JP3260319B2 - Manufacturing method of sheet type electrode / electrolyte structure - Google Patents

Manufacturing method of sheet type electrode / electrolyte structure

Info

Publication number
JP3260319B2
JP3260319B2 JP11266798A JP11266798A JP3260319B2 JP 3260319 B2 JP3260319 B2 JP 3260319B2 JP 11266798 A JP11266798 A JP 11266798A JP 11266798 A JP11266798 A JP 11266798A JP 3260319 B2 JP3260319 B2 JP 3260319B2
Authority
JP
Japan
Prior art keywords
sheet
electrolyte
electrode
type electrode
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11266798A
Other languages
Japanese (ja)
Other versions
JPH11297360A (en
Inventor
長 鈴木
哲 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP11266798A priority Critical patent/JP3260319B2/en
Publication of JPH11297360A publication Critical patent/JPH11297360A/en
Application granted granted Critical
Publication of JP3260319B2 publication Critical patent/JP3260319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン電
池、電気二重層キャパシタ等におけるシート型電極・電
解質構造体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sheet-type electrode / electrolyte structure in a lithium ion battery, an electric double layer capacitor or the like.

【0002】[0002]

【従来の技術】現在様々な形の電池がエレクトロニクス
の分野から自動車用途あるいは電力貯蔵を意図した大型
のものまで広く利用されている。
2. Description of the Related Art At present, various types of batteries are widely used from the field of electronics to large ones intended for automobile use or power storage.

【0003】このような電池において通常電解液は液体
が用いられているが、これを固体状に置き換えることに
より、液漏れの防止あるいはシート構造化が可能になる
ことが予想され、次世代タイプの電池として注目を集め
ている。特に現在、ノートブックパソコン等で急速に利
用されているリチウムイオン二次電池等のシート化ある
いは積層小型化が実現できれば、さらに応用展開が加速
されることと予測されている。こうした固体状の電解質
を用いる場合、セラミックス材料、あるいは高分子材
料、あるいはそれらを複合化した材料が提案されてい
る。その中で高分子電解質を電解液等を用い可塑化した
ゲル電解質は、液体系の高導電率と高分子系のプラスチ
ック性を兼ね備えており、電解質開発の上で有望視され
ている。
[0003] In such a battery, a liquid is usually used as an electrolytic solution. By replacing this with a solid electrolyte, it is expected that liquid leakage can be prevented or a sheet structure can be formed. It is attracting attention as a battery. In particular, it is expected that application development will be further accelerated if the sheeting or lamination of a lithium ion secondary battery or the like which is currently used rapidly in a notebook personal computer or the like can be realized. When such a solid electrolyte is used, a ceramic material, a polymer material, or a composite material thereof has been proposed. Among them, a gel electrolyte obtained by plasticizing a polymer electrolyte using an electrolyte solution or the like has both high liquid-based electrical conductivity and high polymer-based plasticity, and is considered promising in electrolyte development.

【0004】ところで、ゲル状の電解質を電池に利用し
た例はすでに開示されており、さらに米国特許第547
0357号、米国特許第5418091号により実用的
な系も提示されている。
An example in which a gel electrolyte is used for a battery has been disclosed, and US Pat.
No. 0357, U.S. Pat. No. 5,418,091 also presents a practical system.

【0005】[0005]

【発明が解決しようとする課題】このようなシート型電
池の作製方法では、正極、負極、セパレータとしての固
体電解質を順次積層する。しかしながら従来のゲル系固
体電解質を用いる場合、大電流放電が困難である点が技
術課題として挙げられていた。従って、上記のシート型
電池を作製する際、上述した課題により、特性が液体系
より劣っていた。
In such a method of manufacturing a sheet-type battery, a positive electrode, a negative electrode, and a solid electrolyte as a separator are sequentially laminated. However, when a conventional gel-based solid electrolyte is used, it has been cited as a technical problem that large current discharge is difficult. Therefore, when manufacturing the above-mentioned sheet type battery, the characteristics were inferior to those of the liquid type due to the above-mentioned problems.

【0006】こうした欠点を引き起こす要素として下記
の〜が考えられる。
The following factors are considered as factors causing such a defect.

