WO2006093239A1 - Laminate for lithium battery, method for manufacturing same and battery - Google Patents

Laminate for lithium battery, method for manufacturing same and battery Download PDF

Info

Publication number
WO2006093239A1
WO2006093239A1 PCT/JP2006/304017 JP2006304017W WO2006093239A1 WO 2006093239 A1 WO2006093239 A1 WO 2006093239A1 JP 2006304017 W JP2006304017 W JP 2006304017W WO 2006093239 A1 WO2006093239 A1 WO 2006093239A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
layer
electrolyte
laminate
electrode layer
Prior art date
Application number
PCT/JP2006/304017
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Nishimura
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005056913A external-priority patent/JP4674475B2/en
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2006093239A1 publication Critical patent/WO2006093239A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Laminate for lithium battery method for producing the same, and battery
  • the present invention relates to a positive electrode layer and an electrolyte layer for a lithium battery, or a laminate comprising a positive electrode layer, an electrolyte layer and a negative electrode layer, and a lithium battery having the laminate, and more specifically, lithium ion conductivity and transport.
  • the present invention relates to a laminate having a high rate and a lithium battery including the laminate.
  • Secondary batteries represented by lithium batteries are indispensable as power sources for small electric devices such as mobile phones, laptop computers, and other mopile devices.
  • polymer batteries have been developed to solve the drawbacks of electrolyte solution leakage and evaporation of secondary batteries by using polymer solid electrolytes.
  • a phenolic polymer made of a polyether polymer such as ethylene oxide-propylene oxide copolymer is a solid electrolyte having ion conductivity for secondary batteries because an electrolyte salt compound such as lithium salt compound is soluble.
  • the ionic conductivity of this electrolyte layer is still insufficient, and there is a problem that a large current cannot be obtained due to insufficient charge / discharge current density.
  • battery characteristics such as a decrease in initial capacity are inferior due to lack of adhesion between the positive electrode layer and the negative electrode layer respectively laminated on the front and back surfaces of the electrolyte layer.
  • Patent Document 1 discloses that a borate ester compound having an alkylene oxide repeating unit is dissolved in a low boiling point organic solvent together with an ionic compound and a polymerizable organic compound and cast, and then the solvent is removed.
  • Patent Document 2 describes a photopolymer containing an alkylene oxide repeating unit having a (meth) atallyloyl group.
  • Patent Document 3 discloses a transport number obtained by spreading a mixture of a crosslinkable group-containing polyether oligomer, a polyether having a boron atom in the molecular structure, and an electrolyte salt compound on a stainless steel foil and irradiating with an electron beam. A high polymer solid electrolyte having a thickness of 95 am has been disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-155771
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-182982
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-92138
  • An object of the present invention is to provide a positive electrode-electrolyte laminate, a positive electrode-electrolyte-negative electrode laminate, and a high output having the laminate, which has high lithium ion conductivity and high transport number and excellent interlayer adhesion.
  • An object of the present invention is to provide a lithium battery and a manufacturing method thereof.
  • the present inventors have included a liquid compound having a specific chemical structure in the electrolyte layer, and have a specific chemical structure between the positive electrode layer and the electrolyte layer.
  • the present inventors have found that the above-mentioned problems can be solved by interposing a liquid compound, and have completed the present invention based on this finding.
  • Laminate for battery
  • a laminate comprising the positive electrode layer (A) and the electrolyte layer (B) described in 1 above, and a negative electrode layer (C) further laminated from the electrolyte layer (B) side, and the positive electrode layer (A ) And the electrolyte layer (B), and between the electrolyte layer (B) and the negative electrode layer (C), a laminate for a lithium battery having a layer of a liquid compound having an alkylene oxide repeating unit.
  • liquid compound having an alkylene oxide repeating unit is a compound having a chemical formula represented by the following general formula (1) or (2).
  • R 1 is H, CH or CH CH
  • R 2 is H, CH, CH CH, CH ⁇ X or
  • R 3 is X, phenyl, biphenyl or methoxyphenyl, X is (AO) Y, AO is alkylene oxide repeating unit, Y is H, CH or CH nm 2m + lm 2m N and m are integers of 1 to 50.
  • R 4 and R 7 are CH or CH
  • R 5 and R 6 are H, CH, CH or
  • k 2k + l k 2k- 1 3 2 5 represents ⁇ CH
  • Z represents CH, C ⁇ , COO or ⁇
  • k is an integer of 3-60.
  • a positive electrode layer (A) containing an active material and a conductivity-imparting agent, and an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit ) And a negative electrode layer (C) are laminated in this order to produce a lithium battery laminate, and between the positive electrode layer (A) and the electrolyte layer (B) and the electrolyte layer (B).
  • a method for producing a laminate for a lithium battery comprising interposing a layer of a liquid compound having an alkylene oxide repeating unit between at least one of the negative electrode layers (C).
  • a laminate for a lithium battery comprising a liquid compound layer having an alkylene oxide repeating unit between the positive electrode layer (A) and the electrolyte layer (B), wherein the positive electrode layer ( A) and the electrolyte layer (B) are formed into a positive electrode film and an electrolyte film by an extrusion molding method, and the total thickness of both the positive electrode film and the electrolyte film is 1 / 1.3.
  • a method for producing a laminate for a lithium battery wherein the two films are pressure-bonded with a roller having a gap of ⁇ 1 / 1.02.
  • the positive electrode layer (A) contains a polyether polymer, and the viscosity of the liquid compound having the alkylene oxide repeating unit at 25 ° C. is 100 to 2, OOOmPa's. 11. The method for producing a laminate for a lithium battery as described in 10 above.
  • liquid compound having an alkylene oxide repeating unit is a compound having a chemical formula represented by the following general formula (1) or (2): Manufacturing method.
  • R 1 is H, CH or CH CH
  • R 2 is H, CH, CH CH, CH ⁇ X or
  • R 3 is X, phenyl, biphenyl or methoxyphenyl, X is (AO) Y, AO is alkylene oxide repeating unit, Y is H, CH or CH nm 2m + lm 2m N and m are integers of 1 to 50.
  • R 4 and R 7 are CH or CH
  • R 5 and R 6 are H, CH, CH or
  • k 2k + l k 2k- 1 3 2 5 represents ⁇ CH
  • Z represents CH, C ⁇ , COO or ⁇
  • k is an integer of 3-60.
  • a negative electrode layer (C) is laminated in this order, and between the positive electrode layer (A) and the electrolyte layer (B), and between the electrolyte layer (B) and the negative electrode layer (C).
  • a polymer battery laminate having a liquid compound layer having an alkylene oxide repeating unit on at least one side.
  • the laminated body for a lithium battery according to the first aspect of the present invention includes a positive electrode layer (A) containing an active material and a conductivity-imparting agent, a polyether polymer, an electrolyte salt compound, and an alkylene oxide repeating unit. And a liquid compound having an alkylene oxide repeating unit between the positive electrode layer (A) and the electrolyte layer (B). It is characterized by having a layer of.
  • the polyether polymer used as the constituent material of the electrolyte layer (B) is not particularly limited as long as it has an alkylene oxide repeating unit obtained by ring-opening polymerization of an oxysilane monomer as a main structural unit.
  • the oxysilane monomer is not particularly limited, but when the ethylene oxide monomer (a) is used as at least one component of the oxysilane monomer used for polymerization, the electrolyte layer (B) obtained by molding this is a mechanical layer. It is preferable because of its excellent mechanical strength.
  • the polyether-based polymer used in the present invention has a molar specific power of the content of the ethylene oxide monomer (a) unit and the oxosilane monomer (b) unit copolymerizable with the ethylene oxide [monomer ( a) Number of moles of unit / monomer (b) Number of moles of unit], usually 85Zl5 to 99 / l, Preferably it is 90 / 10-99 / l, More preferably, it is 92 / 8-99 / 1. If the ethylene oxide monomer (a) unit content is too small, the film may easily stick to a cooling roll or the like. On the other hand, if the ethylene oxide monomer (a) unit content is too large, it may be difficult to obtain a smooth film.
  • Examples of the oxysilane monomer (b) copolymerizable with ethylene oxide include alkylene oxides having 3 to 20 carbon atoms, glycidyl ethers having 4 to 10 carbon atoms, oxides of aromatic bur compounds, and oxysilane monomers.
  • Examples thereof include a crosslinkable oxysilane monomer in which a crosslinkable functional group such as a bur group, a hydroxyl group or an acid anhydride group is introduced into the monomer.
  • the oxosilane monomer (b) copolymerizable with ethylene oxide may be used alone or in combination of two or more. It is more preferable to use 20 alkylene oxides, glycidyl ethers having 4 to 10 carbon atoms, or the like as at least one component, and more preferable to use alkylene oxides having 3 to 20 carbon atoms as at least one component. Propylene oxide is preferred as the alkylene oxide having 3 to 20 carbon atoms.
  • crosslinkable oxysilane monomer examples include the above-mentioned oxysilane monomers such as alkylene oxides having 3 to 20 carbon atoms and glycidinole ether having 4 to 10 carbon atoms, vinyl groups, hydroxyl groups, and acid anhydride groups.
  • oxysilane monomers such as alkylene oxides having 3 to 20 carbon atoms and glycidinole ether having 4 to 10 carbon atoms, vinyl groups, hydroxyl groups, and acid anhydride groups.
  • a crosslinkable oxysilane monomer having a crosslinkable group that can be cross-linked by light or peroxide Among them, a crosslinkable oxysilane having a vinyl group such as vinyldaricidyl ether or allylic glycidinoreether. It is preferable to use a monomer.
  • the polymerization catalyst for ring-opening polymerization of the oxysilane monomer is not particularly limited.
  • a catalyst obtained by reacting organic aluminum with water and acetylacetone Japanese Patent Publication No. 35-15797.
  • a catalyst obtained by reacting phosphoric acid and triethylamine with triisobutylaluminum Japanese Patent Publication No. 46-27534
  • a catalyst obtained by reacting an organic acid salt of diazabiacycloundecene with phosphoric acid Japanese Patent Publication No.
  • a conventionally known polymerization catalyst can be used as a ring-opening polymerization catalyst for an oxsilane compound.
  • a polymerization method for obtaining a polyether polymer a solution polymerization method using an organic solvent in which the produced polymer is dissolved, or a solvent slurry polymerization method using an organic solvent in which the produced polymer is insoluble, etc.
  • the solvent slurry polymerization method using a solvent such as S, n-pentane, n-hexane, and cyclopentane is preferable.
  • the two-stage polymerization method in which seed particles are polymerized in advance and then the seed particles are enlarged, the amount of scale adhering to the inner wall of the reactor is small. I like it.
  • the weight average molecular weight (Mw) of the polyether polymer is a polystyrene conversion value by a gel permeation method using dimethylformamide as a solvent, and is usually from 100,000 to 1,500,000, preferably from 150,000 to 100 10,000, more preferably 200,000 to 600,000, and the molecular weight distribution index M w / Mn (where Mn is the number average molecular weight) is usually 1.5 to: 13, preferably 1.6 to 12 More preferably, it is from 1.7 to 11.
  • the fluidity and shape retention when producing a film by extruding a polyether polymer composition using the Mw is excellent.
  • the obtained electrolyte layer (B) is excellent in flexibility and mechanical strength. If the Mw is too large, the torque and die pressure of the extruder will increase, which may make molding difficult. If the Mw is too small, the mechanical strength of the resulting electrolyte layer (B) will be insufficient and the film will be easily torn, and the film will be more likely to stick, making it difficult to stably produce a thin film. There is a potential s .
  • the polyether polymer preferably has a reduced viscosity of 0.6 to 25 dl / g, more preferably 0.7 to 20 dlZg, and particularly preferably 0.8 to 15 dlZg.
  • the reduced viscosity is a value measured according to JIS K6300.
  • the reduced viscosity can be determined by measuring the viscosity of a solution obtained by dissolving 0.25 g of a polyether polymer in 100 g of toluene and the viscosity of toluene at 25 ° C. using an Ubbelohde viscometer.
  • the electrolyte salt composite used as the constituent material of the electrolyte layer (B) is not particularly limited as long as it is soluble in the polyether polymer.
  • electrolyte salt compounds include halogen ion, perchlorate ion, thiocyanate ion, trifluoromethanesulfonate ion [CFSO-], bis (trifluoromethanesulfonyl) imide ion [N (CFSO4).
  • Salts comprising anions selected from stearyl sulfonate ions, octyl sulfonate ions, and the like, dodecylbenzene sulfonate ions, and metal cations.
  • the metal that forms the metal cation is lithium, sodium, potassium, rubidium, or cesium. Examples include magnesium, calcium and barium. Of these metal cations, lithium ions are preferred.
  • LiBF LiBF
  • LiPF LiPF
  • LiCF SO, LiN (CF SO) and LiN (C F SO) are preferred. These electrolyte chlorides
  • the compound can be used alone or in combination of two or more.
  • the content of the electrolyte salt compound in the electrolyte layer (B) is usually 5 to 70 parts by weight, preferably 8 to 60 parts by weight, based on 100 parts by weight of the polyether polymer. Preferably it is 10-55 weight part. If the content of the electrolyte salt compound in the electrolyte layer (B) is too small, the ionic conductivity of the electrolyte layer (B) may be reduced. Conversely, if it is too high, the mechanical strength may be reduced. Moreover, there is a possibility that the production will be difficult due to the increase in the adhesiveness.
  • the liquid compound (L) having an alkylene oxide repeating unit which is used as a constituent material of the electrolyte layer (B), dissolves in the polyether polymer and expresses the action of a plasticizer, and the electrolyte layer (B) This improves the adhesion with the positive electrode layer (A) laminated on the surface of the film, and also improves the adhesion when the negative electrode layer (C) is laminated on the back surface. Furthermore, the liquid compound (L) has an effect of improving ion mobility in the electrolyte layer (B).
  • Liquid compound (U has a viscosity at 25 ° C of 100-2, OOOmPa's, preferably 120-170 OmPa's, more preferably 150-1500111? &. 3.
  • Liquid compound (L) Lower viscosity If it is too high, the mechanical strength of the electrolyte layer (B) may decrease, and the adhesiveness may increase, making it difficult to produce. On the contrary, if it is too high, the adhesion with the positive and negative electrode layers may be insufficient. is there
  • a suitable liquid compound (L) is a compound having a chemical formula represented by the following general formula (1) or (2).
  • R 1 is H, CH or CH CH
  • R 2 is H, CH, CH CH, CH ⁇ X or
  • R 3 is ⁇ X, a phenyl group, a butylphenyl group or a methoxyphenyl group
  • X is (AO) Y
  • a ⁇ is an alkylene oxide repeating unit
  • Y is H, CH or CH nm 2m + lm 2m N and m are integers of 1 to 50.
  • liquid compounds (L) include tri (methoxypolyethylene glycol) boronic acid esters, di (methoxypolyethylene glycololene) -p-vinylphenylboronic acid esters, di (methoxypolyethylene glycol) -p- Methoxyphenylboronic acid ester, methoxypolyethylene glycol-p-vinylphenylboronic acid ester; trimethylolpropane polyoxyethylene ether, trimethoxytrimethylolpropane polyoxyethylene ether, trimethoxyglycerin polyoxyethylene ether, etc. Can be mentioned.
  • R 4 and R 7 are CH or CH
  • R 5 and R 6 are H, CH, CH or
  • k 2k + l k 2k- 1 3 2 5 represents ⁇ CH
  • Z represents CH, C ⁇ , COO or ⁇
  • k is an integer of 3-60.
  • the content of the liquid compound (L) in the electrolyte layer (B) is usually 10 to 500 parts by weight, preferably 20 to 300 parts by weight, more preferably 100 parts by weight of the polyether polymer. Is 30 to 200 parts by weight.
  • the content of the liquid compound (L) in the electrolyte layer (B) is too small, the ionic conductivity of the electrolyte layer (B) at room temperature or lower may be reduced, and the adhesion with the positive and negative electrode layers may be insufficient.
  • the amount is too large, the mechanical strength may decrease, or the tackiness may increase and the handling may deteriorate.
  • the electrolyte layer (B) is preferably a cross-linked molded article.
  • a crosslinking agent is added to the composition before molding, and crosslinking is performed after molding or simultaneously with molding.
  • the cross-linking method is not particularly limited, and examples thereof include a method in which a cross-linking agent such as a radical initiator, sulfur, mercaptotriazines, and thioreas is blended to perform cross-linking by heating, and a method in which cross-linking is performed using actinic radiation. .
  • a method of crosslinking by radiation is preferred.
  • the amount of the crosslinking agent is usually 0.:! With respect to 100 parts by weight of the polyether polymer. -10 parts by weight, preferably 0.2-7 parts by weight, more preferably 0.3-5 parts by weight.
  • the electrolyte salt compound and the liquid compound (L) in addition to the polyether polymer, the electrolyte salt compound and the liquid compound (L), if necessary, a crosslinking agent, an anti-aging agent, a light stabilizer, Various components including lubricants, flame retardants, antifungal agents, antistatic agents, colorants, reinforcing materials, fillers, etc. are mixed, supplied to an extruder equipped with a film die, and then formed into a film by the extruder. Is preferred.
  • the cross-linked product is formed by molding or by subsequent heating.
  • a photocrosslinking agent is blended, the film after molding is irradiated with active radiation to form a crosslinked product.
  • mixing may be performed in advance with a Brabender, Banbury mixer, kneader, mixer roll, pellet making extruder, or the like, or a polyether-based weight is placed on a raw material hopper of an extruder for film forming.
  • the coalescence and each component including the electrolyte salt compound are introduced into the raw material hopper or the second feed port in the middle of the barrel, and the extruder is kneaded. You may mix in a zone.
  • the solid compounding agent is also uniformly dispersed in the polyether polymer, so that a homogeneous electrolyte layer (B) can be obtained.
  • the temperature of the extruder kneading section for stably producing the electrolyte layer (B) is usually 40 to 200 ° C, preferably 50 to 150 ° C, more preferably 55 to 130 ° C. is there. If the temperature of the kneading part is too low, there is a risk that the dispersion of the compound will be poor and the battery characteristics will be degraded. There is sex.
  • the electrolyte layer (B) extruded from the die of the extruder is usually scraped off into a take-up port through a cooling roll. It is preferable to place a cast roll in front of the take-up roll, detect the thickness and tension of the film with the respective detection means, and feed the results back to the extruder and the cooling roll.
  • the thickness of the electrolyte layer (B) controlled by the cast roll is preferably 10 to 50 ⁇ , more preferably 15 to 45 ⁇ m, and particularly preferably 18 to 40 ⁇ m. If the thickness of the electrolyte layer (B) is too thin, it may break or stick, and conversely, if it is too thick, the battery characteristics may deteriorate.
  • the surface of the cooling roll a mirror surface, the surface of the film extruded from the die can be finished more smoothly.
  • the active material used as the constituent material of the positive electrode layer (A) can be used without limitation as long as it is generally used for the positive electrode of a battery.
  • active materials include lithium cobaltate, lithium manganate, lithium titanate, lithium manganese composite oxide, LiNiO, lithium vanadium composite oxide, and lithium-containing composite metal oxides such as LiFePO.
  • Transition metal oxides such as titanium sulfide, molybdenum sulfide, VO, V o, molybdenum oxide, etc .;
  • Lithium manganate, nickel nickelate and lithium cobaltate are preferred.
  • the average particle size of the active material is usually from 0.:! To 30 x m, preferably from 0.5 to 20 x m. If the average particle size of the active material is too large or too small, it may not be uniformly mixed with the polymer or the mixed solution (coating solution) may be difficult to produce.
  • the conductivity-imparting agent used as the constituent material of the positive electrode layer (A) is a substance that assists the conductive properties of the active material, and any conductivity-imparting agent that is usually used for a positive electrode of a battery can be used without limitation. it can.
  • Examples of the force and conductivity imparting agent include carbon particles such as carbon black, acetylene black, ketjen black, and graphite.
  • the average particle diameter of the conductivity-imparting agent used for the positive electrode is usually 10 to 80 nm, preferably 20 to 50 nm. If the average particle size of the conductivity-imparting agent is too small, it may not be uniformly dispersed in the active material. Conversely, if it is too large, the surface of the positive electrode layer (A) will become uneven, resulting in an electrolyte layer (B) or positive electrode current collector. The battery output may be reduced and the battery may be easily broken.
  • the conductivity-imparting agent has a moderately large amount of oil absorption.
  • Dibutyl phthalate (hereinafter sometimes referred to as DBP), which is preferred from the viewpoint of blending amount and conductivity, is usually 100 to 50 Oml / g. It is preferably 150 to 400 mlZg.
  • the content of the conductivity-imparting agent in the positive electrode layer (A) is usually 1 to 30 parts by weight, preferably 2 to 15 parts by weight, more preferably 2.5 to: 100 parts by weight of the active material. 12 parts by weight. If the content of the conductivity-imparting agent is too small, the battery reaction of the active material cannot be used effectively, and the battery capacity may be lowered. If the content is too large, the thickness of the positive electrode layer is difficult to be uniform, and the unit weight per unit weight. Battery capacity may also be reduced.
  • the method for producing the positive electrode layer (A) is not necessarily limited.
  • an active material and a conductivity-imparting agent are mixed with an organic solvent or an aqueous dispersion of a polymer component serving as a binder to form a slurry composition, which is used as a current collector such as a metal foil for a doctor blade or the like. Apply evenly and dry to form.
  • the binder include fluorine-containing polymers such as acrylate polymers and polyvinylidene fluoride; styrene-butadiene and acrylonitrile-butadiene polymers.
  • the binder content of the positive electrode layer (A) is usually 0.5 to 20 parts by weight, preferably 1 to: 15 parts by weight, more preferably 1.5 to 12 parts by weight.
  • the positive electrode layer (A), the active material and the conductivity-imparting agent described above As a second method for producing the positive electrode layer (A), the active material and the conductivity-imparting agent described above, the polyether polymer described above as the constituent material of the electrolyte layer (B), and if necessary, also, the liquid compound (L) having the alkylene oxide repeating unit described above as a constituent material of the electrolyte layer (B) is mixed with a Brabender, Banbury mixer, roll, etc. Cut and shape into a sheet with a hot press.
  • the conditions for the pressing method are, for example, about 5 minutes at 120 ° C at a pressure of 8 MPa.
  • the positive electrode layer (A) when forming the above-described polyether polymer as a constituent material of the electrolyte layer (B) into a film with an extruder, an active material and a conductive material are used.
  • a method of mixing the imparting agent with the polymer in advance, or a method of feeding from the second feed port in the middle of the barrel, mixing in the kneading unit, and stacking the extruded film on a support film such as a polyester film is included. It is done.
  • the extrusion method it is easy to form a thin film shape as the positive electrode layer.
  • the positive electrode layer (A) When the positive electrode layer (A) is produced by an extrusion method, the positive electrode layer (A) preferably contains a liquid compound (L) having an alkylene oxide repeating unit.
  • the content of the active material in the positive electrode layer (A) is usually 10 to 5000 parts by weight, preferably 100 parts by weight of the polyether polymer. Is an amount of 30 to 2000 parts by weight, more preferably 50 to 1000 parts by weight. If the content of the active material in the positive electrode layer is too small, the function as the positive electrode may be insufficient. Conversely, if the content is too large, the dispersion of the active material in the positive electrode layer (A) may be uneven. .
  • the polyether polymer used as the constituent material of the positive electrode layer (A) is not necessarily the same as the polyether polymer used as the constituent material of the electrolyte layer (B). It is preferable to have a body unit and a reduced viscosity in the above range.
  • the positive electrode layer (A) is produced by an extrusion method, a polyether polymer, an active material, a conductivity-imparting agent, and preferably an electrolyte salt compound, a liquid compound (L), and further if necessary Aprotic carbon used in electrolytes H compound anti-aging agents, light stabilizers, lubricants, flame retardants, antifungal agents, antistatic agents, coloring agents, reinforcing materials, fillers, etc. It is preferable to mix the components and form a film with an extruder.
  • the temperature of the extruder kneading part for stably producing the positive electrode layer (A) with an extruder is usually 40 to 200.
  • C preferably f 60 ⁇ : 190.
  • C more preferably ⁇ 70 ⁇ : 180 ° C, further (preferably f 110 ⁇ 180 ° C.
  • the temperature of the kneading part is too low, the viscosity increases and it becomes difficult to extrude a thin film smoothly.
  • the battery characteristics may be deteriorated due to a poor dispersion of the compound, and conversely, if the temperature of the kneading part is too high, the compound may be thermally decomposed to deteriorate the battery characteristics. There is.
  • the lithium salt of the electrolyte salt compound used as the constituent material of the positive electrode layer (A) is not necessarily the same as the lithium salt of the electrolyte salt compound used as the constituent material of the electrolytic layer (B). It is preferable that the powder has a high decomposition temperature.
  • the content of the lithium salt in the positive electrode layer (A) is usually 10 to 30 parts by weight, preferably 13 to 26 parts by weight, more preferably 17 to 22 parts by weight per 100 parts by weight of the polyether polymer. If the lithium salt content in the positive electrode layer (A) is too small, the ionic conductivity of the positive electrode layer (A) may be reduced, and if it is too high, the mechanical strength and ionic conductivity of the positive electrode layer (A) will be poor. May be sufficient.
  • the positive electrode layer (A) preferably contains the liquid compound (L) having a viscosity of 100 to 2 at 25 ° C and having an alkylene oxide repeating unit of OOOmPa's, .
  • the liquid compound (U) dissolves in the polyether polymer and expresses the action of a plasticizer, improves the adhesion to the electrolyte film, and improves the ion mobility in the positive electrode layer.
  • the liquid compound (L) also improves the adhesion of the interface when the current collector is laminated on the positive electrode layer (A).
  • the content when the positive electrode layer (A) contains the liquid compound (L) is the same as the content per polyether polymer in the electrolyte layer (B).
  • composition preparation and extrusion molding apparatus and procedure for producing the positive electrode layer (A) are the same as in the case of the electrolyte layer (B).
  • the solid compounding agent can be evenly dispersed in the polyether polymer.
