JP3304729B2 - Rare earth-iron magnet alloys - Google Patents

Rare earth-iron magnet alloys

Info

Publication number
JP3304729B2
JP3304729B2 JP31455995A JP31455995A JP3304729B2 JP 3304729 B2 JP3304729 B2 JP 3304729B2 JP 31455995 A JP31455995 A JP 31455995A JP 31455995 A JP31455995 A JP 31455995A JP 3304729 B2 JP3304729 B2 JP 3304729B2
Authority
JP
Japan
Prior art keywords
alloy
iron
rare earth
powder
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31455995A
Other languages
Japanese (ja)
Other versions
JPH09157803A (en
Inventor
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP31455995A priority Critical patent/JP3304729B2/en
Publication of JPH09157803A publication Critical patent/JPH09157803A/en
Application granted granted Critical
Publication of JP3304729B2 publication Critical patent/JP3304729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気特性に優れた
希土類−鉄−窒素系磁石合金を製造するための希土類−
鉄系磁石用合金に関し、より詳しくは、窒化時間が短縮
して生産性が向上し、コスト的に有利な希土類−鉄系
石用合金に関する。
[0001] The present invention relates to a rare earth element having excellent magnetic properties and a rare earth element for producing an iron-nitrogen based magnetic alloy.
It relates iron-based magnet alloy, and more particularly, to shorten the time nitride improves productivity, cost-effective rare earth - iron magnetic
Related to stone alloys.

【0002】[0002]

【従来の技術】近年、菱面体晶系または六方晶系または
正方晶系または単斜晶系の結晶構造をもつ金属間化合物
に窒素を導入させた希土類−鉄−窒素系磁性材料が、特
に永久磁石材料として優れた磁気特性をもつことから注
目されている。
2. Description of the Related Art In recent years, rare earth-iron-nitrogen based magnetic materials in which nitrogen is introduced into an intermetallic compound having a rhombohedral, hexagonal, tetragonal, or monoclinic crystal structure have been used especially in permanent materials. It attracts attention because it has excellent magnetic properties as a magnet material.

【0003】例えば、特開昭60−131949号公報
では、Fe−R−N(R:Y、Thおよびすべてのラン
タノイド元素からなる群の中から選ばれた一種または二
種以上)で表される永久磁石を開示している。また特開
平2−57663号公報では、六方晶系あるいは菱面体
晶系の結晶構造をもつR−Fe−N−H(R:イットリ
ウムを含む希土類元素のうちの少なくとも一種)で表さ
れる磁気異方性材料を開示している。また特開平5−3
15114号公報では、正方晶系の結晶構造をもつTh
Mn12型金属間化合物に窒素を含有させた希土類磁石
材料の製造方法を開示している。また特開平6−279
915号公報では、菱面体晶系または六方晶系または正
方晶系の結晶構造をもつThZn17型、TbCu
型、ThMn12型金属間化合物に窒素等を含有させた
希土類磁石材料を開示している。さらにA.Marga
rianらは、Proc. 8th Int. Sym
posium on Magnetic Anisot
oropy and Coercivity in R
are Earth Transition Meta
l Alloys、 Birmingham、 (19
94)、p.353で、単斜晶系の結晶構造をもつR
(Fe、Ti)29型金属間化合物に窒素を含有させた
材料を開示している。また杉山らは、第19回日本応用
磁気学会学術講演概要集(1995)p.120で、単
斜晶系の結晶構造をもつSm(Fe、Cr)29
化合物を開示している。
For example, in JP-A-60-131949, it is represented by Fe-RN (one or more selected from the group consisting of R: Y, Th and all lanthanoid elements). A permanent magnet is disclosed. In Japanese Patent Application Laid-Open No. 2-57663, a magnetic field represented by R—Fe—NH (R: at least one of rare earth elements including yttrium) having a hexagonal or rhombohedral crystal structure is disclosed. An isotropic material is disclosed. Japanese Patent Laid-Open No. 5-3
No. 15114 discloses a Th having a tetragonal crystal structure.
A method for producing a rare earth magnet material containing nitrogen in an Mn 12- type intermetallic compound is disclosed. Japanese Patent Laid-Open No. Hei 6-279
No. 915 discloses a Th 2 Zn 17 type, TbCu 7 having a rhombohedral, hexagonal or tetragonal crystal structure.
Rare earth magnet material in which nitrogen or the like is contained in an intermetallic compound of type ThMn 12 is disclosed. Further, A. Marga
Rian et al., Proc. 8th Int. Sym
Posium on Magnetic Anisot
orpy and Coercity in R
are Earth Transition Meta
l Alloys, Birmingham, (19
94), p. At 353, R 3 having a monoclinic crystal structure
(Fe, Ti) A material in which nitrogen is contained in a 29- type intermetallic compound is disclosed. Sugiyama et al., 19th Annual Meeting of the Japan Society of Applied Magnetics (1995) p. At 120, Sm 3 (Fe, Cr) 29 N y having a monoclinic crystal structure
Disclosed are compounds.

【0004】またこれらの材料に対して、磁気特性など
を改善することを目的として、さまざまな添加物が検討
されている。例えば、特開平3−16102号公報で
は、六方晶系あるいは菱面体晶系の結晶構造をもつR−
Fe−N−H−M(R:Yを含む希土類元素のうちの少
なくとも一種;M:Li、Na、K、Mg、Ca、S
r、Ba、Ti、Zr、Hf、V、Nb、Ta、Cr、
Mo、W、Mn、Pd、Cu、Ag、Zn、B、Al、
Ga、In、C、Si、Ge、Sn、Pb、Biの元素
およびこれらの元素並びにRの酸化物、フッ化物、炭化
物、窒化物、水素化物、炭酸塩、硫酸塩、ケイ酸塩、塩
化物、硝酸塩のうち少なくとも一種)で表される磁性材
料を開示している。また特開平4−99848号公報で
は、Fe−R−M−N(R:Y、Thおよびすべてのラ
ンタノイド元素;M:Ti、Cr、V、Zr、Nb、A
l、Mo、Mn、Hf、Ta、W、Mg、Si)で表さ
れる永久磁石材料を開示している。さらに特開平3−1
53852号公報では、六方晶系あるいは菱面体晶系の
結晶構造をもつR−Fe−N−H−O−M(R:Yを含
む希土類元素のうちの少なくとも一種;M:Mg、T
i、Zr、Cu、Zn、Al、Ga、In、Si、G
e、Sn、Pb、Biの元素およびこれらの元素並びに
Rの酸化物、フッ化物、炭化物、窒化物、水素化物のう
ち少なくとも一種)で表される磁性材料を開示してい
る。
[0004] Various additives have been studied for these materials in order to improve the magnetic properties and the like. For example, Japanese Patent Application Laid-Open No. Hei 3-16102 discloses an R-type crystal having a hexagonal or rhombohedral crystal structure.
Fe—N—H—M (R: at least one of rare earth elements including Y; M: Li, Na, K, Mg, Ca, S
r, Ba, Ti, Zr, Hf, V, Nb, Ta, Cr,
Mo, W, Mn, Pd, Cu, Ag, Zn, B, Al,
Ga, In, C, Si, Ge, Sn, Pb, Bi elements and these elements and oxides, fluorides, carbides, nitrides, hydrides, carbonates, sulfates, silicates, chlorides of R , At least one of nitrates). JP-A-4-99848 discloses that Fe-RMN (R: Y, Th and all lanthanoid elements; M: Ti, Cr, V, Zr, Nb, A
1, Mo, Mn, Hf, Ta, W, Mg, Si). Further, JP-A-3-1
No. 53852 discloses a R-Fe-N-HO-M (having at least one kind of rare earth element including R: Y; a hexagonal or rhombohedral crystal structure; M: Mg, T
i, Zr, Cu, Zn, Al, Ga, In, Si, G
e, Sn, Pb, Bi, and magnetic materials represented by these elements and at least one of oxides, fluorides, carbides, nitrides, and hydrides of R).