【0007】セパレータ部分の抵抗 セパレータ電極界面の抵抗 電極内部のイオン伝導度 電極内部の電子伝導度 電極集電体接触抵抗Resistance of separator part Resistance of separator electrode interface Ionic conductivity inside electrode Electron conductivity inside electrode Electrode current collector contact resistance

【0008】上記についてはゲル化電解質を用いてい
るため実用に供する伝導度に限度があり、改善の余地も
限られる。については本出願人の特願平9−3166
02号の提案がある。については電極内部の導電助剤
の分散あるいは導電助剤の伝導度により改善できる、
については電極集電体部分を如何に電極内部に埋め込む
かによる。
In the above, since the gelled electrolyte is used, there is a limit to the conductivity that can be put to practical use, and the room for improvement is also limited. Is described in Japanese Patent Application No. 9-3166 of the present applicant.
There is a proposal of No. 02. Can be improved by the dispersion of the conductive aid inside the electrode or the conductivity of the conductive aid,
This depends on how the electrode current collector is embedded in the electrode.

【0009】以上の背景を踏まえ本発明者らはについ
ての改善策を検討した。
Based on the above background, the present inventors have studied improvement measures for the present invention.

【0010】リチウムイオン電池や電気二重層キャパシ
タ等に用いるシート型電極・電解質構造体において、セ
パレータとなるゲル系固体電解質と電極とを接合させる
方式として、熱圧着法がとられているが、単に熱圧着す
るだけでは界面部分の抵抗が大きくなり、その結果、シ
ート型電極・電解質構造体全体の内部抵抗が増加し、電
池の場合放電レート特性にも影響する。そこで、本発明
者らは、熱圧着方式を取りながらなおかつ界面抵抗を低
下させる方法を見いだした。
In a sheet-type electrode / electrolyte structure used for a lithium ion battery, an electric double layer capacitor, or the like, a thermocompression bonding method is used as a method for bonding a gel solid electrolyte serving as a separator and an electrode. Only by thermocompression bonding, the resistance at the interface increases, and as a result, the internal resistance of the entire sheet-type electrode / electrolyte structure increases, which in turn affects the discharge rate characteristics of a battery. Therefore, the present inventors have found a method for reducing the interface resistance while using the thermocompression bonding method .

【0011】本発明は、上記の点に鑑み、シート型電極
とゲル系高分子固体電解質とを熱圧着してシート型電極
・電解質構造体を作製する場合であっても内部抵抗を低
減可能で、かつまた2次電池として使用したときの放電
レート特性を向上させることのできるシート型電極・電
解質構造体の製造方法を提供することを目的とする。
In view of the above, the present invention can reduce the internal resistance even when a sheet-type electrode and an electrolyte structure are manufactured by thermocompression bonding a sheet-type electrode and a gel polymer solid electrolyte. Another object of the present invention is to provide a method for producing a sheet-type electrode / electrolyte structure capable of improving discharge rate characteristics when used as a secondary battery.

【0012】本発明のその他の目的や新規な特徴は後述
の実施の形態において明らかにする。
Other objects and novel features of the present invention will be clarified in embodiments described later.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、シート型電極とゲル系高分子固体電解質
とを熱圧着してシート型電極・電解質構造体を作製する
場合において、前記シート型電極及び前記ゲル系高分子
固体電解質の両者に高温で相溶する第3成分として、ジ
ブチルフタレート、ポリメチルメタクリレート、鎖状カ
ーボネート、環状カーボネート、N−メチルピロリド
ン、低分子量クロロトリフルオロエチレン、低分子量ポ
リエステル、又は過フッ化ポリエーテルを用い、該第3
成分を前記シート型電極及び前記ゲル系高分子固体電解
質の接合面にそれぞれ設けてから前記シート型電極と前
記ゲル系高分子固体電解質とを積層状態で熱圧着し、前
記第3成分を前記シート型電極及び前記ゲル系高分子固
体電解質の両者に相溶させたことを特徴としている。
Means for Solving the Problems To achieve the above object, the present invention provides a method for producing a sheet-type electrode / electrolyte structure by thermocompression bonding a sheet-type electrode and a gel polymer solid electrolyte. as a third component compatible with high temperature to both of the sheet-type electrode and the gel polymer solid electrolyte, di
Butyl phthalate, polymethyl methacrylate,
-Carbonate, cyclic carbonate, N-methylpyrrolide
, Low molecular weight chlorotrifluoroethylene, low molecular weight
Using a polyester or perfluorinated polyether,
After the components are provided on the bonding surface of the sheet-type electrode and the gel-based polymer solid electrolyte, respectively, the sheet-type electrode and the gel-based polymer solid electrolyte are thermocompression-bonded in a laminated state.
The third component is used as the sheet-type electrode and the gel polymer solid.
It is characterized by being compatible with both body electrolytes .