  • a cast roll is placed in front of the take-up roll, and the thickness of the film serving as the electrolyte layer is determined. It is preferable to control the thickness by detecting the tension and feeding it back to the extruder and cooling roll.
  • the thickness of the positive electrode layer (A) controlled by a cast roll or the like is preferably 30 to 90 ⁇ m, more preferably 35 to 80 ⁇ 111, and particularly preferably 40 to 75 zm. If the thickness is too thin, film handling (handling) may be inferior. On the other hand, if the thickness is too thick, the adhesion and folding properties with the laminated film that comes into contact with the film will be reduced, and the battery output will be improved. There is no possibility 1 "life is.
  • the surface of the film extruded from the die by making the surface of the cooling roll into a mirror surface Can be finished more smoothly.
  • the various components are sufficiently mixed as described above, so that the positive electrode layer (A) is electrochemically homogeneous.
  • the thickness is usually 10 to 200 ⁇ m, preferably ⁇ 20 to 150 xm, more preferably f 30 to 120 xm. .
  • a film or sheet of about 0 ⁇ m is preferably used.
  • the thickness is usually 10 to 200 ⁇ m, preferably 20 to 120 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the thickness of the positive electrode layer (A) is usually 10 to 20
  • 0 ⁇ m preferably 20 to 120 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the film handling property (handling property) may be inferior.
  • the adhesion and folding properties with the layer in contact with the film may be reduced. Output may not improve.
  • the lithium battery laminate of the present invention comprises a positive electrode layer containing an active material and a conductivity-imparting agent (
  • the positive electrode layer (A) and the electrolyte layer (B) are formed by an extrusion method, and the total thickness of both the layers (A) and (B) is 1/1 ⁇ 3 to: 1/1 ⁇ It is preferable to do this with a roller with a gap of 02.
  • the positive electrode layer (A) and the electrolyte layer (B) are formed by a positive electrode film and an electrolyte film formed by an extrusion method, and both of the positive electrode film and the electrolyte film are formed. It is preferable to press-bond with a roller having a gap of 1 / 1.3-3: 1 / 1.02 with respect to the total thickness.
  • the means for laminating the positive electrode layer (A) and the electrolyte layer (B) is not limited, but when the two layers are stacked and pressed through a biaxial roll, a calender roll, a biaxial roll press, etc., the positive electrode layer ( A liquid compound layer having an alkylene oxide repeating unit is interposed between A) and the electrolyte layer (B).
  • the liquid compound having an alkylene oxide repeating unit the liquid compound (L) which is an essential constituent material of the electrolyte layer (B) is preferable.
  • the liquid compound layer between (A) and (B) there is no limitation to the method of interposing the liquid compound layer between (A) and (B).
  • Various application methods such as a doctor blade, wire no.
  • the liquid compound may be supplied to one of the facing surfaces between the respective layers by spraying, inkjet, dot printing, screen printing, or the like, and spread with a squeezer, roller, brush, or the like as necessary.
  • the positive electrode layer (A ) By adjusting the molecular weight, viscosity, compatibility with the polyether polymer, etc. of the liquid compound (L) added to the electrolyte layer (B) and preferably also to the positive electrode layer (A), the positive electrode layer (A ) Or a method of bleeding from the electrolyte layer (B) to the interface thereof.
  • a liquid compound having an alkylene oxide repeating unit existing between the positive electrode layer (A) and the electrolyte layer (B) and having a polyether polymer dissolved at a concentration of 10% by weight or less is used. It is preferable because the coating is close and the interface is easy to adhere.
  • the thickness of the liquid compound layer interposed between (A) and (B) is usually from 0.005 to 100 / im, preferably from 0.00 to 80/1111, more preferably from 0.00! ⁇ 60 ⁇ .
  • the thickness of the laminate is determined from the sum of the thicknesses of the two films by stacking the electrolyte film serving as the electrolyte layer and the positive electrode film serving as the positive electrode layer, and pressing them through the roller. It is possible to achieve a high output battery by reducing the thickness and strengthening the adhesion between the two films.
  • the surface temperature of the roller during pressure bonding is preferably 30 to 120. C, more preferably 35 to 100. C, particularly preferably 40 to 90 ° C. If the roller surface temperature is too low, the laminate may be easily peeled off and adhesion may be insufficient. On the other hand, if the roller surface temperature is too high, the film thickness will vary greatly, and the thickness will be too thin, resulting in high strength. May be reduced. [0048] When the electrolyte film and the positive electrode film are pressure-bonded with a roller, the roller gap is 1 / 1.3 to 1 / 1.02, preferably 1 / 1.25 of the total thickness of the electrolyte film and the positive electrode film.
  • the laminate may be easily peeled off and the adhesion may be insufficient. Conversely, if the ratio is too large, the film thickness becomes thin and the interface is uniform. May be impaired.
  • a positive electrode current collector is previously laminated on the side of the positive electrode film not contacting the electrolyte film by a roller, a press, etc.
  • a method may be employed in which the laminate and the electrolyte film are pressure-bonded with the roller to produce a lithium battery laminate in which the electrolyte film and the positive electrode film are in contact with each other.
  • This method has the advantage that the adhesion between the positive electrode current collector and the positive electrode film is further improved.
  • the positive electrode current collector an aluminum foil is preferably used.
  • the shape of the positive electrode current collector is not particularly limited, but usually a film or sheet of about 5 to 300 ⁇ m is preferably used.
  • the ratio of the total thickness of the electrolyte film and the positive electrode film to the roller gap is Should be manipulated to be in range.
  • a negative electrode Prior to pressure-bonding the two films with a roller, a negative electrode is previously laminated on the side of the electrolyte film that does not contact the positive electrode film, and the laminate and the positive electrode film are pressure-bonded with the roller to form an electrolyte film.
  • a method for producing a laminated body for a lithium battery in which the positive electrode film is in contact with each other may be employed.
  • the laminate comprising the electrolyte film and the positive electrode film obtained by the method of the present invention preferably has a thickness strength of f 40 to 140: 111, more preferably f 50 to 120 ⁇ , particularly preferably ⁇ . Since it is as thin as 70 to 110 zm, the lithium ion conductivity and transport number are high, and the adhesion between the two films is large.
  • a lithium battery having a laminate for a lithium battery obtained by the method of the present invention has a high output. It has the characteristics of being highly reliable and easy to manufacture.
  • a laminate for a lithium battery in which an electrolyte film containing a polyether polymer and a lithium salt and a positive electrode film containing a polyether polymer, an active material, a conductivity-imparting agent, and a lithium salt are laminated.
  • the method for producing the electrolyte film is a film obtained by forming the electrolyte film and the positive electrode film by an extrusion molding method. Contains a liquid compound having an alkylene oxide repeating unit with a viscosity of 100 to 2, OOOmPa's at C, and the lamination of both films is a total of the thickness of both films 1 / 1.3 to: 1/1 Mouth with gap of 02-It is preferable to crimp with la
  • the second aspect of the present invention is a laminate comprising a positive electrode layer (A) and an electrolyte layer (B), and a negative electrode layer (C) further laminated from the electrolyte layer (B) side, and
  • Examples of the negative electrode layer (C) include a layer containing a negative electrode active material and a binder, or a layer made of a metal foil.
  • an organic or inorganic material that releases and occludes lithium can be used.
  • transition metal oxides such as titanium and vanadium and silicon compounds can be used in addition to carbon-based materials.
  • mesocarbon microbeads, scaly graphite, massive graphite, non-graphitizable carbon, low crystalline carbon, low-temperature calcined carbon, and the like, which are spherical graphite particularly preferred for carbon materials can be used.
  • these carbon materials include lithium alloys with AL Si, Pb, Sn, Zn, etc., transition metal composite oxides such as LiFe 2 O, Mn
  • a transition metal oxide such as O, a silicon oxide such as SiO, lithium nitride such as LiN, or lithium metal may be mixed.
  • Preferred binders for the negative electrode layer (C) are acrylic polymers (for example, 2-ethylhexyl acrylate, copolymers of acrylic acid and acrylonitrile), fluorine-containing polymers, polyether polymers, polyacrylonitrile. Les, ethylene-butyl alcohol copolymer, cellulose, hydrogenated acrylonitrile-butadiene copolymer, etc., acrylic polymer And fluorine-containing polymers are more preferred.
  • the amount of the binder used is usually from 0.:! To 10 parts by weight, preferably from 0.2 to 8 parts by weight, particularly preferably from 0.5 to 6 parts by weight, based on 100 parts by weight of the negative electrode active material.
  • the amount of the binder used is too small, the mechanical strength of the coating film is insufficient, and the negative electrode active material may fall off the current collector. Conversely, if the amount is too large, the internal resistance will increase, and the cycle performance of the battery will increase. May be reduced.
  • the negative electrode layer (C) containing a negative electrode active material and a binder is prepared by uniformly applying the slurry composition shown below to a current collector with a doctor blade or the like and drying.
  • the slurry composition is prepared by mixing solid particles such as a negative electrode active material, a viscosity modifier and the like in an organic solvent in which a binder is dispersed.
  • the thickness of the negative electrode layer (C) is usually 5 to 300 ⁇ m, preferably 10 to 200/111, more preferably 20 to 160 m.
  • the current collector is preferably a film or sheet having a thickness of about 5 to 300 ⁇ m.
  • the negative electrode layer (C) is made of a metal foil
  • preferred metals are lithium, lithium-aluminum alloy, lithium-indium alloy, and the like, with lithium being particularly preferred.
  • lithium foil is preferably used as the negative electrode.
  • the shape of the negative electrode is not particularly limited.
  • a film in which particles such as graphite and activated carbon are attached to a negative electrode current collector made of copper or the like with a binder such as an acrylic polymer or PVDF can also be used.
  • the thickness of the negative electrode layer (C) is generally 1 to 500 ⁇ , preferably 3 to 300/1111, more preferably 5 to 250 ⁇ m.
  • the laminate for a lithium battery of the present invention comprises a laminate comprising a positive electrode layer (A) and an electrolyte layer (B), and further a negative electrode layer (C) laminated from the electrolyte layer (B) side.
  • At least one of the positive electrode layer (A) and the electrolyte layer (B) and between the electrolyte layer (B) and the negative electrode layer (C) has a liquid compound layer having an alkylene oxide repeating unit. Even in the configuration, the effects of the present invention are exhibited.
  • a laminate for a lithium battery having an object layer is
  • a positive electrode layer (A), an electrolyte layer (B), and a negative electrode layer (C) are laminated in this order to produce a battery laminate.
  • the positive electrode layer (A) and the electrolyte are laminated.
  • a liquid compound layer having an alkylene oxide repeating unit is interposed between the layers (B) and at least one of the electrolyte layer (B) and the negative electrode layer (C).
  • the liquid compound (L) which is an essential constituent material of the electrolyte layer (B) is preferable.
  • one side and / or both sides of the electrolyte layer (B) are previously coated with the liquid compound, and this is applied between the positive electrode layer (A) and the negative electrode layer (C). It is preferable to adopt the procedure of sandwiching and laminating because a liquid compound layer can be easily interposed.
  • a liquid compound having an alkylene oxide repeating unit present in at least one of the positive electrode layer (A) and the electrolyte layer (B) and at least one of the electrolyte layer (B) and the negative electrode layer (C).
  • a polymer in which a polyether polymer is dissolved at a concentration of 10% by weight or less because the coating is easily sealed and the interface is easily adhered.
  • the thickness of the liquid compound layer interposed between (A) and (B) and at least one of the layers between (B) and (C) is usually 0.005 to 100 ⁇ , preferably 0 to 01 to 80 ⁇ , more preferably ⁇ to 0.1 to 60 ⁇ m.
  • the surface temperature of the roller during pressure bonding is preferably 30 to 120. C, more preferably 35 to 100. C, particularly preferably 40 to 90 ° C. If the roller surface temperature is too low, the laminate may be easily peeled off and adhesion may be insufficient. Conversely, if it is too high, the thickness of the laminate will vary greatly, and the thickness will be too thin. Strength may decrease.
  • the positive electrode layer (A), the electrolyte layer (B), and the negative electrode layer (C) are provided with a liquid compound layer between (A) and (B) and between at least one layer between (B) and (C).
  • a liquid compound layer between (A) and (B) and between at least one layer between (B) and (C).
  • the gap between the rollers excludes the current collector layer or the support film, and the positive electrode layer (A), the electrolyte layer (B) and the current collector.
  • the total thickness of the negative electrode layer (C) excluding the body layer is preferably 1 / 1.4 to: 1 / 1.02, more preferably lZl.35 to: 1 / 1.05, particularly preferably lZl. 3 ⁇ : 1 / 1.08.
  • the roller gap is between the positive electrode layer (A) excluding the current collector layer or the support film, the electrolyte layer (B), and the negative electrode layer (C) excluding the current collector layer.
  • the total thickness is preferably f 1 / 1.35 ⁇ : 1 / 1.02, more preferably ⁇ 1 / 1.3 ⁇ : 1 / 1.05, special (preferably lZl. 28 ⁇ : 1/1. 08.
  • roller gap is in the above range, the lamination is difficult to peel off, and the uniformity of the interface is prevented from being impaired.
  • the positive electrode layer (A) is not in contact with the electrolyte layer (B).
  • the positive electrode current collector is preliminarily laminated on the side by a roller, a press or the like, or / and the negative electrode current collector is preliminarily laminated on the side not in contact with the electrolyte layer (B) of the negative electrode layer (C) by a roller, a press or the like. Then, the above-described pressing may be performed.
  • the positive electrode current collector an aluminum foil is preferably used.
  • the shape of the positive electrode current collector is not particularly limited, but usually a film shape of about 5 to 300 / im is preferably used.
  • a copper foil is preferably used.
  • a film of about 3 to 300 / im is usually preferably used.
  • the laminate for a lithium battery obtained by the method of the present invention has the characteristics that the adhesion between the layers is good and the thickness of the laminate is small.
  • a coin battery type lithium battery is formed by laminating a positive electrode current collector on the positive electrode layer (A) and a negative electrode current collector on the negative electrode layer (C) of the laminate for a lithium battery obtained by the method of the present invention.
  • Part is based on weight unless otherwise specified. The test and evaluation were performed according to the following methods.
  • the center and corners (total of 5 points) of the constituent film samples with a length of 50 mm and a width of 30 mm were measured with a digital film thickness meter, and the average value of these was taken as the film thickness.
  • the unit is ( ⁇ ⁇ ).
  • the central part of the laminate in the length direction was measured with a digital film thickness meter at intervals of approximately 5 mm in the width direction, and the average value thereof was taken as the thickness of the laminate.
  • the unit is m).
  • the difference between the maximum value and the minimum value of these five measured values was divided by the average value to obtain thickness variation.
  • the unit is (%).
  • Polypropylene gasket (20mm outside diameter, 16mm inside diameter, 3mm height) is installed on the joint surface with the cap of stainless steel container (diameter 20mm, height 3mm), and then the positive electrode film is in contact with the electrolyte.
  • a specimen of film-positive film laminate put stainless steel discs and panel one after another, and close with a stainless steel cap.
  • a coin-type battery with a thickness of about 3.2 mm was made.
  • the battery capacity was measured at 60 ° C with a charge / discharge rate of 0.2C, and the initial charge after applying the specified charge / discharge voltage (charge / discharge voltage difference of 1.5V) twice using the constant current method.
  • the battery capacity was measured. Measurement was performed on 10 coin-type batteries prepared using 10 test pieces per test object. For the initial battery capacity, the average value of five values was used. The unit is [mAhZg_active material]. For the variation, the value obtained by dividing the difference between the maximum and minimum values of these five by the initial battery capacity was used. The unit is [
  • the battery capacity after the charge / discharge voltage was further applied 20 times under the same conditions to the sample whose initial capacity was measured under the condition (4) above was measured.
  • the battery capacity after 20 cycles was used, and the average value of 5 values was used.
  • the unit is [mAhZg-active material].
  • the support film was peeled off, the laminate interface was observed from the electrolyte film side, and the degree of transparency was visually observed to determine adhesion. Judgment criteria were as follows. However, if the surface of the electrolyte film is heavily swollen, it cannot be determined.
  • the autoclave was purged with nitrogen, and 1514 parts of n- hexane and 63.3 parts of the catalyst solution were charged. Set the internal temperature to 30 ° C, add 7.4 parts of ethylene oxide with stirring and react, then add 14.7 parts of an equimolar mixture of ethylene oxide and propylene oxide. To form a seed.
  • the composition of the polyether polymer p is ethylene oxide (EO) units 91 - 6 mol 0/0 was profile propylene oxide (PO) units 4.7 mol% and ⁇ Li glycidyl ether 3.7 mol%. Further, this polymer had Mw of 310,000, Mw / Mn of 6.2, and reduced viscosity of 1.1 dl / g.
  • EO ethylene oxide
  • PO propylene oxide
  • NMP N-methyl-2-pyrrolidone
  • This slurry was uniformly applied to a 20 am thick aluminum foil with a doctor blade, dried at 120 ° C for 15 minutes at normal pressure, and then dried under reduced pressure at 120 ° C for 2 hours with a vacuum dryer.
  • a positive electrode layer with a thickness of 100 ⁇ m (120 ⁇ m when combined with the current collector) was obtained. Thereafter, the film was compressed with a biaxial roll press until the thickness became 80 ⁇ m (100 ⁇ m when the current collectors were combined).
  • Ketjen Black product name Ketjen Black EC, Lion, average particle size 35 nm, DBP absorption 350 ml / g
  • 15 parts 30 parts of bis (trifluoromethanesulfonyl) imide lithium as a mixture of a hen shell mixer and an electrolyte salt compound was supplied and extruded into a film with a coat hanger die.
  • the temperature conditions were an inlet barrel temperature of 30 ° C, a central crease of 160 ° C, a head of 140 ° C, and a die temperature of 140 ° C.
  • the extruded film was wound on a scraping roll through a cast roll while sandwiching both sides with a PET support film (product name: Diafoil, manufactured by Mitsubishi Chemical Corporation, thickness 25 ⁇ m) to obtain a positive electrode film.
  • the thickness of the positive electrode film was 80 ⁇ m.
  • Trimethoxytripolyoxyethylene ether (Product name: TMP-30U trimethoxy-reacted product, Nippon Emulsifier Co., Ltd., 25 ° C viscosity: 420 mPa 's) 60 parts are supplied and kneaded, and coated with a coat hanger die Extruded to. Temperature condition is inlet barrel temperature 30. C, central barrel 100 ° C, head 140. C, die temperature 140 ° C. An uncrosslinked film was obtained by scraping the extruded film onto a scooping roll through a cast roll while sandwiching both sides with a PET support film (same as above). This film was crosslinked by irradiating with 30 mj / cm 2 of ultraviolet rays to obtain an electrolyte film. The thickness of the electrolyte film was 30 ⁇ m.
  • the positive electrode film and the electrolyte film were cut into strips each having a length of 50 mm and a width of 30 mm. Peel off the support film on one side of the electrolyte film, apply trimethylol propanetrimethoxytripolyoxyethylene ether of liquid compound a to the peeled surface with a bar coater (rod number 5 manufactured by Tester Sangyo Co., Ltd.) The positive electrode film was peeled off from the support film. Next, peel off the supporting film on the other side of the electrolyte film with the next layer, and apply a lithium foil negative electrode with a thickness of 200 ⁇ m to this, and pass it through a hot roll press (COSMO). A film-negative electrode laminate was obtained.
  • COSMO hot roll press
  • the roller temperature was set to 60 ° C, and the gap was adjusted with a clearance gauge and device dial so that the gap was 1/120 of the total thickness of the positive electrode film, electrolyte film, and negative electrode (310 ⁇ ).
  • the thickness of the obtained positive electrode film-electrolyte film-negative electrode laminate was 298 ⁇ m.
  • Example 1 the positive electrode film was prepared, the preparation method, the liquid compound that may be blended and the amount and thickness thereof, the electrolyte film, the liquid compound and the amount and thickness thereof, and the positive electrode film-
  • the liquid film between the electrolyte film and between the positive electrode film and the negative electrode and the thickness thereof were as shown in Table 1, respectively, and the same procedure as in Example 1 was performed except that the film was pressed under the conditions of the apertures (gap ratio and temperature) shown in Table 1.
  • Table 1 shows the results of the same tests and evaluations as in Example 1 for the laminate and the coin battery manufactured using the laminate.
  • Example 2 40 parts of trimethylolpropane trimethoxytripolyoxyethylene ether of the liquid compound a was further supplied to the third feed port of the extruder during the production of the positive electrode film.
  • the positive electrode film was replaced with an extrusion method. It was produced by a coating method (see Production Example 3).
  • Example 4 two liquid compounds shown in Table 1 were mixed in advance and supplied from the third feed port of the extruder to obtain a positive electrode film. Further, two kinds of premixed liquid compounds were interposed between the positive electrode film and the electrolyte film in the same manner as in Example 1. In Example 6, the liquid compound described above was interposed between the electrolyte film and the negative electrode by applying the liquid compound to the electrolyte film with a bar coater before bonding.
  • Liquid compound b Ditridecino phthalate (Product name: Vinicizer 1, manufactured by Kao Corporation, viscosity at 25 ° C: 300 mPa's)
  • Liquid compound c tri (methoxypolyethylene glycol) borate [alkylene oxide repeating unit number 12, viscosity at 280 mPa's at 25 ° C; synthesized by a known method such as Y. Kato, et. Al., Solid State See Ionic, 150, p. 355 (2002). ]
  • Liquid compound d Methoxymyristin polyoxyethylene ether (Product name Riquemar B-205 methoxylation product, manufactured by Riken Vitamin Co., 25. C viscosity 40mPa's)
  • the positive electrode layer-electrolyte layer-negative electrode layer laminate having the requirements of the present invention is uniform with little variation in thickness, and the sensory inspection of the support film is good, and they are used.
  • the lithium battery produced in this way has a high level with little variation and an initial battery capacity, and has excellent battery characteristics after the charge / discharge cycle (the battery capacity is high). ! ⁇ 6).
  • Example 2 in which a liquid compound having an alkylene oxide repeating unit was also contained in the positive electrode film, and the electrolyte film had a structure of the liquid compound a having the structure of the chemical formula (1) and the structure of the chemical formula (3).
  • Example 5 which was prepared by using together with the liquid compound d possessed, the battery characteristics after the charge / discharge cycle were very good.
  • Example 6 in which liquid compound a was added between the positive electrode layer and the electrolyte layer and also interposed between the electrolyte layer and the negative electrode layer, the sensory test of the support film was very good, and in addition to the initial battery capacity and variations, the charge was The battery characteristics after the discharge cycle were very good.
  • Example 3 in which the production method of the positive electrode layer was changed from the extrusion method to the coating method, the thickness variation of the laminate was small and uniform, and in addition to the initial battery capacity and the variation, the battery characteristics after the charge / discharge cycle were It was good (contrast with Comparative Example 2).
  • the electrolyte film and positive electrode film obtained by the same method as in Example 1 are first cut into strips having a length of 50 mm and a width of 30 mm, and the support film on one side is peeled off.
  • the peeled surfaces were overlapped and passed through a hot roll press device (device name: COT2015H, manufactured by COSMO) to obtain an electrolyte film-positive electrode film laminate.
  • the gap between the rollers was adjusted with a clearance gauge and a device dial so that the thickness of the electrolyte film and the positive electrode film was 1 / 1.2 of the total thickness (110 zm).
  • the roller temperature was set to 60 ° C.
  • the thickness of the obtained electrolyte film-positive electrode film laminate was 97 zm. Table 2 shows the results of tests and evaluations on the thickness variation of the stack, the deformability of the support film and the adhesion at the interface of the laminate, the initial battery capacity of the coin-type battery produced using the laminate, and the variation thereof. .
  • Example 7 In the method described in Example 7, the same procedure as in Example 7 was conducted except that the liquid compound blended in the electrolyte film and the liquid compound sometimes blended in the positive electrode film were changed to the compounds and amounts shown in Table 2. As a result, an electrolyte film-positive electrode film laminate was obtained. Table 2 shows the results of the same tests and evaluations as in Example 7 for the laminate and the coin battery fabricated using the laminate.
  • Example 8 40 parts of trimethylolpropane trimethoxytripolyoxyethylene ether of the liquid compound a was further supplied to the third feed port of the extruder during the production of the positive electrode film.
  • Example 9 and 10 two liquid compounds shown in Table 2 were mixed in advance and mixed from the third feed port.
  • Example 11 is the same as Example 8 except that the roller temperature was changed to 125 ° C.
  • the electrolyte film-positive electrode film laminate produced by the production method of the present invention has good density, and the lithium battery produced using them has The deviation also had a high initial battery capacity with little variation (Examples 7 to 11).
  • Example 8 in which the specified liquid compound was also contained in the positive electrode film, and the electrolyte film were prepared as a liquid compound a having the structure of the chemical formula (1) and a liquid compound having the structure of the chemical formula (3).
  • Example 9 which was prepared by using d together, the laminate had very good adhesion, and the battery characteristics of a high initial battery capacity with little variation were shown.
  • Example 10 in which the liquid compound having the structure of the chemical formulas (1) and (2) was used in combination, the battery with higher capacity and improved variation than in Example 7 in which only the liquid compound of the chemical formula (1) was used. A pond was obtained.

