JP3120546B2 - Manufacturing method of permanent magnet material - Google Patents

Manufacturing method of permanent magnet material

Info

Publication number
JP3120546B2
JP3120546B2 JP04076315A JP7631592A JP3120546B2 JP 3120546 B2 JP3120546 B2 JP 3120546B2 JP 04076315 A JP04076315 A JP 04076315A JP 7631592 A JP7631592 A JP 7631592A JP 3120546 B2 JP3120546 B2 JP 3120546B2
Authority
JP
Japan
Prior art keywords
powder
range
rare earth
permanent magnet
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04076315A
Other languages
Japanese (ja)
Other versions
JPH05243025A (en
Inventor
道也 久米
芳雄 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP04076315A priority Critical patent/JP3120546B2/en
Publication of JPH05243025A publication Critical patent/JPH05243025A/en
Application granted granted Critical
Publication of JP3120546B2 publication Critical patent/JP3120546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、永久磁石材料の製造方
法に係り、特に大気中で化学的に安定な永久磁石材料の
製造方法に関する。
The present invention relates to relates to a manufacturing method of a permanent magnet materials, and more particularly, to a method of <br/> producing chemically stable permanent magnet materials in the atmosphere.

【0002】[0002]

【従来の技術】希土類−遷移金属−ボロン永久磁石は高
性能永久磁石として知られており、資源的な背景もあっ
てその用途はますます広がっている。一般に、この磁石
の製法は粉末冶金法をとるため、原料となる材料は合金
粉末状態で求められることが多い。合金粉末は、成分と
なる金属を溶融してインゴットにした後、粉砕する方法
が一般的である。また、合金粉末を得る他の方法とし
て、希土類酸化物をCa蒸気で還元して遷移金属および
ボロンと化合させるいわゆる還元拡散法、あるいは直接
還元法が知られている。
2. Description of the Related Art Rare earth-transition metal-boron permanent magnets are known as high-performance permanent magnets, and their use is expanding due to resource background. Generally, since the magnet is manufactured by powder metallurgy, the raw material is often obtained in the form of an alloy powder. In general, the alloy powder is formed by melting a metal as a component into an ingot, and then pulverizing the ingot. Further, as another method for obtaining an alloy powder, a so-called reduction diffusion method in which a rare earth oxide is reduced with Ca vapor to be combined with a transition metal and boron, or a direct reduction method is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述の
ような粉砕方式では、以下のような欠点がある。まず、
溶融する希土類金属は、希土類酸化物に比較して非常に
高価である。加えて、得られた合金粉末は、大気中での
化学的安定性が乏しく極めて短時間に錆やすい。従っ
て、製造工程は勿論、保管等においても不活性雰囲気中
にあることが要求されるため、多くの場合、表面処理を
必要とする。
However, the above-mentioned pulverization method has the following disadvantages. First,
Melting rare earth metals are very expensive compared to rare earth oxides. In addition, the obtained alloy powder has poor chemical stability in the atmosphere and easily rusts in a very short time. Therefore, since it is required that the substrate be in an inert atmosphere not only during the manufacturing process but also during storage, a surface treatment is required in many cases.

【0004】また、還元拡散あるいは直接還元法による
と、直接合金粉末は得られるが、反応副生物であるCa
Oの除去のために、水洗工程が不可欠であり、ここで合
金粉末の酸化がおきやすい。水洗工程をできるだけ簡略
化するために、あらかじめCaCl2を加える技術も知
られているが、根本的に合金粉末の耐食性が改善される
ものではない。
According to the reduction diffusion or direct reduction method, a direct alloy powder can be obtained, but Ca as a reaction by-product is obtained.
A water washing step is indispensable for the removal of O, where oxidation of the alloy powder is likely to occur. In order to simplify the washing process as much as possible, a technique of adding CaCl2 in advance is known, but it does not fundamentally improve the corrosion resistance of the alloy powder.

【0005】そこで、本発明はこのような事情を鑑み成
されたもので、その目的とするところは、高価な希土類
金属を使うことなく、また粉砕工程等を経ることなく、
大気中で化学的に安定な永久磁石材料の製造方法を提供
することにある。
Accordingly, the present invention has been made in view of such circumstances, and it is an object of the present invention to use an expensive rare earth metal without using a pulverizing step and the like.
An object of the present invention is to provide a method for producing a permanent magnet material which is chemically stable in the atmosphere.

【0006】[0006]

【発明を解決するための手段】鉄鋼、チタン等に化学的
安定性を付与するため、表面を窒化処理する技術が知ら
れている。この技術は母材の結晶格子を保ったまま窒素
原子を侵入させることにより、他の原子、特に酸素のア
タックを防ぐというというものである。
In order to impart chemical stability to steel, titanium and the like, a technique of nitriding the surface is known. This technique prevents the attack of other atoms, especially oxygen, by penetrating nitrogen atoms while maintaining the crystal lattice of the base material.