【0014】[0014]

【0015】[0015]

【発明の実施の形態】以下、本発明に係るシート型電極
・電解質構造体の製造方法の実施の形態を図面に従って
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a method for manufacturing a sheet-type electrode / electrolyte structure according to the present invention will be described with reference to the drawings.

【0016】図1は本発明に係るシート型電極・電解質
構造体の製造方法の実施の形態を示す説明図で、セパレ
ータとしての電解質を介して正極及び負極を積層して電
池を構成する場合を例示している。
FIG. 1 is an explanatory view showing an embodiment of a method for manufacturing a sheet-type electrode / electrolyte structure according to the present invention. A case where a positive electrode and a negative electrode are laminated via an electrolyte serving as a separator to constitute a battery. An example is shown.

【0017】図1において、1はシート型正極、2はシ
ート型負極、3はセパレータとしてのゲル系高分子固体
電解質(高分子ゲル電解質)である。セパレータとして
のゲル系高分子固体電解質3は高分子マトリックスに電
解液を含浸してゲル化し、シート状(フィルム状)とし
たものであり、リチウムイオン電池を構成する場合には
リチウム塩を含有する。リチウムイオン電池を構成する
場合のシート型正極1は、正極活物質として例えばLi
CoO2を、導電助剤としてアセチレンブラックを使用
し、電解質中へそれぞれ分散させ電極用スラリーとして
シート状に固体化したものである。シート型負極2は、
負極活物質として例えば黒鉛を用い電解質と混合して電
極用スラリーとしてシート状に固体化したものである。
In FIG. 1, 1 is a sheet-type positive electrode, 2 is a sheet-type negative electrode, and 3 is a gel polymer solid electrolyte (polymer gel electrolyte) as a separator. The gel polymer solid electrolyte 3 as a separator is a sheet (film) formed by impregnating the polymer matrix with an electrolytic solution to form a gel, and contains a lithium salt when constituting a lithium ion battery. . A sheet-type positive electrode 1 for forming a lithium-ion battery uses, for example, Li as a positive electrode active material.
CoO 2 is obtained by dispersing CoO 2 in an electrolyte using acetylene black as a conductive additive and solidifying it as a sheet slurry for an electrode. Sheet type negative electrode 2
For example, graphite is used as a negative electrode active material, mixed with an electrolyte, and solidified into a sheet shape as an electrode slurry.

【0018】それら正、負極1,2、ゲル系高分子固体
電解質3の接合面(積層時に互いに接する面)には、熱
圧着前に予め正、負極1,2となるシート型電極及びゲ
ル系高分子固体電解質3の両者に高温で相溶する第3成
分4を塗布、含浸等により設けておく。
The bonding surfaces of the positive and negative electrodes 1 and 2 and the gel polymer solid electrolyte 3 (the surfaces that are in contact with each other during lamination) are preliminarily subjected to sheet-type electrodes and positive and negative electrodes 1 and 2 before thermocompression bonding. A third component 4 compatible with both of the polymer solid electrolytes 3 at a high temperature is provided by applying, impregnating, or the like.

【0019】その後、ゲル系高分子固体電解質3を挟ん
でシート型正極1及び負極2を積層状態に加圧、加熱し
て熱圧着する。
Thereafter, the sheet-type positive electrode 1 and the negative electrode 2 are pressed and heated in a laminated state with the gel polymer solid electrolyte 3 interposed therebetween, and are thermocompression-bonded.

【0020】なお、第3成分がシート型電極及びゲル系
高分子固体電解質の両者に高温で相溶するとは、常温で
は相溶しなくとも、熱圧着時の温度では相溶する(互い
に溶融し合う)ことを意味する。また、第3成分はシー
ト型正極1、シート型負極2の結着剤がフッ素系高分子
材料で、ゲル系高分子固体電解質3に用いた高分子材料
もフッ素系高分子材料である場合、ジブチルフタレー
ト、PMMA(ポリメチルメタクリレート)、ジエチル
カーボネート等の鎖状カーボネート、プロピレンカーボ
ネート等の環状カーボネート、N−メチルピロリドン、
低分子量クロロトリフルオロエチレン、低分子量ポリエ
ステル、又は過フッ化ポリエーテル等を用いることがで
きる。
The fact that the third component is compatible with both the sheet-type electrode and the gel polymer solid electrolyte at a high temperature means that the third component is not compatible at room temperature but compatible at the temperature at the time of thermocompression bonding. Fit). When the binder of the sheet-type positive electrode 1 and the sheet-type negative electrode 2 is a fluorine-based polymer material, and the polymer material used for the gel-based polymer solid electrolyte 3 is also a fluorine-based polymer material, Chain carbonates such as dibutyl phthalate, PMMA (polymethyl methacrylate) and diethyl carbonate, cyclic carbonates such as propylene carbonate, N-methylpyrrolidone;
Low molecular weight chlorotrifluoroethylene, low molecular weight polyester, perfluorinated polyether, or the like can be used.

【0021】図1の実施の形態においては、正、負極
1,2及びゲル系高分子固体電解質3のそれぞれの接合
面に設けられた第3成分4が、正、負極を構成するシー
ト型電極の結着剤成分とゲル系高分子固体電解質3の高
分子材料成分とに熱圧着時の温度にて相溶するため、隣
接する両層が混合することが可能となり、その結果、界
面抵抗の低いシート型電池を作製できる。
In the embodiment of FIG. 1, the third component 4 provided on each of the bonding surfaces of the positive and negative electrodes 1 and 2 and the gel polymer solid electrolyte 3 comprises a sheet-type electrode constituting the positive and negative electrodes. And the polymer material component of the gel polymer solid electrolyte 3 are compatible at the temperature at the time of thermocompression bonding, so that both adjacent layers can be mixed, and as a result, the interface resistance A low sheet type battery can be manufactured.

【0022】なお、電気二重層キャパシタでは、シート
型正極、負極の代わりにシート型の分極性電極をセパレ
ータとしてのゲル系高分子固体電解質の両側に設ければ
よい。
In the electric double layer capacitor, sheet type polarizable electrodes may be provided on both sides of the gel polymer solid electrolyte as separators instead of the sheet type positive electrode and negative electrode.

【0023】図1の実施の形態では、セパレータの両側
に電極を一度に熱圧着で積層化する場合を例示したが、
一方の電極とゲル系高分子固体電解質とを熱圧着してシ
ート型電極・電解質構造体を作製する場合にも本発明は
有効である。
In the embodiment shown in FIG. 1, the case where the electrodes are laminated on both sides of the separator at a time by thermocompression is exemplified.
The present invention is also effective when a sheet-type electrode / electrolyte structure is produced by thermocompression bonding one electrode and a gel polymer solid electrolyte.

【0024】なお、本発明においては、熱圧着の際に、
予め前記第3成分を接合面の両方に塗布又は滴下、含浸
したりして設けることにより所望の目的を達成できるも
のである。熱圧着後、前記第3成分は電解質あるいは電
極中の結着剤と相溶するため、各成分は検出できるが層
としては存在していない。
In the present invention, when performing thermocompression bonding,
A desired object can be achieved by previously applying, dropping, or impregnating the third component on both of the joining surfaces. After the thermocompression bonding, the third component is compatible with the electrolyte or the binder in the electrode, so that each component can be detected but does not exist as a layer.

【0025】[0025]

【実施例】以下に、シート型リチウムイオン電池を作製
した場合を実施例として詳細に説明する。
EXAMPLES Hereinafter, a case in which a sheet-type lithium-ion battery is manufactured will be described in detail by way of examples.

【0026】<実施例1>以下に示す組成で正極、負
極、両極間の電解質(セパレータ)を作成した。
Example 1 A positive electrode, a negative electrode, and an electrolyte (separator) between both electrodes were prepared with the following compositions.

【0027】電解質(セパレータ) 高分子マトリックス PVDF Kynar 2801(商品名:エルフアトケム社製) (ポリフッ化ビニリデンと6フッ化プロピレンの共重合体) 電解液 1モル LiClO/EC+PC (ELと略す) (ECはエチレンカーボネート、PCはプロピレンカーボネートで、 EC+PCはそれらの混合溶媒である) 溶媒 アセトン (Acと略す) これらの高分子マトリックス、電解液、溶媒を重量比で
3:7:20として混合後、乾燥させてフィルム化し
た。
Electrolyte (separator) Polymer matrix PVDF Kynar 2801 (trade name: manufactured by Elphatochem Co., Ltd.) (copolymer of polyvinylidene fluoride and propylene hexafluoride) Electrolyte 1 mol LiClO 4 / EC + PC (abbreviated as EL) (EC Is ethylene carbonate, PC is propylene carbonate, and EC + PC is a mixed solvent thereof. Solvent Acetone (abbreviated as Ac) Mixing these polymer matrix, electrolyte and solvent in a weight ratio of 3: 7: 20, then drying To form a film.