Abstract

Disclosed is a positive electrode-electrolyte laminate having high lithium ion conductivity and high lithium ion transference number wherein adhesion between layers is high. Also disclosed are a positive electrode-electrolyte-negative electrode laminate, and a high power lithium battery comprising such a laminate. Specifically disclosed is a laminate for lithium batteries wherein a positive electrode layer (A) containing an active material and a conductivity-imparting agent and an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound and a liquid compound having alkyleneoxide repeating units are arranged in layers, and a layer of a liquid compound having alkyleneoxide repeating units is arranged between the positive electrode layer (A) and the electrolyte layer (B).

Description

明 細 書  Specification
リチウム電池用積層体、その製造方法および電池  Laminate for lithium battery, method for producing the same, and battery
技術分野  Technical field
[0001] 本発明はリチウム電池のための正極層および電解質層、または正極層、電解質層 および負極層からなる積層体、並びに該積層体を有するリチウム電池に関し、詳しく は、リチウムイオン伝導度および輸率の高い上記積層体および該積層体を有するリ チウム電池に関する。  TECHNICAL FIELD [0001] The present invention relates to a positive electrode layer and an electrolyte layer for a lithium battery, or a laminate comprising a positive electrode layer, an electrolyte layer and a negative electrode layer, and a lithium battery having the laminate, and more specifically, lithium ion conductivity and transport. The present invention relates to a laminate having a high rate and a lithium battery including the laminate.
背景技術  Background art
[0002] リチウム電池に代表される二次電池は、携帯電話、ノート型パソコンなどモパイル機 器を始め、小型の電気機器の電源としてなくてはならない存在になっている。近年、 二次電池が有する電解質溶液の液漏れ、蒸発などの欠点を、高分子固体電解質を 使用することによって解決せんとしてポリマー電池の開発が進められている。特に、 エチレンオキサイド-プロピレンオキサイド共重合体などのポリエーテル系重合体から なるフイノレムは、リチウム塩ィヒ合物のような電解質塩化合物が可溶なので二次電池用 のイオン伝導性を有する固体電解質として期待されている。し力、しながらこの電解質 層のイオン伝導性はまだ不十分で、充放電の電流密度が不足して大きな電流が得ら れない難点がある。また、電解質層の表裏面にそれぞれ積層される正極層および負 極層との密着性に欠けるため、初期容量の低下等の電池特性が劣るという問題があ る。  [0002] Secondary batteries represented by lithium batteries are indispensable as power sources for small electric devices such as mobile phones, laptop computers, and other mopile devices. In recent years, polymer batteries have been developed to solve the drawbacks of electrolyte solution leakage and evaporation of secondary batteries by using polymer solid electrolytes. In particular, a phenolic polymer made of a polyether polymer such as ethylene oxide-propylene oxide copolymer is a solid electrolyte having ion conductivity for secondary batteries because an electrolyte salt compound such as lithium salt compound is soluble. As expected. However, the ionic conductivity of this electrolyte layer is still insufficient, and there is a problem that a large current cannot be obtained due to insufficient charge / discharge current density. In addition, there is a problem that battery characteristics such as a decrease in initial capacity are inferior due to lack of adhesion between the positive electrode layer and the negative electrode layer respectively laminated on the front and back surfaces of the electrolyte layer.
[0003] この問題に対して、特許文献 1は、アルキレンオキサイド繰り返し単位を有するホウ 酸エステル化合物をイオン性化合物および重合性有機化合物と共に低沸点有機溶 剤に溶解してキャスティングした後、溶剤を除去しつつ重合性有機化合物を重合す ることにより電解質フィルムを得ることを提案した。しかし、このフィルムは依然として正 極層および負極層との密着性が不十分で、電池の初期容量のバラツキが大きぐま たこのフィルムは静置重合の過程でイオン性化合物が沈殿し、し力もフィルムが 0. 5 mmと厚いため電気化学的に不均質で、電池の出力が低いという問題を有する。特 許文献 2は、(メタ)アタリロイル基を有するアルキレンオキサイド繰り返し単位含有ホ ゥ素化合物をラジカル重合開始剤および電解質塩化合物の共存下でフッ素樹脂製 ボートに流し込んで重合し、イオン伝導性の高い電解質フィルムが得られることを報 じた。しかし、このフィルムも上記と同様の理由で電気化学的に不均質であり、電池の 出力が改善されたとは言えない。また、特許文献 3は架橋性基含有ポリエーテルオリ ゴマー、分子構造中にホウ素原子を有するポリエーテルおよび電解質塩化合物の混 合液をステンレス箔上に広げて電子線照射して得られる輸率の高レ、、厚み 95 a mの 高分子固体電解質を開示した。しかしながら、このフィルムも不均質性に起因する電 池出力の問題は上記二者と全く同様で未解決である。また、上記 3特許文献に記載 のいずれの電解質フィルムにおいても、正極フィルムや負極フィルムとの積層時の密 着性は不十分である。 To deal with this problem, Patent Document 1 discloses that a borate ester compound having an alkylene oxide repeating unit is dissolved in a low boiling point organic solvent together with an ionic compound and a polymerizable organic compound and cast, and then the solvent is removed. However, it was proposed to obtain an electrolyte film by polymerizing a polymerizable organic compound. However, this film still has insufficient adhesion to the positive electrode layer and the negative electrode layer, and the variation in the initial capacity of the battery has increased. However, it has a problem that it is electrochemically inhomogeneous and the battery output is low. Patent Document 2 describes a photopolymer containing an alkylene oxide repeating unit having a (meth) atallyloyl group. It was reported that a sulfur compound was poured into a fluororesin boat in the presence of a radical polymerization initiator and an electrolyte salt compound and polymerized to obtain an electrolyte film with high ion conductivity. However, this film is also electrochemically inhomogeneous for the same reason as described above, and it cannot be said that the output of the battery is improved. Patent Document 3 discloses a transport number obtained by spreading a mixture of a crosslinkable group-containing polyether oligomer, a polyether having a boron atom in the molecular structure, and an electrolyte salt compound on a stainless steel foil and irradiating with an electron beam. A high polymer solid electrolyte having a thickness of 95 am has been disclosed. However, the problem of battery output due to inhomogeneity in this film is exactly the same as the above two, and is unsolved. Further, in any of the electrolyte films described in the above three patent documents, the adhesion property when laminated with the positive electrode film or the negative electrode film is insufficient.
[0004] 特許文献 1 :特開 2001-155771号公報 [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2001-155771
特許文献 2:特開 2004-182982号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-182982
特許文献 3:特開 2003-92138号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-92138
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明の目的は、リチウムイオン伝導度および輸率が高ぐ層間密着性に優れる正 極-電解質積層体、および正極-電解質-負極積層体、並びに、該積層体を有する高 出力のリチウム電池、およびその製造方法を提供することにある。 [0005] An object of the present invention is to provide a positive electrode-electrolyte laminate, a positive electrode-electrolyte-negative electrode laminate, and a high output having the laminate, which has high lithium ion conductivity and high transport number and excellent interlayer adhesion. An object of the present invention is to provide a lithium battery and a manufacturing method thereof.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記目的を達成すべく鋭意研究した結果、電解質層に特定化学構 造を有する液状化合物を含有させ、かつ、正極層と電解質層の間に特定化学構造 を有する液状化合物を介在させることにより上記課題が解決されることを見出し、この 知見に基づき本発明を完成するに至った。  [0006] As a result of intensive research aimed at achieving the above object, the present inventors have included a liquid compound having a specific chemical structure in the electrolyte layer, and have a specific chemical structure between the positive electrode layer and the electrolyte layer. The present inventors have found that the above-mentioned problems can be solved by interposing a liquid compound, and have completed the present invention based on this finding.
[0007] 力べして、本発明によれば下記:!〜 22が提供される。  [0007] By comparison, the present invention provides the following:!
1. 活物質および導電付与剤を含有する正極層 (A)と、ポリエーテル系重合体、電 解質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を含 有してなる電解質層(B)と、を積層してなり、かつ、前記正極層(A)と前記電解質層( B)の間にアルキレンオキサイド繰り返し単位を有する液状化合物の層を有するリチウ ム電池用積層体。 1. A positive electrode layer (A) containing an active material and a conductivity-imparting agent, and an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit And a liquid compound layer having an alkylene oxide repeating unit between the positive electrode layer (A) and the electrolyte layer (B). Laminate for battery.
2. 前記 1記載の正極層(A)、電解質層(B)からなる積層体に、さらに負極層(C)を 電解質層(B)の側から積層してなり、かつ、前記正極層(A)と前記電解質層(B)の 間、および、前記電解質層(B)と前記負極層(C)の間の両方にアルキレンオキサイド 繰り返し単位を有する液状化合物の層を有するリチウム電池用積層体。  2. A laminate comprising the positive electrode layer (A) and the electrolyte layer (B) described in 1 above, and a negative electrode layer (C) further laminated from the electrolyte layer (B) side, and the positive electrode layer (A ) And the electrolyte layer (B), and between the electrolyte layer (B) and the negative electrode layer (C), a laminate for a lithium battery having a layer of a liquid compound having an alkylene oxide repeating unit.
3. 前記アルキレンオキサイド繰り返し単位を有する液状化合物の 25°Cにおける粘 度が 100〜2, OOOmPa' sである前記 1または 2記載のリチウム電池用積層体。  3. The laminate for a lithium battery according to 1 or 2, wherein the liquid compound having an alkylene oxide repeating unit has a viscosity at 25 ° C of 100 to 2 and OOOmPa's.
4. 前記アルキレンオキサイド繰り返し単位を有する液状化合物が、下記一般式(1 )または(2)で表わされる化学式を有する化合物である前記 1〜3のレ、ずれかに記載 のリチウム電池用積層体。  4. The lithium battery laminate according to any one of 1 to 3 above, wherein the liquid compound having an alkylene oxide repeating unit is a compound having a chemical formula represented by the following general formula (1) or (2).
(R1) (R2) C (CH OX) (1) (R 1 ) (R 2 ) C (CH OX) (1)
2 2  twenty two
R3B (OX) (2) R 3 B (OX) (2)
2  2
ここで、 R1は H、 CHまたは CH CHを、 R2は H、 CH、 CH CH、 CH〇Xまたは Where R 1 is H, CH or CH CH, R 2 is H, CH, CH CH, CH〇X or
3 2 3 3 2 3 2  3 2 3 3 2 3 2
OXを、 R3は〇X、フエニル基、ビエルフエニル基またはメトキシフエニル基を、 Xは(A O) Yを、 AOはアルキレンオキサイド繰り返し単位を、 Yは H、 C H または C H n m 2m+l m 2m を表し、 nおよび mは 1〜50の整数である。 OX, R 3 is X, phenyl, biphenyl or methoxyphenyl, X is (AO) Y, AO is alkylene oxide repeating unit, Y is H, CH or CH nm 2m + lm 2m N and m are integers of 1 to 50.
- 1  -1
5. 前記アルキレンオキサイド繰り返し単位を有する液状化合物として、さらに下記 一般式(3)または (4)で表される化学式を有する化合物を含有する前記 4記載のリチ ゥム電池用積層体。  5. The laminate for a lithium battery according to 4 above, further containing a compound having a chemical formula represented by the following general formula (3) or (4) as the liquid compound having the alkylene oxide repeating unit.
R4-C (R5) (R6) -Z- (AO) -Y (3) R 4 -C (R 5 ) (R 6 ) -Z- (AO) -Y (3)
R4-C (R5) (R6) -Z- (AO) -Z-R7 (4) R 4 -C (R 5 ) (R 6 ) -Z- (AO) -ZR 7 (4)
ここで R4および R7は C H または C H を、 R5および R6は H、 CH、 C Hまた Where R 4 and R 7 are CH or CH, R 5 and R 6 are H, CH, CH or
k 2k+ l k 2k- 1 3 2 5 は〇CHを、 Zは CH、 C〇、 COOまたは〇を表し、 kは 3〜60の整数である。  k 2k + l k 2k- 1 3 2 5 represents 〇CH, Z represents CH, C〇, COO or 〇, and k is an integer of 3-60.
3 2  3 2
6. 前記アルキレンオキサイド繰り返し単位を有する液状化合物の層力 ポリエーテ ル系重合体を 10重量%以下溶解している前記 1〜5のいずれかに記載のリチウム電 池用積層体。  6. The laminar force of the liquid compound having the alkylene oxide repeating unit The laminate for a lithium battery according to any one of 1 to 5 above, wherein 10% by weight or less of the polyether polymer is dissolved.
7. 前記正極層(A) さらに、ポリエーテル系重合体およびアルキレンオキサイド 繰り返し単位を有する液状化合物を含有してなるものである前記 1〜6のいずれかに 記載のリチウム電池用積層体。 7. The positive electrode layer (A), further comprising a polyether compound and a liquid compound having an alkylene oxide repeating unit. The laminated body for lithium batteries of description.
8. 活物質および導電付与剤を含有する正極層(A)と、ポリエーテル系重合体、電 解質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を含 有してなる電解質層(B)と、負極層(C)とをこの順に積層してリチウム電池用積層体 を製造するに際し、前記正極層 (A)と前記電解質層(B)の間、および、前記電解質 層(B)と前記負極層(C)の間の少なくとも一方にアルキレンオキサイド繰り返し単位 を有する液状化合物の層を介在させることを特徴とするリチウム電池用積層体の製 造方法。  8. A positive electrode layer (A) containing an active material and a conductivity-imparting agent, and an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit ) And a negative electrode layer (C) are laminated in this order to produce a lithium battery laminate, and between the positive electrode layer (A) and the electrolyte layer (B) and the electrolyte layer (B). A method for producing a laminate for a lithium battery, comprising interposing a layer of a liquid compound having an alkylene oxide repeating unit between at least one of the negative electrode layers (C).
9. 予めその片面および Zまたは両面を、アルキレンオキサイド繰り返し単位を有す る液状化合物でコーティングした電解質層(B)を、正極層(A)および負極層(C)の 間に挟んで積層することを特徴とする、前記 8記載のリチウム電池用積層体の製造方 法。  9. Laminate the electrolyte layer (B), which is coated with a liquid compound having alkylene oxide repeating units on one side and Z or both sides in advance, between the positive electrode layer (A) and the negative electrode layer (C). 9. The method for producing a laminated body for a lithium battery as described in 8 above.
10. 活物質および導電付与剤を含有する正極層(A)と、ポリエーテル系重合体、 電解質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を 含有してなる電解質層(B)と、を積層してなり、前記正極層 (A)と前記電解質層(B) の間にアルキレンオキサイド繰り返し単位を有する液状化合物の層を有するリチウム 電池用積層体の製造方法であって、前記正極層 (A)および前記電解質層(B)が押 出成形法によって正極フィルムおよび電解質フィルムに成形され、且つ、前記正極フ イルムおよび前記電解質フィルムの両フィルムの厚みの合計に対して、 1/1. 3〜1 /1. 02の間隙を有するローラで前記両フィルムを圧着することを特徴とするリチウム 電池用積層体の製造方法。  10. A positive electrode layer (A) containing an active material and a conductivity-imparting agent, an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit; A laminate for a lithium battery comprising a liquid compound layer having an alkylene oxide repeating unit between the positive electrode layer (A) and the electrolyte layer (B), wherein the positive electrode layer ( A) and the electrolyte layer (B) are formed into a positive electrode film and an electrolyte film by an extrusion molding method, and the total thickness of both the positive electrode film and the electrolyte film is 1 / 1.3. A method for producing a laminate for a lithium battery, wherein the two films are pressure-bonded with a roller having a gap of ˜1 / 1.02.
11. 前記正極層(A)がポリエーテル系重合体を含み、前記アルキレンオキサイド繰 り返し単位を有する液状化合物の、 25°Cでの粘度が 100〜2, OOOmPa' sであること を特徴とする前記 10記載のリチウム電池用積層体の製造方法。  11. The positive electrode layer (A) contains a polyether polymer, and the viscosity of the liquid compound having the alkylene oxide repeating unit at 25 ° C. is 100 to 2, OOOmPa's. 11. The method for producing a laminate for a lithium battery as described in 10 above.
12. 前記ローラの表面温度を 30〜: 120°Cとすることを特徴とする前記 10記載のリ チウム電池用積層体の製造方法。  12. The method for producing a laminated body for a lithium battery as described in 10 above, wherein the roller has a surface temperature of 30 to 120 ° C.
13. 前記電解質フィルムが、厚み 10〜50 μ πιに調整したものである前記 10〜12 のレ、ずれかに記載のリチウム電池用積層体の製造方法。 14. 前記正極フィルムが、厚み 30〜90 β mに調整したものである前記 10〜: 13の いずれかに記載のリチウム電池用積層体の製造方法。 13. The method for producing a laminate for a lithium battery according to 10 to 12, wherein the electrolyte film is adjusted to have a thickness of 10 to 50 μπι. 14. The positive electrode film, said is obtained by adjusting the thickness 30~90 β m 10~: 13 production method for a lithium battery stack according to any one of.
15. 前記正極フィルムが、その電解質フィルムに接しない側に予め正極集電体を 積層したものである前期 10〜: 14のいずれかに記載のリチウム電池用積層体の製造 方法。  15. The method for producing a laminate for a lithium battery according to any one of 10 to 14 above, wherein the positive electrode film is obtained by previously laminating a positive electrode current collector on the side not in contact with the electrolyte film.
16. 前記正極フィルムが、さらに、アルキレンオキサイド繰り返し単位を有する液状 化合物を含有してなるものである前記 10〜: 15のいずれかに記載のリチウム電池用 積層体の製造方法。  16. The method for producing a laminate for a lithium battery according to any one of 10 to 15, wherein the positive electrode film further contains a liquid compound having an alkylene oxide repeating unit.
17. 前記アルキレンオキサイド繰り返し単位を有する液状化合物が、下記一般式( 1)または(2)で表わされる化学式を有する化合物である前記 10〜: 16のレ、ずれかに 記載のリチウム電池用積層体の製造方法。  17. The laminate for a lithium battery according to any one of 10 to 16 above, wherein the liquid compound having an alkylene oxide repeating unit is a compound having a chemical formula represented by the following general formula (1) or (2): Manufacturing method.
(R1) (R2) C (CH OX) (1) (R 1 ) (R 2 ) C (CH OX) (1)
2 2  twenty two
R3B (OX) (2) R 3 B (OX) (2)
2  2
ここで、 R1は H、 CHまたは CH CHを、 R2は H、 CH、 CH CH、 CH〇Xまたは Where R 1 is H, CH or CH CH, R 2 is H, CH, CH CH, CH〇X or
3 2 3 3 2 3 2  3 2 3 3 2 3 2
OXを、 R3は〇X、フエニル基、ビエルフエニル基またはメトキシフエニル基を、 Xは(A O) Yを、 AOはアルキレンオキサイド繰り返し単位を、 Yは H、 C H または C H n m 2m+l m 2m を表し、 nおよび mは 1〜50の整数である。 OX, R 3 is X, phenyl, biphenyl or methoxyphenyl, X is (AO) Y, AO is alkylene oxide repeating unit, Y is H, CH or CH nm 2m + lm 2m N and m are integers of 1 to 50.
- 1  -1
18. 前記アルキレンオキサイド繰り返し単位を有する液状化合物として、さらに下記 一般式(3)または (4)で表される化学式を有する化合物を含有する前記 17記載のリ チウム電池用積層体の製造方法。  18. The method for producing a lithium battery laminate according to the above 17, further comprising a compound having a chemical formula represented by the following general formula (3) or (4) as the liquid compound having the alkylene oxide repeating unit.
R4-C (R5) (R6) -Z- (AO) -Y (3) R 4 -C (R 5 ) (R 6 ) -Z- (AO) -Y (3)
R4-C (R5) (R6) -Z- (AO) -Z-R7 (4) R 4 -C (R 5 ) (R 6 ) -Z- (AO) -ZR 7 (4)
ここで R4および R7は C H または C H を、 R5および R6は H、 CH、 C Hまた Where R 4 and R 7 are CH or CH, R 5 and R 6 are H, CH, CH or
k 2k+ l k 2k- 1 3 2 5 は〇CHを、 Zは CH、 C〇、 COOまたは〇を表し、 kは 3〜60の整数である。  k 2k + l k 2k- 1 3 2 5 represents 〇CH, Z represents CH, C〇, COO or 〇, and k is an integer of 3-60.
3 2  3 2
19. 少なくとも電解質フィルムの成分であるポリエーテル系重合体の還元粘度が 0 . 6〜25dlZgである前記 10〜: 18のいずれかに記載のリチウム電池用積層体の製 造方法。  19. The method for producing a laminated body for a lithium battery according to any one of 10 to 18 above, wherein the reduced viscosity of the polyether polymer that is at least a component of the electrolyte film is 0.6 to 25 dlZg.
20. 前記:!〜 7のいずれかに記載のリチウム電池用積層体を有するリチウム電池。 21.前記 10〜: 19のいずれかに記載の製造方法によって得られるリチウム電池用積 層体を有するリチウム電池。 20. A lithium battery having the lithium battery laminate according to any one of the above:! To 7. 21. A lithium battery having a laminated body for a lithium battery obtained by the production method according to any one of 10 to 19 above.
22. 活物質および導電付与剤を含有する正極層(A)と、ポリエーテル系重合体、 電解質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を 含有してなる電解質層(B)と、負極層(C)とをこの順に積層してなり、かつ、前記正極 層 (A)と前記電解質層(B)の間、および、前記電解質層(B)と前記負極層(C)の間 の少なくとも一方にアルキレンオキサイド繰り返し単位を有する液状化合物の層を有 するポリマー電池用積層体。  22. A positive electrode layer (A) containing an active material and a conductivity-imparting agent, an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit; A negative electrode layer (C) is laminated in this order, and between the positive electrode layer (A) and the electrolyte layer (B), and between the electrolyte layer (B) and the negative electrode layer (C). A polymer battery laminate having a liquid compound layer having an alkylene oxide repeating unit on at least one side.
発明の効果  The invention's effect
[0008] 本発明により、リチウムイオン伝導度および輸率が高ぐ層間密着性に優れる正極- 電解質積層体、および正極-電解質-負極積層体、並びに、該積層体を有する高出 力のリチウム電池、およびその製造方法が提供される。  [0008] According to the present invention, a positive electrode-electrolyte laminate, a positive electrode-electrolyte-negative electrode laminate, and a high-power lithium battery having the laminate, having high lithium ion conductivity and high transport number and excellent interlayer adhesion And a method of manufacturing the same.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、本発明の第一態様について説明し、次いで本発明の第二態様について説 明する。 Hereinafter, the first aspect of the present invention will be described, and then the second aspect of the present invention will be described.
[0010] 本発明の第一態様であるリチウム電池用積層体は、活物質および導電付与剤を含 有する正極層(A)と、ポリエーテル系重合体、電解質塩化合物、および、アルキレン オキサイド繰り返し単位を有する液状化合物を含有してなる電解質層(B)と、を積層 してなり、かつ、前記正極層(A)と前記電解質層(B)の間にアルキレンオキサイド繰 り返し単位を有する液状化合物の層を有することを特徴とする。  [0010] The laminated body for a lithium battery according to the first aspect of the present invention includes a positive electrode layer (A) containing an active material and a conductivity-imparting agent, a polyether polymer, an electrolyte salt compound, and an alkylene oxide repeating unit. And a liquid compound having an alkylene oxide repeating unit between the positive electrode layer (A) and the electrolyte layer (B). It is characterized by having a layer of.
[0011] 電解質層(B)の構成材料として用いるポリエーテル系重合体は、ォキシラン単量体 を開環重合して得られるアルキレンオキサイド繰り返し単位を主構造単位とするもの であれば特に限定されない。前記ォキシラン単量体は特に限定されないが、重合に 用いるォキシラン単量体の少なくとも一成分としてエチレンオキサイド単量体 (a)を用 いると、これを成形して得られる電解質層(B)が機械的強度に優れるので好ましい。 本発明に用いるポリエーテル系重合体は、エチレンオキサイド単量体 (a)単位と、ェ チレンオキサイドと共重合可能なォキシラン単量体 (b)単位の含有量のモル比力 〔 単量体(a)単位のモル数/単量体(b)単位のモル数〕で、通常、 85Zl5〜99/l、 好ましくは 90/10〜99/l、より好ましくは 92/8〜99/1である。エチレンォキサ イド単量体(a)単位含有量が少なすぎると、フィルムが冷却ロールなどに粘着し易く なるおそれがある。逆に、エチレンオキサイド単量体 (a)単位含有量が多すぎると、平 滑なフィルムを得るのが困難となる可能性がある。 [0011] The polyether polymer used as the constituent material of the electrolyte layer (B) is not particularly limited as long as it has an alkylene oxide repeating unit obtained by ring-opening polymerization of an oxysilane monomer as a main structural unit. The oxysilane monomer is not particularly limited, but when the ethylene oxide monomer (a) is used as at least one component of the oxysilane monomer used for polymerization, the electrolyte layer (B) obtained by molding this is a mechanical layer. It is preferable because of its excellent mechanical strength. The polyether-based polymer used in the present invention has a molar specific power of the content of the ethylene oxide monomer (a) unit and the oxosilane monomer (b) unit copolymerizable with the ethylene oxide [monomer ( a) Number of moles of unit / monomer (b) Number of moles of unit], usually 85Zl5 to 99 / l, Preferably it is 90 / 10-99 / l, More preferably, it is 92 / 8-99 / 1. If the ethylene oxide monomer (a) unit content is too small, the film may easily stick to a cooling roll or the like. On the other hand, if the ethylene oxide monomer (a) unit content is too large, it may be difficult to obtain a smooth film.
[0012] エチレンオキサイドと共重合可能なォキシラン単量体 (b)としては、炭素数 3〜20の アルキレンオキサイド、炭素数 4〜: 10のグリシジルエーテル、芳香族ビュル化合物の ォキシド、これらのォキシラン単量体にビュル基、水酸基又は酸無水物基などの架橋 性の官能基を導入した架橋性ォキシラン単量体などが挙げられる。  [0012] Examples of the oxysilane monomer (b) copolymerizable with ethylene oxide include alkylene oxides having 3 to 20 carbon atoms, glycidyl ethers having 4 to 10 carbon atoms, oxides of aromatic bur compounds, and oxysilane monomers. Examples thereof include a crosslinkable oxysilane monomer in which a crosslinkable functional group such as a bur group, a hydroxyl group or an acid anhydride group is introduced into the monomer.
[0013] エチレンオキサイドと共重合可能なォキシラン単量体 (b)は、 1種のみを用いても、 2種以上を組み合わせて用いてもよいが、本発明においては、上記の炭素数 3〜20 のアルキレンオキサイド、炭素数 4〜10のグリシジルエーテルなどを少なくともその一 成分に用いることが好ましぐ炭素数 3〜20のアルキレンオキサイドを少なくともその 一成分に用いることがより好ましい。炭素数 3〜20のアルキレンオキサイドとしてはプ ロピレンオキサイドが好ましレ、。  [0013] The oxosilane monomer (b) copolymerizable with ethylene oxide may be used alone or in combination of two or more. It is more preferable to use 20 alkylene oxides, glycidyl ethers having 4 to 10 carbon atoms, or the like as at least one component, and more preferable to use alkylene oxides having 3 to 20 carbon atoms as at least one component. Propylene oxide is preferred as the alkylene oxide having 3 to 20 carbon atoms.
架橋性ォキシラン単量体としては、上記の、炭素数 3〜20のアルキレンオキサイド、 炭素数 4〜: 10のグリシジノレエーテルなどのォキシラン単量体に、ビニル基、水酸基 及び酸無水物基などの、光又はパーォキシドで架橋し得る架橋性基を有する架橋性 ォキシラン単量体を用いることが好ましぐその中でも、ビニルダリシジルエーテル、ァ リルグリシジノレエーテル等のビニル基を有する架橋性ォキシラン単量体を用いること 力はり好ましい。  Examples of the crosslinkable oxysilane monomer include the above-mentioned oxysilane monomers such as alkylene oxides having 3 to 20 carbon atoms and glycidinole ether having 4 to 10 carbon atoms, vinyl groups, hydroxyl groups, and acid anhydride groups. Among these, it is preferable to use a crosslinkable oxysilane monomer having a crosslinkable group that can be cross-linked by light or peroxide. Among them, a crosslinkable oxysilane having a vinyl group such as vinyldaricidyl ether or allylic glycidinoreether. It is preferable to use a monomer.
[0014] 上記ォキシラン単量体を開環重合するための重合触媒としては、特に限定されず、 例えば、有機アルミニウムに水とァセチルアセトンとを反応させた触媒(特公昭 35-1 5797号公報)、トリイソブチルアルミニウムにリン酸とトリェチルァミンとを反応させた 触媒(特公昭 46-27534号公報)、トリイソブチルアルミニウムにジァザビアシクロウン デセンの有機酸塩とリン酸とを反応させた触媒(特公昭 56-51171号公報)、アルミ ニゥムアルコキサイドの部分加水分解物と有機亜鉛化合物とからなる触媒(特公昭 4 3-2945号公報)、有機亜鉛化合物と多価アルコールとからなる触媒(特公昭 45-77 51号公報)、ジアルキル亜鉛と水とからなる触媒(特公昭 36-3394号公報)などの、 ォキシランィ匕合物の開環重合触媒として従来公知の重合触媒を用いることができる。 [0014] The polymerization catalyst for ring-opening polymerization of the oxysilane monomer is not particularly limited. For example, a catalyst obtained by reacting organic aluminum with water and acetylacetone (Japanese Patent Publication No. 35-15797). ), A catalyst obtained by reacting phosphoric acid and triethylamine with triisobutylaluminum (Japanese Examined Patent Publication No. 46-27534), a catalyst obtained by reacting an organic acid salt of diazabiacycloundecene with phosphoric acid (Japanese Patent Publication No. 46-27534) Japanese Patent Publication No. 56-51171), a catalyst comprising a partially hydrolyzed aluminum alkoxide and an organic zinc compound (Japanese Examined Publication No. 432-2945), a catalyst comprising an organic zinc compound and a polyhydric alcohol (Japanese Examined Patent Publication No. 45-77 51), a catalyst comprising dialkylzinc and water (Japanese Examined Publication No. 36-3394), A conventionally known polymerization catalyst can be used as a ring-opening polymerization catalyst for an oxsilane compound.
[0015] ポリエーテル系重合体を得るための重合方法としては、生成重合体が溶解する有 機溶媒を用いる溶液重合法、又は、生成重合体が不溶な有機溶媒を用いる溶媒スラ リー重合法などの重合法を用いることができる力 S、 n-ペンタン、 n-へキサン、シクロぺ ンタンなどの溶媒を用いる溶媒スラリー重合法が好ましい。  [0015] As a polymerization method for obtaining a polyether polymer, a solution polymerization method using an organic solvent in which the produced polymer is dissolved, or a solvent slurry polymerization method using an organic solvent in which the produced polymer is insoluble, etc. The solvent slurry polymerization method using a solvent such as S, n-pentane, n-hexane, and cyclopentane is preferable.
また、溶媒スラリー重合法の中でも、予め種子(シード)の重合をした後に該シード の粒子を肥大化する重合を行う二段階重合法が、反応器の内壁へのスケール付着 量が少なレ、ので好ましレ、。  In addition, among the solvent slurry polymerization methods, the two-stage polymerization method in which seed particles are polymerized in advance and then the seed particles are enlarged, the amount of scale adhering to the inner wall of the reactor is small. I like it.
[0016] ポリエーテル系重合体の重量平均分子量(Mw)は、ジメチルホルムアミドを溶媒と するゲルパーミエーシヨン法によるポリスチレン換算値で、通常、 10万〜 150万、好 ましくは 15万〜 100万、より好ましくは 20万〜 60万であり、かつ、分子量分布指標 M w/Mn (ここで Mnは数平均分子量)は、通常、 1. 5〜: 13、好ましくは 1. 6〜: 12、よ り好ましくは 1. 7〜: 11である。 [0016] The weight average molecular weight (Mw) of the polyether polymer is a polystyrene conversion value by a gel permeation method using dimethylformamide as a solvent, and is usually from 100,000 to 1,500,000, preferably from 150,000 to 100 10,000, more preferably 200,000 to 600,000, and the molecular weight distribution index M w / Mn (where Mn is the number average molecular weight) is usually 1.5 to: 13, preferably 1.6 to 12 More preferably, it is from 1.7 to 11.
Mwが上記範囲であると、これを用いたポリエーテル系重合体組成物を押出成形し てフィルムを製造する時の流動性及び形状保持性に優れる。また、得られる電解質 層(B)は柔軟性及び機械的強度に優れる。 Mwが大きすぎると、押出成形機のトルク やダイ圧が上昇するため成形加工が困難となるおそれがある。 Mwが小さすぎると、 得られる電解質層(B)の機械的強度が不足してフィルムが破れ易くなり、また、フィル ムが粘着し易くなるため、薄いフィルムを安定的に生産することが困難になる可能性 力 sある。 When the Mw is in the above range, the fluidity and shape retention when producing a film by extruding a polyether polymer composition using the Mw is excellent. Further, the obtained electrolyte layer (B) is excellent in flexibility and mechanical strength. If the Mw is too large, the torque and die pressure of the extruder will increase, which may make molding difficult. If the Mw is too small, the mechanical strength of the resulting electrolyte layer (B) will be insufficient and the film will be easily torn, and the film will be more likely to stick, making it difficult to stably produce a thin film. There is a potential s .
Mw/Mnの値が大きすぎると、フィルム成形時の溶融粘度が高くなり、押出成形時 にダイ圧力が上昇して加工困難になったり、押出成形されたフィルムの表面平滑性 や厚さの均一性が損なわれたりする。  If the value of Mw / Mn is too large, the melt viscosity at the time of film forming becomes high, the die pressure increases at the time of extrusion forming, making it difficult to process, and the surface smoothness and thickness of the extruded film are uniform. Sexuality may be impaired.
[0017] ポリエーテル系重合体は、還元粘度が好ましくは 0. 6〜25dl/g、より好ましくは 0 . 7〜20dlZg、特に好ましくは 0. 8〜: 15dlZgであることが望ましレ、。ここで、還元粘 度は、 JIS K6300に準拠して測定した値である。還元粘度は、ポリエーテル系重合 体 0. 25gを、トルエン 100gに溶解した溶液の粘度と、トルエンの粘度とを、ウベロー デ型粘度計を用いて 25°Cで測定して求めることができる。 [0018] 電解質層(B)の構成材料として用いる電解質塩ィ匕合物は、上記ポリエーテル系重 合体に可溶のものであれば特に限定されなレ、。このような電解質塩化合物の例として は、ハロゲンイオン、過塩素酸イオン、チォシアン酸イオン、トリフルォロメタンスルホ ン酸イオン〔CF SO―〕、ビス(トリフルォロメタンスルホニル)イミドイオン〔N (CF SO [0017] The polyether polymer preferably has a reduced viscosity of 0.6 to 25 dl / g, more preferably 0.7 to 20 dlZg, and particularly preferably 0.8 to 15 dlZg. Here, the reduced viscosity is a value measured according to JIS K6300. The reduced viscosity can be determined by measuring the viscosity of a solution obtained by dissolving 0.25 g of a polyether polymer in 100 g of toluene and the viscosity of toluene at 25 ° C. using an Ubbelohde viscometer. [0018] The electrolyte salt composite used as the constituent material of the electrolyte layer (B) is not particularly limited as long as it is soluble in the polyether polymer. Examples of such electrolyte salt compounds include halogen ion, perchlorate ion, thiocyanate ion, trifluoromethanesulfonate ion [CFSO-], bis (trifluoromethanesulfonyl) imide ion [N (CFSO4).
3 3 3 2 3 3 3 2
) ―〕、ビス(ヘプタフルォロプロピルスルホニル)イミドイオン〔N (C F SO ) ―〕、トリフ) ―], Bis (heptafluoropropylsulfonyl) imide ion [N (C F SO) ―], trif
2 2 5 2 2 ルォロスルホンイミドイオン、テトラフルォロホウ素酸イオン〔: BF―〕、へキサフルォロリ 2 2 5 2 2 Fluorosulfonimide ion, tetrafluoroborate ion [: BF-], hexafluoro
4  Four
ン酸イオン、トリフルォロメタンスルフォニドイミド酸イオン、硝酸イオン、 AsF―、 PF―、  Acid ion, trifluoromethanesulfonylimide acid ion, nitrate ion, AsF-, PF-,
6 6 ステアリルスルホン酸イオン、ォクチルスルホン酸イオンなどの陰イオン、ドデシルべ ンゼンスルホン酸イオンなどから選ばれた陰イオンと、金属陽イオンとからなる塩が挙 げられる。  6 6 Salts comprising anions selected from stearyl sulfonate ions, octyl sulfonate ions, and the like, dodecylbenzene sulfonate ions, and metal cations.
[0019] 前記金属陽イオンを形成する金属としては、リチウム、ナトリウム、カリウム、ルビジゥ ム、セシウム。マグネシウム、カルシウムおよびバリウムが挙げられる。これらの金属陽 イオンの中でもリチウムイオンが好ましい。  [0019] The metal that forms the metal cation is lithium, sodium, potassium, rubidium, or cesium. Examples include magnesium, calcium and barium. Of these metal cations, lithium ions are preferred.
前記陰イオンとリチウムイオンとで形成されるリチウム塩の中では、 LiBF、LiPF、  Among the lithium salts formed with the anions and lithium ions, LiBF, LiPF,
4 6 4 6
LiCF SO、 LiN (CF SO ) および LiN (C F SO ) が好ましい。これら電解質塩化LiCF SO, LiN (CF SO) and LiN (C F SO) are preferred. These electrolyte chlorides
3 3 3 2 2 2 5 2 2 3 3 3 2 2 2 5 2 2
合物は 1種単独で使用しても、 2種以上を併用してもょレ、。  The compound can be used alone or in combination of two or more.
[0020] 電解質層(B)における電解質塩ィ匕合物の含有量は、ポリエーテル系重合体 100重 量部に対して、通常、 5〜70重量部、好ましくは 8〜60重量部、より好ましくは 10〜5 5重量部である。電解質層(B)の電解質塩化合物の含有量が少なすぎると電解質層 (B)のイオン伝導性が低下するおそれがあり、逆に、多すぎると機械的強度が低下 する可能性がある。また粘着性が増大して生産が困難になる可能性がある。  [0020] The content of the electrolyte salt compound in the electrolyte layer (B) is usually 5 to 70 parts by weight, preferably 8 to 60 parts by weight, based on 100 parts by weight of the polyether polymer. Preferably it is 10-55 weight part. If the content of the electrolyte salt compound in the electrolyte layer (B) is too small, the ionic conductivity of the electrolyte layer (B) may be reduced. Conversely, if it is too high, the mechanical strength may be reduced. Moreover, there is a possibility that the production will be difficult due to the increase in the adhesiveness.
[0021] 電解質層(B)の構成材料として用いる、アルキレンオキサイド繰り返し単位を有する 液状化合物 (L)は、ポリエーテル系重合体に溶解して可塑剤の作用を発現し、電解 質層(B)の表面に積層される正極層(A)との密着性を向上し、また、裏面に負極層( C)を積層するときも密着性を改善する。さらに、液状化合物 (L)は電解質層(B)内の イオン易動度を向上する作用を有する。  [0021] The liquid compound (L) having an alkylene oxide repeating unit, which is used as a constituent material of the electrolyte layer (B), dissolves in the polyether polymer and expresses the action of a plasticizer, and the electrolyte layer (B) This improves the adhesion with the positive electrode layer (A) laminated on the surface of the film, and also improves the adhesion when the negative electrode layer (C) is laminated on the back surface. Furthermore, the liquid compound (L) has an effect of improving ion mobility in the electrolyte layer (B).
液状化合物(Uの 25°Cでの粘度は、 100〜2, OOOmPa' s、好ましくは 120〜170 OmPa' s、ょり好ましくは150〜1500111?& . 3でぁる。液状化合物(L)の粘度が低す ぎると電解質層(B)の機械的強度が低下し、また粘着性が増大して作製しにくくなる おそれがあり、逆に、高すぎると正負電極層との密着性が不十分になる可能性がある Liquid compound (U has a viscosity at 25 ° C of 100-2, OOOmPa's, preferably 120-170 OmPa's, more preferably 150-1500111? &. 3. Liquid compound (L) Lower viscosity If it is too high, the mechanical strength of the electrolyte layer (B) may decrease, and the adhesiveness may increase, making it difficult to produce. On the contrary, if it is too high, the adhesion with the positive and negative electrode layers may be insufficient. is there
[0022] 好適な液状化合物(L)は、下記一般式(1)または(2)で表わされる化学式を有する 化合物である。 A suitable liquid compound (L) is a compound having a chemical formula represented by the following general formula (1) or (2).
(R1) (R2) C (CH OX) (1) (R 1 ) (R 2 ) C (CH OX) (1)
2 2  twenty two
R3B (OX) (2) R 3 B (OX) (2)
2  2
ここで、 R1は H、 CHまたは CH CHを、 R2は H、 CH、 CH CH、 CH〇Xまたは Where R 1 is H, CH or CH CH, R 2 is H, CH, CH CH, CH〇X or
3 2 3 3 2 3 2  3 2 3 3 2 3 2
OXを、 R3は〇X、フエニル基、ビュルフエニル基またはメトキシフエ二ル基を、 Xは(A O) Yを、 A〇はアルキレンオキサイド繰り返し単位を、 Yは H、 C H または C H n m 2m+l m 2m を表し、 nおよび mは 1〜50の整数である。 OX, R 3 is 〇X, a phenyl group, a butylphenyl group or a methoxyphenyl group, X is (AO) Y, A〇 is an alkylene oxide repeating unit, Y is H, CH or CH nm 2m + lm 2m N and m are integers of 1 to 50.
-1  -1
かかる液状化合物(L)の例としては、トリ(メトキシポリエチェングリコール)ボロン酸 エステル、ジ(メトキシポリエチェングリコーノレ) -p-ビニルフエニルボロン酸エステル、 ジ(メトキシポリエチェングリコール) -p-メトキシフエニルボロン酸エステル、メトキシポ リエチェングリコール- p-ビニルフエニルボロン酸エステル;トリメチロールプロパンポリ ォキシエチレンエーテル、トリメトキシトリメチロールプロパンポリオキシエチレンエーテ ノレ、トリメトキシグリセリンポリオキシエチレンエーテルなどが挙げられる。  Examples of such liquid compounds (L) include tri (methoxypolyethylene glycol) boronic acid esters, di (methoxypolyethylene glycololene) -p-vinylphenylboronic acid esters, di (methoxypolyethylene glycol) -p- Methoxyphenylboronic acid ester, methoxypolyethylene glycol-p-vinylphenylboronic acid ester; trimethylolpropane polyoxyethylene ether, trimethoxytrimethylolpropane polyoxyethylene ether, trimethoxyglycerin polyoxyethylene ether, etc. Can be mentioned.
[0023] また、液状化合物(L)として、上記一般式(1)または(2)で表される化学式を有する 化合物に加えて、さらに下記一般式(3)または (4)で表される化学式を有する化合物 を含有させることが好ましい。 [0023] In addition to the compound having the chemical formula represented by the general formula (1) or (2) as the liquid compound (L), the chemical formula represented by the following general formula (3) or (4) It is preferable to contain a compound having
R4-C (R5) (R6) -Z- (AO) -Y (3) R 4 -C (R 5 ) (R 6 ) -Z- (AO) -Y (3)
R4-C (R5) (R6) -Z- (AO) -Z-R7 (4) R 4 -C (R 5 ) (R 6 ) -Z- (AO) -ZR 7 (4)
ここで R4および R7は C H または C H を、 R5および R6は H、 CH、 C Hまた Where R 4 and R 7 are CH or CH, R 5 and R 6 are H, CH, CH or
k 2k+ l k 2k- 1 3 2 5 は〇CHを、 Zは CH、 C〇、 COOまたは〇を表し、 kは 3〜60の整数である。  k 2k + l k 2k- 1 3 2 5 represents 〇CH, Z represents CH, C〇, COO or 〇, and k is an integer of 3-60.
3 2  3 2
このような化合物としては、メトキシミリスチンポリオキシエチレンエーテル、メトキシォ レイルポリオキシエチレンエーテル、エトキシラウリル酸ポリオキシエチレンエステル、 メトキシポリエチレングノレコーノレモノメタタリレート、エトキシポリエチレングノレコーノレモ ノアクリレート、ポリエチレンダルコールジメタタリレートなどが挙げられる。 [0024] 電解質層(B)における液状化合物 (L)の含有量は、ポリエーテル系重合体 100重 量部に対して、通常、 10〜500重量部、好ましくは 20〜300重量部、より好ましくは 30〜200重量部である。電解質層(B)の液状化合物(L)含有量が少なすぎると電 解質層(B)の室温以下でのイオン伝導性が低下し、また正負電極層との密着性が不 十分になるおそれがあり、逆に、多すぎると機械的強度が低下したり、粘着性が増大 して、ハンドリング性が悪化したりする可能性がある。 Examples of such compounds include methoxymyristin polyoxyethylene ether, methoxyoleyl polyoxyethylene ether, ethoxylauric acid polyoxyethylene ester, methoxypolyethylene glycol monomethacrylate, ethoxypolyethylene glycol acrylate, polyethylene dal For example, call dimetatalate. [0024] The content of the liquid compound (L) in the electrolyte layer (B) is usually 10 to 500 parts by weight, preferably 20 to 300 parts by weight, more preferably 100 parts by weight of the polyether polymer. Is 30 to 200 parts by weight. If the content of the liquid compound (L) in the electrolyte layer (B) is too small, the ionic conductivity of the electrolyte layer (B) at room temperature or lower may be reduced, and the adhesion with the positive and negative electrode layers may be insufficient. On the other hand, if the amount is too large, the mechanical strength may decrease, or the tackiness may increase and the handling may deteriorate.
[0025] また、電解質層(B)は、架橋成形体とすることが好ましい。この架橋成形体にするに は、成形前の組成物に架橋剤を配合し、成形後又は成形と同時に架橋を行う。架橋 方法は特に限定されず、例えば、ラジカル開始剤、硫黄、メルカプトトリアジン類、チ ォゥレア類などの架橋剤を配合して加熱により架橋する方法や、活性放射線によつ て架橋する方法が挙げられる。中でも、成形前の組成物に有機過酸化物、ァゾ化合 物等のラジカル開始剤を配合して加熱により架橋する方法や、光架橋剤を配合して 紫外線、可視光線、電子線等の活性放射線により架橋する方法が好ましい。  [0025] The electrolyte layer (B) is preferably a cross-linked molded article. In order to obtain this crosslinked molded article, a crosslinking agent is added to the composition before molding, and crosslinking is performed after molding or simultaneously with molding. The cross-linking method is not particularly limited, and examples thereof include a method in which a cross-linking agent such as a radical initiator, sulfur, mercaptotriazines, and thioreas is blended to perform cross-linking by heating, and a method in which cross-linking is performed using actinic radiation. . Among them, a method in which a radical initiator such as an organic peroxide or an azo compound is blended with the composition before molding and crosslinking is performed by heating, or a photocrosslinking agent is blended to activate UV, visible light, electron beam, etc. A method of crosslinking by radiation is preferred.
電解質層(B)を得るための成形用組成物に上記したような各種架橋剤を配合する 場合の架橋剤の配合量は、ポリエーテル系重合体 100重量部に対して、通常 0.:!〜 10重量部、好ましくは 0. 2〜7重量部、より好ましくは 0. 3〜5重量部である。  When the various crosslinking agents as described above are blended in the molding composition for obtaining the electrolyte layer (B), the amount of the crosslinking agent is usually 0.:! With respect to 100 parts by weight of the polyether polymer. -10 parts by weight, preferably 0.2-7 parts by weight, more preferably 0.3-5 parts by weight.
[0026] 電解質層(B)を作製するには、上記のポリエーテル系重合体、電解質塩化合物お よび液状化合物 (L)に、さらに必要に応じて架橋剤、老化防止剤、光安定剤、滑剤、 難燃剤、防黴剤、帯電防止剤、着色剤、補強材、充填剤などを加えた諸成分を混合 し、フィルムダイを備えた押出機に供給して、押出機によりフィルム成形するのが好ま しい。  [0026] In order to produce the electrolyte layer (B), in addition to the polyether polymer, the electrolyte salt compound and the liquid compound (L), if necessary, a crosslinking agent, an anti-aging agent, a light stabilizer, Various components including lubricants, flame retardants, antifungal agents, antistatic agents, colorants, reinforcing materials, fillers, etc. are mixed, supplied to an extruder equipped with a film die, and then formed into a film by the extruder. Is preferred.
成形用組成物にラジカル架橋剤を配合している場合は、成形時やその後の加熱に よって架橋体とする。光架橋剤を配合している場合は、成形後のフィルムに活性放射 線を照射して架橋体とする。  When a radical cross-linking agent is blended in the molding composition, the cross-linked product is formed by molding or by subsequent heating. When a photocrosslinking agent is blended, the film after molding is irradiated with active radiation to form a crosslinked product.
[0027] 混合は、押出成形に先立って予めブラベンダー、バンバリ一ミキサー、ニーダー、ミ キシンダロール、ペレット作製用押出機などで行ってもよいし、フィルム成形する押出 機の原料ホッパーにポリエーテル系重合体を、また、電解質塩化合物を始めとする 各成分を原料ホッパー又はバレル途中の第 2フィード口等に投入して押出機の混練 ゾーンで混合させてもよい。この混合により、固体配合剤もポリエーテル系重合体に 均一に分散させられるので、均質な電解質層(B)を得ることができる。 [0027] Prior to extrusion molding, mixing may be performed in advance with a Brabender, Banbury mixer, kneader, mixer roll, pellet making extruder, or the like, or a polyether-based weight is placed on a raw material hopper of an extruder for film forming. The coalescence and each component including the electrolyte salt compound are introduced into the raw material hopper or the second feed port in the middle of the barrel, and the extruder is kneaded. You may mix in a zone. By this mixing, the solid compounding agent is also uniformly dispersed in the polyether polymer, so that a homogeneous electrolyte layer (B) can be obtained.
[0028] 電解質層(B)を安定して作製するための押出機混練部の温度は、通常、 40〜200 °C、好ましくは 50〜: 150°C、より好ましくは 55〜130°Cである。混練部の温度が低す ぎると配合物の分散不良が起きて電池特性が低下するおそれがあり、逆に、混練部 の温度が高すぎると配合物が熱分解を起こして電池特性が低下する可能性がある。  [0028] The temperature of the extruder kneading section for stably producing the electrolyte layer (B) is usually 40 to 200 ° C, preferably 50 to 150 ° C, more preferably 55 to 130 ° C. is there. If the temperature of the kneading part is too low, there is a risk that the dispersion of the compound will be poor and the battery characteristics will be degraded. There is sex.
[0029] 押出機のダイから押し出された電解質層(B)は、通常、冷却ロールを経て引取り口 一ルに卷き取られる。引取りロールの前にキャストロールを置き、フィルムの厚みや張 力をそれぞれの検知手段で検知してその結果を押出機及び冷却ロールにフィードバ ックさせることが好ましい。キャストロールで制御される電解質層(B)の厚みは、好まし くは 10〜50 μ πι、より好ましくは 15〜45 x m、特に好ましくは 18〜40 μ mである。 電解質層(B)の厚みが薄すぎると破断したり、粘着したりするおそれがあり、逆に、厚 すぎると電池特性が低下する可能性がある。冷却ロールの表面を鏡面状にすること により、ダイから押し出されたフィルムの表面を一層平滑に仕上げることができる。  [0029] The electrolyte layer (B) extruded from the die of the extruder is usually scraped off into a take-up port through a cooling roll. It is preferable to place a cast roll in front of the take-up roll, detect the thickness and tension of the film with the respective detection means, and feed the results back to the extruder and the cooling roll. The thickness of the electrolyte layer (B) controlled by the cast roll is preferably 10 to 50 μπι, more preferably 15 to 45 × m, and particularly preferably 18 to 40 μm. If the thickness of the electrolyte layer (B) is too thin, it may break or stick, and conversely, if it is too thick, the battery characteristics may deteriorate. By making the surface of the cooling roll a mirror surface, the surface of the film extruded from the die can be finished more smoothly.
[0030] 正極層(A)の構成材料として用いる活物質としては、通常、電池の正極用に使用さ れる活物質であれば限定なく用いることができる。かかる活物質の例としては、コバル ト酸リチウム、マンガン酸リチウム、チタン酸リチウム、リチウムマンガン複合酸化物、 Li Ni〇、リチウムバナジウム複合酸化物、 LiFePO等のリチウム含有複合金属酸化物 [0030] The active material used as the constituent material of the positive electrode layer (A) can be used without limitation as long as it is generally used for the positive electrode of a battery. Examples of such active materials include lithium cobaltate, lithium manganate, lithium titanate, lithium manganese composite oxide, LiNiO, lithium vanadium composite oxide, and lithium-containing composite metal oxides such as LiFePO.
2 4 twenty four
;硫化チタン、硫化モリブテン、 V〇、 V o 、酸化モリブテン等の遷移金属酸化物;  Transition metal oxides such as titanium sulfide, molybdenum sulfide, VO, V o, molybdenum oxide, etc .;
2 5 6 13  2 5 6 13
が挙げられ、マンガン酸リチウム、ニッケル酸リチウムおよびコバルト酸リチウムが好ま しい。  Lithium manganate, nickel nickelate and lithium cobaltate are preferred.
活物質の平均粒径は、通常、 0.:!〜 30 x m、好ましくは 0. 5〜20 x mである。活 物質の平均粒径が大きすぎても小さすぎてもポリマーに均一に混合しなかったり、混 合液(塗布液)が製造しにくくなつたりするおそれがある。  The average particle size of the active material is usually from 0.:! To 30 x m, preferably from 0.5 to 20 x m. If the average particle size of the active material is too large or too small, it may not be uniformly mixed with the polymer or the mixed solution (coating solution) may be difficult to produce.
[0031] 正極層 (A)の構成材料として用いる導電付与剤は、活物質の導電特性を補助する 物質で、通常、電池の正極用に使用される導電付与剤であれば限定なく用いること ができる。力、かる導電付与剤の例としては、カーボンブラック、アセチレンブラック、ケ ッチェンブラック、グラフアイト等のカーボン粒子が挙げられる。 正極用に使用される導電付与剤の平均粒径は、通常、 10〜80nm、好ましくは 20 〜50nmである。導電付与剤の平均粒径が小さすぎると活物質に均一に分散しない おそれがあり、逆に、大き過ぎると正極層(A)の表面に凹凸が生じて電解質層(B)や 正極集電体との密着性が低下して電池出力が下がったり、破断しやすくなつたりする 可能性がある。 [0031] The conductivity-imparting agent used as the constituent material of the positive electrode layer (A) is a substance that assists the conductive properties of the active material, and any conductivity-imparting agent that is usually used for a positive electrode of a battery can be used without limitation. it can. Examples of the force and conductivity imparting agent include carbon particles such as carbon black, acetylene black, ketjen black, and graphite. The average particle diameter of the conductivity-imparting agent used for the positive electrode is usually 10 to 80 nm, preferably 20 to 50 nm. If the average particle size of the conductivity-imparting agent is too small, it may not be uniformly dispersed in the active material. Conversely, if it is too large, the surface of the positive electrode layer (A) will become uneven, resulting in an electrolyte layer (B) or positive electrode current collector. The battery output may be reduced and the battery may be easily broken.
また、導電付与剤は吸油量が適度に大きいことが配合量と導電性の観点から好ま しぐジブチルフタレート(以下、 DBPと記すことがある。)吸収量は、通常、 100〜50 Oml/g,好ましくは 150〜400mlZgである。  In addition, the conductivity-imparting agent has a moderately large amount of oil absorption. Dibutyl phthalate (hereinafter sometimes referred to as DBP), which is preferred from the viewpoint of blending amount and conductivity, is usually 100 to 50 Oml / g. It is preferably 150 to 400 mlZg.
[0032] 正極層(A)における導電付与剤の含有量は、活物質 100重量部に対し、通常、 1 〜30重量部、好ましくは 2〜: 15重量部、より好ましくは 2. 5〜: 12重量部である。導電 付与剤の含有量が少なすぎると活物質の電池反応が有効に利用できずに電池容量 が低くなるおそれがあり、多すぎると正極層の厚みが均一になりにくぐ単位重量あた りの電池容量も低下する可能性がある。  [0032] The content of the conductivity-imparting agent in the positive electrode layer (A) is usually 1 to 30 parts by weight, preferably 2 to 15 parts by weight, more preferably 2.5 to: 100 parts by weight of the active material. 12 parts by weight. If the content of the conductivity-imparting agent is too small, the battery reaction of the active material cannot be used effectively, and the battery capacity may be lowered. If the content is too large, the thickness of the positive electrode layer is difficult to be uniform, and the unit weight per unit weight. Battery capacity may also be reduced.
[0033] 正極層 (A)を作製する方法は必ずしも限定されない。第一の方法としては、活物質 および導電付与剤を、バインダとなるポリマー成分の有機溶媒または水分散液に混 合してスラリー組成物とし、これを金属箔などの集電体にドクターブレード等で均一に 塗布し、乾燥して形成する。バインダとしては、アタリレート系ポリマー、ポリフッ化ビニ リデンのようなフッ素含有ポリマー;スチレン-ブタジエン系、アクリロニトリル-ブタジェ ン系のポリマーなどが挙げられる。正極層(A)が塗布法で作製される場合、正極層( A)のバインダの含有量は、活物質 100重量部に対し、通常、 0. 5〜20重量部、好ま しくは 1〜: 15重量部、より好ましくは 1. 5〜: 12重量部である。  [0033] The method for producing the positive electrode layer (A) is not necessarily limited. As a first method, an active material and a conductivity-imparting agent are mixed with an organic solvent or an aqueous dispersion of a polymer component serving as a binder to form a slurry composition, which is used as a current collector such as a metal foil for a doctor blade or the like. Apply evenly and dry to form. Examples of the binder include fluorine-containing polymers such as acrylate polymers and polyvinylidene fluoride; styrene-butadiene and acrylonitrile-butadiene polymers. When the positive electrode layer (A) is produced by a coating method, the binder content of the positive electrode layer (A) is usually 0.5 to 20 parts by weight, preferably 1 to: 15 parts by weight, more preferably 1.5 to 12 parts by weight.
[0034] 正極層(A)の第二の作製方法としては、上記の活物質および導電付与剤、および 、電解質層(B)の構成材料として前記したポリエーテル系重合体、また必要に応じて 、これも電解質層(B)の構成材料として前記したアルキレンオキサイド繰り返し単位を 有する液状化合物 (L)などをブラベンダー、バンバリ一ミキサーやロールなどで混合 してから、塊状の混練物をはさみ等で切断し、加熱プレスにてシート状に成形する。 プレス法での条件としては、例えば 8MPaの圧力で 120°Cにて 5分間、程度の条件 である。 [0035] 正極層 (A)の第三の作製方法としては、電解質層(B)の構成材料として前記した ポリエーテル系重合体を押出機にてフィルム状に成形する際に、活物質および導電 付与剤を予め重合体に混合させる力、又はバレル途中にある第 2フィード口から供給 して混練部で混合させ、押出されたフィルムをポリエステルフィルムなどの支持フィノレ ムに重ねて収容する方法が挙げられる。押出法によると、正極層として薄いフィルム 形状を形成しやすくなる。正極層 (A)が押出法で作製される場合は、正極層 (A)は アルキレンオキサイド繰り返し単位を有する液状化合物(L)を含有することが好まし レ、。 [0034] As a second method for producing the positive electrode layer (A), the active material and the conductivity-imparting agent described above, the polyether polymer described above as the constituent material of the electrolyte layer (B), and if necessary, Also, the liquid compound (L) having the alkylene oxide repeating unit described above as a constituent material of the electrolyte layer (B) is mixed with a Brabender, Banbury mixer, roll, etc. Cut and shape into a sheet with a hot press. The conditions for the pressing method are, for example, about 5 minutes at 120 ° C at a pressure of 8 MPa. [0035] As a third method for producing the positive electrode layer (A), when forming the above-described polyether polymer as a constituent material of the electrolyte layer (B) into a film with an extruder, an active material and a conductive material are used. A method of mixing the imparting agent with the polymer in advance, or a method of feeding from the second feed port in the middle of the barrel, mixing in the kneading unit, and stacking the extruded film on a support film such as a polyester film is included. It is done. According to the extrusion method, it is easy to form a thin film shape as the positive electrode layer. When the positive electrode layer (A) is produced by an extrusion method, the positive electrode layer (A) preferably contains a liquid compound (L) having an alkylene oxide repeating unit.
正極層(A)がポリエーテル系重合体を含有する場合、正極層(A)における活物質 の含有量は、ポリエーテル系重合体 100重量部に対して、通常、 10〜5000重量部 、好ましくは 30〜2000重量部、より好ましくは 50〜: 1000重量部となる量である。正 極層の活物質含有量が少なすぎると、正極としての機能が不十分になることがあり、 逆に多すぎると、正極層(A)における活物質の分散が不均一になるおそれがある。  When the positive electrode layer (A) contains a polyether polymer, the content of the active material in the positive electrode layer (A) is usually 10 to 5000 parts by weight, preferably 100 parts by weight of the polyether polymer. Is an amount of 30 to 2000 parts by weight, more preferably 50 to 1000 parts by weight. If the content of the active material in the positive electrode layer is too small, the function as the positive electrode may be insufficient. Conversely, if the content is too large, the dispersion of the active material in the positive electrode layer (A) may be uneven. .
[0036] 正極層(A)の構成材料として用いるポリエーテル系重合体は、上記電解質層(B) の構成材料として用いるポリエーテル系重合体と必ずしも同一である必要はないが、 上記した単量体単位と上記した範囲の還元粘度とを有するものであることが好ましい [0036] The polyether polymer used as the constituent material of the positive electrode layer (A) is not necessarily the same as the polyether polymer used as the constituent material of the electrolyte layer (B). It is preferable to have a body unit and a reduced viscosity in the above range.
[0037] 正極層(A)が押出法で作製される場合は、ポリエーテル系重合体、活物質、導電 付与剤、および、好ましくは電解質塩化合物、液状化合物 (L)、さらに必要に応じて 電解液に用いられるような非プロトン性のカーボネー H匕合物老化防止剤、光安定剤 、滑剤、難燃剤、防黴剤、帯電防止剤、着色剤、補強材、充填剤などを加えた諸成 分を混合し、押出機によりフィルム成形することが好ましい。 [0037] When the positive electrode layer (A) is produced by an extrusion method, a polyether polymer, an active material, a conductivity-imparting agent, and preferably an electrolyte salt compound, a liquid compound (L), and further if necessary Aprotic carbon used in electrolytes H compound anti-aging agents, light stabilizers, lubricants, flame retardants, antifungal agents, antistatic agents, coloring agents, reinforcing materials, fillers, etc. It is preferable to mix the components and form a film with an extruder.
正極層(A)を押出機で安定して製造するための押出機混練部の温度は、通常、 4 0〜200。C、好ましく fま 60〜: 190。C、より好ましく ίま 70〜: 180°C、更 (こ好ましく fま 110 〜180°Cである。混練部の温度が低すぎると粘度が上がって薄いフィルムを円滑に 押し出すことが困難になるおそれがあり、また、配合物の分散不良が起きて電池特性 が低下するおそれがある。逆に、混練部の温度が高すぎると配合物が熱分解を起こ して電池特性が低下する可能性がある。 [0038] 正極層(A)の構成材料として用いる電解質塩化合物のリチウム塩は、上記電解層( B)の構成材料として用いる電解質塩ィヒ合物のリチウム塩と必ずしも同一である必要 はないが、分解温度が高ぐ粉末状のものであることが好ましい。 The temperature of the extruder kneading part for stably producing the positive electrode layer (A) with an extruder is usually 40 to 200. C, preferably f 60 ~: 190. C, more preferably ί 70 ~: 180 ° C, further (preferably f 110 ~ 180 ° C. If the temperature of the kneading part is too low, the viscosity increases and it becomes difficult to extrude a thin film smoothly. In addition, there is a risk that the battery characteristics may be deteriorated due to a poor dispersion of the compound, and conversely, if the temperature of the kneading part is too high, the compound may be thermally decomposed to deteriorate the battery characteristics. There is. [0038] The lithium salt of the electrolyte salt compound used as the constituent material of the positive electrode layer (A) is not necessarily the same as the lithium salt of the electrolyte salt compound used as the constituent material of the electrolytic layer (B). It is preferable that the powder has a high decomposition temperature.
正極層(A)おけるリチウム塩の含有量は、ポリエーテル系重合体 100重量部当たり 、通常、 10〜30重量部、好ましくは 13〜26重量部、より好ましくは 17〜22重量部で ある。正極層(A)のリチウム塩含有量が少なすぎると、正極層(A)のイオン伝導性が 低下する可能性があり、多すぎると正極層(A)の機械的強度やイオン伝導性が不十 分となるおそれがある。  The content of the lithium salt in the positive electrode layer (A) is usually 10 to 30 parts by weight, preferably 13 to 26 parts by weight, more preferably 17 to 22 parts by weight per 100 parts by weight of the polyether polymer. If the lithium salt content in the positive electrode layer (A) is too small, the ionic conductivity of the positive electrode layer (A) may be reduced, and if it is too high, the mechanical strength and ionic conductivity of the positive electrode layer (A) will be poor. May be sufficient.
[0039] また、正極層(A)は、前記の、 25°Cでの粘度が 100〜2, OOOmPa' sでアルキレン オキサイド繰り返し単位を有する液状化合物(L)を含有することが好ましレ、。正極層( A)においても液状化合物(Uは、ポリエーテル系重合体に溶解して可塑剤の作用を 発現し、電解質フィルムとの密着性を向上し、正極層内のイオン易動度を向上させる 作用を有する。また、液状化合物(L)は、正極層(A)に集電体を積層するときにも界 面の密着性を改善する。  [0039] Further, the positive electrode layer (A) preferably contains the liquid compound (L) having a viscosity of 100 to 2 at 25 ° C and having an alkylene oxide repeating unit of OOOmPa's, . Also in the positive electrode layer (A), the liquid compound (U dissolves in the polyether polymer and expresses the action of a plasticizer, improves the adhesion to the electrolyte film, and improves the ion mobility in the positive electrode layer. The liquid compound (L) also improves the adhesion of the interface when the current collector is laminated on the positive electrode layer (A).
正極層 (A)が液状化合物 (L)を含有する場合の含有量は、上記の電解質層(B)に おけるポリエーテル系重合体当たりの含有量と同様である。  The content when the positive electrode layer (A) contains the liquid compound (L) is the same as the content per polyether polymer in the electrolyte layer (B).
[0040] 正極層(A)を作製するための、組成物調製の混合ならびに押出成形の装置および 手順は、上記の電解質層(B)の場合と同様である。この混合により、固体配合剤もポ リエーテル系重合体に均一に分散させることができる。  [0040] The composition preparation and extrusion molding apparatus and procedure for producing the positive electrode layer (A) are the same as in the case of the electrolyte layer (B). By this mixing, the solid compounding agent can be evenly dispersed in the polyether polymer.
[0041] 正極層 (A)を安定して製造するための、電解質層(B)の製造の場合と同様に、引 取りロールの前にキャストロールを置いて、電解質層となるフィルムの厚みや張力を 検知して押出機及び冷却ロールにフィードバックさせて厚みを制御することが好まし レ、。キャストロールなどで制御される正極層(A)の厚みは、好ましくは 30〜90 μ m、 ょり好ましくは35〜80 ^ 111、特に好ましくは 40〜75 z mである。厚みが薄すぎるとフ イルム取扱い性 (ハンドリング性)に劣るおそれがあり、逆に、厚すぎると当該フィルム と接触する積層フィルムとの密着性および折りたたみ性が低下したり、電池の出力が 向上しなかったりする可能 1"生がある。  [0041] Similar to the production of the electrolyte layer (B) for stably producing the positive electrode layer (A), a cast roll is placed in front of the take-up roll, and the thickness of the film serving as the electrolyte layer is determined. It is preferable to control the thickness by detecting the tension and feeding it back to the extruder and cooling roll. The thickness of the positive electrode layer (A) controlled by a cast roll or the like is preferably 30 to 90 μm, more preferably 35 to 80 ^ 111, and particularly preferably 40 to 75 zm. If the thickness is too thin, film handling (handling) may be inferior. On the other hand, if the thickness is too thick, the adhesion and folding properties with the laminated film that comes into contact with the film will be reduced, and the battery output will be improved. There is no possibility 1 "life is.
冷却ロールの表面を鏡面状にすることにより、ダイから押し出されたフィルムの表面 を一層平滑に仕上げることができる。 The surface of the film extruded from the die by making the surface of the cooling roll into a mirror surface Can be finished more smoothly.
[0042] 正極層(A)がいずれの方法で作製されるにしても、上記のように諸成分が十分に 混合されて形成されるので、電気化学的に均質なものとなる。  [0042] Regardless of the method for producing the positive electrode layer (A), the various components are sufficiently mixed as described above, so that the positive electrode layer (A) is electrochemically homogeneous.
[0043] 正極層(A)を塗布法で作製する場合は、その厚みは、通常、 10〜200 μ m、好ま しく ίま 20〜: 150 x m、より好ましく fま 30〜: 120 x mである。集電体 fま、厚みカ 5〜30[0043] When the positive electrode layer (A) is produced by a coating method, the thickness is usually 10 to 200 μm, preferably ί 20 to 150 xm, more preferably f 30 to 120 xm. . Current collector f, thickness 5-30
0 μ m程度のフィルムまたはシート状のものが好ましく用いられる。 A film or sheet of about 0 μm is preferably used.
正極層(A)をプレス法で作製する場合、その厚みは、通常、 10〜200 μ m、好まし くは 20〜: 120 μ m、より好ましくは 30〜: 100 μ mである。  When the positive electrode layer (A) is produced by a press method, the thickness is usually 10 to 200 μm, preferably 20 to 120 μm, more preferably 30 to 100 μm.
また、正極層(A)を押出法で作製する場合、正極層(A)の厚みは、通常、 10〜20 When the positive electrode layer (A) is produced by an extrusion method, the thickness of the positive electrode layer (A) is usually 10 to 20
0 μ m、好ましくは 20〜: 120 μ m、より好ましくは 30〜: 100 μ mである。 0 μm, preferably 20 to 120 μm, more preferably 30 to 100 μm.
正極層(A)の厚みが薄すぎるとフィルム取扱い性 (ハンドリング性)に劣るおそれが あり、逆に、厚すぎると当該フィルムと接触する層との密着性および折りたたみ性が低 下したり、電池の出力が向上しなかったりする可能性がある。  If the thickness of the positive electrode layer (A) is too thin, the film handling property (handling property) may be inferior. On the other hand, if the thickness is too thick, the adhesion and folding properties with the layer in contact with the film may be reduced. Output may not improve.
[0044] 本発明のリチウム電池用積層体は、活物質および導電付与剤を含有する正極層([0044] The lithium battery laminate of the present invention comprises a positive electrode layer containing an active material and a conductivity-imparting agent (
A)と、ポリエーテル系重合体、電解質塩化合物、および、アルキレンオキサイド繰り 返し単位を有する液状化合物を含有してなる電解質層(B)と、を積層してなり、かつ 前記正極層(A)と前記電解質層(B)の間にアルキレンオキサイド繰り返し単位を有 する液状化合物の層を有し、 A) and an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit, and the positive electrode layer (A) And a layer of a liquid compound having an alkylene oxide repeating unit between the electrolyte layer (B) and
前記正極層(A)および前記電解質層(B)が押出成形法によって成形され、 (A)、(B)の両層の厚みの合計に対して、 1/1 · 3〜: 1/1 · 02の間隙を有するロー ラで圧着して行うことが好ましレ、。  The positive electrode layer (A) and the electrolyte layer (B) are formed by an extrusion method, and the total thickness of both the layers (A) and (B) is 1/1 · 3 to: 1/1 · It is preferable to do this with a roller with a gap of 02.
具体的には、前記正極層 (A)および前記電解質層(B)を押出成形法によって成形 した正極フィルムおよび電解質フィルムによって成形されるものであって、 前記正極フィルムおよび前記電解質フィルムの両フィルムの厚みの合計に対して、 1 /1. 3〜: 1/1. 02の間隙を有するローラで圧着することが好ましい。  Specifically, the positive electrode layer (A) and the electrolyte layer (B) are formed by a positive electrode film and an electrolyte film formed by an extrusion method, and both of the positive electrode film and the electrolyte film are formed. It is preferable to press-bond with a roller having a gap of 1 / 1.3-3: 1 / 1.02 with respect to the total thickness.
[0045] 正極層(A)と電解質層(B)とを積層する手段に制限はないが、二層を重ねて、 2軸 ロール、カレンダーロール、 2軸ロールプレスなどを通して圧着するに際し、正極層( A)と電解質層(B)の間にアルキレンオキサイド繰り返し単位を有する液状化合物の 層を介在させる。該アルキレンオキサイド繰り返し単位を有する液状化合物として、電 解質層(B)の必須の構成材料である前記液状化合物 (L)が好適である。 [0045] The means for laminating the positive electrode layer (A) and the electrolyte layer (B) is not limited, but when the two layers are stacked and pressed through a biaxial roll, a calender roll, a biaxial roll press, etc., the positive electrode layer ( A liquid compound layer having an alkylene oxide repeating unit is interposed between A) and the electrolyte layer (B). As the liquid compound having an alkylene oxide repeating unit, the liquid compound (L) which is an essential constituent material of the electrolyte layer (B) is preferable.
該液状化合物の層を (A)、(B)間へ介在させる方法に限定はなぐ例えば、それぞ れの層間の向かい合う面の片方にスピンコーティング、ディップ、テープキャスティン グゃ押出コータ、リーノ ースローラ、ドクターブレード ワイヤーノ一. ノ ーコーター アプリケータなどの各種塗布方法を採用できる。また、それぞれの層間の向かい合う 面の片方に噴射、インクジェット、ドットプリント、スクリーン印刷などによって液状化合 物を供給し、必要に応じてスキーザ、ローラ、刷毛などで塗り広げてもよい。  There is no limitation to the method of interposing the liquid compound layer between (A) and (B). Various application methods such as a doctor blade, wire no. In addition, the liquid compound may be supplied to one of the facing surfaces between the respective layers by spraying, inkjet, dot printing, screen printing, or the like, and spread with a squeezer, roller, brush, or the like as necessary.
また、電解質層(B)および好ましくは正極層(A)にも添加される該液状化合物(L) の分子量、粘度、ポリエーテル系重合体との相溶性などを調節して、正極層(A)また は電解質層(B)から、その界面へブリードさせる方法をとることもできる。  Further, by adjusting the molecular weight, viscosity, compatibility with the polyether polymer, etc. of the liquid compound (L) added to the electrolyte layer (B) and preferably also to the positive electrode layer (A), the positive electrode layer (A ) Or a method of bleeding from the electrolyte layer (B) to the interface thereof.
[0046] 前記電池用積層体の製造法として、予め電解質層(B)の片面を上記液状化合物 でコーティングし、これを、正極層(A)と積層する手順を採ると、容易に液状化合物の 層を介在させることができるので好ましい。 [0046] As a method for producing the battery laminate, if the procedure of coating one surface of the electrolyte layer (B) with the liquid compound in advance and laminating this with the positive electrode layer (A), the liquid compound is easily formed. Since a layer can be interposed, it is preferable.
また、前記正極層(A)と前記電解質層(B)の間に存在するアルキレンオキサイド繰 り返し単位を有する液状化合物に、 10重量%以下の濃度でポリエーテル系重合体 を溶解したものを用いると、コーティングしゃすぐまた界面が密着しやすいので好ま しい。 (A)、(B)間に介在する液状化合物の層の厚みは、通常、 0. 005〜: 100 /i m 、好ましく ίま 0. 01〜80 /1 111、ょり好ましくま0.:!〜 60 μ ΐηである。  In addition, a liquid compound having an alkylene oxide repeating unit existing between the positive electrode layer (A) and the electrolyte layer (B) and having a polyether polymer dissolved at a concentration of 10% by weight or less is used. It is preferable because the coating is close and the interface is easy to adhere. The thickness of the liquid compound layer interposed between (A) and (B) is usually from 0.005 to 100 / im, preferably from 0.00 to 80/1111, more preferably from 0.00! ~ 60 μΐη.
[0047] また、本発明方法においては、電解質層となる電解質フィルムと正極層となる正極 フィルムとを重ねて、上記ローラを通して圧着することにより、積層体の厚みを両フィ ルムの厚みの合計より薄くし、かつ、両フィルム間の密着性を強めて、高出力の電池 を実現すること力 Sできる。 [0047] Further, in the method of the present invention, the thickness of the laminate is determined from the sum of the thicknesses of the two films by stacking the electrolyte film serving as the electrolyte layer and the positive electrode film serving as the positive electrode layer, and pressing them through the roller. It is possible to achieve a high output battery by reducing the thickness and strengthening the adhesion between the two films.
圧着時のローラの表面温度は、好ましくは 30〜: 120。C、より好ましくは 35〜: 100。C 、特に好ましくは 40〜90°Cである。ローラの表面温度が低すぎると積層体が剥がれ やすくなり、また密着性が不十分になるおそれがあり、逆に、高すぎるとフィルム厚み の変動が大きくなり、また厚みが薄くなりすぎて強度が低下する可能性がある。 [0048] 電解質フィルムと正極フィルムとをローラで圧着する際、ローラ間隙は、電解質フィ ルムおよび正極フィルムの厚みの合計の 1/1. 3〜1/1. 02、好ましくは 1/1. 25 - 1/1. 05、より好ましくは 1/1. 22〜: 1/1. 08とする。この];匕のィ直カ 、さすぎると 積層体が剥がれやすくなり、また密着性が不十分になるおそれがあり、逆に比の値が 大きすぎるとフィルム厚みが薄くなり、また界面の均一性が損なわれる可能性がある。 The surface temperature of the roller during pressure bonding is preferably 30 to 120. C, more preferably 35 to 100. C, particularly preferably 40 to 90 ° C. If the roller surface temperature is too low, the laminate may be easily peeled off and adhesion may be insufficient. On the other hand, if the roller surface temperature is too high, the film thickness will vary greatly, and the thickness will be too thin, resulting in high strength. May be reduced. [0048] When the electrolyte film and the positive electrode film are pressure-bonded with a roller, the roller gap is 1 / 1.3 to 1 / 1.02, preferably 1 / 1.25 of the total thickness of the electrolyte film and the positive electrode film. -1 / 1.05, more preferably 1 / 1.22 ~: 1 / 1.08. If the thickness is too large, the laminate may be easily peeled off and the adhesion may be insufficient. Conversely, if the ratio is too large, the film thickness becomes thin and the interface is uniform. May be impaired.
[0049] 上記積層方法の別法として、両フィルムをローラで圧着するに先立ち、正極フィル ムの、電解質フィルムに接しない側に予め正極集電体をローラ、プレスなどにより積 層しておき、この積層体と電解質フィルムとを上記ローラで圧着して電解質フィルムと 正極フィルムが接面したリチウム電池用積層体を製造する方法を採ってもよい。この 方法によると正極集電体と正極フィルムの密着性がより向上する利点がある。正極集 電体としては、アルミニウム箔が好ましく使用される。正極集電体の形状は特に制限 されないが、通常、 5〜300 x m程度のフィルムまたはシート状のものが好ましく用い られる。  [0049] As another method of the above laminating method, prior to pressure-bonding both films with a roller, a positive electrode current collector is previously laminated on the side of the positive electrode film not contacting the electrolyte film by a roller, a press, etc. A method may be employed in which the laminate and the electrolyte film are pressure-bonded with the roller to produce a lithium battery laminate in which the electrolyte film and the positive electrode film are in contact with each other. This method has the advantage that the adhesion between the positive electrode current collector and the positive electrode film is further improved. As the positive electrode current collector, an aluminum foil is preferably used. The shape of the positive electrode current collector is not particularly limited, but usually a film or sheet of about 5 to 300 × m is preferably used.
正極フィルムが正極集電体との積層体である場合、または/および電解質フィルム が負極との積層体である場合も、電解質フィルムおよび正極フィルムの正味の厚み の合計とローラ間隙との比が上記範囲になるように操作すべきである。  When the positive electrode film is a laminate with the positive electrode current collector or / and the electrolyte film is a laminate with the negative electrode, the ratio of the total thickness of the electrolyte film and the positive electrode film to the roller gap is Should be manipulated to be in range.
[0050] また、両フィルムをローラで圧着するに先立ち、電解質フィルムの、正極フィルムに 接しない側に予め負極を積層しておき、この積層体と正極フィルムとを上記ローラで 圧着して電解質フィルムと正極フィルムが接面したリチウム電池用積層体を製造する 方法を採ってもよい。 [0050] Prior to pressure-bonding the two films with a roller, a negative electrode is previously laminated on the side of the electrolyte film that does not contact the positive electrode film, and the laminate and the positive electrode film are pressure-bonded with the roller to form an electrolyte film. A method for producing a laminated body for a lithium battery in which the positive electrode film is in contact with each other may be employed.
[0051] 本発明方法により得られる電解質フィルムと正極フィルムとを含んでなる積層体は、 厚み力好ましく fま 40〜: 140〃111、より好ましく fま 50〜: 120 μ πι、特に好ましく ίま 70〜 110 z mと薄いので、リチウムイオン伝導度および輸率が高ぐし力、も両フィルム間の 密着性が大きい。  [0051] The laminate comprising the electrolyte film and the positive electrode film obtained by the method of the present invention preferably has a thickness strength of f 40 to 140: 111, more preferably f 50 to 120 μπι, particularly preferably ί. Since it is as thin as 70 to 110 zm, the lithium ion conductivity and transport number are high, and the adhesion between the two films is large.
[0052] 本発明方法により得られるリチウム電池用積層体の正極フィルムの面を正極集電体 に、電解質フィルムの面を負極に、また、該負極を負極集電体に積層することにより コイン型のリチウム電池が形成される。  [0052] By laminating the surface of the positive electrode film of the laminate for a lithium battery obtained by the method of the present invention on the positive electrode current collector, the surface of the electrolyte film on the negative electrode, and the negative electrode on the negative electrode current collector, coin type Lithium battery is formed.
本発明方法により得られるリチウム電池用積層体を有するリチウム電池は、高出力 を発現し、信頼性が高ぐまた製造しやすい特徴を有する。 A lithium battery having a laminate for a lithium battery obtained by the method of the present invention has a high output. It has the characteristics of being highly reliable and easy to manufacture.
[0053] また、ポリエーテル系重合体およびリチウム塩を含有する電解質フィルムと、ポリエ 一テル系重合体、活物質、導電付与剤およびリチウム塩を含有する正極フィルムとを 積層するリチウム電池用積層体の製造方法としては、前記電解質フィルムおよび前 記正極フィルムが押出成形法によって成形されたフィルムであり、前記電解質フィル ムカ 25。Cでの粘度が 100〜2, OOOmPa ' sでアルキレンオキサイド繰り返し単位を 有する液状化合物を含有しており、両フィルムの積層を、両フィルムの厚みの合計の 1/1. 3〜: 1/1. 02の間隙を有する口 -ラで圧着することが好ましレヽ  [0053] Further, a laminate for a lithium battery, in which an electrolyte film containing a polyether polymer and a lithium salt and a positive electrode film containing a polyether polymer, an active material, a conductivity-imparting agent, and a lithium salt are laminated. The method for producing the electrolyte film is a film obtained by forming the electrolyte film and the positive electrode film by an extrusion molding method. Contains a liquid compound having an alkylene oxide repeating unit with a viscosity of 100 to 2, OOOmPa's at C, and the lamination of both films is a total of the thickness of both films 1 / 1.3 to: 1/1 Mouth with gap of 02-It is preferable to crimp with la
[0054] 本発明の第 2態様について説明する。  [0054] A second aspect of the present invention will be described.
本発明の第 2態様は、正極層(A)、電解質層(B)からなる積層体に、さらに負極層 (C)を電解質層(B)の側から積層してなり、かつ、  The second aspect of the present invention is a laminate comprising a positive electrode layer (A) and an electrolyte layer (B), and a negative electrode layer (C) further laminated from the electrolyte layer (B) side, and
前記正極層 (A)と前記電解質層 (B)の間、および、前記電解質層(B)と前記負極 層(C)の間の両方にアルキレンオキサイド繰り返し単位を有する液状化合物の層を 有することが好ましい。  A liquid compound layer having an alkylene oxide repeating unit between both the positive electrode layer (A) and the electrolyte layer (B) and between the electrolyte layer (B) and the negative electrode layer (C). preferable.
[0055] 負極層(C)としては、負極活物質およびバインダを含有する層、または、金属箔か らなる層が挙げられる。  [0055] Examples of the negative electrode layer (C) include a layer containing a negative electrode active material and a binder, or a layer made of a metal foil.
負極活物質としては、リチウムを放出、吸蔵する有機または無機材料を用いることが できる。例えば炭素系材料の他にチタンやバナジウムなどの遷移金属酸化物および シリコン化合物等を用いることができる。このうち特に炭素材料が好ましぐ球状グラフ アイトであるメソカーボンマイクロビーズ、鱗片状黒鉛、塊状黒鉛、難黒鉛化性炭素、 低結晶性炭素、低温焼成炭素などを用いることができる。また、これらの炭素材料に 、 AL Si、 Pb、 Sn、 Zn等とのリチウム合金、 LiFe O等の遷移金属複合酸化物、 Mn As the negative electrode active material, an organic or inorganic material that releases and occludes lithium can be used. For example, transition metal oxides such as titanium and vanadium and silicon compounds can be used in addition to carbon-based materials. Among these, mesocarbon microbeads, scaly graphite, massive graphite, non-graphitizable carbon, low crystalline carbon, low-temperature calcined carbon, and the like, which are spherical graphite particularly preferred for carbon materials, can be used. In addition, these carbon materials include lithium alloys with AL Si, Pb, Sn, Zn, etc., transition metal composite oxides such as LiFe 2 O, Mn
O等の遷移金属酸化物、 Si〇等のケィ素酸化物、 Li N等のチッ化リチウム、金属リ チウム等を混合してもよい。 A transition metal oxide such as O, a silicon oxide such as SiO, lithium nitride such as LiN, or lithium metal may be mixed.
[0056] 負極層(C)用の好ましいバインダはアクリル系ポリマー(例えば 2-ェチルへキシル アタリレート、アクリル酸およびアクリロニトリルの共重合体)、フッ素含有ポリマー、ポリ エーテル系重合体、ポリアタリロニトリノレ、エチレン-ビュルアルコール共重合体、セル ロースや水素化アクリロニトリル-ブタジエン共重合体などであり、アクリル系ポリマー やフッ素含有ポリマーがより好ましい。バインダの使用量は、負極活物質 100重量部 に対し、通常、 0.:!〜 10重量部、好ましくは 0. 2〜8重量部、特に好ましくは 0. 5〜6 重量部である。バインダの使用量が少なすぎると塗膜の機械的強度が不十分で、負 極活物質が集電体より脱落するおそれがあり、逆に、多すぎると内部抵抗が増大し、 電池のサイクル性が低下する可能性がある。 [0056] Preferred binders for the negative electrode layer (C) are acrylic polymers (for example, 2-ethylhexyl acrylate, copolymers of acrylic acid and acrylonitrile), fluorine-containing polymers, polyether polymers, polyacrylonitrile. Les, ethylene-butyl alcohol copolymer, cellulose, hydrogenated acrylonitrile-butadiene copolymer, etc., acrylic polymer And fluorine-containing polymers are more preferred. The amount of the binder used is usually from 0.:! To 10 parts by weight, preferably from 0.2 to 8 parts by weight, particularly preferably from 0.5 to 6 parts by weight, based on 100 parts by weight of the negative electrode active material. If the amount of the binder used is too small, the mechanical strength of the coating film is insufficient, and the negative electrode active material may fall off the current collector. Conversely, if the amount is too large, the internal resistance will increase, and the cycle performance of the battery will increase. May be reduced.
負極活物質およびバインダを含有する負極層(C)は、以下に示すスラリー組成物 を集電体にドクターブレード等で均一に塗布し、乾燥することにより作製される。該ス ラリー組成物は、バインダを分散させた有機溶剤に負極活物質等の固体粒子、粘度 調整剤等を混合して調製される。この場合の負極層(C)の厚みは、通常、 5〜300 μ m、好ましくは10〜200 / 111、より好ましくは 20〜: 160 mである。集電体の厚みは、 5〜300 μ m程度のフィルムまたはシート状のものが好ましく用いられる。  The negative electrode layer (C) containing a negative electrode active material and a binder is prepared by uniformly applying the slurry composition shown below to a current collector with a doctor blade or the like and drying. The slurry composition is prepared by mixing solid particles such as a negative electrode active material, a viscosity modifier and the like in an organic solvent in which a binder is dispersed. In this case, the thickness of the negative electrode layer (C) is usually 5 to 300 μm, preferably 10 to 200/111, more preferably 20 to 160 m. The current collector is preferably a film or sheet having a thickness of about 5 to 300 μm.
[0057] 負極層(C)が金属箔からなる場合、好ましい金属はリチウム、リチウム-アルミニウム 合金、リチウム-インジウム合金などで、リチウムが特に好ましい。金属箔の場合、負極 としてはリチウム箔が好ましく使用される。負極の形状も特に制限されない。負極とし て銅などからなる負極集電体の上にグラフアイトや活性炭などの粒子を、アクリル系ポ リマー、 PVDFなどのバインダーで付着させたフィルムを用いることもできる。 [0057] When the negative electrode layer (C) is made of a metal foil, preferred metals are lithium, lithium-aluminum alloy, lithium-indium alloy, and the like, with lithium being particularly preferred. In the case of metal foil, lithium foil is preferably used as the negative electrode. The shape of the negative electrode is not particularly limited. As the negative electrode, a film in which particles such as graphite and activated carbon are attached to a negative electrode current collector made of copper or the like with a binder such as an acrylic polymer or PVDF can also be used.
負極層(C)の厚み ίま、通常、 1~500 μ ΐη,好ましくま3〜300 /1 111、より好ましく ίま 5 〜250 μ mでめ 。  The thickness of the negative electrode layer (C) is generally 1 to 500 μΐη, preferably 3 to 300/1111, more preferably 5 to 250 μm.
[0058] また、本発明リチウム電池用積層体は正極層(A)、電解質層(B)からなる積層体に 、さらに負極層(C)を電解質層(B)の側から積層してなり、かつ、  [0058] Further, the laminate for a lithium battery of the present invention comprises a laminate comprising a positive electrode layer (A) and an electrolyte layer (B), and further a negative electrode layer (C) laminated from the electrolyte layer (B) side. And,
前記正極層 (A)と前記電解質層(B)の間、および、前記電解質層(B)と前記負極 層(C)の間の少なくとも一方にアルキレンオキサイド繰り返し単位を有する液状化合 物の層を有する構成としても、本発明の効果を奏するものである。  At least one of the positive electrode layer (A) and the electrolyte layer (B) and between the electrolyte layer (B) and the negative electrode layer (C) has a liquid compound layer having an alkylene oxide repeating unit. Even in the configuration, the effects of the present invention are exhibited.
[0059] 活物質および導電付与剤を含有する正極層(A)と、ポリエーテル系重合体、電解 質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を含有 してなる電解質層(B)と、負極層(C)とをこの順に積層してなり、かつ、  [0059] A positive electrode layer (A) containing an active material and a conductivity-imparting agent, and an electrolyte layer (B) containing a polyether-based polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit. And a negative electrode layer (C) are laminated in this order, and
前記正極層 (A)と前記電解質層 (B)の間、および、前記電解質層(B)と前記負極 層(C)の間の少なくとも一方にアルキレンオキサイド繰り返し単位を有する液状化合 物の層を有するリチウム電池用積層体は、 A liquid compound having an alkylene oxide repeating unit between at least one of the positive electrode layer (A) and the electrolyte layer (B) and at least one of the electrolyte layer (B) and the negative electrode layer (C). A laminate for a lithium battery having an object layer is
正極層 (A)と電解質層(B)と負極層(C)とをこの順に積層して電池用積層体を製 造する。積層する手段に制限はなレ、が、三層を重ねて、通常、 2軸ロール、カレンダ 一ロール、 2軸ロールプレスなどを通して圧着する力 本発明においては積層に際し 、正極層(A)と電解質層(B)の間、および、電解質層(B)と負極層(C)の間の少なく とも一方にアルキレンオキサイド繰り返し単位を有する液状化合物の層を介在させる 。該アルキレンオキサイド繰り返し単位を有する液状化合物として、電解質層(B)の 必須の構成材料である前記液状化合物(L)が好適である。  A positive electrode layer (A), an electrolyte layer (B), and a negative electrode layer (C) are laminated in this order to produce a battery laminate. There are no restrictions on the means for laminating, but the force of crimping through three layers, usually through a biaxial roll, a calender single roll, a biaxial roll press, etc. In the present invention, the positive electrode layer (A) and the electrolyte are laminated. A liquid compound layer having an alkylene oxide repeating unit is interposed between the layers (B) and at least one of the electrolyte layer (B) and the negative electrode layer (C). As the liquid compound having an alkylene oxide repeating unit, the liquid compound (L) which is an essential constituent material of the electrolyte layer (B) is preferable.
該液状化合物の層を (A)、(B)間および (B)、(C)間の少なくとも一方へ介在させ る方法に限定はなぐ前記、(A)、(B)間へ介在させる方法と同様の方法を用いるこ とができる。  There is no limitation on the method of interposing the liquid compound layer between (A), (B) and at least one of (B), (C). A similar method can be used.
[0060] 前記電池用積層体の製造法として、予め電解質層(B)の片面および/または両面 を上記液状化合物でコーティングし、これを、正極層(A)および負極層(C)の間に挟 んで積層する手順を採ると、容易に液状化合物の層を介在させることができるので好 ましい。  [0060] As a method for producing the battery laminate, one side and / or both sides of the electrolyte layer (B) are previously coated with the liquid compound, and this is applied between the positive electrode layer (A) and the negative electrode layer (C). It is preferable to adopt the procedure of sandwiching and laminating because a liquid compound layer can be easily interposed.
また、前記正極層 (A)と前記電解質層(B)の間、および、前記電解質層(B)と前記 負極層(C)の間の少なくとも一方に存在するアルキレンオキサイド繰り返し単位を有 する液状化合物に、 10重量%以下の濃度でポリエーテル系重合体を溶解したもの を用いると、コーティングしゃすぐまた界面が密着しやすいので好ましい。  Further, a liquid compound having an alkylene oxide repeating unit present in at least one of the positive electrode layer (A) and the electrolyte layer (B) and at least one of the electrolyte layer (B) and the negative electrode layer (C). In addition, it is preferable to use a polymer in which a polyether polymer is dissolved at a concentration of 10% by weight or less because the coating is easily sealed and the interface is easily adhered.
(A)、(B)間および (B)、(C)間の少なくとも一方の層間に介在する液状化合物の 層の厚み ίま、通常、 0. 005〜: 100 μ ΐη、好ましく ίま 0· 01〜80 μ ΐη、より好ましく ίま 0 . 1〜60 μ mである。  The thickness of the liquid compound layer interposed between (A) and (B) and at least one of the layers between (B) and (C) is usually 0.005 to 100 μΐη, preferably 0 to 01 to 80 μΐη, more preferably ί to 0.1 to 60 μm.
[0061] 圧着時のローラの表面温度は、好ましくは 30〜: 120。C、より好ましくは 35〜: 100。C 、特に好ましくは 40〜90°Cである。ローラの表面温度が低すぎると積層体が剥がれ やすくなり、また密着性が不十分になるおそれがあり、逆に、高すぎると積層体の厚 みの変動が大きくなり、また厚みが薄くなりすぎて強度が低下する可能性がある。  [0061] The surface temperature of the roller during pressure bonding is preferably 30 to 120. C, more preferably 35 to 100. C, particularly preferably 40 to 90 ° C. If the roller surface temperature is too low, the laminate may be easily peeled off and adhesion may be insufficient. Conversely, if it is too high, the thickness of the laminate will vary greatly, and the thickness will be too thin. Strength may decrease.
[0062] 正極層(A)、電解質層(B)および負極層(C)を、 (A)、 (B)間および (B)、 (C)間 の少なくとも一方の層間に液状化合物の層を介在させてローラで圧着する際、ローラ 間隙を次のように設定することが望ましい。 [0062] The positive electrode layer (A), the electrolyte layer (B), and the negative electrode layer (C) are provided with a liquid compound layer between (A) and (B) and between at least one layer between (B) and (C). When interposing and crimping with a roller It is desirable to set the gap as follows.
すなわち、負極層(C)が負極活物質およびバインダを含有する層の場合、ローラ間 隙は集電体層または支持フィルムを除レ、た正極層 (A)、電解質層(B)および集電体 層を除いた負極層(C)の厚みの合計に対して、好ましくは 1/1. 4〜: 1/1. 02、より 好ましくは lZl . 35〜: 1/1. 05、特に好ましくは lZl . 3〜: 1/1. 08である。  That is, when the negative electrode layer (C) is a layer containing a negative electrode active material and a binder, the gap between the rollers excludes the current collector layer or the support film, and the positive electrode layer (A), the electrolyte layer (B) and the current collector. The total thickness of the negative electrode layer (C) excluding the body layer is preferably 1 / 1.4 to: 1 / 1.02, more preferably lZl.35 to: 1 / 1.05, particularly preferably lZl. 3 ~: 1 / 1.08.
負極層(C)が金属箔の場合は、ローラ間隙は集電体層または支持フィルムを除い た正極層(A)、電解質層(B)および集電体層を除いた負極層(C)の厚みの合計に 対して、好ましく fま 1/ 1. 35〜: 1/1. 02、より好ましく ίま 1/ 1. 3〜: 1/1. 05、特 (こ 好ましくは lZl . 28〜: 1/1. 08である。  When the negative electrode layer (C) is a metal foil, the roller gap is between the positive electrode layer (A) excluding the current collector layer or the support film, the electrolyte layer (B), and the negative electrode layer (C) excluding the current collector layer. The total thickness is preferably f 1 / 1.35 ~: 1 / 1.02, more preferably ί 1 / 1.3 ~: 1 / 1.05, special (preferably lZl. 28 ~: 1/1. 08.
ローラ間隙が上記の範囲であれば積層が剥がれにくぐまた界面の均一性が損な われることが防止される。  If the roller gap is in the above range, the lamination is difficult to peel off, and the uniformity of the interface is prevented from being impaired.
[0063] 上記積層手続きの別法として、(A)、 (B)、(C)三層および液状化合物層を積層す るに先立ち、正極層(A)の、電解質層(B)に接しない側に予め正極集電体をローラ 、プレスなどにより積層しておき、または/および負極層(C)の電解質層(B)に接し ない側に予め負極集電体をローラ、プレスなどにより積層しておき、次いで上記の圧 着を行ってもよい。正極集電体としては、アルミニウム箔が好ましく使用される。正極 集電体の形状は特に制限されなレ、が、通常、 5〜300 /i m程度のフィルム状のもの が好ましく用いられる。また、負極集電体としては、銅箔が好ましく使用される。負極 集電体は、通常、 3〜300 /i m程度のフィルム状のものが好ましく用いられる。 [0063] As another method of the above laminating procedure, (A), (B), (C) prior to laminating the three layers and the liquid compound layer, the positive electrode layer (A) is not in contact with the electrolyte layer (B). The positive electrode current collector is preliminarily laminated on the side by a roller, a press or the like, or / and the negative electrode current collector is preliminarily laminated on the side not in contact with the electrolyte layer (B) of the negative electrode layer (C) by a roller, a press or the like. Then, the above-described pressing may be performed. As the positive electrode current collector, an aluminum foil is preferably used. The shape of the positive electrode current collector is not particularly limited, but usually a film shape of about 5 to 300 / im is preferably used. As the negative electrode current collector, a copper foil is preferably used. As the negative electrode current collector, a film of about 3 to 300 / im is usually preferably used.
正極層(A)が正極集電体との積層体である場合、または/および負極層(C)が負 極集電体との積層体である場合、正味の正極層(A)および正味の負極層(C)の厚 みならびに電解質層(B)の厚みの合計とローラ間隙との比が上記範囲になるように 操作すべきである。  When the positive electrode layer (A) is a laminate with a positive electrode current collector or / and when the negative electrode layer (C) is a laminate with a negative electrode current collector, the net positive electrode layer (A) and the net It should be operated so that the ratio of the total thickness of the negative electrode layer (C) and the thickness of the electrolyte layer (B) to the roller gap is within the above range.
[0064] 本発明方法によって得られるリチウム電池用積層体は、各層間の密着性が良好で 、積層体の厚みバラツキが少ない特徴を有する。  [0064] The laminate for a lithium battery obtained by the method of the present invention has the characteristics that the adhesion between the layers is good and the thickness of the laminate is small.
本発明方法で得られるリチウム電池用積層体の正極層(A)に正極集電体を、負極 層(C)に負極集電体をそれぞれ積層することによりコイン電池型のリチウム電池が形 成される。 本発明方法により得られるリチウム電池用積層体はリチウムイオン伝導度および輸 率が高いので、これを有するリチウム電池は、初期容量が高ぐそのバラツキも少なく 、かつ、充放電サイクル特性に優れる特徴を有する。 A coin battery type lithium battery is formed by laminating a positive electrode current collector on the positive electrode layer (A) and a negative electrode current collector on the negative electrode layer (C) of the laminate for a lithium battery obtained by the method of the present invention. The Since the lithium battery laminate obtained by the method of the present invention has a high lithium ion conductivity and a high transport number, the lithium battery having this has the characteristics that the initial capacity is high and the variation thereof is small, and the charge / discharge cycle characteristics are excellent. Have.
実施例  Example
[0065] 以下に製造例、実施例及び比較例を挙げて本発明をより具体的に説明するが、本 発明はこれらによって限定されるものではない。なお、「部」は、特記ない限り重量基 準である。試験及び評価は以下の方法によった。  [0065] Hereinafter, the present invention will be described more specifically with reference to production examples, examples, and comparative examples, but the present invention is not limited thereto. “Part” is based on weight unless otherwise specified. The test and evaluation were performed according to the following methods.
(1)圧着前のフィルム厚み  (1) Film thickness before crimping
長さ 50mm、幅 30mmの構成フィルム試料の中心および角(計 5点)をデジタル膜 厚計にて測定し、それらの平均値をフィルム厚みとした。単位は( μ ΐη)である。 The center and corners (total of 5 points) of the constituent film samples with a length of 50 mm and a width of 30 mm were measured with a digital film thickness meter, and the average value of these was taken as the film thickness. The unit is (μ ΐη).
(2)圧着後の積層体の幅方向の厚みバラツキ (2) Thickness variation in the width direction of the laminate after crimping
積層体の長さ方向の中央部を幅方向に約 5mm毎にデジタル膜厚計にて 5点測定 し、それらの平均値を積層体の厚みとした。単位は m)である。この 5点の測定値 の最大値と最小値の差を平均値で除して厚みバラツキとした。単位は(%)である。  The central part of the laminate in the length direction was measured with a digital film thickness meter at intervals of approximately 5 mm in the width direction, and the average value thereof was taken as the thickness of the laminate. The unit is m). The difference between the maximum value and the minimum value of these five measured values was divided by the average value to obtain thickness variation. The unit is (%).
[0066] (3)支持フィルムの官能検査 [0066] (3) Sensory inspection of support film
積層体の正極面に積層している支持フィルムの外観に異常がなレ、か、また、剥離 性が良好力 ^官能検査で判断した。判断基準は以下の通りとした。  The appearance of the support film laminated on the positive electrode surface of the laminate was not abnormal, and the peelability was judged by a sensory test. Judgment criteria were as follows.
◎:正極層との界面にシヮゃ膨れが見られず密着性が良好で、また、スムーズに剥 離できる。  A: Swelling is not observed at the interface with the positive electrode layer, the adhesiveness is good, and it can be peeled off smoothly.
〇:正極層との界面にシヮゃ膨れが見られず密着性は良好だ力 スムーズに剥離 できない。  ◯: Swelling is not seen at the interface with the positive electrode layer, and the adhesion is good. Smooth peeling is not possible.
△:正極層との界面に若干シヮゃ膨れが見られる。  Δ: Slight swelling is observed at the interface with the positive electrode layer.
X:ほぼ全面にシヮゃ膨れが見られる  X: Almost the entire surface is swollen
[0067] (4)電池容量 (初期容量および初期容量のばらつき) [0067] (4) Battery capacity (initial capacity and initial capacity variation)
ステンレス鋼製容器(直径 20mm、高さ 3mm)のキャップとの接合面にポリプロピレ ン製ガスケット(外径 20mm、内径 16mm、高さ 3mm)を設置し、次いでこれに正極 フィルムが接するようにして電解質フィルム-正極フィルム積層体の試験片を入れ、ス テンレス鋼製円板及びパネを順次重ね、ステンレス鋼製キャップをかぶせて閉めて 厚さ約 3. 2mmのコイン型電池を作成した。電池容量の測定は、 60°Cで充放電レー トを 0. 2Cとし、定電流法にて、所定の充放電電圧(充放電の電圧差 1. 5V)を 2回印 カロした後の初期電池容量を測定した。 1試験対象あたり 10試験片を用いて作製した コイン型電池 10個について測定した。初期電池容量は、これらのうち容量のより大き レ、 5個の値の平均値を用いた。単位は〔mAhZg_活物質〕である。また、バラツキは、 これら 5個の最大値と最小値の差を初期電池容量で除した値を用いた。単位は〔%〕 である。 Polypropylene gasket (20mm outside diameter, 16mm inside diameter, 3mm height) is installed on the joint surface with the cap of stainless steel container (diameter 20mm, height 3mm), and then the positive electrode film is in contact with the electrolyte. Put a specimen of film-positive film laminate, put stainless steel discs and panel one after another, and close with a stainless steel cap. A coin-type battery with a thickness of about 3.2 mm was made. The battery capacity was measured at 60 ° C with a charge / discharge rate of 0.2C, and the initial charge after applying the specified charge / discharge voltage (charge / discharge voltage difference of 1.5V) twice using the constant current method. The battery capacity was measured. Measurement was performed on 10 coin-type batteries prepared using 10 test pieces per test object. For the initial battery capacity, the average value of five values was used. The unit is [mAhZg_active material]. For the variation, the value obtained by dividing the difference between the maximum and minimum values of these five by the initial battery capacity was used. The unit is [%].
[0068] (5)充放電サイクル特性  [0068] (5) Charging / discharging cycle characteristics
上記 (4)の条件で初期容量を測定した試料に、さらに同一の条件で充放電電圧を 20回印加した後の電池容量を測定した。充放電サイクル特性は、 20回後の電池容 量のより大きレ、 5個の値の平均値を用いた。単位は〔mAhZg -活物質〕である。  The battery capacity after the charge / discharge voltage was further applied 20 times under the same conditions to the sample whose initial capacity was measured under the condition (4) above was measured. For the charge / discharge cycle characteristics, the battery capacity after 20 cycles was used, and the average value of 5 values was used. The unit is [mAhZg-active material].
[0069] (6)支持フィルム変形性  [0069] (6) Support film deformability
積層体の両面に積層している支持フィルムの変形度合いを目視で判断した。判断 基準は以下の通りとした。  The degree of deformation of the support film laminated on both sides of the laminate was judged visually. Judgment criteria were as follows.
〇:支持フィルムにシヮゃ膨れが見られず、積層体とのハガレが無い。  ◯: No swelling was observed on the support film, and there was no peeling with the laminate.
△:支持フィルムに若干シヮゃ膨れが見られる力 S、積層体とのハガレは観察されな レ、。  Δ: Slight bulging on the support film S, no peeling with the laminate observed.
X:ほぼ全面にシヮゃ膨れが見られ、積層体とのハガレ箇所が多い。  X: Swelling is observed on almost the entire surface, and there are many peeling points with the laminate.
[0070] (7)フィルム間密着性 [0070] (7) Adhesion between films
支持フィルムを剥がし、電解質フィルム側より積層界面を観察し、その透明度合い を目視で観察し、密着性の判断とした。判断基準は以下の通りとした。ただし、電解 質フィルムの表面にシヮゃ膨れが多レ、場合は、判定不能となる。  The support film was peeled off, the laminate interface was observed from the electrolyte film side, and the degree of transparency was visually observed to determine adhesion. Judgment criteria were as follows. However, if the surface of the electrolyte film is heavily swollen, it cannot be determined.
界面に濁りが無ぐ平滑な正極表面が観察される。  A smooth positive electrode surface with no turbidity at the interface is observed.
〇:界面に若干濁りがあるが、正極表面が観察される。  ◯: Although the interface is slightly turbid, the positive electrode surface is observed.
X:界面に透明性無ぐ正極表面が観察されない。  X: The positive electrode surface without transparency at the interface is not observed.
[0071] (製造例 1)ポリエーテル系重合体の製造 (Production Example 1) Production of polyether polymer
ジャケット及び攪拌機付きオートクレープを乾燥して窒素置換し、トリイソブチルアル ミニクム 65. 1音 ^ トノレエン 217. 9音及びジェチノレエーテノレ 121. 6音を仕込ん f 。 内温を 30°Cに設定して攪拌しながらリン酸 11. 26部を 10分間かけて一定速度で添 カロした。これにトリェチルァミン 5部を添加し、 60°Cで 2時間熟成反応し、触媒溶液を 得た。 The jacket and the autoclave with a stirrer were dried and purged with nitrogen, and triisobutylaluminum 65.1 sound ^ tonoleene 217.9 sound and jetino le tenor 121. 6 sound were charged. While the internal temperature was set at 30 ° C, 11.26 parts of phosphoric acid was added at a constant rate over 10 minutes while stirring. To this was added 5 parts of triethylamine and aged at 60 ° C. for 2 hours to obtain a catalyst solution.
オートクレーブを窒素置換し、 n-へキサン 1514部と上記触媒溶液 63. 3部を仕込 んだ。内温を 30°Cに設定して、攪拌しながらエチレンォキシドを 7. 4部加えて反応さ せ、次いで、エチレンォキシドとプロピレンォキシドの等重量混合単量体を 14. 7部 加えて反応させ、シードを形成した。 The autoclave was purged with nitrogen, and 1514 parts of n- hexane and 63.3 parts of the catalyst solution were charged. Set the internal temperature to 30 ° C, add 7.4 parts of ethylene oxide with stirring and react, then add 14.7 parts of an equimolar mixture of ethylene oxide and propylene oxide. To form a seed.
内温を 60°Cに設定して、シードを形成した重合反応液に、エチレンオキサイド 439 . 6部(92モル0/。)、プロピレンオキサイド 25. 2部(4モル0/。)、ァリルグリシジルエー テノレ 49. 5部(4モル0 /0 )、 n -へキサン 427. 4部からなる混合溶液を 5時間かけて連 続的に等速度で添加した。添加終了後、反応を 2時間継続した。重合反応率は 98% であった。得られたスラリーに、老化防止剤として 4, 4' -チォビス(6_t_ブチル -3-メ チルフエノール)の 5%のトノレェン溶液 42. 4部を添加攪拌した。ポリマークラムをろ過 後、 40°Cで真空乾燥して粉体状のポリエーテル系重合体 Pを得た。 Set the internal temperature at 60 ° C, the polymerization reaction solution to form a seed, ethylene oxide 439.6 parts (92 moles 0 /.), Propylene oxide 25.2 parts (4 moles 0 /.), Ariru Gurishijirue Tenore 49.5 parts (4 moles 0/0), n - were added in continuous manner equal rate over a period of 5 hours a mixed solution consisting of hexane 427.4 parts to. After the addition was complete, the reaction was continued for 2 hours. The polymerization reaction rate was 98%. To the resulting slurry, 42.4 parts of a 5% solution of 4,4′-thiobis (6_t_butyl-3-methylphenol) as a aging inhibitor was added and stirred. The polymer crumb was filtered and vacuum dried at 40 ° C. to obtain a powdery polyether polymer P.
ポリエーテル系重合体 pの組成は、エチレンオキサイド(EO)単位 91 · 6モル0 /0、プ ロピレンオキサイド(PO)単位 4. 7モル%およびァリルグリシジルエーテル 3. 7モル %であった。また、この重合体の Mwは 310, 000、 Mw/Mnは 6. 2、還元粘度 1. 1 dl/gであった。 The composition of the polyether polymer p is ethylene oxide (EO) units 91 - 6 mol 0/0 was profile propylene oxide (PO) units 4.7 mol% and § Li glycidyl ether 3.7 mol%. Further, this polymer had Mw of 310,000, Mw / Mn of 6.2, and reduced viscosity of 1.1 dl / g.
[0072] (製造例 2)アタリレート系重合体の製造 (Production Example 2) Production of acrylate polymer
攪拌機付き反応容器に、 2-ェチルへキシノレアタリレート 300部、アクリル酸 7部、ァ タリロニトリル 35部、テトラエチレングリコールジメタタリレート 80部、ドデシルベンゼン スルホン酸ナトリウム 15部、イオン交換水 1000部および過硫酸カリウム 12部を入れ 、十分攪拌した後、 80°Cに加温して重合した。重合転化率が 98. 5%になった時点 で冷却して反応を止め、ポリマー粒子 qのラテックス Qを得た。  In a reaction vessel equipped with a stirrer, 300 parts of 2-ethylhexenorea tallylate, 7 parts of acrylic acid, 35 parts of acrylonitrile, 80 parts of tetraethylene glycol dimethalate, 15 parts of sodium dodecylbenzene sulfonate, 1000 parts of ion-exchanged water and After adding 12 parts of potassium persulfate and stirring sufficiently, it was heated to 80 ° C. for polymerization. When the polymerization conversion rate reached 98.5%, the reaction was stopped by cooling to obtain latex Q of polymer particles q.
[0073] (製造例 3)塗布法による正極の製造 [0073] (Production Example 3) Production of positive electrode by coating method
100部のラテクッス Qに N-メチル -2-ピロリドン(以下「NMP」と記す。) 300部をカロ え、混合液を攪拌しながら真空ポンプでの減圧下で 80°Cに加熱して水分を除去し、 ポリマー粒子 qの NMP分散液を得た。 NMP分散液 25部に、 92部の Li Mn〇、 ケッチェンブラック 5部、エチレン-ビエルアルコール共重合体(エチレン含量 40重量 %) 1部およびリチウムビスペンタフルォロエタンスルホンイミド(フロラード L-13858、 住友 3M社製) 3部をカ卩え、さらにスラリーの固形分濃度が 75%となるように NMPを 加えて十分に混合して正極用スラリーを得た。このスラリーを厚さ 20 a mのアルミユウ ム箔にドクターブレードで均一に塗布し、常圧にて 120°Cで 15分間乾燥し、さらに真 空乾燥機にて 120°Cで 2時間減圧乾燥して厚み 100 μ mの正極層(集電体を合わせ ると 120 μ m)を得た。その後、厚みを 80 μ m (集電体を合わせると 100 μ m)となるま で 2軸のロールプレスで圧縮した。 Add 100 parts of Latex Q to 300 parts of N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”) and heat the mixture to 80 ° C under reduced pressure with a vacuum pump while stirring. After removal, an NMP dispersion of polymer particles q was obtained. NMP dispersion 25 parts, 92 parts Li MnO, 5 parts of ketjen black, 1 part of ethylene-bial alcohol copolymer (ethylene content 40% by weight) and 3 parts of lithium bispentafluoroethanesulfonimide (Fluorard L-13858, manufactured by Sumitomo 3M) Furthermore, NMP was added and mixed well so that the solid content concentration of the slurry was 75% to obtain a positive electrode slurry. This slurry was uniformly applied to a 20 am thick aluminum foil with a doctor blade, dried at 120 ° C for 15 minutes at normal pressure, and then dried under reduced pressure at 120 ° C for 2 hours with a vacuum dryer. A positive electrode layer with a thickness of 100 μm (120 μm when combined with the current collector) was obtained. Thereafter, the film was compressed with a biaxial roll press until the thickness became 80 μm (100 μm when the current collectors were combined).
[0074] (実施例 1) [Example 1]
25mm径ニ軸押出機(スクリュー回転数 150rpm、 L/D = 30)の第 1フィード口に 100部のポリエーテル系重合体 Pを、第 2フィード口に活物質(Li MnO、中央電  In a 25 mm diameter twin screw extruder (screw rotation speed 150 rpm, L / D = 30), 100 parts of the polyether polymer P is fed to the first feed port and the active material (Li MnO, Chuo Denki) to the second feed port.
0. 33 2 気工業社製、平均粒径 0. 5 x m) 300部とケッチェンブラック (製品名ケッチェンブラ ック EC、ライオン社製、平均粒径 35nm、 DBP吸収量 350ml/g) 15部のへンシェ ルミキサー混合物および電解質塩化合物のビス(トリフルォロメタンスルホニル)イミド リチウム 30部を供給してコートハンガーダイでフィルム状に押し出した。温度条件は 入り口バレル温度 30°C、中央部ノくレノレ 160°C、ヘッド 140°C、ダイ温度 140°Cであつ た。押し出されたフィルムを PET製支持フィルム (製品名ダイヤホイル、三菱化学社 製、厚み 25 μ m)にて両面を挟みながら、キャストロールを経て卷取りロールに卷き 取って正極フィルムを得た。正極フィルムの厚みは 80 μ mであった。  0.33 (Keiko Industrial Co., Ltd., average particle size 0.5 xm) 300 parts and Ketjen Black (product name Ketjen Black EC, Lion, average particle size 35 nm, DBP absorption 350 ml / g) 15 parts 30 parts of bis (trifluoromethanesulfonyl) imide lithium as a mixture of a hen shell mixer and an electrolyte salt compound was supplied and extruded into a film with a coat hanger die. The temperature conditions were an inlet barrel temperature of 30 ° C, a central crease of 160 ° C, a head of 140 ° C, and a die temperature of 140 ° C. The extruded film was wound on a scraping roll through a cast roll while sandwiching both sides with a PET support film (product name: Diafoil, manufactured by Mitsubishi Chemical Corporation, thickness 25 μm) to obtain a positive electrode film. The thickness of the positive electrode film was 80 μm.
[0075] 25mm径ニ軸押出機(スクリュー回転数 150rpm、 L/D = 30)の第 1フィード口に [0075] To the first feed port of a 25 mm diameter twin screw extruder (screw rotation speed 150 rpm, L / D = 30)
100部のポリエーテル系重合体 Pを、第 2フィード口に電解質塩ィ匕合物のビス(トリフ ルォロメタンスルホニル)イミドリチウム(キシダ化学社製) 50部および紫外線架橋剤 の 2, 2-ジメトキシ- 1, 2-ジフエニルェタン- 1-オン(製品名ィルガキュア一 651、チバ 'スぺシャリティ'ケミカノレズ社製) 1部を、さらに第 3フィード口にプランジャーポンプを 介して液状化合物 aのトリメチロールプロパントリメトキシトリポリォキシエチレンエーテ ノレ (製品名 TMP-30Uのトリメトキシィ匕反応品、 日本乳化剤社製、 25°Cの粘度 420m Pa' s) 60部を供給して混練し、コートハンガーダイでフィルム状に押し出した。温度 条件は入り口バレル温度 30。C、中央部バレル 100°C、ヘッド 140。C、ダイ温度 140 °Cであった。押し出されたフィルムを PET製支持フィルム(上記同様)にて両面を挟 みながら、キャストロールを経て卷取りロールに卷き取ることにより未架橋のフィルムを 得た。このフィルムに紫外線を 30mj/cm2照射して架橋し、電解質フィルムを得た。 電解質フィルムの厚みは 30 μ mであった。 100 parts of the polyether polymer P, 50 parts of bis (trifluoromethanesulfonyl) imidolithium (manufactured by Kishida Chemical Co., Ltd.) as the electrolyte salt compound in the second feed port and 2,2-dimethoxy as the UV crosslinking agent -1,2-diphenylethane-1-one (product name: Irgacure 651, manufactured by Ciba 'Specialty' Chemikanorez) and a third compound feed port via a plunger pump via a plunger pump. Trimethoxytripolyoxyethylene ether (Product name: TMP-30U trimethoxy-reacted product, Nippon Emulsifier Co., Ltd., 25 ° C viscosity: 420 mPa 's) 60 parts are supplied and kneaded, and coated with a coat hanger die Extruded to. Temperature condition is inlet barrel temperature 30. C, central barrel 100 ° C, head 140. C, die temperature 140 ° C. An uncrosslinked film was obtained by scraping the extruded film onto a scooping roll through a cast roll while sandwiching both sides with a PET support film (same as above). This film was crosslinked by irradiating with 30 mj / cm 2 of ultraviolet rays to obtain an electrolyte film. The thickness of the electrolyte film was 30 μm.
[0076] 上記の正極フィルムおよび電解質フィルムをそれぞれ長さ 50mm、幅 30mmの短 冊状に切断した。電解質フィルムの片面にある支持フィルムを剥がして、その剥がし た面にバーコ一ター(テスター産業社製ロッド番号 5)で液状化合物 aのトリメチロール プロパントリメトキシトリポリォキシエチレンエーテルを塗布してから、支持フィルムを剥 がした側の正極フィルム面と重ねた。次レ、で電解質フィルムの他の片面の支持フィル ムを剥がして力 これに厚み 200 μ mのリチウム箔の負極を重ね、熱ロールプレス装 置(COSMO社製)に通過させ、正極フィルム -電解質フィルム-負極積層体を得た。 ローラの温度は 60°Cとし、間隙は正極フィルム、電解質フィルムおよび負極の厚み の合計(310 μ ΐη)の 1/1 · 20となるよう、隙間ゲージおよび装置のダイヤルで調整 した。得られた正極フィルム-電解質フィルム-負極積層体の厚みは 298 μ mであった 。該積層体の幅方向の厚みバラツキ及び支持フィルムの官能検査並びに該積層体 を用いて作製したコイン型電池の初期電池容量、そのバラツキ及び充放電サイクル 特性にっレ、て試験、評価した結果を表 1に示す。 [0076] The positive electrode film and the electrolyte film were cut into strips each having a length of 50 mm and a width of 30 mm. Peel off the support film on one side of the electrolyte film, apply trimethylol propanetrimethoxytripolyoxyethylene ether of liquid compound a to the peeled surface with a bar coater (rod number 5 manufactured by Tester Sangyo Co., Ltd.) The positive electrode film was peeled off from the support film. Next, peel off the supporting film on the other side of the electrolyte film with the next layer, and apply a lithium foil negative electrode with a thickness of 200 μm to this, and pass it through a hot roll press (COSMO). A film-negative electrode laminate was obtained. The roller temperature was set to 60 ° C, and the gap was adjusted with a clearance gauge and device dial so that the gap was 1/120 of the total thickness of the positive electrode film, electrolyte film, and negative electrode (310 μΐη). The thickness of the obtained positive electrode film-electrolyte film-negative electrode laminate was 298 μm. The results of the test and evaluation of the thickness variation in the width direction of the laminate and the sensory test of the support film, the initial battery capacity of the coin-type battery produced using the laminate, the variation, and the charge / discharge cycle characteristics Table 1 shows.
[0077] (実施例 2〜6、比較例:!〜 3) [0077] (Examples 2 to 6, Comparative Examples:! To 3)
実施例 1において、正極フィルムにっき、作製方法、配合することのある液状化合 物およびその量、並びに厚みを、また、電解質フィルムにっき、液状化合物およびそ の量、並びに厚みを、さらに、正極フィルム-電解質フィルム間および正極フィルム- 負極間の液状フィルムおよびその厚みをそれぞれ表 1に示す通りとし、表 1に示す口 ーラ条件(間隙比および温度)で圧着した他は実施例 1と同様に行って正極フィルム -電解質フィルム-負極積層体を得た。該積層体および該積層体を用いて作製したコ イン電池について実施例 1と同様の試験、評価を行った結果を表 1に記す。  In Example 1, the positive electrode film was prepared, the preparation method, the liquid compound that may be blended and the amount and thickness thereof, the electrolyte film, the liquid compound and the amount and thickness thereof, and the positive electrode film- The liquid film between the electrolyte film and between the positive electrode film and the negative electrode and the thickness thereof were as shown in Table 1, respectively, and the same procedure as in Example 1 was performed except that the film was pressed under the conditions of the apertures (gap ratio and temperature) shown in Table 1. Thus, a positive electrode film-electrolyte film-negative electrode laminate was obtained. Table 1 shows the results of the same tests and evaluations as in Example 1 for the laminate and the coin battery manufactured using the laminate.
ただし、実施例 2において、正極フィルム作製時に、押出機の第 3フィード口に液状 化合物 aのトリメチロールプロパントリメトキシトリポリォキシエチレンエーテル 40部をさ らに供給した。また、実施例 3および比較例 2では、正極フィルムを押出法に代えて 塗布法により作製 (製造例 3参照)した。 However, in Example 2, 40 parts of trimethylolpropane trimethoxytripolyoxyethylene ether of the liquid compound a was further supplied to the third feed port of the extruder during the production of the positive electrode film. In Example 3 and Comparative Example 2, the positive electrode film was replaced with an extrusion method. It was produced by a coating method (see Production Example 3).
実施例 4および 5では、表 1に示す 2種の液状化合物を予め混合し、押出機の第 3 フィード口より供給して正極フィルムを得た。また、予め混合した 2種の液状化合物を 実施例 1と同様の方法で正極フィルム-電解質フィルム間に介在させた。実施例 6は、 電解質フィルム -負極間にも貼り合わせる前に表記の液状化合物を、電解質フィルム にバーコ一ターで塗布することにより、介在させた。  In Examples 4 and 5, two liquid compounds shown in Table 1 were mixed in advance and supplied from the third feed port of the extruder to obtain a positive electrode film. Further, two kinds of premixed liquid compounds were interposed between the positive electrode film and the electrolyte film in the same manner as in Example 1. In Example 6, the liquid compound described above was interposed between the electrolyte film and the negative electrode by applying the liquid compound to the electrolyte film with a bar coater before bonding.
[表 1] [table 1]
Figure imgf000030_0001
Figure imgf000030_0001
(注) (note)
*液状化合物 b :ジトリデシノレフタレート (製品名ビニサイザ一、花王社製、 25°Cの 粘度 300mPa ' s)  * Liquid compound b: Ditridecino phthalate (Product name: Vinicizer 1, manufactured by Kao Corporation, viscosity at 25 ° C: 300 mPa's)
*液状化合物 c:トリ(メトキシポリエチェングリコール)ボレート〔アルキレンォキサイ ド繰返し単位数 12、 25°Cの粘度 280mPa ' s ;公知の方法で合成、例えば Y. Kato, et. al.、 Solid State Ionic, 150、 p. 355 (2002)参照。〕  * Liquid compound c: tri (methoxypolyethylene glycol) borate [alkylene oxide repeating unit number 12, viscosity at 280 mPa's at 25 ° C; synthesized by a known method such as Y. Kato, et. Al., Solid State See Ionic, 150, p. 355 (2002). ]
*液状化合物 d:メトキシミリスチンポリオキシエチレンエーテル (製品名リケマール B -205のメトキシ化反応品、理研ビタミン社製、 25。Cの粘度 40mPa ' s)  * Liquid compound d: Methoxymyristin polyoxyethylene ether (Product name Riquemar B-205 methoxylation product, manufactured by Riken Vitamin Co., 25. C viscosity 40mPa's)
* t :負極のリチウム箔の厚み(200 z m)を指す。  * t: Refers to the thickness (200 zm) of the negative electrode lithium foil.
3  Three
表 1が示すように、本発明の要件を備えた正極層-電解質層-負極層積層体はいず れも厚みがバラツキ少なく均一で、かつ支持フィルムの官能検査が良好であり、また それらを用いて作製したリチウム電池はレ、ずれもバラツキの小さな高レ、初期電池容 量を有し、かつ充放電サイクル後の電池特性が優れて(電池容量が高レ、) V、た(実施 例:!〜 6)。特に、アルキレンオキサイド繰り返し単位を有する液状化合物を正極フィ ルムにも含有させた実施例 2、および、電解質フィルムを前記化学式(1)の構造を持 つ液状化合物 aと前記化学式 (3)の構造を持つ液状化合物 dとを併用して作製した 実施例 5では充放電サイクル後の電池特性が非常に良好であった。  As Table 1 shows, the positive electrode layer-electrolyte layer-negative electrode layer laminate having the requirements of the present invention is uniform with little variation in thickness, and the sensory inspection of the support film is good, and they are used. The lithium battery produced in this way has a high level with little variation and an initial battery capacity, and has excellent battery characteristics after the charge / discharge cycle (the battery capacity is high). ! ~ 6). In particular, Example 2 in which a liquid compound having an alkylene oxide repeating unit was also contained in the positive electrode film, and the electrolyte film had a structure of the liquid compound a having the structure of the chemical formula (1) and the structure of the chemical formula (3). In Example 5, which was prepared by using together with the liquid compound d possessed, the battery characteristics after the charge / discharge cycle were very good.
液状化合物 aを正極層-電解質層間に加えて電解質層-負極層間にも介在させた 実施例 6では支持フィルムの官能検査が非常に良好であり、初期電池容量およびそ のバラツキに加えて、充放電サイクル後の電池特性が非常に良好であった。正極層 の作製法を押出法から塗布法に変更した実施例 3でも積層体の厚みのバラツキが小 さくて均一で、かつ初期電池容量およびそのバラツキに加えて、充放電サイクル後の 電池特性が良好であった(比較例 2との対比)。  In Example 6 in which liquid compound a was added between the positive electrode layer and the electrolyte layer and also interposed between the electrolyte layer and the negative electrode layer, the sensory test of the support film was very good, and in addition to the initial battery capacity and variations, the charge was The battery characteristics after the discharge cycle were very good. In Example 3 in which the production method of the positive electrode layer was changed from the extrusion method to the coating method, the thickness variation of the laminate was small and uniform, and in addition to the initial battery capacity and the variation, the battery characteristics after the charge / discharge cycle were It was good (contrast with Comparative Example 2).
一方、液状化合物を正極層-電解質層間および電解質層-負極層間に介在させな い比較例 1では、充放電サイクル後の電池特性が不充分であった。液状化合物 bとし てアルキレンオキサイド繰り返し単位を持たない化合物を用いた比較例 3では初期電 池容量およびそのバラツキに加えて、充放電サイクル後の電池特性が不十分であつ た。 [0080] (実施例 7) On the other hand, in Comparative Example 1 in which the liquid compound was not interposed between the positive electrode layer-electrolyte layer and the electrolyte layer-negative electrode layer, the battery characteristics after the charge / discharge cycle were insufficient. In Comparative Example 3 using a compound having no alkylene oxide repeating unit as the liquid compound b, in addition to the initial battery capacity and its variation, the battery characteristics after the charge / discharge cycle were insufficient. [0080] (Example 7)
実施例 1と同様の方法で得られた電解質フィルムと正極フィルムとを、まず長さ 50m m、幅 30mmの短冊状に切断し、それぞれ片側の支持フィルムを剥がす。剥がした 面同士を重ね、熱ロールプレス装置(装置名 COT2015H、 COSMO社製)に通過 させ、電解質フィルム -正極フィルム積層体を得た。  The electrolyte film and positive electrode film obtained by the same method as in Example 1 are first cut into strips having a length of 50 mm and a width of 30 mm, and the support film on one side is peeled off. The peeled surfaces were overlapped and passed through a hot roll press device (device name: COT2015H, manufactured by COSMO) to obtain an electrolyte film-positive electrode film laminate.
ローラの間隙は電解質フィルムと正極フィルムの厚みの合計(110 z m)の 1/1. 2 となるよう、隙間ゲージおよび装置のダイヤルで調整した。ローラ温度は 60°Cに設定 した。得られた電解質フィルム -正極フィルム積層体の厚みは 97 z mであった。該積 層体の厚みバラツキ、支持フィルムの変形性及び積層体界面の密着性、該積層体を 用いて作製したコイン型電池の初期電池容量及びそのバラツキについて試験、評価 した結果を表 2に示す。  The gap between the rollers was adjusted with a clearance gauge and a device dial so that the thickness of the electrolyte film and the positive electrode film was 1 / 1.2 of the total thickness (110 zm). The roller temperature was set to 60 ° C. The thickness of the obtained electrolyte film-positive electrode film laminate was 97 zm. Table 2 shows the results of tests and evaluations on the thickness variation of the stack, the deformability of the support film and the adhesion at the interface of the laminate, the initial battery capacity of the coin-type battery produced using the laminate, and the variation thereof. .
[0081] (実施例 8〜: 11、比較例 4) [0081] (Examples 8 to: 11, Comparative Example 4)
前記実施例 7記載の方法において、電解質フィルムに配合する液状化合物と、正 極フィルムに配合することのある液状化合物とを、表 2に示す化合物および量とした 他は実施例 7と同様に行って電解質フィルム -正極フィルム積層体を得た。該積層体 および該積層体を用いて作製したコイン電池について実施例 7と同様の試験、評価 を行った結果を表 2に記す。  In the method described in Example 7, the same procedure as in Example 7 was conducted except that the liquid compound blended in the electrolyte film and the liquid compound sometimes blended in the positive electrode film were changed to the compounds and amounts shown in Table 2. As a result, an electrolyte film-positive electrode film laminate was obtained. Table 2 shows the results of the same tests and evaluations as in Example 7 for the laminate and the coin battery fabricated using the laminate.
ただし、実施例 8において、正極フィルム作製時に、押出機の第 3フィード口に液状 化合物 aのトリメチロールプロパントリメトキシトリポリォキシエチレンエーテル 40部をさ らに供給した。また、実施例 9および 10では、表 2に示す 2種の液状化合物をあらか じめ混合し、第 3フィード口より混合した。実施例 11は、ローラ温度を 125°Cに変更し た以外は、実施例 8と同一条件である。  However, in Example 8, 40 parts of trimethylolpropane trimethoxytripolyoxyethylene ether of the liquid compound a was further supplied to the third feed port of the extruder during the production of the positive electrode film. In Examples 9 and 10, two liquid compounds shown in Table 2 were mixed in advance and mixed from the third feed port. Example 11 is the same as Example 8 except that the roller temperature was changed to 125 ° C.
[0082] [表 2]
Figure imgf000033_0001
[0082] [Table 2]
Figure imgf000033_0001
(注)  (note)
*液状化合物 bへ d :表 1に記載のものと同様とする。  * To liquid compound b d: Same as listed in Table 1.
表 2が示すように、本発明の製造方法で作製した電解質フィルム -正極フィルム積 層体はいずれも密 性が良好であり、またそれらを用いて作製したリチウム電池はレ、 ずれもバラツキの小さな高い初期電池容量を有していた(実施例 7〜: 11)。特に、規 定の液状化合物を正極フィルムにも含有させた実施例 8、および、電解質フィルムを 前記化学式(1)の構造を持つ液状化合物 aと前記化学式 (3)の構造を持つ液状化 合物 dとを併用して作製した実施例 9では積層体の密着性が非常に良好であり、バラ ツキの小さな高い初期電池容量の電池特性を示した。 As shown in Table 2, the electrolyte film-positive electrode film laminate produced by the production method of the present invention has good density, and the lithium battery produced using them has The deviation also had a high initial battery capacity with little variation (Examples 7 to 11). In particular, Example 8 in which the specified liquid compound was also contained in the positive electrode film, and the electrolyte film were prepared as a liquid compound a having the structure of the chemical formula (1) and a liquid compound having the structure of the chemical formula (3). In Example 9, which was prepared by using d together, the laminate had very good adhesion, and the battery characteristics of a high initial battery capacity with little variation were shown.
また、化学式(1)および(2)の構造を持つ液状化合物を併用した実施例 10では、化 学式(1)の液状化合物のみ使用の実施例 7よりも高容量でバラツキの改善された電 池が得られた。 Further, in Example 10 in which the liquid compound having the structure of the chemical formulas (1) and (2) was used in combination, the battery with higher capacity and improved variation than in Example 7 in which only the liquid compound of the chemical formula (1) was used. A pond was obtained.
一方、液状化合物 bとして、アルキレンオキサイド繰り返し単位を持たない化合物を 使用して電解質フィルムを作製すると、積層体の密着性は良好であつたが、電池の 初期容量が低ぐそのバラツキも大きかった(比較例 4)。  On the other hand, when an electrolyte film was prepared by using a compound having no alkylene oxide repeating unit as the liquid compound b, the adhesion of the laminate was good, but the initial capacity of the battery was low and the variation was large ( Comparative example 4).

Claims

請求の範囲 The scope of the claims
[1] 活物質および導電付与剤を含有する正極層 (A)と、ポリエーテル系重合体、電解 質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を含有 してなる電解質層(B)と、を積層してなり、かつ、  [1] A positive electrode layer (A) containing an active material and a conductivity-imparting agent, and an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit And, and
前記正極層(A)と前記電解質層(B)の間にアルキレンオキサイド繰り返し単位を有 する液状化合物の層を有するリチウム電池用積層体。  A laminate for a lithium battery, comprising a liquid compound layer having an alkylene oxide repeating unit between the positive electrode layer (A) and the electrolyte layer (B).
[2] 請求項 1記載の正極層 (A)、電解質層(B)からなる積層体に、さらに負極層(C)を 電解質層(B)の側から積層してなり、かつ、 [2] The laminate comprising the positive electrode layer (A) and the electrolyte layer (B) according to claim 1, and a negative electrode layer (C) further laminated from the electrolyte layer (B) side, and
前記正極層 (A)と前記電解質層(B)の間、および、前記電解質層(B)と前記負極 層(C)の間の両方にアルキレンオキサイド繰り返し単位を有する液状化合物の層を 有するリチウム電池用積層体。  A lithium battery having a liquid compound layer having an alkylene oxide repeating unit between the positive electrode layer (A) and the electrolyte layer (B) and between the electrolyte layer (B) and the negative electrode layer (C). Laminated body.
[3] 前記アルキレンオキサイド繰り返し単位を有する液状化合物の 25°Cにおける粘度 力 S100〜2, OOOmPa' sである請求の範囲第 1項または第 2項記載のリチウム電池用 積層体。 [3] The laminate for a lithium battery according to claim 1 or 2, wherein the liquid compound having an alkylene oxide repeating unit has a viscosity of S100 to 2, OOOmPa's at 25 ° C.
[4] 前記アルキレンオキサイド繰り返し単位を有する液状化合物が、下記一般式(1)ま たは(2)で表わされる化学式を有する化合物である請求の範囲第 1項〜第 3項のい ずれかに記載のリチウム電池用積層体。  [4] The liquid compound having an alkylene oxide repeating unit is a compound having a chemical formula represented by the following general formula (1) or (2): The laminated body for lithium batteries of description.
(R1) (R2) C (CH OX) (1) (R 1 ) (R 2 ) C (CH OX) (1)
2 2  twenty two
R3B (OX) (2) R 3 B (OX) (2)
2  2
ここで、 R1は H、 CHまたは CH CHを、 R2は H、 CH、 CH CH、 CH〇Xまたは Where R 1 is H, CH or CH CH, R 2 is H, CH, CH CH, CH〇X or
3 2 3 3 2 3 2  3 2 3 3 2 3 2
OXを、 R3は〇X、フエニル基、ビュルフエニル基またはメトキシフエ二ル基を、 Xは(A O) Yを、 A〇はアルキレンオキサイド繰り返し単位を、 Yは H、 C H または C H n m 2m+l m 2m を表し、 nおよび mは 1〜50の整数である。 OX, R 3 is 〇X, a phenyl group, a butylphenyl group or a methoxyphenyl group, X is (AO) Y, A〇 is an alkylene oxide repeating unit, Y is H, CH or CH nm 2m + lm 2m N and m are integers of 1 to 50.
-1  -1
[5] 前記アルキレンオキサイド繰り返し単位を有する液状化合物として、さらに下記一般 式(3)または (4)で表される化学式を有する化合物を含有する請求の範囲第 4項記 載のリチウム電池用積層体。  [5] The laminate for a lithium battery according to claim 4, further comprising a compound having a chemical formula represented by the following general formula (3) or (4) as the liquid compound having the alkylene oxide repeating unit: .
R4-C (R5) (R6) -Z- (AO) -Y (3) R 4 -C (R 5 ) (R 6 ) -Z- (AO) -Y (3)
R4-C (R5) (R6) -Z- (AO) -Z-R7 (4) ここで R4および R7は C H または C H を、 R5および R6は H、 CH、 C Hまた R 4 -C (R 5 ) (R 6 ) -Z- (AO) -ZR 7 (4) Where R 4 and R 7 are CH or CH, R 5 and R 6 are H, CH, CH or
k 2k+ l k 2k- 1 3 2 5 は〇CHを、 Zは CH、 C〇、 COOまたは〇を表し、 kは 3〜60の整数である。  k 2k + l k 2k- 1 3 2 5 represents 〇CH, Z represents CH, C〇, COO or 〇, and k is an integer of 3-60.
3 2  3 2
[6] 前記アルキレンオキサイド繰り返し単位を有する液状化合物の層力 ポリエーテル 系重合体を 10重量%以下溶解している請求の範囲第 1項〜第 5項のいずれかに記 載のリチウム電池用積層体。  [6] The laminar strength of the liquid compound having the alkylene oxide repeating unit The laminate for a lithium battery according to any one of claims 1 to 5, wherein 10% by weight or less of the polyether polymer is dissolved. body.
[7] 前記正極層(A)力 さらに、ポリエーテル系重合体およびアルキレンオキサイド繰り 返し単位を有する液状化合物を含有してなるものである請求の範囲第 1項〜第 6項 のレ、ずれかに記載のリチウム電池用積層体。 [7] The positive electrode layer (A) force, and further comprising a polyether-based polymer and a liquid compound having an alkylene oxide repeating unit. A laminate for a lithium battery according to 1.
[8] 活物質および導電付与剤を含有する正極層(A)と、ポリエーテル系重合体、電解 質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を含有 してなる電解質層(B)と、負極層(C)とをこの順に積層してリチウム電池用積層体を 製造するに際し、 [8] A positive electrode layer (A) containing an active material and a conductivity-imparting agent, and an electrolyte layer (B) comprising a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit And a negative electrode layer (C) are laminated in this order to produce a lithium battery laminate,
前記正極層 (A)と前記電解質層(B)の間、および、前記電解質層(B)と前記負極 層(C)の間の少なくとも一方にアルキレンオキサイド繰り返し単位を有する液状化合 物の層を介在させることを特徴とするリチウム電池用積層体の製造方法。  At least one of the positive electrode layer (A) and the electrolyte layer (B) and at least one of the electrolyte layer (B) and the negative electrode layer (C) is provided with a liquid compound layer having an alkylene oxide repeating unit. A method for producing a laminate for a lithium battery, comprising:
[9] 予めその片面および/または両面を、アルキレンオキサイド繰り返し単位を有する 液状化合物でコーティングした電解質層(B)を、正極層(A)および負極層(C)の間 に挟んで積層することを特徴とする、請求の範囲第 8項記載のリチウム電池用積層体 の製造方法。 [9] Laminating an electrolyte layer (B) that has been coated on one side and / or both sides with a liquid compound having an alkylene oxide repeating unit in advance between the positive electrode layer (A) and the negative electrode layer (C). The method for producing a laminated body for a lithium battery according to claim 8, characterized in that it is characterized in that
[10] 活物質および導電付与剤を含有する正極層 (A)と、ポリエーテル系重合体、電解 質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を含有 してなる電解質層(B)と、を積層してなり、  [10] A positive electrode layer (A) containing an active material and a conductivity-imparting agent, and an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit And laminating
前記正極層(A)と前記電解質層(B)の間にアルキレンオキサイド繰り返し単位を有 する液状化合物の層を有するリチウム電池用積層体の製造方法であって、  A method for producing a laminate for a lithium battery having a liquid compound layer having an alkylene oxide repeating unit between the positive electrode layer (A) and the electrolyte layer (B),
前記正極層(A)および前記電解質層(B)が押出成形法によって正極フィルムおよ び電解質フィルムに成形され、且つ  The positive electrode layer (A) and the electrolyte layer (B) are formed into a positive electrode film and an electrolyte film by an extrusion method, and
前記正極フィルムおよび前記電解質フィルムの両フィルムの厚みの合計に対して、 1 /1. 3〜: 1/1. 02の間隙を有するローラで前記両フィルムを圧着することを特徴と するリチウム電池用積層体の製造方法。 The both films are pressure-bonded with a roller having a gap of 1 / 1.3 to 1 / 1.02 with respect to the total thickness of both the positive electrode film and the electrolyte film. To manufacture a laminate for a lithium battery.
[11] 前記正極層(A)がポリエーテル系重合体を含み、前記アルキレンオキサイド繰り返し 単位を有する液状化合物の、 25°Cでの粘度が 100〜2, OOOmPa' sであることを特 徴とする請求の範囲第 10項記載のリチウム電池用積層体の製造方法。 [11] The positive electrode layer (A) includes a polyether polymer, and the viscosity of the liquid compound having the alkylene oxide repeating unit at 25 ° C is 100 to 2, OOOmPa's. The method for producing a laminate for a lithium battery according to claim 10.
[12] 前記ローラの表面温度を 30〜: 120°Cとすることを特徴とする請求の範囲第 10項記 載のリチウム電池用積層体の製造方法。 12. The method for producing a laminated body for a lithium battery according to claim 10, wherein the roller has a surface temperature of 30 to 120 ° C.
[13] 前記電解質フィルムが、厚み 10〜50 a mに調整したものである請求の範囲第 10 項〜第 12項のいずれかに記載のリチウム電池用積層体の製造方法。  [13] The method for producing a laminated body for a lithium battery according to any one of [10] to [12], wherein the electrolyte film is adjusted to a thickness of 10 to 50 am.
[14] 前記正極フィルム力 厚み 30〜90 μ mに調整したものである請求の範囲第 10項14. The positive electrode film force, wherein the thickness is adjusted to 30 to 90 μm.
〜第 13項のいずれかに記載のリチウム電池用積層体の製造方法。 -The manufacturing method of the laminated body for lithium batteries in any one of Claim 13.
[15] 前記正極フィルム力 S、その電解質フィルムに接しない側に予め正極集電体を積層 したものである請求の範囲第 10項〜第 14項のいずれかに記載のリチウム電池用積 層体の製造方法。 15. The laminate for a lithium battery according to any one of claims 10 to 14, wherein a positive electrode current collector is laminated in advance on the positive electrode film force S and the side not in contact with the electrolyte film. Manufacturing method.
[16] 前記正極フィルム力 さらに、アルキレンオキサイド繰り返し単位を有する液状化合 物を含有してなる請求の範囲第 10項〜第 15項のいずれかに記載のリチウム電池用 積層体の製造方法。  [16] The method for producing a laminate for a lithium battery according to any one of claims 10 to 15, wherein the positive electrode film strength further contains a liquid compound having an alkylene oxide repeating unit.
[17] 前記アルキレンオキサイド繰り返し単位を有する液状化合物が、下記一般式(1)ま たは(2)で表わされる化学式を有する化合物である請求の範囲第 10項〜第 16項の いずれかに記載のリチウム電池用積層体の製造方法。  [17] The liquid compound having an alkylene oxide repeating unit is a compound having a chemical formula represented by the following general formula (1) or (2): Of manufacturing a laminate for a lithium battery.
(R1) (R2) C (CH OX) (1) (R 1 ) (R 2 ) C (CH OX) (1)
2 2  twenty two
R¾ (OX) (2)  R¾ (OX) (2)
2  2
ここで、 R1は H、 CHまたは CH CHを、 R2は H、 CH、 CH CH、 CH〇Xまたは Where R 1 is H, CH or CH CH, R 2 is H, CH, CH CH, CH〇X or
3 2 3 3 2 3 2  3 2 3 3 2 3 2
OXを、 R3は〇X、フエニル基、ビュルフエニル基またはメトキシフエ二ル基を、 Xは(A O) Yを、 A〇はアルキレンオキサイド繰り返し単位を、 Yは H、 C H または C H n m 2m+l m 2m を表し、 nおよび mは 1〜50の整数である。 OX, R 3 is 〇X, a phenyl group, a butylphenyl group or a methoxyphenyl group, X is (AO) Y, A〇 is an alkylene oxide repeating unit, Y is H, CH or CH nm 2m + lm 2m N and m are integers of 1 to 50.
-1  -1
[18] 前記アルキレンオキサイド繰り返し単位を有する液状化合物として、さらに下記一般 式(3)または (4)で表される化学式を有する化合物を含有する請求の範囲第 17項記 載のリチウム電池用積層体の製造方法。 R4-C (R5) (R6) -Z- (AO) n-Y (3) [18] The laminate for a lithium battery according to claim 17, further comprising a compound having a chemical formula represented by the following general formula (3) or (4) as the liquid compound having the alkylene oxide repeating unit: Manufacturing method. R 4 -C (R 5 ) (R 6 ) -Z- (AO) n -Y (3)
R4-C (R5) (R6) -Z- (AO) n-Z-R7 (4) R 4 -C (R 5 ) (R 6 ) -Z- (AO) n -ZR 7 (4)
ここで R4および R7は C H または C H を、 R5および R6は H、 CH、 C Hまた Where R 4 and R 7 are CH or CH, R 5 and R 6 are H, CH, CH or
k 2k+ l k 2k- 1 3 2 5 は〇CHを、 Zは CH、 C〇、 COOまたは〇を表し、 kは 3〜60の整数である。  k 2k + l k 2k- 1 3 2 5 represents 〇CH, Z represents CH, C〇, COO or 〇, and k is an integer of 3-60.
3 2  3 2
[19] 少なくとも電解質フィルムの成分であるポリエーテル系重合体の還元粘度が 0. 6〜  [19] At least the reduced viscosity of the polyether polymer that is a component of the electrolyte film is from 0.6 to
25dlZgである請求の範囲第 10項〜第 18項のいずれかに記載のリチウム電池用積 層体の製造方法。  The method for producing a laminated body for a lithium battery according to any one of claims 10 to 18, which is 25 dlZg.
[20] 請求の範囲第 1項〜第 7項のいずれかに記載のリチウム電池用積層体を有するリ チウム電池。  [20] A lithium battery having the lithium battery laminate according to any one of claims 1 to 7.
[21] 請求の範囲第 10項〜第 19項のいずれかに記載の製造方法によって得られるリチ ゥム電池用積層体を有するリチウム電池。  [21] A lithium battery having a laminated body for a lithium battery obtained by the production method according to any one of claims 10 to 19.
[22] 活物質および導電付与剤を含有する正極層(A)と、ポリエーテル系重合体、電解 質塩化合物、および、アルキレンオキサイド繰り返し単位を有する液状化合物を含有 してなる電解質層(B)と、負極層(C)とをこの順に積層してなり、かつ、 [22] A positive electrode layer (A) containing an active material and a conductivity-imparting agent, and an electrolyte layer (B) containing a polyether polymer, an electrolyte salt compound, and a liquid compound having an alkylene oxide repeating unit And a negative electrode layer (C) are laminated in this order, and
前記正極層 (A)と前記電解質層(B)の間、および、前記電解質層(B)と前記負極 層(C)の間の少なくとも一方にアルキレンオキサイド繰り返し単位を有する液状化合 物の層を有するポリマー電池用積層体。  At least one of the positive electrode layer (A) and the electrolyte layer (B) and between the electrolyte layer (B) and the negative electrode layer (C) has a liquid compound layer having an alkylene oxide repeating unit. Polymer battery laminate.
PCT/JP2006/304017 2005-03-02 2006-03-02 Laminate for lithium battery, method for manufacturing same and battery WO2006093239A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005056913A JP4674475B2 (en) 2005-03-02 2005-03-02 Method for producing lithium battery laminate
JP2005-056913 2005-03-02
JP2005-078445 2005-03-18
JP2005078445 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006093239A1 true WO2006093239A1 (en) 2006-09-08

Family

ID=36941268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304017 WO2006093239A1 (en) 2005-03-02 2006-03-02 Laminate for lithium battery, method for manufacturing same and battery

Country Status (1)

Country Link
WO (1) WO2006093239A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147989A1 (en) * 2008-06-02 2009-12-10 大日精化工業株式会社 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135477A (en) * 1986-11-26 1988-06-07 Ube Ind Ltd Ion-conductive solid electrolyte composition
JPH056775A (en) * 1991-06-21 1993-01-14 Matsushita Electric Ind Co Ltd Manufacture of solid secondary battery
JPH1140201A (en) * 1997-07-15 1999-02-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JPH11204116A (en) * 1998-01-14 1999-07-30 Sharp Corp Electrochemical element
JPH11297360A (en) * 1998-04-08 1999-10-29 Tdk Corp Manufacture of sheet electrode/electrolyte structural body
JP2001023695A (en) * 1999-07-12 2001-01-26 Fujitsu Ltd Battery
JP2001217009A (en) * 2000-01-31 2001-08-10 Toppan Printing Co Ltd Manufacturing method of cross-linked polymer solid electrolyte wall
JP2003105080A (en) * 2001-07-23 2003-04-09 Nippon Zeon Co Ltd Polyether polymer, its production method, and solid polyelectrolyte and cell containing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135477A (en) * 1986-11-26 1988-06-07 Ube Ind Ltd Ion-conductive solid electrolyte composition
JPH056775A (en) * 1991-06-21 1993-01-14 Matsushita Electric Ind Co Ltd Manufacture of solid secondary battery
JPH1140201A (en) * 1997-07-15 1999-02-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JPH11204116A (en) * 1998-01-14 1999-07-30 Sharp Corp Electrochemical element
JPH11297360A (en) * 1998-04-08 1999-10-29 Tdk Corp Manufacture of sheet electrode/electrolyte structural body
JP2001023695A (en) * 1999-07-12 2001-01-26 Fujitsu Ltd Battery
JP2001217009A (en) * 2000-01-31 2001-08-10 Toppan Printing Co Ltd Manufacturing method of cross-linked polymer solid electrolyte wall
JP2003105080A (en) * 2001-07-23 2003-04-09 Nippon Zeon Co Ltd Polyether polymer, its production method, and solid polyelectrolyte and cell containing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147989A1 (en) * 2008-06-02 2009-12-10 大日精化工業株式会社 Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
JP5320394B2 (en) * 2008-06-02 2013-10-23 大日精化工業株式会社 Coating liquid, electrode plate manufacturing coating liquid, undercoat agent and use thereof
US9123940B2 (en) 2008-06-02 2015-09-01 Dainichiseika Color & Chemicals Mfg. Co, Ltd. Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
US9966596B2 (en) 2008-06-02 2018-05-08 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating liquid, coating liquid for manufacturing electrode plate, undercoating agent, and use thereof

Similar Documents

Publication Publication Date Title
EP2747173B1 (en) Porous film and secondary battery electrode
CN103782426B (en) Secondary battery negative pole adhesive composition, secondary battery cathode, negative pole paste compound, manufacture method and secondary cell
KR101687129B1 (en) Binder for lithium ion secondary battery electrodes, slurry, electrode, and lithium ion secondary battery
CN102334217B (en) Electrode for lithium-ion secondary battery
JP4736804B2 (en) Binder for lithium ion secondary battery electrode
JP6255260B2 (en) Lithium secondary battery electrode composition
KR20100116199A (en) Binder composition for electrode of nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2014051032A1 (en) Slurry for all-solid-state secondary battery, method for producing electrode for all-solid-state secondary battery, method for producing electrolyte layer for all-solid-state secondary battery, and all-solid-state secondary battery
CN104145359A (en) Binder composition for negative electrodes of secondary batteries, negative electrode for secondary batteries, slurry composition for negative electrodes of secondary batteries, production method, and secondary battery
EP3223347B1 (en) Binder composition for lithium-ion secondary battery electrode
KR20160045142A (en) Binder composition for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
EP2592678A1 (en) Binder resin composition for electrode of non-aqueous electrolyte battery, slurry composition, electrode and battery each containing the binder resin composition
JP2011129400A (en) Secondary battery having ionic liquid and method of manufacturing the same
EP1215244B1 (en) Solidifying material for cell electrolyte solution, and cell comprising the solidifying material
EP2911225A1 (en) Method for producing binder composition for electrical storage devices
JP5145941B2 (en) Electrolyte composition for secondary battery, electrolyte film, and secondary battery
WO2021253796A1 (en) Slurry composition for flexible electrode in secondary battery
JP5696826B2 (en) Binder composition for electrode, slurry composition for electrode, electrode and battery
JP2006294605A (en) Laminate for polymer battery, its manufacturing method, and polymer battery
WO2006093239A1 (en) Laminate for lithium battery, method for manufacturing same and battery
JP4674475B2 (en) Method for producing lithium battery laminate
EP3958357B1 (en) Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery positive electrode, positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2006156256A (en) Polyether series polymer composition for cathode film, cathode film, and battery
WO2021132522A1 (en) Electrochemical device, electrode for electrochemical devices, coating liquid for electrochemical devices, and use of same
KR102306499B1 (en) Non-aqueous secondary battery electrode, electrode slurry and non-aqueous secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC EPO FORM 1205A DATED 12.04.08

122 Ep: pct application non-entry in european phase

Ref document number: 06715126

Country of ref document: EP

Kind code of ref document: A1