【0005】これらの磁性材料の製造方法として、希土
類−鉄系の合金粉末を製造し、その後窒素原子を導入す
るための窒化処理を行う方法が挙げられる。合金粉末の
製造方法としては、例えば、希土類金属、鉄、および必
要ならばその他の金属を所定比率で調合し不活性ガス雰
囲気中で高周波溶解し、得られた合金インゴットを均一
化熱処理してから、ジョークラッシャーなどで所定の粒
度に粉砕する方法がある。また該合金インゴットを使っ
て液体急冷法により合金薄帯を製造し、粉砕する方法も
ある。さらに、希土類酸化物粉末、還元剤、鉄粉、およ
び必要ならばその他の金属粉を出発原料とした還元拡散
法によって製造する方法もある。
As a method of producing these magnetic materials, there is a method of producing a rare earth-iron alloy powder and then performing a nitriding treatment for introducing nitrogen atoms. As a method of producing the alloy powder, for example, a rare earth metal, iron, and if necessary, other metals are mixed at a predetermined ratio, and high-frequency melting is performed in an inert gas atmosphere, and then the obtained alloy ingot is subjected to a uniform heat treatment. There is a method of pulverizing to a predetermined particle size with a jaw crusher or the like. There is also a method in which an alloy ribbon is manufactured by the liquid quenching method using the alloy ingot and then pulverized. Further, there is a method of producing by a reduction diffusion method using a rare earth oxide powder, a reducing agent, iron powder, and if necessary, other metal powder as a starting material.

【0006】窒化処理としては、例えば、該合金粉末を
窒素またはアンモニア、あるいはこれらと水素との混合
ガス雰囲気中で200〜700℃に加熱する方法があ
る。
As the nitriding treatment, for example, there is a method in which the alloy powder is heated to 200 to 700 ° C. in an atmosphere of nitrogen, ammonia, or a mixed gas of these and hydrogen.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、これら
の窒化処理で化合物中に十分な窒素原子を導入するため
にはかなり長い時間を必要とする。従って、従来法では
生産性に劣り、結果的に製造コストが高くなるという問
題があった。窒化処理を早めるために反応温度を高める
ことが試みられているが、高温では得られた化合物が分
解するため効果が小さい。また、高圧雰囲気中で窒化す
ることも試みられているが、安全上の問題がある。
However, it takes a considerably long time to introduce sufficient nitrogen atoms into the compound by these nitriding treatments. Therefore, the conventional method has a problem in that the productivity is inferior, and as a result, the manufacturing cost increases. Attempts have been made to increase the reaction temperature in order to accelerate the nitriding treatment, but at high temperatures, the obtained compounds are decomposed and the effect is small. Attempts have been made to perform nitriding in a high-pressure atmosphere, but there is a safety problem.

【0008】そこで、本発明は、従来よりも短い窒化処
理時間で希土類−鉄−窒素系磁石合金を製造できる希土
類−鉄系磁石用合金を提供することを目的とし、更に
は、窒化処理時間を短縮して生産性を上げることによっ
てコスト的に安価な希土類−鉄−窒素系磁石合金を製造
できる希土類−鉄系磁石用合金を提供することを目的と
する。
[0008] Therefore, the present invention is conventionally rare earth in a short nitriding time also - iron - can produce nitrogen-based magnet alloy rare earth - an object to provide an alloy for an iron-based magnet, furthermore, the nitriding time An object of the present invention is to provide a rare earth-iron-based magnet alloy capable of producing a rare earth-iron-nitrogen based magnet alloy which is inexpensive by increasing the productivity by shortening the productivity.

【0009】[0009]

【課題を解決するための手段】上記目的の達成のため、
本発明者らは、窒素またはアンモニアなどの窒素含有雰
囲気における希土類−鉄系合金の窒化反応では、合金表
面上での窒素原子生成反応が律速反応となること、該合
金の金属間化合物相内部にNa、K、Rb、Cs、M
g、SrまたはBaの電子供与性の強いアルカリ金属
や、アルカリ土類金属を添加するとその反応速度が向上
し、結果として合金の窒化反応の速度も速くなること、
を見いだし本発明に至った。
In order to achieve the above object,
The present inventors have found that in the nitridation reaction of a rare earth-iron alloy in a nitrogen-containing atmosphere such as nitrogen or ammonia, the nitrogen atom generation reaction on the alloy surface is a rate-determining reaction, and the inside of the intermetallic compound phase of the alloy is Na, K, Rb, Cs, M
g, Sr or Ba , a strong electron-donating alkali metal or an alkaline earth metal, increases the reaction rate, and as a result, increases the rate of nitriding reaction of the alloy.
And found the present invention.

【0010】すなわち、本発明の希土類−鉄系磁石用
金は、SmあるいはNdから選択された一種以上の希土
類元素14〜27wt%と、鉄又は鉄及びコバルトとを
成分とする菱面体晶系、六方晶系、正方晶系または単斜
晶系の金属間化合物を含む合金であって、該金属間化合
物相内部にNa、K、Rb、Cs、Mg、SrまたはB
aの少なくとも一種以上を0.001〜0.1wt%含
有することを特徴とする。また、SmあるいはNdから
選択された一種以上の希土類元素14〜27wt%と、
又は鉄及びコバルトと、M(MはTi、CrまたはM
の少なくとも一種以上)12wt%以下成分とする
菱面体晶系、六方晶系、正方晶系または単斜晶系の金属
間化合物を含む合金であって、該金属間化合物相内部に
Na、K、Rb、Cs、Mg、SrまたはBaの少なく
とも一種以上を0.001〜0.1wt%含有すること
を特徴とする。
That is, the rare earth-iron based magnet alloy of the present invention comprises at least one rare earth element selected from Sm or Nd.
14 to 27 wt% of a class element and iron or iron and cobalt
Rhombohedral system whose components, hexagonal, tetragonal or monoclinic
An alloy containing a crystalline intermetallic compound , wherein the intermetallic compound
Na, K, Rb, Cs, Mg, Sr or B inside the physical phase
a is characterized by containing at least one kind of a in an amount of 0.001 to 0.1 wt%. Also, from Sm or Nd
14 to 27 wt% of one or more selected rare earth elements ,
Iron or iron and cobalt and M (M is Ti, Cr or M
and at least one or more) 12 wt% or less components n
Rhombohedral, hexagonal, tetragonal or monoclinic metals
An alloy containing an intermetallic compound , wherein at least one or more of Na, K, Rb, Cs, Mg, Sr or Ba is contained in the intermetallic compound phase in an amount of 0.001 to 0.1 wt%.

【0011】[0011]

【発明の実施の形態】本発明の合金は、窒化後に優れた
磁気特性を発現するために、菱面体晶系または六方晶系
または正方晶系または単斜晶系の結晶構造を持つ金属間
化合物を主相として含むことが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The alloy of the present invention has an intermetallic compound having a rhombohedral, hexagonal, tetragonal or monoclinic crystal structure in order to exhibit excellent magnetic properties after nitriding. Is preferably contained as a main phase.

【0012】希土類元素(Yを含むランタノイド元素の
いずれか1種または2種以上)としては、Y、La、C
e、Pr、Nd、Smの群の中の少なくとも1種以上、
あるいは、これらの少なくとも1種と、Eu、Gd、T
b、Dy、Ho、Er、Tm、Ybの群の中の少なくと
も1種とからなるものであることが磁気特性を高める上
で望ましいが、特には、SmまたはNdを用いたものは
磁石の磁気特性が極めて高くなる。希土類元素の含有量
は、合金中で、14〜27wt%であることが磁気特性
の点で望ましい。
The rare earth elements (any one or more of the lanthanoid elements containing Y) include Y, La, C
e, Pr, Nd, at least one member from the group consisting of Sm,
Alternatively, at least one of these, Eu, Gd, T
b, Dy, Ho, Er, Tm, it is desirable in enhancing the magnetic properties are those comprising at least one element selected from the group consisting of Yb, in particular, the magnetic of the magnet those using Sm or Nd The characteristics are extremely high. The content of the rare earth element in the alloy is desirably 14 to 27 wt% from the viewpoint of magnetic properties.

【0013】鉄は、希土類−鉄−窒素系磁石合金の磁気
特性を損なうことなく温度特性や耐食性を改善する目的
で、その一部をCoで置換してもよい。
Iron may be partially replaced with Co for the purpose of improving temperature characteristics and corrosion resistance without impairing the magnetic characteristics of the rare earth-iron-nitrogen based magnet alloy.

【0014】窒素は1wt%以上含まれていればよい。
これより少ないと磁石の磁気特性が劣るからである。
It is sufficient that nitrogen is contained at 1 wt% or more.
If less than this, the magnetic properties of the magnet are inferior.

【0015】また、Mとして、Ti、CrまたはMn
少なくとも一種以上を含有させると、結晶構造が安定化
し窒化後の磁気特性が向上する。ただし磁気特性、特に
飽和磁化が低下するため、その含有量は12wt%以下
であることが望ましい。
When M contains at least one of Ti, Cr and Mn , the crystal structure is stabilized and the magnetic properties after nitriding are improved. However, since the magnetic properties, particularly the saturation magnetization, decrease, the content is desirably 12 wt% or less.

【0016】前記菱面体晶系または六方晶系または正方
晶系または単斜晶系の結晶構造をもつ金属間化合物とし
ては、例えば、ThZn17型のSmFe17合金
や、TbCu型の(Sm、Zr)(Fe、Co)10
合金や、ThMn12型のNdFe11Ti合金や、R
(Fe、Ti)29型のSm(Fe、Ti)29
金やSm(Fe、Cr)29合金などがある。
Examples of the intermetallic compound having a rhombohedral, hexagonal, tetragonal, or monoclinic crystal structure include, for example, a Th 2 Zn 17 type Sm 2 Fe 17 alloy and a TbCu 7 type. (Sm, Zr) (Fe, Co) 10
And alloys, and ThMn 12 type NdFe 11 Ti alloy, R
3 (Fe, Ti) 29 type Sm 3 (Fe, Ti) 29 alloy and Sm 3 (Fe, Cr) 29 alloy.

【0017】Na、K、Rb、Cs、Mg、Srまたは
Baの少なくとも一種以上の金属間化合物相内部への含
有量は、0.001〜0.1wt%であることが必要で
ある。0.001wt%未満では窒化処理を短くできる
効果がなく、また、0.1wt%を超えると希土類−鉄
−窒素系磁石用合金の磁気特性、特に磁化が低下するの
で好ましくないからである。
The content of at least one of Na, K, Rb, Cs, Mg, Sr and Ba in the intermetallic compound phase must be 0.001 to 0.1 wt%. If it is less than 0.001 wt%, there is no effect of shortening the nitriding treatment, and if it exceeds 0.1 wt%, the magnetic properties of the alloy for a rare earth-iron-nitrogen based magnet, particularly the magnetization, are not preferable.

【0018】また、本発明においては、これらNa、
K、Rb、Cs、Mg、SrまたはBaの少なくとも一
種以上の元素を菱面体晶系または六方晶系または正方晶
系または単斜晶系の結晶構造をもつ金属間化合物相内部
に偏在することなく導入することが、本質的に重要なこ
とである。したがって特開昭61−295308号公
報、特開平5−148517号公報、特開平5−271
852号公報、特開平5−279714号公報、特開平
7−166203号公報などで従来開示されている還元
拡散合金におけるCaなどのアルカリ金属あるいはアル
カリ土類金属の存在形態、すなわち金属状態のアルカリ
金属あるいはアルカリ土類金属あるいはこれらの酸化物
が、還元拡散反応に引き続いて行われる湿式処理工程に
おいて十分除去できず金属間化合物相外部あるいは合金
間に閉じこめられ残留しているような形態ではその
効果は全く期待できない。
In the present invention, these Na,
At least one element of K, Rb, Cs, Mg, Sr or Ba is not unevenly distributed in an intermetallic compound phase having a rhombohedral system, a hexagonal system, a tetragonal system or a monoclinic system. Introducing is essentially important. Accordingly, JP-A-61-295308, JP-A-5-148517, and JP-A-5-271
852, JP-A-5-279714, JP-A-7-166203, and the like, the existing form of an alkali metal or an alkaline earth metal such as Ca in a reduction diffusion alloy, that is, an alkali metal in a metal state or alkaline earth metal or oxides thereof, as remaining confined between the intermetallic compound phase external or alloy <br/> powder can not be sufficiently removed in the wet processing step performed subsequent to the reduction and diffusion reaction The effect cannot be expected at all in such a form.

【0019】なお、前述の特開平3−16102号公報
では、R−Fe−N−H−Mで表される磁性材料のMと
して、Li、Caの他に、本発明の導入元素と同じ
a、K、Mg、Sr、Baをも挙げているが、その最も
有効な添加方法は母合金粉末を窒化しR−Fe−N−H
化合物を生成した後であって引き続き行われる焼結工程
の前である、としている。したがって該発明は、希土類
−鉄系合金粉末において既にこれらの元素が導入されて
いる本発明とは、何ら関係のないものである。また該発
明では希土類−鉄系の母合金製造時にもMを添加可能で
あるとはしているが、この場合合金粉の粒子境界部にM
を多く含有する相と合金の粒子中心部にMを含有しない
相とに二相分離することが必要である、としている。こ
れに対して、本発明では合金の主相である金属間化合物
相内部に偏在することなくMが含有されていることが必
要であるため、該発明とは何ら関係がない。
In the above-mentioned Japanese Unexamined Patent Publication No. Hei 3-16102 , in addition to Li and Ca, the same N as the introduced element of the present invention is used as M of the magnetic material represented by R—Fe—N—H—M.
Although a, K, Mg, Sr, and Ba are also mentioned, the most effective addition method is to nitrify the master alloy powder and obtain R-Fe-N-H
It is stated that the compound has been formed and before the subsequent sintering step. Therefore, the present invention has nothing to do with the present invention in which these elements are already introduced in the rare earth-iron alloy powder. Although the invention states that M can be added even during the production of a rare earth-iron-based master alloy, in this case, M is added at the grain boundary of the alloy powder.
It is necessary to separate into two phases into a phase containing a large amount of M and a phase not containing M in the center of the grain of the alloy. On the other hand, in the present invention, since it is necessary that M is contained without being unevenly distributed in the intermetallic compound phase which is the main phase of the alloy, the present invention is not related at all.