【0028】正極 上記電解質原料溶液に対して正極活物質としてLiCo
2を用いた。また導電助剤としてアセチレンブラック
を使用した。これら電解質原料溶液、正極活物質、導電
助剤を重量比で2:7.5:1.2として室温中で活物質
を電解質中へ分散させ電極用スラリーとし、シート状に
乾燥固化させた。
Positive Electrode LiCo as a positive electrode active material for the above electrolyte raw material solution
O 2 was used. Acetylene black was used as a conductive assistant. The active material was dispersed in the electrolyte at room temperature at a weight ratio of the electrolyte raw material solution, the positive electrode active material, and the conductive additive of 2: 7.5: 1.2 to obtain an electrode slurry, which was dried and solidified into a sheet.

【0029】負極 電解質溶液(重量比でPVDF:EL:Ac=3:7:
5)に対して負極活物質として黒鉛を用いた。これらを
重量比で2:1の割合で混合し電極用スラリーとし、シ
ート状に乾燥固化させた。
Negative electrode electrolyte solution (PVDF: EL: Ac = 3: 7 by weight ratio)
For 5), graphite was used as a negative electrode active material. These were mixed at a weight ratio of 2: 1 to obtain a slurry for an electrode, which was dried and solidified into a sheet.

【0030】このようにして得られたゲル系高分子固体
電解質(セパレータ)、正、負極をシート状に積層化さ
せるのであるが、その前に正、負極、ゲル系高分子固体
電解質の接合面(積層時に互いに接する面)に予め当該
正、負極及びゲル系高分子固体電解質の双方の成分に高
温で相溶する第3成分としてのジブチルフタレートを塗
布若しくは表面近傍に滴下、含浸させておく。すなわ
ち、ジブチルフタレートは正、負極の結着剤成分(本例
ではPVDF)及びゲル系高分子固体電解質の高分子材
料成分(同じくPVDF)に熱圧着工程での加熱温度で
相溶するものである。その後、ゲル系高分子固体電解質
を挟んで正極及び負極を積層状態にて加圧、加熱して熱
圧着する。この熱圧着条件としては、加熱温度100〜
130℃、圧力1〜10kg/cm2が望ましい。
The thus obtained gel polymer solid electrolyte (separator), positive electrode, and negative electrode are laminated in a sheet shape. Before that, the bonding surface of the positive, negative electrode, and gel polymer solid electrolyte is laminated. Dibutyl phthalate as a third component which is compatible with both components of the positive electrode, the negative electrode and the gel polymer solid electrolyte at a high temperature is coated or dropped and impregnated in the vicinity of the surface in advance (the surfaces which are in contact with each other at the time of lamination). That is, dibutyl phthalate is compatible with the positive and negative electrode binder components (PVDF in this example) and the polymer material component of the gel polymer solid electrolyte (also PVDF) at the heating temperature in the thermocompression bonding step. . Thereafter, the positive electrode and the negative electrode are pressurized and heated in a laminated state with the gel polymer solid electrolyte interposed therebetween, and are thermocompression-bonded. The thermocompression bonding conditions include a heating temperature of 100 to
130 ° C. and a pressure of 1 to 10 kg / cm 2 are desirable.

【0031】この実施例1により得られたシート型電極
・電解質構造体としてのシート型リチウムイオン電池の
内部抵抗を後述する実施例2,3の結果と共に表1に示
した。同条件で第3成分を用いないで作製した従来例に
比べ大きく改善されていることが判る。
The internal resistance of the sheet-type lithium-ion battery as the sheet-type electrode / electrolyte structure obtained in Example 1 is shown in Table 1 together with the results of Examples 2 and 3 described later. It can be seen that this is greatly improved as compared with the conventional example manufactured without using the third component under the same conditions.

【0032】 表1 内部抵抗(Ω・cm2 実施例1 0.80 0.82 実施例2 0.67 0.74 実施例3 0.85 0.90 従来例 2.41 1.92 Table 1 Internal resistance (Ω · cm 2 ) Example 1 0.80 0.82 Example 2 0.67 0.74 Example 3 0.85 0.90 Conventional example 2.41 1.92

【0033】<実施例2>本実施例では、セパレータと
なる電解質、正、負極の電解質高分子マトリックスとし
て、それぞれ熱可塑性フッ素樹脂を用いた。他は実施例
1と同一である。
Example 2 In this example, a thermoplastic fluororesin was used as an electrolyte serving as a separator, and as an electrolyte polymer matrix of a positive electrode and a negative electrode. Others are the same as the first embodiment.

【0034】具体的には、この熱可塑性フッ素樹脂は、
主鎖がフッ化ビニリデンと塩化フッ化エチレンの共重合
体からなり、側鎖がポリフッ化ビニリデンからなってい
るもので、商品名「セフラルソフト」(セントラル硝子
社製)である。
Specifically, this thermoplastic fluororesin is
The main chain is made of a copolymer of vinylidene fluoride and chlorofluoroethylene, and the side chain is made of polyvinylidene fluoride. The trade name is "Sefuralsoft" (manufactured by Central Glass Co., Ltd.).

【0035】そして、実施例1と同一条件でセパレータ
となるゲル系高分子固体電解質、正、負極を作製後、前
記第3成分としてジブチルフタレートを用いて実施例1
と同一条件で熱圧着により積層化した。このようにして
得られた電池の内部抵抗測定結果を前記表1に示した。
この場合、実施例1と同等以上の低い内部抵抗が得られ
ている。
Then, a gel polymer solid electrolyte, a positive electrode, and a negative electrode which are used as separators under the same conditions as in Example 1 were prepared, and dibutyl phthalate was used as the third component in Example 1.
The layers were laminated by thermocompression bonding under the same conditions as described above. The results of measuring the internal resistance of the battery thus obtained are shown in Table 1 above.
In this case, a low internal resistance equal to or higher than that of the first embodiment is obtained.

【0036】<実施例3>本実施例では、実施例1と同
一条件であるが、特に製造当初は電解液を添加せずセパ
レータ、正極及び負極を前記第3成分を用いて熱圧着し
積層化した後(積層化プロセスは実施例1,2と同
じ)、それらの積層体に電解液を含浸させて高分子材料
をゲル化させた。このようにしても電解質は機能する。
実施例3により得られた電池の内部抵抗測定結果を前記
表1に示した。この場合も、従来例に比べ大きく改善さ
れている。
<Embodiment 3> In this embodiment, the same conditions as in Embodiment 1 are used, but the separator, the positive electrode and the negative electrode are laminated by thermocompression bonding using the third component without adding an electrolytic solution at the beginning of manufacture. After that (the lamination process was the same as in Examples 1 and 2), the laminate was impregnated with an electrolytic solution to gel the polymer material. Even in this way, the electrolyte functions.
Table 1 shows the measurement results of the internal resistance of the battery obtained in Example 3. Also in this case, it is greatly improved as compared with the conventional example.

【0037】なお、上記実施例1〜3では、正、負極及
びゲル系高分子固体電解質の双方の成分に高温で相溶す
る第3成分としてジブチルフタレートを例示したが、P
MMAを使用することも可能であり、あるいは、ジエチ
ルカーボネート等の鎖状カーボネート、プロピレンカー
ボネート等の環状カーボネート、N−メチルピロリド
ン、低分子量クロロトリフルオロエチレン、低分子量ポ
リエステル、又は過フッ化ポリエーテルを使用すること
できる。
In the above Examples 1 to 3, dibutyl phthalate was exemplified as the third component compatible with both the positive electrode, the negative electrode and the gel polymer solid electrolyte at a high temperature.
It is also possible to use MMA, or a chain carbonate such as diethyl carbonate, a cyclic carbonate such as propylene carbonate, N-methylpyrrolidone, low molecular weight chlorotrifluoroethylene, a low molecular weight polyester, or a perfluoropolyether. Can also be used .

【0038】以上本発明の実施の形態について説明して
きたが、本発明はこれに限定されることなく請求項の記
載の範囲内において各種の変形、変更が可能なことは当
業者には自明であろう。
Although the embodiments of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited to the embodiments and various modifications and changes can be made within the scope of the claims. There will be.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係るシー
ト型電極・電解質構造体の製造方法によれば、シート型
電極及びゲル系高分子固体電解質の両者に高温で相溶す
る第3成分を前記電極及び前記電解質の接合面にそれぞ
れ設けてから前記電極と前記電解質とを積層状態で熱圧
するため、前記第3成分が熱圧着時に隣接する両層
(電極と電解質)に相溶して当該両層を界面にて混合す
ることが可能となり、その結果、界面抵抗の低い(つま
り内部抵抗の低い)電池、電気二重層キャパシタ等のシ
ート型電極・電解質構造体を作製することができる。ま
た、2次電池を構成した場合においては、放電レート特
性を向上させる効果もある。
As described above, according to the method of manufacturing a sheet-type electrode / electrolyte structure according to the present invention, the third component compatible with both the sheet-type electrode and the gel polymer solid electrolyte at a high temperature. Is provided on the bonding surface of the electrode and the electrolyte, respectively, and then the electrode and the electrolyte are subjected to heat pressure in a laminated state.
To wear, it is possible to mix the two layers were compatible with both layers (electrodes and electrolyte) where the third component is adjacent at thermocompression bonding at the interface, resulting in a low interface resistance (i.e. internal A sheet-type electrode / electrolyte structure such as a battery (low resistance) and an electric double layer capacitor can be produced. Further, when a secondary battery is configured, there is also an effect of improving discharge rate characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るシート型電極・電解質構造体の製
造方法の実施の形態を示す説明図である。
FIG. 1 is an explanatory view showing an embodiment of a method for manufacturing a sheet-type electrode / electrolyte structure according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 ゲル系高分子固体電解質 4 第3成分 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Gel polymer solid electrolyte 4 Third component

フロントページの続き (56)参考文献 特開 平9−63646(JP,A) 特開 平8−306389(JP,A) 特開 平11−40201(JP,A) 特開 平11−185733(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01G 9/025 H01G 9/038 H01G 9/058 Continuation of the front page (56) References JP-A-9-63646 (JP, A) JP-A-8-306389 (JP, A) JP-A-11-40201 (JP, A) JP-A-11-185733 (JP) , A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01G 9/025 H01G 9/038 H01G 9/058

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シート型電極とゲル系高分子固体電解質
とを熱圧着してなるシート型電極・電解質構造体の製造
方法において、 前記シート型電極及び前記ゲル系高分子固体電解質の両
者に高温で相溶する第3成分として、ジブチルフタレー
ト、ポリメチルメタクリレート、鎖状カーボネート、環
状カーボネート、N−メチルピロリドン、低分子量クロ
ロトリフルオロエチレン、低分子量ポリエステル、又は
過フッ化ポリエーテルを用い、該第3成分を前記シート
型電極及び前記ゲル系高分子固体電解質の接合面にそれ
ぞれ設けてから前記シート型電極と前記ゲル系高分子固
体電解質とを積層状態で熱圧着し、前記第3成分を前記
シート型電極及び前記ゲル系高分子固体電解質の両者に
相溶させたことを特徴とするシート型電極・電解質構造
体の製造方法。
1. A method for producing a sheet-type electrode / electrolyte structure, comprising thermocompression bonding a sheet-type electrode and a gel-type polymer solid electrolyte, wherein a high temperature is applied to both the sheet-type electrode and the gel-type polymer solid electrolyte. Dibutyl phthalate as a third component compatible with
G, polymethyl methacrylate, chain carbonate, ring
Carbonate, N-methylpyrrolidone, low molecular weight chromatography
Rotrifluoroethylene, low molecular weight polyester, or
Using a perfluorinated polyether, the third component is provided on the bonding surface between the sheet-type electrode and the gel-based polymer solid electrolyte, and then the sheet-type electrode and the gel-based polymer solid electrolyte are laminated. Thermocompression bonding, the third component
For both sheet-type electrode and the gel polymer solid electrolyte
A method for producing a sheet-type electrode / electrolyte structure, characterized in that they are compatible with each other .
JP11266798A 1998-04-08 1998-04-08 Manufacturing method of sheet type electrode / electrolyte structure Expired - Fee Related JP3260319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11266798A JP3260319B2 (en) 1998-04-08 1998-04-08 Manufacturing method of sheet type electrode / electrolyte structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11266798A JP3260319B2 (en) 1998-04-08 1998-04-08 Manufacturing method of sheet type electrode / electrolyte structure

Publications (2)

Publication Number Publication Date
JPH11297360A JPH11297360A (en) 1999-10-29
JP3260319B2 true JP3260319B2 (en) 2002-02-25

Family

ID=14592478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11266798A Expired - Fee Related JP3260319B2 (en) 1998-04-08 1998-04-08 Manufacturing method of sheet type electrode / electrolyte structure

Country Status (1)

Country Link
JP (1) JP3260319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747333B1 (en) * 2013-05-07 2017-06-14 주식회사 엘지화학 Cable-type secondary battery

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19952335B4 (en) * 1999-10-29 2007-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. In electrochemical components usable pasty mass, thus formed layers, films, laminations and rechargeable electrochemical cells and methods for producing the layers, films and laminations
CN1299386C (en) * 2000-01-27 2007-02-07 索尼株式会社 Gel electrolyte battery
JP2006120577A (en) * 2004-10-25 2006-05-11 Nissan Motor Co Ltd Polymer battery
WO2006093239A1 (en) * 2005-03-02 2006-09-08 Zeon Corporation Laminate for lithium battery, method for manufacturing same and battery
JP5470696B2 (en) 2007-10-31 2014-04-16 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
TW201302971A (en) * 2011-06-28 2013-01-16 Murata Manufacturing Co Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
WO2013001960A1 (en) * 2011-06-28 2013-01-03 株式会社村田製作所 Electrical storage device separator, electrical storage device element, electrical storage device, and method for manufacturing these
WO2013001962A1 (en) * 2011-06-28 2013-01-03 株式会社村田製作所 Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
JP6073469B2 (en) 2013-04-29 2017-02-01 エルジー・ケム・リミテッド Cable type secondary battery package and cable type secondary battery including the same
CN204441379U (en) 2013-05-07 2015-07-01 株式会社Lg化学 Electrode for secondary battery and comprise its secondary cell and cable Type Rechargeable Battery
WO2014182056A1 (en) * 2013-05-07 2014-11-13 주식회사 엘지화학 Cable-type secondary battery and method for manufacturing same
EP2822084B1 (en) 2013-05-07 2016-12-14 LG Chem, Ltd. Cable-type secondary battery
WO2014182062A1 (en) 2013-05-07 2014-11-13 주식회사 엘지화학 Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery including same
WO2014182063A1 (en) 2013-05-07 2014-11-13 주식회사 엘지화학 Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery comprising same
WO2014182064A1 (en) 2013-05-07 2014-11-13 주식회사 엘지화학 Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery including same
WO2016068683A1 (en) 2014-10-31 2016-05-06 주식회사 엘지화학 Multilayer cable-type secondary battery
JP6495443B2 (en) 2014-10-31 2019-04-03 エルジー・ケム・リミテッド Multi-layer cable type secondary battery
KR102290317B1 (en) * 2015-12-11 2021-08-18 삼성에스디아이 주식회사 Positive electrode for lithium ion secondary battery, method of preparing same, and lithium ion secondary battery
JP7004198B2 (en) * 2017-10-04 2022-01-21 日本ケミコン株式会社 Electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101747333B1 (en) * 2013-05-07 2017-06-14 주식회사 엘지화학 Cable-type secondary battery

Also Published As

Publication number Publication date
JPH11297360A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
JP3260319B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
CN1193453C (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
EP1041658B1 (en) Method for producing nonaqueous gel electrolyte battery
CN1144311C (en) Gel electrolyte and gel electrolytic cell
TW201842700A (en) Electrode sheet, all-solid battery, manufacturing method for electrode sheet, and manufacturing method for all-solid battery
JPH11162454A (en) Manufacture of electrode plate for lithium series secondary battery
CN105470576A (en) High voltage lithium battery cell and preparation method therefor, and lithium ion battery
JP2006310222A (en) Nonaqueous electrolyte secondary battery
KR19990037490A (en) Solid electrolyte cell and manufacturing method thereof
JP3260310B2 (en) Manufacturing method of sheet type electrode / electrolyte structure
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JP3724960B2 (en) Solid electrolyte and electrochemical device using the same
JP2002151156A (en) Method of manufacturing lithium secondary battery
JP3508514B2 (en) Organic electrolyte battery
JP2000133216A (en) Nonaqueous electrolyte battery and manufacture of same
JP2001319694A (en) Lithium-polymer secondary battery
US20200343560A1 (en) Secondary battery electrode, method for manufacturing same, and secondary battery
JP2005317469A (en) Cathode for lithium-ion secondary battery, and lithium-ion secondary battery using cathode
JP4086939B2 (en) Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same
JP2001076758A (en) Lithium secondary battery and its manufacture
JP2000133316A (en) Lithium secondary battery and fabricating method for electrode plate
JP2000067918A (en) Lithium secondary battery
JPH10162802A (en) Separator, nonaqueous electrolyte battery and manufacture thereof
JP4385425B2 (en) Solid electrolyte battery and manufacturing method thereof
JP2006173583A (en) Accumulative rubber and electrical double layered capacitor and lithium cell using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees