidosha Kabushiki Kaisha Process for producing tube member made of fiber-reinforced resin
GB2454958A (en) * 2007-11-23 2009-05-27 Crompton Technology Group Ltd A connector for a composite tubular shaft
GB2454958B (en) * 2007-11-23 2012-04-04 Crompton Technology Group Ltd A connector for a composite tubular shaft
US9482266B2 (en) 2007-11-23 2016-11-01 Crompton Technology Group Limited Connector for a tubular composite shaft
CN109571998A (en) * 2018-12-14 2019-04-05 武汉理工大学 University student's equation motorcycle race is formed with carbon fiber driving shaft and preparation method
JP2020138364A (en) * 2019-02-27 2020-09-03 株式会社ショーワ Method for manufacturing pipe body used in power transmission shaft

Similar Documents

Publication Publication Date Title
JP5683798B2 (en) FRP drive shaft
JP3453832B2 (en) Drive shaft made of fiber reinforced composite material and manufacturing method thereof
GB2051305A (en) Fibre-reinforced composite shaft with metallic connector sleeves
JPH0742975B2 (en) Drive shaft made of fiber reinforced synthetic resin and method and device for producing the drive shaft
CN106715931B (en) Power transmission shaft
JP2004293716A (en) Shaft for power transmission
JP2007271079A (en) Torque transmission shaft
JP7120955B2 (en) FRP composite molded product
US7338380B2 (en) Composite shaft end assembly and composite shaft formed therewith
JP2004293714A (en) Power transmission shaft and its manufacturing method and tool
JP2004293715A (en) Joint for power transmission shaft, and power transmission shaft
JPS59133813A (en) Driving shaft made of fiber-reinforced synthetic resin and preparation thereof
US20180313398A1 (en) Multi-component driveshaft
JP6522356B2 (en) Power transmission shaft
JP7217587B2 (en) power transmission shaft
JP2004293718A (en) Power transmission shaft and its manufacturing method
JPH0942266A (en) Drive shaft made of fiber-reinforced composite material and manufacture thereof
JPS6137850Y2 (en)
JP2004293717A (en) Power transmission shaft
JP2004293708A (en) Propeller shaft of fiber-reinforced plastic, and manufacturing method for the same
JP2011052720A (en) Frp driving shaft
JP3339212B2 (en) FRP cylinder and method of manufacturing the same
JP6917932B2 (en) Power transmission shaft
JP2000329130A (en) Propeller shaft
JP2003184854A (en) Propeller shaft and method of manufacturing the same and shaft made of frp