【0020】本発明の合金の製造方法は特に制限され
ず、従来法の溶解鋳造法、液体急冷法、還元拡散法など
で製造すればよい。この中でも還元拡散法で製造する方
法は、安価な希土類酸化物を原料とすること、合金が粉
末で得られるため窒化前に行う粗粉砕工程が不要である
こと、磁気特性を劣化させる残留鉄相が少ないため均一
化熱処理が不要であること、などから他の方法に比べて
コスト的に有利である。さらに導入する元素がNa、
K、Mg、Sr、Baである場合には、これらの金属あ
るいはこれらの水素化物が還元剤として使用されるた
め、還元剤自体をNa、K、Mg、Sr、Baの供給源
とすることが可能である。これらの元素は、還元剤とし
ての投入量、還元剤および希土類酸化物の粉体性状、各
種原料粉末の混合状態、還元拡散反応の温度と時間を注
意深く制御することによって、金属間化合物相内部にし
かも定量的に導入することができる。
The method for producing the alloy of the present invention is not particularly limited, and the alloy may be produced by a conventional melting casting method, liquid quenching method, reduction diffusion method, or the like. Among these, the method of manufacturing by the reduction diffusion method uses an inexpensive rare earth oxide as a raw material, does not require a coarse pulverization step before nitriding because an alloy is obtained as a powder, and a residual iron phase that deteriorates magnetic properties. Is less costly than other methods because there is no need for uniform heat treatment. The element to be further introduced is Na,
In the case of K, Mg, Sr, and Ba , since these metals or their hydrides are used as a reducing agent, the reducing agent itself may be used as a supply source of Na, K, Mg, Sr, and Ba. It is possible. These elements can be introduced into the intermetallic compound phase by carefully controlling the input amount as a reducing agent, the powder properties of the reducing agent and the rare earth oxide, the mixing state of various raw material powders, and the temperature and time of the reduction diffusion reaction. Moreover, it can be introduced quantitatively.

【0021】金属間化合物相内部に含有させたNa、
K、Rb、Cs、Mg、SrまたはBaの分析方法とし
ては、例えば、合金を樹脂に埋め込みその研磨面に対し
てEPMA法により定量分析すればよい。あるいは、検
量線を作成した上でSIMS法で分析することもでき
る。ただし、特に還元拡散法によって母合金が製造され
還元剤がNa、K、Mg、Sr、Baである場合には、
通常の化学分析法では金属間化合物相外部あるいは合金
粉末間に閉じこめられ残留しているものと区別しづらい
ので、好ましくない。
Na contained inside the intermetallic compound phase ,
As an analysis method of K, Rb, Cs, Mg, Sr or Ba, for example, an alloy may be embedded in a resin and a polished surface thereof may be quantitatively analyzed by an EPMA method. Alternatively, analysis can be performed by SIMS after preparing a calibration curve. However, especially when the mother alloy is manufactured by the reduction diffusion method and the reducing agent is Na, K, Mg, Sr, or Ba,
The usual chemical analysis method is not preferable because it is difficult to distinguish the substance remaining outside the intermetallic compound phase or between the alloy powders.

【0022】なお、本発明の合金に水素化処理を行え
ば、より窒化速度が向上する。
If the alloy of the present invention is subjected to a hydrogenation treatment, the nitriding rate is further improved.

【0023】[0023]

【実施例】以下、本発明を実施例によって、さらに具体
的に説明する。なお、得られた合金評価は以下のように
した。結晶構造:Cuターゲットで粉末X線回折を行
い、結晶系を解析した。組成分析:ICP発光分析法で
SmとFeを分析した。また主相である金属間化合物結
晶粒内のLi、Na、K、Rb、Cs、Mg、Ca、S
rまたはBaの含有量については、合金粉末をポリエス
テル樹脂に埋め込みバフで最終研磨した後、主相である
金属間化合物であることが確認される任意の10ヶ所に
ついて島津製作所製EPMA装置(EPMA−230
0、ビーム径約1μm)で定量分析し平均した。なお検
出感度を高めるために、加速電圧20kV、試料電流1
00nA、積算時間を60秒とした。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the obtained alloy evaluation was as follows. Crystal structure: X-ray powder diffraction was performed using a Cu target to analyze the crystal system. Composition analysis: Sm and Fe were analyzed by ICP emission analysis. Further, Li, Na, K, Rb, Cs, Mg, Ca, S in the intermetallic compound crystal grains as the main phase.
Regarding the content of r or Ba, after embedding the alloy powder in a polyester resin and finally polishing it with a buff , an EPMA device (EPMA-EPMA-made by Shimadzu Corporation) was used for any 10 locations confirmed to be intermetallic compounds as the main phase. 230
(0, beam diameter about 1 μm) and averaged. In order to increase the detection sensitivity, an acceleration voltage of 20 kV and a sample current of 1
00 nA and the integration time was 60 seconds.

【0024】磁気特性:窒化して得られた希土類−鉄−
窒素系合金粉を振動ボールミルにて、特に断らない限り
フィッシャー平均粒径2.3μm程度まで微粉砕し、最
大磁場15kOeの振動試料型磁力計で反磁場補正せず
に磁気特性を測定した。このとき、微粉をパラフィンワ
ックスと共にサンプルケースに詰め、ドライヤーでパラ
フィンワックスを溶融させてから20kOeの配向磁場
でその磁化容易軸をそろえ、冷却後着磁磁場70kOe
でパルス着磁した。
Magnetic properties: Rare earth-iron obtained by nitriding
Unless otherwise specified, the nitrogen-based alloy powder was finely pulverized to a Fisher average particle size of about 2.3 μm unless otherwise specified, and the magnetic properties were measured without a demagnetizing field correction using a vibrating sample magnetometer having a maximum magnetic field of 15 kOe. At this time, the fine powder is packed in a sample case together with paraffin wax, the paraffin wax is melted by a drier, the axes of easy magnetization are aligned with an orientation magnetic field of 20 kOe, and after cooling, the magnetizing magnetic field is 70 kOe.
Pulse magnetized.