【0007】この知見に基づき、本発明者は、工業的に
実施可能なプロセスで永久磁石特性を損なわせることな
く、窒素を含有した化学的に安定な永久磁石材料を得る
ことに成功し、本発明を成すに至った。
Based on this finding, the present inventor succeeded in obtaining a nitrogen-containing chemically stable permanent magnet material without impairing the properties of the permanent magnet in an industrially practicable process. Invented the invention.

【0008】即ち、本発明の製造方法は、主相が正方晶
であって、一般式がLnX・M100-X-Y-Z・NY・BZ(た
だし、Lnは希土類元素の中から選ばれた少なくとも一
種の元素であり、MはFe、CoおよびNiの中から選
ばれた少なくとも一種の元素であり、Xは3原子%<X<
30原子%の範囲にあり、Yは0.01原子%<Y<15
原子%の範囲にあり、Zは1原子%<Z<15原子%の範
囲にある。)で表され、酸素量が1800ppm以下で
ある永久磁石材料の製造方法であって、希土類酸化物粉
末と、Fe、CoおよびNiの中から選ばれた少なくと
も一種の金属粉末と、B、B2O3およびフェロボロンの
中から選ばれた少なくとも一種の含ホウ素粉末と、粒状
のCaとを目的組成に応じた割合で均一に混合し、この
混合物を不活性ガス雰囲気中で、800℃から1200
℃の範囲の温度で加熱し、加熱終了後250から800
℃の温度に冷却し、真空排気した後、引き続いて窒素ガ
スあるいは窒素を含む化合物のガス中で、200℃から
800℃の範囲の温度で加熱した後、反応生成物を水お
よび弱酸水溶液で処理することを特徴とすることを特徴
とするものである。
Namely, the production method of the present invention, the main phase is a tetragonal one general formula is LnX · M100-XYZ · NY · BZ ( although, Ln is at least one selected from among rare earth elements M is at least one element selected from Fe, Co and Ni, and X is 3 atomic% <X <
30 atomic%, and Y is 0.01 atomic% <Y <15
Atomic%, and Z is in the range of 1 atomic% <Z <15 atomic%. Wherein the oxygen content is 1800 ppm or less, comprising: a rare earth oxide powder, at least one metal powder selected from Fe, Co and Ni, B, B2O3 and At least one type of boron-containing powder selected from ferroboron and granular Ca are uniformly mixed at a ratio according to the target composition, and the mixture is heated from 800 ° C. to 1200 ° C. in an inert gas atmosphere.
Heating at a temperature in the range of 250 ° C.
After cooling to a temperature of 200 ° C., evacuating, and subsequently heating in a nitrogen gas or nitrogen-containing compound gas at a temperature in the range of 200 ° C. to 800 ° C., the reaction product is treated with water and a weak acid aqueous solution. It is characterized by doing.

【0009】本発明において希土類元素LnとはYを含
むと共に、軽希土類、重希土類を含む希土類元素のうち
の少なくとも一種をいい、即ち、Y、Nd、Pr、L
a、Ce、Tb、Dy、Ho、Er、Eu、Sm、G
d、Er、Tm、Yb、Luのうちの少なくとも一種で
あり、希土類酸化物粉末とは、これらの酸化物、複酸化
物、混合物をいう。
In the present invention, the rare earth element Ln includes Y and at least one of rare earth elements including light rare earth elements and heavy rare earth elements, that is, Y, Nd, Pr, L
a, Ce, Tb, Dy, Ho, Er, Eu, Sm, G
At least one of d, Er, Tm, Yb, and Lu, and the rare-earth oxide powder refers to these oxides, multiple oxides, and mixtures thereof.

【0010】[0010]

【作用】以下本発明の製造方法を順に詳説し、その作用
を述べる。まず、目的とする永久磁石材料の組成に応じ
た割合で、希土類酸化物粉末とFe、Co、Ni等の金
属粉末と、B、B2O3、フェロボロン等の含ホウ素粉末
と、粒状のCaとを混合して混合粉とする。
The production method of the present invention will be described in detail below, and its operation will be described. First, a rare-earth oxide powder, a metal powder such as Fe, Co, and Ni, a boron-containing powder such as B, B2O3, and ferroboron, and a granular Ca are mixed at a ratio according to the composition of a target permanent magnet material. To make a mixed powder.

【0011】金属粉末は、所望とする粉末合金の粒径の
40ないし60%程小さい粒径のものを使用することが
好ましい。
It is preferable to use a metal powder having a particle size smaller by about 40 to 60% than a desired powder alloy.

【0012】粒状のCaは、希土類酸化物と、選択的に
混合する金属酸化物とを還元するに足りる量を混合する
ことが必要であるが、好適には、その粒状Caの混合量
は、希土類酸化物と、B2O3(B2O3を混合した場合に
のみ)中の総酸素原子の当量に対し、1.5倍程度を混
合することが望ましい。
[0012] It is necessary to mix the granular Ca in an amount sufficient to reduce the rare earth oxide and the metal oxide to be selectively mixed. Preferably, the mixed amount of the granular Ca is It is desirable to mix the rare earth oxide with about 1.5 times the equivalent of the total oxygen atoms in B2O3 (only when B2O3 is mixed).

【0013】次に、このようにして得られた混合粉を真
空排気可能な加熱容器中に配置する。加熱容器内を真空
排気した後、不活性ガスを通じながら800℃から12
00℃の範囲内、望ましくは850℃から1100℃の
範囲内で数時間、好適には2時間程度加熱する。なお、
本発明において不活性ガスとはアルゴン、ネオン、ヘリ
ウム等の反応に関与しないガスをいう。
Next, the mixed powder thus obtained is placed in a heating vessel capable of evacuating. After evacuating the inside of the heating vessel, the temperature was reduced from 800 ° C to 12
Heating is performed within a range of 00 ° C., preferably within a range of 850 ° C. to 1100 ° C., for several hours, preferably for about 2 hours. In addition,
In the present invention, the inert gas refers to a gas that does not participate in the reaction, such as argon, neon, and helium.

【0014】その次に、加熱を止め、引き続いて不活性
ガス中で250℃から800℃の範囲内、好ましくは3
00℃から600℃の範囲内の一定の温度まで冷却し
て、この温度で保持する。その後、加熱容器を再び真空
排気した後、窒素ガスを導入してその保持温度で窒化処
理を施す。ガスは窒素に限らず窒素原子を含むガス、例
えば、アンモニアでもよく、好ましくは大気圧以上の圧
力で窒素ガスを通じながら数時間、好適には3時間程度
加熱した後、加熱を停止し放冷する。
Then, the heating is stopped and subsequently in an inert gas in the range from 250 ° C. to 800 ° C., preferably 3 ° C.
Cool to a certain temperature in the range of 00 ° C. to 600 ° C. and hold at this temperature. After that, the heating container is evacuated again, and then a nitrogen gas is introduced to perform a nitriding treatment at the holding temperature. The gas is not limited to nitrogen, but may be a gas containing a nitrogen atom, for example, ammonia. Preferably, the mixture is heated for several hours, preferably about 3 hours while passing nitrogen gas at a pressure higher than the atmospheric pressure, and then the heating is stopped and allowed to cool. .

【0015】以上の工程において、Caによる還元拡散
あるいは直接還元反応後に、窒素ガス雰囲気或いは窒素
原子を含む化合物ガスの雰囲気での窒化処理を数時間行
うことにより、0.01原子%ないし15原子%の窒素
原子を合金粉末に均一に含有させることができる。
In the above steps, after the reduction diffusion or the direct reduction reaction with Ca, the nitriding treatment in a nitrogen gas atmosphere or an atmosphere of a compound gas containing nitrogen atoms is performed for several hours, whereby 0.01 to 15 atomic% is obtained. Can be uniformly contained in the alloy powder.

【0016】放冷後、得られた反応生成物をイオン交換
水に投入すると同時に、その反応生成物は直ちに崩壊
し、合金粉末とCa成分との分離が始まる。水中での撹
拌、静置、上澄み液の除去を数回繰り返し、最後に酢酸
等の弱酸で処理することにより、Ca成分の分離が完了
する。この処理により、粒度分布がシャープに揃うと共
に流動性を有する合金粉末を得ることができる。
After cooling, the obtained reaction product is poured into ion-exchanged water, and at the same time, the reaction product immediately collapses and separation of the alloy powder and the Ca component starts. Stirring in water, standing, and removal of the supernatant liquid are repeated several times, and finally treatment with a weak acid such as acetic acid completes the separation of the Ca component. By this treatment, an alloy powder having a sharp particle size distribution and fluidity can be obtained.

【0017】本発明の製造方法において、窒化処理を水
洗工程に先立ち行うことにより、水洗工程および弱酸処
理工程においても、酸素成分が1800ppm以下の合
金粉末を得ることができ、最も好ましいことには、得ら
れた合金粉末を大気中に放置してもこの酸素量は増える
ことはない。
In the production method of the present invention, by performing the nitriding treatment prior to the water washing step, an alloy powder having an oxygen component of 1800 ppm or less can be obtained also in the water washing step and the weak acid treatment step. This oxygen content does not increase even if the obtained alloy powder is left in the air.

【0018】また、窒化処理を行わない場合、水洗工程
において、還元拡散あるいは直接還元反応の副生成物で
あるCaOは速やかに水と反応してCa(OH)2 にな
るが、未反応のCaは比較的緩慢に反応するので除去に
手間取り、ひいては純度の低下をもたらす原因になって
いたのに対し、本発明の如く窒化処理を行う場合、未反
応のCaの大部分がCaN等のカルシウム窒化物にな
り、このCaN等のカルシウム窒化物はCaOと同様に
速やかに水と反応するので、この除去には極めて好都合
である。
If the nitriding treatment is not performed, CaO, which is a by-product of reduction diffusion or direct reduction reaction in the water washing step, immediately reacts with water to form Ca (OH) 2, but unreacted Ca In the case of performing nitriding treatment as in the present invention, most of unreacted Ca is formed by calcium nitration such as CaN. This calcium nitride such as CaN reacts with water as quickly as CaO, so that it is very convenient for the removal.

【0019】従来の溶解法で得られた母合金を粉砕し、
これを窒化することで、組成比だけを満足する合金を得
ることもできる。しかし溶解法では、冷却過程での希土
類金属の析出は避けられず、これを窒化することで希土
類の窒化物が包含された生成物となる。永久磁石特性は
主に、希土類ー遷移金属ーボロン三元系の正方晶による
ものであるから、この窒化物は、磁気特性に悪影響を及
ぼす。しかるに、本発明によれば主相を正方晶としたま
ま窒素を導入することが可能であり、生成物も粉末であ
って、工業的な有為性は非常に大きい。
The mother alloy obtained by the conventional melting method is pulverized,
By nitriding this, an alloy satisfying only the composition ratio can be obtained. However, in the melting method, the precipitation of the rare earth metal in the cooling process is inevitable. By nitriding the rare earth metal, a product containing a rare earth nitride is obtained. Since the permanent magnet properties are mainly based on the tetragonal system of the rare earth-transition metal-boron ternary system, the nitride adversely affects the magnetic properties. However, according to the present invention, it is possible to introduce nitrogen while keeping the main phase tetragonal, and the product is also a powder, which has great industrial significance.

【0020】以上のようにして得られた合金粉末は、窒
素が0.01原子%より多く15原子%より少ない範囲
で含まれている。窒化処理の時間を少なくすることによ
り、窒素の含有量を0.01原子%より減少させること
ができるが、0.01原子%より少ないと、大気中での
化学的安定性が得られず、また、15原子%より多い
と、希土類元素の窒化物が生成するため、大気中では、
化学的に不安定となって不都合を生じる。
The alloy powder obtained as described above contains nitrogen in a range of more than 0.01 atomic% and less than 15 atomic%. By shortening the nitriding time, the nitrogen content can be reduced to less than 0.01 atomic%, but if less than 0.01 atomic%, chemical stability in the atmosphere cannot be obtained, On the other hand, if the content is more than 15 at%, nitrides of rare earth elements are generated.
It becomes chemically unstable and causes inconvenience.

【0021】[0021]

【実施例】以下、本発明の具体例について従来と比較し
ながら説明する。 (実施例1)目的組成をNd15Fe75B10として原料粉
を調整した。平均粒径1μmのNd2O3粉37.00g
と、平均粒径30μmのFe粉61.41g、および平
均粒径0.1μmのB粉1.59gを混合し、さらに粒
状のCa19.84gを加えて充分に混合する。Caの
当量はNd2O3中の酸素原子の当量に対し1.5倍であ
る。混合物を軟鋼製の坩堝に入れ、加熱容器中にセット
する。加熱容器内を1×10-2トル(Torr)以下まで真
空排気した後、アルゴンガスを導入し、大気圧で流通さ
せる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific examples of the present invention will be described below in comparison with the prior art. (Example 1) Raw material powder was prepared by setting the target composition to Nd15Fe75B10. 37.00 g of Nd2O3 powder having an average particle size of 1 μm
And 61.41 g of Fe powder having an average particle diameter of 30 μm, and 1.59 g of B powder having an average particle diameter of 0.1 μm, and 19.84 g of granular Ca is further added and sufficiently mixed. The equivalent of Ca is 1.5 times the equivalent of the oxygen atom in Nd2O3. The mixture is placed in a mild steel crucible and set in a heating vessel. After evacuating the inside of the heating vessel to 1 × 10 −2 Torr (Torr) or less, an argon gas is introduced and circulated at atmospheric pressure.

【0022】加熱容器を加熱し850℃になったらこの
状態で2時間保持し続け、以後アルゴンガスを流通させ
たままま冷却していく。500℃になったらこの温度に
保持を開始し、アルゴンガスの流通を止めて直ちに加熱
容器内を真空排気する。加熱容器内を1×10-2トル
(Torr )以下まで真空排気した後、排気を止め、窒素ガ
スを導入し、大気圧で窒素ガスが流通するようにし、そ
の後、3時間の熱処理を行ってから加熱を止めて放冷す
る。
When the heating vessel is heated to 850 ° C., it is kept in this state for 2 hours, and thereafter cooled while keeping the argon gas flowing. When the temperature reaches 500 ° C., the temperature is maintained, the flow of argon gas is stopped, and the inside of the heating vessel is immediately evacuated. After the inside of the heating vessel is evacuated to 1 × 10 −2 Torr (Torr) or less, the evacuation is stopped, nitrogen gas is introduced, nitrogen gas is allowed to flow at atmospheric pressure, and then heat treatment is performed for 3 hours. Stop heating and allow to cool.

【0023】得られた反応生成物は多孔質のブロック状
であって容易に坩堝から取り出すことができ、反応生成
物を3000ccのイオン交換水中に投入すると、直ち
に崩壊する。この時、反応生成物中のCaOと、ほとん
どがCaN等のカルシウムの窒化物である未反応のCa
とが微細なCa(OH)2 に変わる。このスラリーを1
0分間撹拌した後、10分間静置し、微細なCa(O
H)2 が浮遊している上澄み液を捨てる。ここで再度3
000ccのイオン交換水を加えて先と同様な操作を行
う。数回、この操作を繰り返した後、当初pH4.5に
調整された酢酸水溶液中で15分間撹拌、静置して上澄
み液を捨てる。この後再度水洗いを数回行ってCa分の
除去が完了する。最後に、Ca分を除去した合金粉末を
ヌッチェにてアルコール置換しながら水と分離し、分離
したケーキを80℃で真空乾燥し、これにより、Nd−
Fe−N−B合金粉末を得る。
The obtained reaction product is a porous block and can be easily taken out of the crucible. When the reaction product is put into 3000 cc of deionized water, it immediately disintegrates. At this time, CaO in the reaction product and unreacted Ca which is mostly a nitride of calcium such as CaN
Changes into fine Ca (OH) 2. This slurry is
After stirring for 0 minutes, the mixture is allowed to stand for 10 minutes, and fine Ca (O
H) Discard the supernatant in which 2 is floating. Here again 3
The same operation as above is performed by adding 000 cc of ion-exchanged water. After repeating this operation several times, the mixture is stirred for 15 minutes in an aqueous acetic acid solution initially adjusted to pH 4.5, allowed to stand, and the supernatant is discarded. Thereafter, washing with water is performed several times again to complete the removal of the Ca content. Lastly, the Ca-removed alloy powder was separated from water while substituting alcohol with a Nutsche, and the separated cake was vacuum-dried at 80 ° C.
An Fe-NB alloy powder is obtained.

【0024】こうして得られた合金粉末は90.37g
で、ほぼ球形に近い形を有して粒径を約50μmとする
流動性の良い黒色粉末であった。化学分析値は Nd 27.4 % Fe 70.0 % N 2.14% B 1.5 % Ca 0.08% O 1700ppm(0.17%) であった。得られた合金のNd、Fe、Bに注目すれば
一般式を、Nd14.9Fe75.8B9.3とするものであり、
目的組成にほぼ合致した。また、出発原料の金属分に基
づく収率は92.3%であった。合金粉末は良好な耐食
性を有し、1カ月大気中に放置しても酸素量の増大は見
られなかった。また圧粉体試料の磁化曲線から求めた異
方性磁界Haは、9.8Tであった。キュリー点は、1
5kOeの外部磁界中での磁化の温度特性から求めた結
果、450℃であった。
90.37 g of the alloy powder thus obtained was obtained.
It was a black powder with good fluidity, having a nearly spherical shape and a particle size of about 50 μm. The chemical analysis value was Nd 27.4% Fe 70.0% N 2.14% B 1.5% Ca 0.08% O 1700 ppm (0.17%). Focusing on Nd, Fe, B of the obtained alloy, the general formula is Nd14.9Fe75.8B9.3,
It almost matched the target composition. The yield based on the metal content of the starting material was 92.3%. The alloy powder had good corrosion resistance, and did not show an increase in the amount of oxygen even when left in the air for one month. The anisotropic magnetic field Ha obtained from the magnetization curve of the green compact sample was 9.8T. Curie point is 1
The temperature was 450 ° C. as determined from the temperature characteristics of magnetization in an external magnetic field of 5 kOe.

【0025】次に以下の手順で焼結永久磁石を製作し
た。まず合金粉末を振動ミルで平均粒径3μmまで粉砕
する。次に、15kOeの磁界中で配向したのち、磁界
方向と垂直に2t/cm2でプレス成形して、10×10
×10mmの試料を得た。これを1100℃、1時間、
Ar中の条件で焼結し、その後急冷した。この試料をパ
ルス磁界で着磁し、VSMで磁気特性を測定した。その
結果、 保磁力Hc 13.5kOe 残留磁束密度Br 12.3kG (BH)max 34.5MGOe キュリー点 320℃ という、優れた磁気特性を有する永久磁石が得られた。
また焼結体を粉砕し、窒素濃度を分析すると0.01%
以下であった。すなわち、粉末中に2.14%含まれて
いた窒素は焼結時に揮発して、焼結体内にはほとんど残
留しなかった。
Next, a sintered permanent magnet was manufactured in the following procedure. First, the alloy powder is pulverized by a vibration mill to an average particle size of 3 μm. Next, after orienting in a magnetic field of 15 kOe, press molding is performed at 2 t / cm 2 perpendicular to the magnetic field direction, and
A sample of × 10 mm was obtained. 1100 ° C for 1 hour
Sintering was performed in Ar conditions, followed by rapid cooling. This sample was magnetized by a pulse magnetic field, and the magnetic properties were measured by VSM. As a result, a permanent magnet having excellent magnetic properties such as a coercive force Hc of 13.5 kOe, a residual magnetic flux density Br of 12.3 kG (BH) max of 34.5 MGOe, and a Curie point of 320 ° C. was obtained.
When the sintered body is pulverized and analyzed for nitrogen concentration, it is 0.01%
It was below. That is, the nitrogen contained in the powder at 2.14% volatilized during sintering and hardly remained in the sintered body.

【0026】(比較例1)実施例1と同じくNd15Fe
75B10なる組成比の合金を得るに際し、各々の金属を高
周波溶解し、水冷銅鋳型に鋳造する。この鋳塊をジョー
クラッシャーおよびブラウンミルで50μmまで粉砕し
た。この粉末は粉砕途中から赤く錆びはじめ、1カ月大
気中に放置すると、酸素量は35000ppm(3.5
%)にも達した。従ってこの粉末は、焼結体製造はもち
ろん、保管等においても、きわめて厳重に雰囲気の酸素
濃度を管理する必要がある。
(Comparative Example 1) Nd15Fe as in Example 1.
To obtain an alloy having a composition ratio of 75B10, each metal is melted by high frequency and cast into a water-cooled copper mold. This ingot was ground to 50 μm with a jaw crusher and a brown mill. This powder starts to rust red during the pulverization, and when left in the atmosphere for one month, the oxygen content becomes 35,000 ppm (3.5
%). Therefore, it is necessary to very strictly control the oxygen concentration in the atmosphere of this powder not only during production of a sintered body but also during storage.

【0027】(実施例2)目的組成をPr15Fe75B10
として原料粉を調整した。平均粒径1μmのPr6O11
粉 37.28gと平均粒径30μmのFe粉61.1
4g、および平均粒径0.1μmのB粉1.58gを混
合し、さらに粒状のCa19.99gを加えて充分に混
合する。Caの当量はPr6O11中の酸素原子の当量に
対し1.5倍である。後は、実施例1と全く同じ操作を
施してPr−Fe−N−B合金を製作した。
Example 2 The target composition was Pr15Fe75B10
The raw material powder was adjusted as follows. Pr6O11 with an average particle size of 1 μm
37.28 g of powder and Fe powder 61.1 having an average particle size of 30 μm
4 g and 1.58 g of B powder having an average particle size of 0.1 μm are mixed, and 19.99 g of granular Ca is further added and sufficiently mixed. The equivalent of Ca is 1.5 times the equivalent of the oxygen atom in Pr6O11. Thereafter, the same operation as in Example 1 was performed to produce a Pr—Fe—NB alloy.

【0028】こうして得られた合金粉末は90.37g
で、ほぼ球形に近い形を有して粒径を約50μmとする
流動性の良い黒色粉末であった。化学分析値は Pr 31.9 % Fe 64.1 % N 2.31% B 1.5 % Ca 0.07% O 1800ppm(0.18%) であった。すなわち、得られた合金はPr、Fe、Bに
注目すると、一般式をPr14.7Fe76.1B9.2とするも
のであり、目的組成にほぼ合致した。また、出発原料の
金属分に基づく収率は94.4%であった。合金粉末は
良好な耐食性を有し、1カ月大気中に放置しても酸素量
の増大は見られなかった。また圧粉体試料の磁化曲線か
ら求めた異方性磁界Haは、8.6Tであった。キュリ
ー点は、15kOeの外部磁界中での磁化の温度特性か
ら求めた結果、480℃であった。
90.37 g of the alloy powder thus obtained was obtained.
It was a black powder with good fluidity, having a nearly spherical shape and a particle size of about 50 μm. The chemical analysis value was Pr 31.9% Fe 64.1% N 2.31% B 1.5% Ca 0.07% O 1800 ppm (0.18%). That is, when focusing on Pr, Fe, and B, the obtained alloy had a general formula of Pr14.7Fe76.1B9.2, which almost matched the target composition. The yield based on the metal content of the starting material was 94.4%. The alloy powder had good corrosion resistance, and did not show an increase in the amount of oxygen even when left in the air for one month. The anisotropic magnetic field Ha obtained from the magnetization curve of the green compact sample was 8.6T. The Curie point was 480 ° C. as determined from the temperature characteristics of magnetization in an external magnetic field of 15 kOe.

【0029】次に実施例1と同様に、焼結永久磁石を製
作し、 保磁力Hc 14.2kOe 残留磁束密度Br 12.0kG (BH)max 35.7MGOe キュリー点 330℃ という、優れた磁気特性を有する永久磁石が得られた。
また焼結体を粉砕し、窒素濃度を分析すると0.01%
以下であった。すなわち、粉末中に2.31%含まれて
いた窒素は焼結時に揮発して、焼結体内にはほとんど残
留しない。
Next, a sintered permanent magnet was produced in the same manner as in Example 1, and the coercive force Hc was 14.2 kOe, the residual magnetic flux density was 12.0 kG (BH) max, 35.7 MGOe, and the Curie point was 330 ° C. Was obtained.
When the sintered body is pulverized and analyzed for nitrogen concentration, it is 0.01%
It was below. That is, 2.31% of nitrogen contained in the powder volatilizes during sintering and hardly remains in the sintered body.

【0030】(比較例2)実施例2と同じくPr15Fe
75B10なる組成比の合金を得るに際し、各々の金属をア
ーク溶解することで調整した。このボタンをジョークラ
ッシャーおよびブラウンミルで50μmまで粉砕した。
この粉末は粉砕途中から赤く錆びはじめ、1カ月大気中
に放置すると、酸素量は32000ppm(3.2%)
にも達した。従ってこの粉末は、焼結体製造はもちろ
ん、保管等においても、きわめて厳重に雰囲気の酸素濃
度を管理する必要がある。
Comparative Example 2 As in Example 2, Pr15Fe was used.
In obtaining an alloy having a composition ratio of 75B10, each metal was adjusted by arc melting. This button was ground to 50 μm with a jaw crusher and a brown mill.
This powder begins to rust red during pulverization, and when left in the air for one month, the oxygen content is 32000 ppm (3.2%)
Also reached. Therefore, it is necessary to very strictly control the oxygen concentration in the atmosphere of this powder not only during production of a sintered body but also during storage.

【0031】[0031]

【発明の効果】以上述べたように、本発明の永久磁石材
料は窒素を含んでいるが、これが磁気特性に悪影響を及
ぼすことはない。粉末の磁気特性は、保磁力、残留磁束
密度、温度特性などは、窒素を含まないものと比べて、
同等もしくはそれ以上の特性を有する。また、この永久
磁石材料を焼結する場合、800℃以上で窒素は揮発す
るので、通常の焼結操作を施した場合、焼結体中に窒素
は残留しない。従って、窒素を含まない材料を焼結した
場合と同等もしくはそれ以上の磁気特性を有する永久磁
石を得ることができる。
As described above, the permanent magnet material of the present invention contains nitrogen, but this does not adversely affect the magnetic properties. The magnetic properties of the powder, such as coercive force, residual magnetic flux density, temperature characteristics, etc.
It has the same or better characteristics. Further, when sintering this permanent magnet material, nitrogen evaporates at 800 ° C. or higher, so that nitrogen does not remain in the sintered body when a normal sintering operation is performed. Therefore, it is possible to obtain a permanent magnet having magnetic properties equivalent to or better than those obtained by sintering a material containing no nitrogen.

【0032】また本発明の製造方法によると、窒化処理
を行っているために、その後の水および弱酸水溶液処理
は勿論、大気中に露出しておいても合金粉末の酸素量が
増大しない化学的に安定な永久磁石材料を得ることがで
きる。また窒素を侵入させることで、肝心の永久磁石特
性も損なわれることなく、その操作も、工業的に実施可
能なプロセスである。しかも、反応生成物を移動させる
ことなく、1つの反応容器内で反応雰囲気および反応温
度を変えることにより、還元拡散あるいは直接還元反応
および窒化処理を行うことができる。
Further, according to the production method of the present invention, since the nitriding treatment is performed, not only the subsequent treatment with water and a weak acid aqueous solution, but also a chemical treatment in which the oxygen content of the alloy powder does not increase even when exposed to the atmosphere. A stable permanent magnet material can be obtained. In addition, the operation is an industrially practicable process without impairing the essential permanent magnet characteristics by infiltrating nitrogen. In addition, reduction diffusion or direct reduction reaction and nitriding treatment can be performed by changing the reaction atmosphere and the reaction temperature in one reaction vessel without moving the reaction product.

【0033】このように、本発明により、高価な希土類
金属を原料として使うことなく、希土類金属より安価で
ある希土類酸化物を原料とすることができ、また粉砕工
程等を経ることなく、大気中で化学的に安定な、希土類
−遷移金属−ボロン永久磁石の材料を提供することがで
きる。
As described above, according to the present invention, a rare earth oxide which is less expensive than a rare earth metal can be used as a raw material without using an expensive rare earth metal as a raw material. And a chemically stable rare earth-transition metal-boron permanent magnet material can be provided.

フロントページの続き (56)参考文献 特開 昭62−132302(JP,A) 特開 平1−289101(JP,A) 特開 昭60−176202(JP,A) 特開 昭62−7830(JP,A)Continuation of the front page (56) References JP-A-62-132302 (JP, A) JP-A-1-289101 (JP, A) JP-A-60-176202 (JP, A) JP-A-62-7830 (JP) , A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主相が正方晶であって、一般式がLnX
・M100-X-Y-Z・NY・BZ(ただし、Lnは希土類元素
の中から選ばれた少なくとも一種の元素であり、MはF
e、CoおよびNiの中から選ばれた少なくとも一種の
元素であり、Xは3原子%<X<30原子%の範囲にあ
り、Yは0.01原子%<Y<15原子%の範囲にあり、
Zは1原子%<Z<15原子%の範囲にある。)で表さ
れ、酸素量が1800ppm以下である永久磁石材料の
製造方法であって、 希土類酸化物粉末と、Fe、CoおよびNiの中から選
ばれた少なくとも一種の金属粉末と、B、B2O3および
フェロボロンの中から選ばれた少なくとも一種の含ホウ
素粉末と、粒状のCaとを目的組成に応じた割合で均一
に混合し、この混合物を不活性ガス雰囲気中で、800
℃から1200℃の範囲の温度で加熱し、加熱終了後2
50から800℃の温度に冷却し、真空排気した後、引
き続いて窒素ガスあるいは窒素を含む化合物のガス中
で、200℃から800℃の範囲の温度で加熱した後、
反応生成物を水および弱酸水溶液で処理することを特徴
とする永久磁石材料の製造方法。
1. A main phase is a tetragonal one general formula is LnX
-M100-XYZ-NY-BZ (where Ln is at least one element selected from rare earth elements, and M is F
e, at least one element selected from Co and Ni, wherein X is in the range of 3 at% <X <30 at%, and Y is in the range of 0.01 at% <Y <15 at%. Yes,
Z is in the range of 1 atomic% <Z <15 atomic%. ), Wherein the oxygen content is 1800 ppm or less, comprising: a rare earth oxide powder, at least one metal powder selected from Fe, Co and Ni, B, B2O3 and At least one boron-containing powder selected from ferroboron and granular Ca are uniformly mixed at a ratio according to the target composition, and the mixture is mixed in an inert gas atmosphere at 800
C. to a temperature in the range of 1200.degree.
After cooling to a temperature of 50 to 800 ° C., evacuating, and subsequently heating in a gas of nitrogen gas or a compound containing nitrogen at a temperature in the range of 200 to 800 ° C.,
A method for producing a permanent magnet material, comprising treating a reaction product with water and an aqueous solution of a weak acid.
JP04076315A 1992-02-26 1992-02-26 Manufacturing method of permanent magnet material Expired - Lifetime JP3120546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04076315A JP3120546B2 (en) 1992-02-26 1992-02-26 Manufacturing method of permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04076315A JP3120546B2 (en) 1992-02-26 1992-02-26 Manufacturing method of permanent magnet material

Publications (2)

Publication Number Publication Date
JPH05243025A JPH05243025A (en) 1993-09-21
JP3120546B2 true JP3120546B2 (en) 2000-12-25

Family

ID=13601945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04076315A Expired - Lifetime JP3120546B2 (en) 1992-02-26 1992-02-26 Manufacturing method of permanent magnet material

Country Status (1)

Country Link
JP (1) JP3120546B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8792698B2 (en) 2008-02-25 2014-07-29 Hitachi Medical Corporation Medical imaging processing device, medical image processing method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302256A (en) * 2008-06-12 2009-12-24 Tdk Corp Method of manufacturing rare earth magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176202A (en) * 1984-02-22 1985-09-10 Hitachi Metals Ltd Iron-rare earth-nitrogen permanent magnet
JPS62132302A (en) * 1985-12-04 1987-06-15 Sumitomo Metal Mining Co Ltd Rare earth element-iron-boron alloy powder and manufacture thereof
JPH01289101A (en) * 1988-05-16 1989-11-21 Kawasaki Steel Corp Manufacture of rare earth transition metallic magnet alloy powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8792698B2 (en) 2008-02-25 2014-07-29 Hitachi Medical Corporation Medical imaging processing device, medical image processing method, and program

Also Published As

Publication number Publication date
JPH05243025A (en) 1993-09-21

Similar Documents

Publication Publication Date Title
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JPS63301505A (en) R-b-fe sintered magnet
JP3120546B2 (en) Manufacturing method of permanent magnet material
JP3304729B2 (en) Rare earth-iron magnet alloys
JP2869966B2 (en) Manufacturing method of alloy powder
JP3109637B2 (en) Anisotropic needle-like magnetic powder and bonded magnet using the same
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP2985545B2 (en) Manufacturing method of alloy powder
JP3860372B2 (en) Rare earth magnet manufacturing method
US5460662A (en) Permanent magnet and method of production
JP2927987B2 (en) Manufacturing method of permanent magnet powder
JPS6230846A (en) Production of permanent magnet material
JPS62132302A (en) Rare earth element-iron-boron alloy powder and manufacture thereof
JP2007084918A (en) Rare earth-iron-nitrogen based magnet powder, and its production method
JPS62131503A (en) Manufacture of rare earth-iron-boron alloy powder for resin magnet
JPH05247600A (en) Magnet material and its production
JP2992808B2 (en) permanent magnet
JPS62158852A (en) Permanent magnet material
JPS6012707A (en) Permanent magnet material
JPH04318152A (en) Rare earth magnetic material and its manufacture
JPS61245505A (en) Manufacture of rare-earth iron magnet
JPS6230845A (en) Production of anisotropic permanent magnet material
JP3797153B2 (en) Nitriding method of rare earth-iron alloy powder and raw material of alloy powder used in the method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 12