【0025】参考例1 試料1〜3 ・・・ 純度9
9.9wt%、粒度150メッシュ(タイラー標準、以
下同じ)以下の電解Fe粉2.25kgと、純度99w
t%平均粒度325メッシュの酸化Sm粉末1.01k
gと、純度99wt%の粒状金属Ca0.44kgと、
無水塩化Ca粉末0.05kgとを、Vブレンダーを用
いて混合した。ここで得られた混合物をステンレス容器
に入れ、アルゴン雰囲気下で1150〜1180℃で8
〜10時間にわたって加熱し還元拡散反応を施した。次
いで反応生成物を、冷却してから水中に投入し崩壊させ
た。その際、48メッシュ以上のものが数十g存在して
おり、これについては水との反応性が遅いので、別途ボ
ールミルで粉砕し、水との反応を促進させて崩壊を早め
た。
Reference Example 1 Samples 1-3: purity 9
9.9 wt%, 2.25 kg of electrolytic Fe powder having a particle size of 150 mesh or less (Tyler standard, the same applies hereinafter) and a purity of 99 w
t% Oxidized Sm powder having an average particle size of 325 mesh 1.01k
g, 0.44 kg of granular metal Ca having a purity of 99 wt%,
0.05 kg of anhydrous Ca chloride powder was mixed using a V blender. The mixture obtained here is placed in a stainless steel container, and heated at 1150 to 1180 ° C. for 8 hours under an argon atmosphere.
The mixture was heated for 10 hours to effect a reduction diffusion reaction. Next, the reaction product was cooled and then poured into water to disintegrate. At this time, several tens of g of a mesh having a size of 48 mesh or more were present, and the reactivity with water was slow. Therefore, the powder was separately pulverized by a ball mill to accelerate the reaction with water to accelerate the disintegration.

【0026】得られたスラリーを水洗しさらに酢酸を用
いてpH5.0まで酸洗浄して未反応のCaと副生した
CaOを除去した。得られたスラリーを濾過しエタノー
ルで置換した後真空乾燥してSm−Fe系合金それぞれ
約3kgを得た。この合金粉をX線解析したところ、菱
面体晶系のThZn17型結晶構造(SmFe17
金属間化合物)の回折線のみ観測された。還元拡散の反
応温度、時間、Sm、Feの化学分析値、結晶粒内のC
a分析値を表1に示す。次にこの粉末を管状炉中に装填
し、アンモニア分圧0.35のアンモニア−水素混合ガ
ス雰囲気中465℃で6時間窒化処理し、その後アルゴ
ンガス中465℃で2時間アニール処理してSm−Fe
−N系磁石用合金粉末を得た。窒化後の磁粉の磁気特性
を表1に示す。
The obtained slurry was washed with water and further washed with acetic acid to pH 5.0 to remove unreacted Ca and CaO by-produced. The obtained slurry was filtered, replaced with ethanol, and dried under vacuum to obtain about 3 kg of each Sm-Fe alloy . X-ray analysis of this alloy powder showed a rhombohedral Th 2 Zn 17 type crystal structure (Sm 2 Fe 17
Only the diffraction line of (intermetallic compound) was observed. Reaction temperature, time of reduction diffusion, Sm, chemical analysis value of Fe, C in crystal grain
Table 1 shows the analytical values of a. Next, this powder was loaded into a tubular furnace, and subjected to nitriding treatment at 465 ° C. for 6 hours in an ammonia-hydrogen mixed gas atmosphere having an ammonia partial pressure of 0.35, and then to annealing at 465 ° C. for 2 hours in argon gas to obtain a Sm— Fe
An alloy powder for a -N-based magnet was obtained. Table 1 shows the magnetic properties of the magnetic powder after nitriding.

【0027】[0027]

【表1】 [Table 1]

【0028】参考例2 試料4〜6 ・・・ 還元拡散
反応を1000〜1200℃で6〜12時間とし窒化処
理時間を6〜12時間とした以外は、参考例1と同様に
Sm−Fe系合金粉末を得た。この合金粉をX線解析し
たところ、菱面体晶系のThZn17型結晶構造(S
Fe17金属間化合物)の回折線のみ観測された。
還元拡散の反応温度、時間、Sm、 Feの化学分析
値、結晶粒内のCa分析値を表2に示す。次に参考例1
と同様にSm−Fe−N系磁石用合金粉末を得た。窒化
時間と窒化後の磁粉の磁気特性を表2に示す。試料4と
5からはCaが0.001wt%未満では十分な磁気特
性を得るのに必要な窒化時間が長いこと、試料6からは
0.1wt%を超えるとBrが低下していることがわか
る。
REFERENCE EXAMPLE 2 Samples 4-6 Sm-Fe system as in Reference Example 1 except that the reduction diffusion reaction was carried out at 1000-1200 ° C. for 6-12 hours and the nitriding time was 6-12 hours. An alloy powder was obtained. X-ray analysis of this alloy powder showed a rhombohedral Th 2 Zn 17 type crystal structure (S
m 2 Fe 17 intermetallic compound).
Table 2 shows the reaction temperature, time, chemical analysis values of Sm and Fe, and Ca analysis values in the crystal grains of the reduction diffusion. Next, Reference Example 1
In the same manner as in the above, an alloy powder for Sm-Fe-N magnet was obtained. Table 2 shows the nitriding time and the magnetic properties of the magnetic powder after nitriding. Samples 4 and 5 show that when Ca is less than 0.001 wt%, the nitriding time required to obtain sufficient magnetic properties is long, and that in Sample 6, when it exceeds 0.1 wt%, Br is reduced. .

【0029】[0029]

【表2】 [Table 2]

【0030】実施例1 試料8〜14 ・・・ 純度9
9.9wt%の電解Feと純度99.7wt%の金属S
mと純度99wt%以上の金属Na、K、Rb、Cs、
Mg、Sr、Baとを所定量秤量しアルゴンガス雰囲気
中で高周波溶解し、幅20mmの鋼鋳型に鋳込んで合金
インゴットそれぞれ約2kgを得た。得られた合金イン
ゴットを高純度アルゴン雰囲気中で1100℃、48時
間保持し、均一化処理した。次にこれを100μm以下
になるようにジョークラッシャーとボールミルで粉砕し
本発明のSm−Fe系合金を得た。この合金粉をX線解
析したところ、菱面体晶系のThZn17型結晶構造
(SmFe17金属間化合物)の回折線のみ観測され
た。Sm、Feの化学分析値、結晶粒内の添加元素の分
析値を表3に示す。ついでこの粉末を管状炉中に装填
し、アンモニア分圧0.35のアンモニア−水素混合ガ
ス雰囲気中465℃で6時間窒化処理し、その後アルゴ
ンガス中465℃で2時間アニール処理しSm−Fe−
N系磁石用合金粉末を得た。窒化後の磁粉の磁気特性を
表3に示す。
Example 1 Samples 8 to 14: purity 9
9.9 wt% electrolytic Fe and 99.7 wt% purity metal S
m and metals having a purity of 99 wt% or more Na, K, Rb, Cs,
Predetermined amounts of Mg, Sr, and Ba were weighed, melted by high frequency in an argon gas atmosphere, and cast into a steel mold having a width of 20 mm to obtain about 2 kg of each alloy ingot. The obtained alloy ingot was kept in a high-purity argon atmosphere at 1100 ° C. for 48 hours to perform a homogenization treatment. Next, this was pulverized with a jaw crusher and a ball mill so as to be 100 μm or less to obtain an Sm—Fe alloy of the present invention. As a result of X-ray analysis of the alloy powder, only a diffraction line of a rhombohedral Th 2 Zn 17 type crystal structure (Sm 2 Fe 17 intermetallic compound) was observed. Table 3 shows the chemical analysis values of Sm and Fe, and the analysis values of the added elements in the crystal grains. Next, this powder was charged into a tubular furnace, and subjected to nitriding treatment at 465 ° C. for 6 hours in an ammonia-hydrogen mixed gas atmosphere having an ammonia partial pressure of 0.35, and then to annealing at 465 ° C. for 2 hours in argon gas to obtain Sm—Fe—.
An alloy powder for N-based magnet was obtained. Table 3 shows the magnetic properties of the magnetic powder after nitriding.

【0031】[0031]

【表3】 [Table 3]

【0032】比較例1 試料15、16 ・・・
a、K、Rb、Cs、Mg、Sr、Baのいずれも添加
せず、また、窒化処理時間を6〜12時間とした以外
は、実施例1と同様にしてSm−Fe系合金およびSm
−Fe−N系磁石用合金粉末を得た。Sm−Fe系合金
をX線解析したところ、菱面体晶系のThZn17
結晶構造(SmFe17金属間化合物)の回折線のみ
観測された。Sm、Feの化学分析値、窒化時間、磁気
特性を表4に示す。試料15と16からは本発明の添加
元素を含有しない場合には十分な磁気特性を得るのに必
要な窒化時間が長いことがわかる。
Comparative Example 1 Samples 15, 16... N
a, K, Rb, Cs, Mg, Sr, and Ba were not added, and the Sm-Fe alloy and Sm were formed in the same manner as in Example 1 except that the nitriding time was 6 to 12 hours.
-An alloy powder for an Fe-N-based magnet was obtained. As a result of X-ray analysis of the Sm—Fe alloy, only a diffraction line of a rhombohedral Th 2 Zn 17 type crystal structure (Sm 2 Fe 17 intermetallic compound) was observed. Table 4 shows the chemical analysis values, nitriding time, and magnetic properties of Sm and Fe. Samples 15 and 16 show that when the additive element of the present invention was not contained, the nitriding time required for obtaining sufficient magnetic properties was long.

【0033】[0033]

【表4】 [Table 4]

【0034】比較例2 試料18〜24 ・・・
a、K、Rb、Cs、Mg、Sr、Baの添加量を変え
た以外は、実施例1と同様にしてSm−Fe系合金およ
びSm−Fe−N系磁石用合金粉末を得た。Sm−Fe
系合金をX線解析したところ、菱面体晶系のThZn
17型結晶構造(SmFe17金属間化合物)の回折
線のみ観測された。Sm、Feの化学分析値、EPMA
による添加元素の分析値、磁気特性を表5に示す。これ
らの結果から含有量が0.1wt%を超えるとBrが低
下していることがわかる。
Comparative Example 2 Samples 18 to 24... N
Sm-Fe-based alloys and Sm-Fe-N-based magnet alloy powders were obtained in the same manner as in Example 1 except that the addition amounts of a, K, Rb, Cs, Mg, Sr, and Ba were changed. Sm-Fe
X-ray analysis of the base alloy revealed that the rhombohedral Th 2 Zn
Only the diffraction line of the type 17 crystal structure (Sm 2 Fe 17 intermetallic compound) was observed. Chemical analysis of Sm and Fe, EPMA
Table 5 shows the analysis values of the added elements and the magnetic characteristics. From these results, it can be seen that when the content exceeds 0.1 wt%, Br decreases.

【0035】[0035]

【表5】 [Table 5]

【0036】参考例3 試料25 ・・・ 純度99.
5wt%、粒度325メッシュ以下の電Co粉と、純
度99.7wt%、粒度300メッシュ以下の電解Mn
粉も使用した以外には、参考例1と同様にしてSm−F
e系合金粉末を得た。この合金粉をX線解析したとこ
ろ、菱面体晶系のThZn17型結晶構造(Sm
(Fe、Co、Mn)17金属間化合物)の回折線の
み観測された。還元拡散の反応温度、時間、Sm、F
e、Co、Mnの化学分析値、結晶粒内のCa分析値を
表6に示す。ついでこの粉末を管状炉中に装填し、アン
モニア分圧0.37のアンモニア−水素混合ガス雰囲気
中465℃で7時間窒化処理し、その後アルゴンガス中
465℃で2時間アニール処理しSm−Fe−N系磁石
用合金粉末を得た。本参考例では磁気特性を評価するた
めの微粉砕粒径はフィッシャー平均粒径22μmとし
た。磁気特性を表6に示す。
Reference Example 3 Sample 25: Purity 99.
5 wt%, and particle size 325 mesh or less of electrolytic Co powder, purity 99.7 wt%, particle size 300 mesh or less electrolytic Mn
Sm-F in the same manner as in Reference Example 1 except that powder was also used.
An e-based alloy powder was obtained. When this alloy Powder was subjected to X-ray, rhombohedral of Th 2 Zn 17 type crystal structure (Sm
2 (Fe, Co, Mn) 17 intermetallic compound) was observed only. Reaction temperature, time, Sm, F
Table 6 shows the chemical analysis values of e, Co, and Mn, and the Ca analysis values in the crystal grains. Next, this powder was charged into a tubular furnace, and subjected to nitriding treatment at 465 ° C. for 7 hours in an ammonia-hydrogen mixed gas atmosphere having an ammonia partial pressure of 0.37, and then to annealing at 465 ° C. for 2 hours in argon gas to obtain Sm—Fe—. An alloy powder for N-based magnet was obtained. In the present reference example, the finely pulverized particle size for evaluating the magnetic characteristics was a Fisher average particle size of 22 μm. Table 6 shows the magnetic properties.

【0037】[0037]

【表6】 [Table 6]

【0038】比較例3 試料26〜28 ・・・ 還元
拡散反応を1000〜1200℃で6〜12時間とし窒
化処理時間を7〜13時間とした以外は、参考例3と同
様にしてSm−Fe系合金およびSm−Fe−N系磁石
用合金粉末を得た。Sm−Fe系合金をX線解析したと
ころ、菱面体晶系のThZn17型結晶構造(Sm
(Fe、Co、Mn)17金属間化合物)の回折線のみ
観測された。還元拡散の反応温度、時間、Sm、Fe、
Co、Mnの化学分析値、結晶粒内のCa分析値、窒化
時間、磁気特性を表7に示す。試料26と27からはC
aが0.001wt%未満では十分な磁気特性を得るの
に必要な窒化時間が長いこと、試料28からは0.1w
t%を超えるとBrが低下していることがわかる。
Comparative Example 3 Samples 26 to 28 Sm-Fe was prepared in the same manner as in Reference Example 3 except that the reduction diffusion reaction was performed at 1000 to 1200 ° C. for 6 to 12 hours and the nitriding time was changed to 7 to 13 hours. An alloy powder for Sm-Fe-N magnets was obtained. X-ray analysis of the Sm—Fe-based alloy revealed a rhombohedral Th 2 Zn 17- type crystal structure (Sm 2
Only the diffraction line of (Fe, Co, Mn) 17 intermetallic compound) was observed. Reaction temperature, time, Sm, Fe,
Table 7 shows chemical analysis values of Co and Mn, Ca analysis values in crystal grains, nitriding time, and magnetic properties. From samples 26 and 27, C
If a is less than 0.001 wt%, the nitriding time required to obtain sufficient magnetic properties is long, and
It can be seen that Br exceeds t%.

【0039】[0039]

【表7】 [Table 7]

【0040】参考例4 試料29 ・・・ 純度99.
9wt%、粒度150メッシュ以下の電解Fe粉と、粒
度200メッシュ以下のフェロチタン粉末と、純度9
9.9wt%、平均粒度325メッシュの酸化Nd粉末
を使用した以外は、参考例1と同様にしてNd−Fe系
合金粉末約3kgを得た。この合金粉をX線解析したと
ころ、正方晶系のThMn12型結晶構造(NdFe
11Ti金属間化合物)の回折線のみ観測された。還元
拡散の反応温度、時間、Nd、Fe、Tiの化学分析
値、結晶粒内のCa分析値を表8に示す。ついでこの粉
末を管状炉中に装填し、アンモニア分圧0.35のアン
モニア−水素混合ガス雰囲気中400℃で6時間窒化処
理し、その後アルゴンガス中400℃で1時間アニール
処理しNd−Fe−N系磁石用合金粉末を得た。磁気特
性を表8に示す。
Reference Example 4 Sample 29: purity 99.
9 wt%, electrolytic Fe powder having a particle size of 150 mesh or less, ferro-titanium powder having a particle size of 200 mesh or less, a purity of 9
Nd-Fe-based in the same manner as in Reference Example 1 except that 9.9 wt%, oxidized Nd powder having an average particle size of 325 mesh was used.
About 3 kg of alloy powder was obtained. X-ray analysis of this alloy powder showed a tetragonal ThMn 12- type crystal structure (NdFe
11 Ti intermetallic compound). Table 8 shows the reaction temperature and time of reduction diffusion, chemical analysis values of Nd, Fe, and Ti, and Ca analysis values in crystal grains. Next, this powder was charged into a tubular furnace, and subjected to nitriding treatment at 400 ° C. for 6 hours in an ammonia-hydrogen mixed gas atmosphere having an ammonia partial pressure of 0.35, and then annealed at 400 ° C. for 1 hour in argon gas to obtain Nd—Fe—. An alloy powder for N-based magnet was obtained. Table 8 shows the magnetic properties.

【0041】[0041]

【表8】 [Table 8]

【0042】参考例5 試料30〜32 ・・・ 還元
拡散反応を1000〜1200℃で7〜12時間とし窒
化処理時間を6〜12時間とした以外は、参考例4と同
様にしてNd−Fe系合金およびNd−Fe−N系磁石
用合金粉末を得た。Nd−Fe系合金をX線解析したと
ころ、正方晶系のThMn12型結晶構造(NdFe
11Ti金属間化合物)の回折線のみ観測された。還元
拡散の反応温度、時間、Nd、Fe、Tiの化学分析
値、結晶粒内のCa分析値、窒化時間、磁気特性を表9
に示す。試料30と31からはCaが0.001wt%
未満では十分な磁気特性を得るのに必要な窒化時間が長
いこと、試料32からは0.1wt%を超えるとBrが
低下していることがわかる。
Reference Example 5 Samples 30 to 32... Nd-Fe was prepared in the same manner as in Reference Example 4 except that the reduction diffusion reaction was carried out at 1000 to 1200 ° C. for 7 to 12 hours and the nitriding treatment time was 6 to 12 hours. An alloy powder for an Nd-Fe-N magnet was obtained. X-ray analysis of the Nd—Fe alloy revealed a tetragonal ThMn 12 type crystal structure (NdFe
11 Ti intermetallic compound). Table 9 shows the reaction temperature and time of reduction diffusion, chemical analysis values of Nd, Fe, and Ti, Ca analysis values in crystal grains, nitriding time, and magnetic properties.
Shown in 0.001 wt% of Ca from samples 30 and 31
If it is less than 0.3%, the nitriding time required to obtain sufficient magnetic properties is long, and from Sample 32, it is understood that Br exceeds 0.1% by weight and that Br is reduced.

【0043】[0043]

【表9】 [Table 9]

【0044】参考例6 試料33 ・・・ 純度99.
9wt%、粒度150メッシュ以下の電解Fe粉と、粒
度200メッシュ以下のフェロクロム粉末と、純度99
wt%平均粒度325メッシュの酸化Sm粉末を使用し
た以外は、参考例1と同様にして、Sm−Fe系合金粉
約3kgを得た。この合金粉をX線解析したところ、
単斜晶系のR(Fe、Ti)29型結晶構造の回折線
のみ観測された。還元拡散の反応温度、時間、Sm、F
e、Crの化学分析値、結晶粒内のCa分析値を表10
に示す。ついでこの粉末を管状炉中に装填し、アンモニ
ア分圧0.35のアンモニア−水素混合ガス雰囲気中5
00℃で6時間窒化処理し、その後アルゴンガス中50
0℃で1時間アニール処理しSm−Fe−N系磁石用合
金粉末を得た。本参考例では磁気特性を評価するための
微粉砕粒径はフィッシャー平均粒径11μmとした。磁
気特性を表10に示す。
Reference Example 6 Sample 33: purity 99.
9 wt%, electrolytic Fe powder having a particle size of 150 mesh or less, ferrochrome powder having a particle size of 200 mesh or less, purity of 99 mesh
Sm-Fe alloy powder in the same manner as in Reference Example 1 except that oxidized Sm powder having a wt% average particle size of 325 mesh was used.
End to obtain about 3kg. X-ray analysis of this alloy powder showed that
Only diffraction lines of a monoclinic R 3 (Fe, Ti) 29 type crystal structure were observed. Reaction temperature, time, Sm, F
Table 10 shows the chemical analysis values of e and Cr and the Ca analysis values in the crystal grains.
Shown in Then, the powder was charged into a tube furnace, and the powder was placed in an ammonia-hydrogen mixed gas atmosphere with an ammonia partial pressure of 0.35.
Nitriding at 00 ° C for 6 hours, followed by 50
Annealing treatment was performed at 0 ° C. for 1 hour to obtain an alloy powder for Sm—Fe—N magnet. In the present reference example , the finely pulverized particle size for evaluating the magnetic characteristics was a Fisher average particle size of 11 μm. Table 10 shows the magnetic characteristics.

【0045】[0045]

【表10】 [Table 10]

【0046】参考例7 試料34〜36 ・・・ 還元
拡散反応を1000〜1200℃で7〜12時間とし窒
化処理時間を6〜12時間とした以外は、参考例6と同
様にしてSm−Fe系合金粉末およびSm−Fe−N系
磁石用合金粉末を得た。Sm−Fe系合金をX線解析し
たところ、単斜晶系のR(Fe、Ti)29型結晶構
造の回折線のみ観測された。還元拡散の反応温度、時
間、Sm、Fe、Crの化学分析値、結晶粒内のCa分
析値、窒化時間、磁気特性を表11に示す。試料34と
35からはCaが0.001wt%未満では十分な磁気
特性を得るのに必要な窒化時間が長いこと、試料36か
らは0.1wt%を超えるとBrが低下していることが
わかる。
Reference Example 7 Samples 34 to 36: Same as Reference Example 6 except that the reduction diffusion reaction was carried out at 1000 to 1200 ° C. for 7 to 12 hours and the nitriding time was 6 to 12 hours.
Thus, an Sm-Fe alloy powder and an Sm-Fe-N magnet alloy powder were obtained. X-ray analysis of the Sm-Fe alloy revealed that only a diffraction line having a monoclinic R 3 (Fe, Ti) 29 type crystal structure was observed. Table 11 shows the reaction temperature and time of reduction diffusion, chemical analysis values of Sm, Fe, and Cr, analysis values of Ca in crystal grains, nitriding time, and magnetic properties. Samples 34 and 35 show that when Ca is less than 0.001 wt%, the nitriding time required to obtain sufficient magnetic properties is long, and that in Sample 36, when it exceeds 0.1 wt%, Br is reduced. .

【0047】[0047]

【表11】 [Table 11]

【0048】参考例8 試料7〜17 ・・・ 実施例
1と同様にして、金属Liを用いて、Sm−Fe系合金
粉末、次いでSm−Fe−N系磁石用合金粉末を得た。
Sm−Fe系合金粉末をX線解析したところ、菱面体晶
系のTh Zn 17 型結晶構造(Sm Fe 17 金属間
化合物)の回折線のみ観測された。Sm、Feの化学分
析値、EPMAによる添加元素の分析値、Sm−Fe−
N系磁石用合金粉末の磁気特性を表12に示す。
Reference Example 8 Samples 7 to 17 : Examples
Sm-Fe-based alloy using metal Li
A powder and then an Sm-Fe-N based alloy powder were obtained.
X-ray analysis of the Sm-Fe alloy powder showed that the rhombohedral crystal
Th 2 Zn 17 type crystal structure of the system (Sm 2 Fe 17 intermetallic
Compound) was observed only. Chemical content of Sm and Fe
Analysis value, analysis value of added element by EPMA, Sm-Fe-
Table 12 shows the magnetic characteristics of the alloy powder for N-based magnets.

【0049】[0049]

【表12】 [Table 12]

【0050】[0050]

【発明の効果】本発明によれば、従来よりも短時間で窒
化処理が可能となるため生産性が向上し、したがってコ
スト的に安価な希土類−鉄−窒素系磁石合金を製造でき
る希土類−鉄系磁石用合金が得られた。
According to the present invention, the nitriding treatment can be performed in a shorter time than in the prior art, so that the productivity is improved, and thus the rare earth-iron-nitrogen based magnet alloy can be manufactured at a low cost. An alloy for a system magnet was obtained.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 SmあるいはNdから選択された一種以
上の希土類元素14〜27wt%と、鉄又は鉄及びコバ
ルトとを成分とする菱面体晶系、六方晶系、正方晶系ま
たは単斜晶系の金属間化合物を含む合金であって、該
属間化合物相内部にNa、K、Rb、Cs、Mg、Sr
またはBaの少なくとも一種以上を0.001〜0.1
wt%含有することを特徴とする希土類−鉄系磁石用
金。
1. One or more types selected from Sm and Nd.
14 to 27 wt% of the above rare earth element and iron or iron and iron
Rhombohedral system to the belt as a component, hexagonal, tetragonal Akirakeima
Others an alloy containing an intermetallic compound of monoclinic, the gold
Na, K, Rb, Cs, Mg, Sr inside intergeneric compound phase
Or at least one of Ba is 0.001 to 0.1
An alloy for rare earth-iron based magnets , characterized in that the alloy contains 0.1% by weight.
【請求項2】 SmあるいはNdから選択された一種以
上の希土類元素14〜27wt%と、鉄又は鉄及びコバ
ルトとM(Mは、Ti、CrまたはMnの少なくとも一
種以上)12wt%以下成分とする菱面体晶系、六方
晶系、正方晶系または単斜晶系の金属間化合物を含む
金であって、該金属間化合物相内部にNa、K、Rb、
Cs、Mg、SrまたはBaの少なくとも一種以上を
0.001〜0.1wt%含有することを特徴とする希
土類−鉄系磁石用合金。
2. One or more types selected from Sm and Nd.
14 to 27 wt% of the above rare earth element and iron or iron and iron
(The M, Ti, or at least one kind of Cr or Mn) belt and M rhombohedral system to 12 wt% or less of component, hexagonal
Crystal system, a case <br/> alloy containing an intermetallic compound of tetragonal or monoclinic system, the intermetallic compound phase therein Na, K, Rb,
A rare earth-iron magnet alloy containing at least one of Cs, Mg, Sr or Ba in an amount of 0.001 to 0.1 wt%.
JP31455995A 1995-12-01 1995-12-01 Rare earth-iron magnet alloys Expired - Fee Related JP3304729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31455995A JP3304729B2 (en) 1995-12-01 1995-12-01 Rare earth-iron magnet alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31455995A JP3304729B2 (en) 1995-12-01 1995-12-01 Rare earth-iron magnet alloys

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001211459A Division JP3797153B2 (en) 2001-07-12 2001-07-12 Nitriding method of rare earth-iron alloy powder and raw material of alloy powder used in the method

Publications (2)

Publication Number Publication Date
JPH09157803A JPH09157803A (en) 1997-06-17
JP3304729B2 true JP3304729B2 (en) 2002-07-22

Family

ID=18054750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31455995A Expired - Fee Related JP3304729B2 (en) 1995-12-01 1995-12-01 Rare earth-iron magnet alloys

Country Status (1)

Country Link
JP (1) JP3304729B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604528B2 (en) * 2004-03-22 2011-01-05 住友金属鉱山株式会社 Rare earth-iron-manganese-nitrogen magnet powder
JP2007070724A (en) * 2005-08-09 2007-03-22 Sumitomo Metal Mining Co Ltd Rare earth-iron-nitrogen based magnet powder, and method for producing the same
CN101401282B (en) 2006-03-16 2011-11-30 松下电器产业株式会社 Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor
JP5267800B2 (en) 2009-02-27 2013-08-21 ミネベア株式会社 Self-repairing rare earth-iron magnet
JP5344171B2 (en) 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet
JP4725682B2 (en) * 2010-07-05 2011-07-13 住友金属鉱山株式会社 Rare earth-iron-manganese-nitrogen magnet powder
JP2018031048A (en) * 2016-08-24 2018-03-01 トヨタ自動車株式会社 Method for producing magnetic compound

Also Published As

Publication number Publication date
JPH09157803A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
JP3304726B2 (en) Rare earth-iron-nitrogen magnet alloy
JPH0521218A (en) Production of rare-earth permanent magnet
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
JPH11329811A (en) Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet
JP3304729B2 (en) Rare earth-iron magnet alloys
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
US5733384A (en) Process for producing hard-magnetic parts
US5064465A (en) Process for preparing rare earth-iron-boron alloy powders
JP3797153B2 (en) Nitriding method of rare earth-iron alloy powder and raw material of alloy powder used in the method
JP3770734B2 (en) Method for producing Sm-Fe-N alloy powder
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP2000294416A (en) Rare earth bonded magnet
JP3567742B2 (en) Method for producing rare earth Fe-based alloy powder
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JP3120546B2 (en) Manufacturing method of permanent magnet material
JPH0521219A (en) Production of rare-earth permanent magnet
JPH06112019A (en) Nitride magnetic material
JP3520778B2 (en) Method for producing Sm-Fe-N ferromagnetic material
JPH04318152A (en) Rare earth magnetic material and its manufacture
JPS627831A (en) Manufacture of permanent magnet material
JPH05247600A (en) Magnet material and its production
JPH04365840A (en) Rare earth magnet material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees