WO2013001960A1 - Electrical storage device separator, electrical storage device element, electrical storage device, and method for manufacturing these - Google Patents

Electrical storage device separator, electrical storage device element, electrical storage device, and method for manufacturing these Download PDF

Info

Publication number
WO2013001960A1
WO2013001960A1 PCT/JP2012/063637 JP2012063637W WO2013001960A1 WO 2013001960 A1 WO2013001960 A1 WO 2013001960A1 JP 2012063637 W JP2012063637 W JP 2012063637W WO 2013001960 A1 WO2013001960 A1 WO 2013001960A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
electrode layer
positive electrode
storage device
negative electrode
Prior art date
Application number
PCT/JP2012/063637
Other languages
French (fr)
Japanese (ja)
Inventor
澤田学
上羽悠介
板谷昌治
堀川景司
得原幸夫
福田恭丈
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013522541A priority Critical patent/JP5880555B2/en
Publication of WO2013001960A1 publication Critical patent/WO2013001960A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a separator used for a power storage device, a power storage device element and a power storage device using the separator, and further relates to a power storage device element and a method for manufacturing the power storage device.
  • High energy density power storage devices represented by lithium ion secondary batteries, lithium ion capacitors, electric double layer capacitors, and the like are, for example, sheet-shaped current collector foils (such as aluminum foil or copper foil) and active materials (activated carbon, A storage element formed by laminating a sheet-like electrode formed by coating a lithium composite oxide, carbon, etc.) via a sheet-like separator for preventing a short circuit due to contact between the electrodes;
  • the electrolyte solution has a structure accommodated in the exterior body.
  • a ceramic sheet formed by mixing an electrolyte and porous ceramics and forming a film with a binder is used as a separator material, and a positive electrode layer and a negative electrode layer are interposed through the ceramic sheet.
  • Patent Document 1 A stacked battery manufactured through a process of stacking and hot pressing the stacked body at once has been proposed.
  • the current collector metal 120 to which the activated carbon electrode 110 is bonded is opposed, and a separator 130 and an electrolytic solution (not shown) are interposed therebetween,
  • Electric double layer capacitor has been proposed (Patent Document 2).
  • modified polypropylene and modified polyethylene have no electrolyte impregnation or permeability, so the electrolyte solution is preliminarily separated before separation (and depending on the case).
  • Electrode must be impregnated in advance, and cannot be applied to a manufacturing method in which an electrolytic solution is added after formation of the laminated body, and the manufacturing process becomes complicated.
  • the present invention solves the above-described problems, and has a low ionic resistance, an adhesive property, a separator for an electricity storage device having a necessary electrolyte solution-containing property, and a low ionic resistance produced using the separator.
  • An object of the present invention is to provide an element for an electricity storage device, an electricity storage device, and a method for producing them, which are excellent in performance and economy.
  • the ratio ⁇ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by 0.7 ⁇
  • the element for the electricity storage device of the present invention is An element for an electricity storage device comprising a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly bonded to the separator. And
  • the electrical storage device separator according to claim 1 is used as the separator.
  • the electricity storage device of the present invention A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator, an electrolyte solution, and the laminate And an electricity storage device comprising a package in which the electrolytic solution is stored,
  • the electrical storage device separator according to claim 1 is used as the separator.
  • the method for producing an element for an electricity storage device of the present invention includes Production of an element for an electricity storage device comprising a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator
  • the positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are opposed to each other through the separator material that also functions as an adhesive layer in the laminate.
  • the separator in the laminate obtained through the step of forming the laminate comprises a composite material containing inorganic fine particles and an organic binder,
  • the method for manufacturing the electricity storage device of the present invention includes A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator, an electrolyte solution, and the laminate And a method of manufacturing an electricity storage device comprising a package in which the electrolytic solution is stored, (1)
  • the positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are the materials to be the separator, and in the laminate, the separator material that also functions as an adhesive layer is interposed.
  • the positive electrode layer, the negative electrode layer, and the separator are integrally formed by heating and pressurizing the laminated body, and the separator material is used as the separator material.
  • the separator in the laminate obtained through the step of forming a body is made of a composite material containing inorganic fine particles and an organic binder,
  • the following formula (1) of the composite material: PVC (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) ⁇ 100 (1)
  • the volume of the inorganic fine particles the weight of the inorganic fine particles / the density of the inorganic fine particles
  • the volume of the organic binder the weight of the organic binder / the density of the organic binder
  • the ceramic separator of the present invention has adhesiveness, it is necessary to separately form an adhesive layer in addition to the separator layer when forming a laminate by laminating the positive electrode layer and the negative electrode layer via the separator. Therefore, the production process can be simplified and the productivity can be improved.
  • the element for an electricity storage device of the present invention is the electricity storage device of the present invention having the above-described characteristics as a separator constituting a laminate having a structure in which a positive electrode layer and a negative electrode layer in contact with the separator are directly bonded to the separator. Therefore, an energy storage device element having low separator ion resistance, high performance, high reliability, and excellent productivity can be obtained.
  • an electricity storage device of the present invention includes a laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and a positive electrode layer and a negative electrode layer in contact with the separator are directly bonded to the separator, and an electrolytic solution
  • the separator for the electricity storage device of the present invention (Claim 1) is used as the separator. Therefore, the separator has low ionic resistance, high performance, high reliability, and productivity. Can be obtained.
  • the method for manufacturing an element for an electricity storage device of the present invention comprises a material for a positive electrode layer and a material for a negative electrode layer that are separator materials (separator materials), and the separator material that also functions as an adhesive layer.
  • the electricity storage device of the present invention (Claim 1). Since a separator material that can form a device separator is used, it is possible to efficiently manufacture a power storage device element having low separator ion resistance, high performance, and high reliability.
  • a positive electrode layer material and a negative electrode layer material are opposed to each other through a separator material that also functions as an adhesive layer.
  • the laminated body in which the positive electrode layer, the negative electrode layer, and the separator are integrated is formed by arranging and heating and pressurizing as described above, and the separator material is the power storage device of the present invention (Claim 1).
  • the separator material that forms the separator is used, and the obtained laminate is housed in the package together with the electrolyte, and the electrolyte is permeated and impregnated from the outside to the inside of the laminate. Therefore, it is possible to efficiently manufacture an electricity storage device with low separator ion resistance, high performance, and high reliability.
  • the reason why the electrolytic solution can be permeated and impregnated from the outside to the inside of the laminate is that the separator material is used to form a separator having a necessary electrolyte solution-containing property.
  • FIG. 1 It is front sectional drawing which shows the electrical storage device (lithium ion secondary battery) concerning one Example (Example 1) of this invention. It is front sectional drawing which shows the electrical storage device (electric double layer capacitor) concerning the other Example (Example 2) of this invention.
  • FIG. 1 it is a cross-sectional view showing one step of a method for manufacturing an electricity storage device, (a) shows a step of sucking and fixing a positive electrode assembly sheet formed on a substrate PET film to an adsorption disk, (b) shows a step of punching out one block of the positive electrode assembly sheet and sucking and fixing it to the suction plate and peeling it from the base PET film.
  • (c) shows a step of removing the positive electrode assembly sheet sucked and fixed to the suction plate to another positive electrode.
  • (D) shows a cross section of a positive and positive electrode integrated sheet obtained by bonding two positive electrode aggregate sheets so that the positive electrode current collector layers face each other, and (e) shows two negative electrodes. It is a figure which shows the cross section of the negative electrode / negative electrode integrated sheet which bonded together the aggregate sheet so that the negative electrode collector layer might oppose. It is sectional drawing which shows 1 process of the manufacturing method of an electrical storage device in the Example of this invention, (a) shows the process of bonding a negative electrode integrated sheet, a positive electrode / positive electrode integrated sheet, and a negative electrode / negative electrode integrated sheet.
  • (B) is a diagram showing a cross section of a laminated assembly in which a positive electrode / positive electrode integrated sheet and a negative electrode / negative electrode integrated sheet are alternately laminated between a positive electrode integrated sheet and a negative electrode integrated sheet. is there. It is sectional drawing which shows the conventional electrical storage device (electrical double layer capacitor).
  • a separator used for a high-power electricity storage device is required to have low ionic resistance.
  • the separator in a stacked electricity storage device in which separators are stacked as an adhesive layer, it is necessary that the separator also function as an adhesive layer in the heating and pressurizing step after stacking.
  • low ionic resistance and adhesiveness are in a trade-off relationship.
  • the separator for an electricity storage device of the present invention which has been made to solve the above-mentioned problems, is the same as the electricity storage device in that the inorganic fine particles that are chemically and electrochemically stable in the electricity storage device (for example, a lithium ion secondary battery) It is characterized in that it is formed from a material including a composite material bound with a chemically and electrochemically stable organic binder.
  • Examples of the inorganic fine particles constituting the power storage device separator of the present invention include oxides such as silica, alumina, titania and barium titanate, and nitrides such as silicon nitride and aluminum nitride.
  • Examples of the organic binder include polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP), and the like.
  • the composite material can be obtained by casting a slurry prepared by using an inorganic fine particle, an organic binder, and a solvent using, for example, a ball mill on a base material by a doctor blade method or the like and drying the slurry.
  • PVDF polyvinylidene fluoride
  • the PVC of a separator in the step which formed the electrical storage device (laminated body) by the method demonstrated below is 20, 25, 30, 35, 40, 45, 50, 52.5, 55, 57.5, Composite material sheets that would be 60, 65, 70, and 75% were prepared.
  • inorganic fine particles and MEK as a solvent were charged. Furthermore, PSZ grinding media having a diameter of 5 mm ⁇ were put, and mixed for 4 hours using a rolling ball mill to perform dispersion. Thereafter, a predetermined amount of a polyvinylidene fluoride (PVDF) N-methyl-2-pyrrolidone (NMP) solution was added and mixed for 2 hours using a rolling ball mill to prepare a slurry.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the slurry was coated on a PET (polyethylene terephthalate) film by a doctor blade method and then dried to obtain a composite material sheet having a thickness of 25 ⁇ m (a sheet corresponding to the separator for an electricity storage device of the present invention).
  • the critical pigment volume concentration CPVC the critical pigment volume concentration during heating and pressing, the liquid content of the electrolytic solution, and the ionic resistance were examined.
  • a battery lithium ion secondary battery
  • the separator sheet of this example was produced using the separator sheet of this example, and the ionic resistance of the battery was examined.
  • Liquid content of electrolyte solution The following was prepared as an electrolyte solution and used for the liquid content test.
  • a non-aqueous solvent a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC), which are cyclic carbonates, were mixed at a volume ratio of 3: 7 was used.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a non-aqueous electrolyte solution was prepared by dissolving to a concentration of.
  • LiMn 2 O 4 lithium manganese composite oxide
  • NMP N-methyl-2-pyrrolidone
  • the unit capacity of this positive electrode is 1 mol ⁇ l ⁇ 1 LiPF 6 as the electrolyte of the electrolyte, and a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 as the solvent, Measurement was performed in the range of 3.0 to 4.3 V using lithium metal as a counter electrode. As a result, a unit capacity of 110 mAh per 1 g was obtained.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • negative electrode As a negative electrode active material, a spinel-type lithium titanium composite oxide represented by Li 4 Ti 5 O 12 , carbon as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder are dissolved.
  • the NMP solution was blended so that the weight ratio of the negative electrode active material, the conductive additive and the binder was 93: 3: 4, and kneaded to prepare a negative electrode mixture slurry.
  • the basis weight of the positive electrode mixture per unit area at this time was 13.5 mg ⁇ cm ⁇ 2 and the packing density was 2.1 g ⁇ ml ⁇ 1 .
  • the unit capacity of this positive electrode is 1 mol ⁇ l ⁇ 1 LiPF 6 as the electrolyte of the electrolyte, and a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 as the solvent, Measurement was performed in the range of 1.0 to 2.0 V using lithium metal as a counter electrode. As a result, a unit capacity of 165 mAh per 1 g was obtained.
  • non-aqueous electrolyte solution As a non-aqueous solvent, a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC), which are cyclic carbonates, are mixed at a volume ratio of 3: 7 is used. LiPF 6 was dissolved to a concentration of 1 mol ⁇ l ⁇ 1 to prepare a non-aqueous electrolyte.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the charging current was further maintained with the voltage maintained at 2.75 V.
  • Each battery was charged until it was attenuated and the charging current reached 1 / 50C.
  • the following items were evaluated as the characteristics of the battery.
  • the input DCR of each battery was calculated from the voltage value obtained after 10 seconds for each charging current value.
  • the output DCR of each battery was calculated from the voltage value after 10 seconds for each discharge current value. The results are shown in Table 1.
  • in the range of 0.7 to 1.15, it is possible to obtain a power storage device separator that is excellent in any of adhesive properties, electrolyte solution-containing properties, and low ion resistance properties.
  • the separator of the present invention is excellent in electrolyte solution-containing properties, a separator sheet having a high sheet strength that is not impregnated with the electrolyte solution is laminated by adding the electrolyte solution after the addition. It becomes possible to efficiently and surely obtain a laminate (element for an electricity storage device) having a structure in which a layer and a negative electrode layer are laminated via a separator.
  • the separator for an electricity storage device of the present invention can also function as an adhesive layer in the step of forming a laminate, a laminate type electricity storage device employing a thin layer and a low-resistance separator of high PVC, It becomes possible to manufacture efficiently by the lamination method.
  • the battery subjected to the evaluation for the above characteristics is a battery for characteristic evaluation to the last, but the present invention is applied to form, for example, a lithium ion secondary battery A having a structure as shown in FIG. be able to.
  • the lithium ion secondary battery A includes a laminate 1 in which a positive electrode layer 21 and a negative electrode layer 31 are laminated via a separator layer 11, and an outer packaging material 15 in which an electrolytic solution 14 is a laminate sheet. And the positive electrode layer 121, the positive electrode terminal 121 a and the negative electrode terminal 131 a connected to the negative electrode layer 31 through a plurality of current collecting members 13 made of aluminum foil or the like are led out from the outer peripheral edge of the outer packaging material 15. It has.
  • the laminate 1 specifically includes, for example, a positive electrode layer 21 in which a mixture layer containing a lithium composite oxide is provided on an aluminum foil as a positive electrode active material layer, and a mixture containing graphite on a copper foil.
  • a plurality of negative electrode layers 31 each having a layer as a negative electrode active material layer are alternately stacked via a separator layer 11, and the separator layer 11 is a separator (storage battery) having the requirements of the present invention. Device separators) are used.
  • the electrolytic solution 14 for example, a nonaqueous electrolytic solution in which 1 mol / l LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate is used.
  • the separator for an electricity storage device that satisfies the requirements of the present invention is used as the separator layer, the productivity is high, the cost is low, and the ion resistance A laminated lithium ion secondary battery having a low level can be obtained.
  • FIG. 2 is a front sectional view showing an electric double layer capacitor according to an example (Example 2) of the present invention.
  • the electric double layer capacitor B of Example 2 includes a positive electrode layer 21 provided with a positive electrode active material 21b on both surfaces of a positive electrode current collector layer 21a, and a negative electrode on both surfaces of a negative electrode current collector layer 31a.
  • a negative electrode layer 31 provided with an active material 31b is laminated by way of a separator (layer) 11, and a positive external terminal electrode 21t and a negative external terminal electrode are formed on the first end surface 2 and the second end surface 3, respectively.
  • the laminated body 1 on which 31t is disposed is housed in the package 50 including the lid 50a and the base portion 50b together with the electrolytic solution, and the positive electrode package electrode 41 is provided in the package 50 so as to wrap around the lower surface from both ends. And the negative electrode package electrode 42 is formed.
  • the separator (layer) 11 is made of a composite material containing silica, which is inorganic fine particles, and an organic binder, the PVC is 50%, the CPVC is 45%, and ⁇ is 1.11.
  • the separator for electrical storage devices provided with this is used. Below, the manufacturing method of this electric double layer capacitor B is demonstrated.
  • Step 1 (Preparation of current collector)
  • An aluminum layer having a thickness of 0.5 ⁇ m was formed by vapor deposition on a base material PET film coated with urethane as a release layer. Then, an etching mask resist was applied onto the surface of the formed aluminum layer by screen printing and dried.
  • the resist used was Ares SPR manufactured by Kansai Paint.
  • this film was immersed in an aqueous ferric chloride solution at 40 ° C., and the aluminum layer was patterned. Thereafter, this film is immersed in an organic solvent, the resist is peeled off, and then immersed in a mixed aqueous solution of sulfuric acid and hydrofluoric acid to remove the oxide layer on the surface of the aluminum layer, and the positive electrode current collector layer 21a is formed as a base PET film. 100 (see FIG. 3A).
  • Step 2 (1) Preparation of slurry for active material layer 29.0 g of activated carbon (BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 ⁇ m), carbon black (Tokai Carbon Co., Ltd.) “Toka Black # 3855”, 2.7 g of BET specific surface area of 90 m 2 / g) was weighed and put into a 1000 ml pot, and PSZ grinding media with a diameter of 2.0 mm and 286 g of deionized water were added. After the addition, the mixture was dispersed by mixing at 150 rpm for 4 hours using a rolling ball mill.
  • activated carbon BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 ⁇ m
  • carbon black Tokai Carbon Co., Ltd.
  • PSZ grinding media with a diameter of 2.0 mm and 286 g of deionized water were
  • CMC2260 carboxymethyl cellulose
  • 38.8 wt% aqueous solution of polyacrylate resin a 38.8 wt% aqueous solution of polyacrylate resin
  • the positive electrode active material layer 21b is a region that is receded from the first end surface 2 by a predetermined distance so as not to be directly connected to the positive electrode external terminal electrode 21t on the first end surface 2 of the multilayer body 1. To be formed. That is, when printing the active material layer slurry, the active material layer slurry was screen-printed so that an uncoated region having a predetermined width was formed from the cut surface when cut in Step 6 described later. . .
  • Step 3 (1) Preparation of separator layer slurry 50 g of silica (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 ⁇ m) and 50 g of methyl ethyl ketone as a solvent were charged into a 500 ml pot. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
  • silica manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 ⁇ m
  • PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
  • PVDF polyvinylidene fluoride
  • separator layer slurry prepared by the above method was applied onto the positive electrode layer 21 and then heated at 120 ° C. for 30 minutes. By drying, a separator (layer) 11 having a thickness of 3 ⁇ m was formed (see FIG. 3A).
  • a positive electrode assembly sheet in which a plurality of positive electrode layers 21 were formed on the separator layer 11 was formed on a base material PET film.
  • another positive electrode assembly sheet in which a plurality of positive electrode layers 21 were formed on the separator layer 11 was produced.
  • two sheets were produced in which a negative electrode assembly sheet in which a plurality of negative electrode layers 31 were formed on the separator layer 11 was formed on a base PET film.
  • Step 4 Next, as shown in FIGS. 3 (a) and 3 (b), the base PET film 100 was peeled in a state where the positive electrode assembly sheet block was punched out and sucked and fixed to the suction disk 80.
  • Step 5 Next, as shown in FIG. 3 (c), the punching block of the positive electrode assembly sheet sucked and fixed to the suction disk 80 is cut into another punching block of the positive electrode assembly sheet from which the base PET film prepared in the same manner is peeled off. Were stacked so that the positive electrode current collector layers 21a face each other. The entire surface of the positive electrode assembly sheet placed in an overlapping manner was pressed with a pressure plate (not shown) to join the positive electrode assembly sheets. At this time, the temperature of the pressing plate was 150 ° C., the pressing pressure was 20 MPa, and the pressing time was 30 seconds.
  • step 4 and step 5 a positive electrode / positive electrode integrated sheet 20 in which the positive electrode layer 21 was embedded in the separator layer 11 shown in FIG. Similarly, a negative electrode / negative electrode integrated sheet 30 shown in FIG. 3E in which the negative electrode layer 31 was embedded in the separator layer 11 was produced.
  • a negative electrode integrated sheet in which a negative electrode layer in which a negative electrode active material layer 31b is formed only on one surface of a negative electrode current collector layer 31a is embedded in a separator layer 11.
  • the positive electrode / positive electrode integrated sheet 20, the negative electrode / negative electrode integrated sheet 30, the positive electrode / positive electrode integrated sheet 20, and the negative electrode / negative electrode integrated sheet 30 are laminated and thermocompression-bonded in this order.
  • a positive electrode integrated sheet 20a in which a positive electrode layer having a positive electrode active material layer 21b formed on only one surface of the electric conductor layer 21a is embedded in the separator layer 11 is laminated and thermocompression bonded to form a laminated assembly.
  • thermocompression bonding the temperature of the pressure plate was 150 ° C., the pressure of the pressure was 20 MPa, and the pressure time was 30 seconds.
  • the positive electrode integrated sheet 20a is obtained by applying a slurry containing the component of the separator layer on the base PET film on the surface of the positive electrode aggregate sheet shown in FIG. This was prepared by pasting together a 3 ⁇ m thick separator layer.
  • the negative electrode integrated sheet 30a was prepared by bonding a separator layer having a thickness of 3 ⁇ m to the surface of the negative electrode aggregate sheet on which the negative electrode current collector 31a was formed. As described above, in Example 2, a laminated assembly in which the positive electrode layer 21 and the negative electrode layer 31 were joined by the separator layer 11 was produced.
  • Step 6 cutting step
  • the laminated assembly produced in the step 5 as described above was separated into pieces by a dicer along the cutting line D1 shown in FIG. 4B to produce a laminated body (element for electric storage device) 1.
  • the dimensions of the laminate 1 were a length of 4.7 mm and a width of 3.3 mm.
  • the separator layer 11, the positive electrode layer 21, the negative electrode layer 31, and the like are drawn thick due to restrictions on drawing.
  • the actual dimensions are not exactly enlarged or reduced.
  • the size or the positional relationship is appropriately modified or exaggerated so that the drawing is restricted or easily understood.
  • Step 7 the positive external terminal electrode 21t and the negative external terminal electrode 31t were formed by Al sputtering (see FIG. 2).
  • Step 8 Next, a conductive adhesive containing gold as conductive particles is applied to the first end face 2 and the second end face 3 by dipping, and the applied conductive adhesive is applied to the positive electrode package electrode 41 and the negative electrode package, respectively.
  • the laminate 1 was placed on the base portion 50b of the package 50 so as to be connected to the electrode 42, and heated at 170 ° C. for 10 minutes to cure the conductive adhesive (see FIG. 2).
  • the positive external terminal electrode 21t and the negative external terminal electrode 31t are formed on the first end face 2 and the second end face 3, respectively, and the positive external terminal electrode 21t and the negative external terminal electrode 31t are
  • the positive electrode package electrode 41 and the negative electrode package electrode 42 were electrically connected (see FIG. 2).
  • Step 9 an electrolytic solution was injected into the package 50 shown in FIG. 2 and sealed.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate is injected as an electrolytic solution under reduced pressure, and a lid 50a made of a liquid crystal polymer is disposed on the upper surface of the base portion 50b of the package 50 in the same manner as the base portion 50b.
  • the base portion 50b and the lid 50a were welded by irradiating laser along the frame portion of the base portion 50b of the package 50.
  • the DC capacity was 4.37 mF.
  • the separator for an electricity storage device that satisfies the requirements of the present invention is used as the separator layer, so that the productivity is high and low.
  • An electric double layer capacitor with low ionic resistance can be obtained at low cost.
  • the lithium ion secondary battery has been described as an example
  • the electric double layer capacitor has been described as an example. Is possible.
  • an aluminum foil is used as the positive electrode current collector layer, and an electrode in which a mixture layer containing activated carbon is provided on the aluminum foil as the positive electrode active material layer is used as the positive electrode layer.
  • the negative electrode current collector layer for example, a copper foil is used, and an electrode provided with a mixture layer containing graphite as a negative electrode active material layer on the copper foil is used as the negative electrode layer, and lithium ions are further pre-doped into the negative electrode layer. To do.
  • the positive electrode layer and the negative electrode layer are laminated via the separator having the above-described requirements of the present invention.
  • the electrolytic solution for example, a solution obtained by dissolving 1 mol / l LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate is used as the electrolytic solution (nonaqueous electrolytic solution). Thereby, a lithium ion capacitor can be obtained.
  • the present invention is not limited to each of the above-described examples.

Abstract

Disclosed is an electrical storage device separator which has low ion resistance, adhesive properties and the ability to contain the necessary electrolyte, and also has excellent handling properties. Also disclosed is an electrical storage device element which uses the electrical storage device separator, and an electrical storage device. A separator (11) is formed of a composite material containing fine inorganic particles and an organic binder, and is made in such a way that the ratio (Λ) of the pigment volume concentration (PVC) and the critical pigment volume concentration (CPVC), which is the maximum pigment volume concentration assuming zero gaps, of the composite material satisfies the condition 0.7 ≤ Λ ≤ 1.15. This electrical storage device separator is employed as the separator in an element for an electrical storage device comprising a laminated body (1) having a construction in which a positive electrode layer (21) and a negative electrode layer (22) are laminated with the separator (11) interposed therebetween, and the positive electrode layer and the negative electrode layer contacting the separator are directly coupled with the separator.

Description

蓄電デバイス用セパレータ、蓄電デバイス用素子、蓄電デバイス、およびそれらの製造方法Power storage device separator, power storage device element, power storage device, and method for manufacturing the same
 本発明は、蓄電デバイスに用いられるセパレータ、それを用いた蓄電デバイス用素子および蓄電デバイス、さらには、蓄電デバイス用素子および蓄電デバイスの製造方法に関する。 The present invention relates to a separator used for a power storage device, a power storage device element and a power storage device using the separator, and further relates to a power storage device element and a method for manufacturing the power storage device.
 リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタなどに代表される高エネルギー密度の蓄電デバイスは、例えば、シート状の集電箔(アルミニウム箔または銅箔など)に、活物質(活性炭、リチウム複合酸化物、炭素など)を塗工することにより形成されたシート状の電極を、電極間の接触による短絡を防ぐためのシート状のセパレータを介して積層することにより構成された蓄電要素と、電解液とが、外装体内に収容された構造を有している。 High energy density power storage devices represented by lithium ion secondary batteries, lithium ion capacitors, electric double layer capacitors, and the like are, for example, sheet-shaped current collector foils (such as aluminum foil or copper foil) and active materials (activated carbon, A storage element formed by laminating a sheet-like electrode formed by coating a lithium composite oxide, carbon, etc.) via a sheet-like separator for preventing a short circuit due to contact between the electrodes; The electrolyte solution has a structure accommodated in the exterior body.
 そのような蓄電デバイスの1つとして、電解質と多孔性セラミックスとを混合してバインダとともにフィルム状に形成したセラミックシートをセパレータ用材料として用い、正極層と負極層とを、上記セラミックシートを介して積層し、積層体を一括してホットプレスする工程を経て製造される積層型電池が提案されている(特許文献1)。 As one of such power storage devices, a ceramic sheet formed by mixing an electrolyte and porous ceramics and forming a film with a binder is used as a separator material, and a positive electrode layer and a negative electrode layer are interposed through the ceramic sheet. A stacked battery manufactured through a process of stacking and hot pressing the stacked body at once has been proposed (Patent Document 1).
 また、その他の蓄電デバイスとして、図5に示すように、活性炭電極110を接着した集電金属120を対向させるとともに、これらの間にセパレータ130および電解液(図示せず)を介在させ、さらに、集電金属120の最外周部に変成ポリプロピレンまたは変成ポリエチレンなどの熱接着部140を予め接着し、該熱接着部140を加熱して集電金属120を相互に接着し、密封してなる蓄電デバイス(電気二重層キャパシタ)が提案されている(特許文献2)。 Further, as another power storage device, as shown in FIG. 5, the current collector metal 120 to which the activated carbon electrode 110 is bonded is opposed, and a separator 130 and an electrolytic solution (not shown) are interposed therebetween, A power storage device formed by preliminarily bonding a thermal bonding portion 140 such as modified polypropylene or modified polyethylene to the outermost peripheral portion of the current collecting metal 120, heating the heat bonding portion 140 to bond the current collecting metal 120 to each other, and sealing them. (Electric double layer capacitor) has been proposed (Patent Document 2).
 しかしながら、上記特許文献1の積層型電池の場合、電解質を混合したセラミックシートを正極層や負極層と積層する工程で、セラミックシートを単独で扱うことが必要になる場合があり、セラミックシートにはある程度以上の強度が求められる。しかし、セラミックシートの強度を確保しようとすると、セパレータの低抵抗(低イオン抵抗)化のために要求される、セラミックシートの薄層化や、セラミック粉体比率を高くすること(高PVC化)が制約されるという問題点がある。すなわち、電解液、セラミック、およびバインダが共存するセラミックシートの強度を確保しようとすると、薄層化や高PVC化が犠牲にされ、セパレータの低抵抗(低イオン抵抗)化を図るのが難しいという問題点がある。 However, in the case of the laminated battery of Patent Document 1, it may be necessary to handle the ceramic sheet alone in the step of laminating the ceramic sheet mixed with the electrolyte with the positive electrode layer or the negative electrode layer. A certain level of strength is required. However, in order to ensure the strength of the ceramic sheet, it is required to reduce the separator's resistance (low ionic resistance), to make the ceramic sheet thinner and to increase the ceramic powder ratio (higher PVC). There is a problem that is restricted. That is, if the strength of the ceramic sheet in which the electrolyte, ceramic and binder coexist is ensured, it is difficult to reduce the resistance (low ionic resistance) of the separator at the expense of thinning and high PVC. There is a problem.
 また、上記特許文献2の蓄電デバイス(電気二重層キャパシタ)の場合、変性ポリプロピレンや変性ポリエチレンは、電解液の含浸性・浸透性が全くないため、積層前に予め電解液をセパレータ(および場合によっては電極)に含浸させておく必要があり、積層体形成後に電解液を後添加するような製造方法には対応できず、製造工程が複雑になるという問題点がある。 In addition, in the case of the electricity storage device (electric double layer capacitor) of Patent Document 2 above, modified polypropylene and modified polyethylene have no electrolyte impregnation or permeability, so the electrolyte solution is preliminarily separated before separation (and depending on the case). Electrode) must be impregnated in advance, and cannot be applied to a manufacturing method in which an electrolytic solution is added after formation of the laminated body, and the manufacturing process becomes complicated.
特開平6-231796号公報Japanese Patent Application Laid-Open No. 6-231796 特開2002-313679号公報JP 2002-313679 A
 本発明は、上記課題を解決するものであり、イオン抵抗が低く、接着性を有し、必要な電解液含液性を有する蓄電デバイス用セパレータ、該セパレータを用いた、低イオン抵抗で、生産性、経済性にすぐれた蓄電デバイス用素子、蓄電デバイス、およびそれらの製造方法を提供することを目的とする。 The present invention solves the above-described problems, and has a low ionic resistance, an adhesive property, a separator for an electricity storage device having a necessary electrolyte solution-containing property, and a low ionic resistance produced using the separator. An object of the present invention is to provide an element for an electricity storage device, an electricity storage device, and a method for producing them, which are excellent in performance and economy.
 上記課題を解決するため、本発明の蓄電デバイス用セパレータは、
 正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体を備えた蓄電デバイスに用いられるセパレータであって、
 無機微粒子と有機バインダを含む複合材料からなり、
 前記複合材料の、下記の式(1):
 PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
 (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
 で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
 0.7≦Λ≦1.15 ……(2)
 (ただし、Λ=PVC/CPVC)
の要件を満たすこと
 を特徴としている。
In order to solve the above problems, the separator for an electricity storage device of the present invention is
Separator for use in an electricity storage device comprising a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator Because
Composed of a composite material containing inorganic fine particles and an organic binder,
The following formula (1) of the composite material:
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
(However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
0.7 ≦ Λ ≦ 1.15 (2)
(However, Λ = PVC / CPVC)
It is characterized by satisfying these requirements.
 また、本発明の蓄電デバイス用素子は、
 正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体を備えた蓄電デバイス用素子であって、
 前記セパレータとして、請求項1記載の蓄電デバイス用セパレータが用いられていること
 を特徴としている。
The element for the electricity storage device of the present invention is
An element for an electricity storage device comprising a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly bonded to the separator. And
The electrical storage device separator according to claim 1 is used as the separator.
 また、本発明の蓄電デバイスは、
 正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体と、電解液と、前記積層体と前記電解液が収納されるパッケージとを備えた蓄電デバイスであって、
 前記セパレータとして、請求項1記載の蓄電デバイス用セパレータが用いられていること
 を特徴としている。
Further, the electricity storage device of the present invention,
A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator, an electrolyte solution, and the laminate And an electricity storage device comprising a package in which the electrolytic solution is stored,
The electrical storage device separator according to claim 1 is used as the separator.
 また、本発明の蓄電デバイス用素子の製造方法は、
 正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体を備えた蓄電デバイス用素子の製造方法において、
 前記正極層となる正極層用材料と前記負極層となる負極層用材料とを、前記セパレータとなる材料であって、前記積層体において、接着層としても機能するセパレータ用材料を介して対向するように配置し、加熱・加圧することにより前記正極層と、前記負極層と、前記セパレータとが一体化した前記積層体を形成する工程を備えているとともに、
 前記セパレータ用材料として、前記積層体を形成する工程を経て得られる前記積層体における前記セパレータが、無機微粒子と有機バインダを含む複合材料からなり、
 前記複合材料の、下記の式(1):
 PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
 (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
 で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
 0.7≦Λ≦1.15 ……(2)
 (ただし、Λ=PVC/CPVC)
の要件を満たすことになるようなセパレータ用材料を用いることを特徴としている。
In addition, the method for producing an element for an electricity storage device of the present invention includes
Production of an element for an electricity storage device comprising a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator In the method
The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are opposed to each other through the separator material that also functions as an adhesive layer in the laminate. And forming the laminate in which the positive electrode layer, the negative electrode layer, and the separator are integrated by heating and pressurizing,
As the separator material, the separator in the laminate obtained through the step of forming the laminate comprises a composite material containing inorganic fine particles and an organic binder,
The following formula (1) of the composite material:
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
(However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
0.7 ≦ Λ ≦ 1.15 (2)
(However, Λ = PVC / CPVC)
It is characterized by using a separator material that satisfies the above requirements.
 また、本発明の蓄電デバイスの製造方法は、
 正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体と、電解液と、前記積層体と前記電解液が収納されるパッケージとを備えた蓄電デバイスの製造方法において、
 (1)前記正極層となる正極層用材料と前記負極層となる負極層用材料とを、前記セパレータとなる材料であって、前記積層体において、接着層としても機能するセパレータ用材料を介して対向するように配置し、加熱・加圧することにより前記正極層と、前記負極層と、前記セパレータとが一体化した前記積層体を形成する工程であって、前記セパレータ用材料として、前記積層体を形成する工程を経て得られる前記積層体における前記セパレータが、無機微粒子と有機バインダを含む複合材料からなり、
 前記複合材料の、下記の式(1):
 PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
 (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
 で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
 0.7≦Λ≦1.15 ……(2)
 (ただし、Λ=PVC/CPVC)
の要件を満たすことになるようなセパレータ用材料を用いて前記積層体を形成する工程と、
 (2)前記積層体を、前記電解液とともに、前記パッケージ内に収容し、前記電解液を前記積層体の外部から内部へ浸透・含浸させる工程と
 を具備することを特徴としている。
In addition, the method for manufacturing the electricity storage device of the present invention includes
A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator, an electrolyte solution, and the laminate And a method of manufacturing an electricity storage device comprising a package in which the electrolytic solution is stored,
(1) The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are the materials to be the separator, and in the laminate, the separator material that also functions as an adhesive layer is interposed. The positive electrode layer, the negative electrode layer, and the separator are integrally formed by heating and pressurizing the laminated body, and the separator material is used as the separator material. The separator in the laminate obtained through the step of forming a body is made of a composite material containing inorganic fine particles and an organic binder,
The following formula (1) of the composite material:
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
(However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
0.7 ≦ Λ ≦ 1.15 (2)
(However, Λ = PVC / CPVC)
Forming the laminate using a separator material that will satisfy the requirements of
(2) The method further comprises the steps of: housing the laminated body together with the electrolytic solution in the package; and impregnating and impregnating the electrolytic solution from the outside to the inside of the laminated body.
 本発明の蓄電デバイス用セパレータは、無機微粒子と有機バインダを含む複合材料からなり、複合材料の顔料体積濃度PVCと、臨界顔料体積濃度CPVCとの比Λ(=PVC/CPVC)が、0.7≦Λ≦1.15の要件を満たすように構成されているので、イオン抵抗が低く、接着性を有し、必要な電解液含液性を有する蓄電デバイス用セパレータを得ることが可能になる。
 また、0.7≦Λ≦1.15の要件を満たすような複合材料からなるセパレータが形成されるようなシート、例えば上記複合材料に溶剤を加えてシート化した未硬化状態のシートは、シート強度が大きくハンドリング性にも優れているため、その点からも生産性を向上させることができる。
The separator for an electricity storage device of the present invention is composed of a composite material containing inorganic fine particles and an organic binder, and the ratio Λ (= PVC / CPVC) between the pigment volume concentration PVC of the composite material and the critical pigment volume concentration CPVC is 0.7. Since it is configured so as to satisfy the requirement of ≦ Λ ≦ 1.15, it is possible to obtain a power storage device separator having low ionic resistance, adhesiveness, and necessary electrolyte solution-containing properties.
Further, a sheet on which a separator made of a composite material that satisfies the requirement of 0.7 ≦ Λ ≦ 1.15 is formed, for example, an uncured sheet formed by adding a solvent to the composite material is a sheet. Since the strength is high and the handling property is excellent, the productivity can be improved in this respect.
 また、本発明のセラミックセパレータは、接着性を備えているので、正極層と負極層をセパレータを介して積層して積層体を形成するにあたって、セパレータ層以外に、別途接着層を形成する必要がないため、生産工程を簡略化して、生産性を向上させることができる。 In addition, since the ceramic separator of the present invention has adhesiveness, it is necessary to separately form an adhesive layer in addition to the separator layer when forming a laminate by laminating the positive electrode layer and the negative electrode layer via the separator. Therefore, the production process can be simplified and the productivity can be improved.
 また、本発明の蓄電デバイス用素子は、セパレータと接する正極層と負極層とがセパレータに直接接合された構造を有する積層体を構成するセパレータとして、上述のような特徴を有する本発明の蓄電デバイス用セパレータを用いているので、セパレータのイオン抵抗が低く、高性能で、信頼性が高く、生産性に優れた蓄電デバイス用素子を得ることができる。 The element for an electricity storage device of the present invention is the electricity storage device of the present invention having the above-described characteristics as a separator constituting a laminate having a structure in which a positive electrode layer and a negative electrode layer in contact with the separator are directly bonded to the separator. Therefore, an energy storage device element having low separator ion resistance, high performance, high reliability, and excellent productivity can be obtained.
 また、本発明の蓄電デバイスは、正極層と負極層とがセパレータを介して積層され、かつ、セパレータと接する正極層と負極層とがセパレータに直接接合された構造を有する積層体と、電解液とを、パッケージに収容した蓄電デバイスにおいて、セパレータとして、本発明(請求項1)の蓄電デバイス用セパレータを用いているので、セパレータのイオン抵抗が低く、高性能で、信頼性が高く、生産性に優れた蓄電デバイスを得ることができる。 In addition, an electricity storage device of the present invention includes a laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and a positive electrode layer and a negative electrode layer in contact with the separator are directly bonded to the separator, and an electrolytic solution In the electricity storage device accommodated in the package, the separator for the electricity storage device of the present invention (Claim 1) is used as the separator. Therefore, the separator has low ionic resistance, high performance, high reliability, and productivity. Can be obtained.
 また、本発明の蓄電デバイス用素子の製造方法は、正極層用材料と負極層用材料とを、セパレータとなる材料(セパレータ用材料)であって、接着層としても機能するセパレータ用材料を介して対向するように配置し、加熱・加圧することにより、正極層と、負極層と、セパレータとが一体化した積層体を形成するとともに、セパレータ用材料として、本発明(請求項1)の蓄電デバイス用セパレータが形成されるようなセパレータ用材料を用いるようにしているので、セパレータのイオン抵抗が低く、高性能で、信頼性の高い、蓄電デバイス用素子を効率よく製造することができる。 In addition, the method for manufacturing an element for an electricity storage device of the present invention comprises a material for a positive electrode layer and a material for a negative electrode layer that are separator materials (separator materials), and the separator material that also functions as an adhesive layer. To form a laminate in which the positive electrode layer, the negative electrode layer, and the separator are integrated, and as the separator material, the electricity storage device of the present invention (Claim 1). Since a separator material that can form a device separator is used, it is possible to efficiently manufacture a power storage device element having low separator ion resistance, high performance, and high reliability.
 また、本発明の蓄電デバイスの製造方法は、正極層用材料と負極層用材料とを、セパレータとなる材料(セパレータ用材料)であって、接着層としても機能するセパレータ用材料を介して対向するように配置し、加熱・加圧することにより、正極層と、負極層と、セパレータとが一体化した積層体を形成するとともに、セパレータ用材料として、本発明(請求項1)の蓄電デバイス用セパレータが形成されるようなセパレータ用材料を用いており、さらに、得られた積層体を、電解液とともに、パッケージ内に収容し、電解液を積層体の外部から内部へ浸透・含浸させるようにしているので、セパレータのイオン抵抗が低く、高性能で、信頼性の高い、蓄電デバイスを効率よく製造することができる。 In the method for manufacturing an electricity storage device of the present invention, a positive electrode layer material and a negative electrode layer material are opposed to each other through a separator material that also functions as an adhesive layer. The laminated body in which the positive electrode layer, the negative electrode layer, and the separator are integrated is formed by arranging and heating and pressurizing as described above, and the separator material is the power storage device of the present invention (Claim 1). The separator material that forms the separator is used, and the obtained laminate is housed in the package together with the electrolyte, and the electrolyte is permeated and impregnated from the outside to the inside of the laminate. Therefore, it is possible to efficiently manufacture an electricity storage device with low separator ion resistance, high performance, and high reliability.
 なお、電解液を積層体の外部から内部へ浸透・含浸させることができるのは、上記セパレータ用材料を用いて、必要な電解液含液性を有するセパレータを形成するようにしていることによる。 The reason why the electrolytic solution can be permeated and impregnated from the outside to the inside of the laminate is that the separator material is used to form a separator having a necessary electrolyte solution-containing property.
本発明の一実施例(実施例1)にかかる蓄電デバイス(リチウムイオン二次電池)を示す正面断面図である。It is front sectional drawing which shows the electrical storage device (lithium ion secondary battery) concerning one Example (Example 1) of this invention. 本発明の他の実施例(実施例2)にかかる蓄電デバイス(電気二重層キャパシタ)を示す正面断面図である。It is front sectional drawing which shows the electrical storage device (electric double layer capacitor) concerning the other Example (Example 2) of this invention. 本発明の実施例における、蓄電デバイスの製造方法の一工程を示す断面図であり、(a)は基材PETフィルム上に形成された正極集合シートを吸着盤に吸引・固定する工程を示し、(b)は正極集合シートの一ブロックを打ち抜いて吸着盤に吸引・固定して基材PETフィルムから剥離する工程を示し、(c)は吸着盤に吸引・固定した正極集合シートを別の正極集合シートと貼り合わせる工程を示し、(d)は2つの正極集合シートを正極集電体層が対向するように貼り合わせた正極・正極一体化シートの断面を示し、(e)は2つの負極集合シートを負極集電体層が対向するように貼り合わせた負極・負極一体化シートの断面を示す図である。In the embodiment of the present invention, it is a cross-sectional view showing one step of a method for manufacturing an electricity storage device, (a) shows a step of sucking and fixing a positive electrode assembly sheet formed on a substrate PET film to an adsorption disk, (b) shows a step of punching out one block of the positive electrode assembly sheet and sucking and fixing it to the suction plate and peeling it from the base PET film. (c) shows a step of removing the positive electrode assembly sheet sucked and fixed to the suction plate to another positive electrode. (D) shows a cross section of a positive and positive electrode integrated sheet obtained by bonding two positive electrode aggregate sheets so that the positive electrode current collector layers face each other, and (e) shows two negative electrodes. It is a figure which shows the cross section of the negative electrode / negative electrode integrated sheet which bonded together the aggregate sheet so that the negative electrode collector layer might oppose. 本発明の実施例における、蓄電デバイスの製造方法の一工程を示す断面図であり、(a)は負極一体化シート、正極・正極一体化シート、負極・負極一体化シートを貼り合わせる工程を示す図であり、(b)は正極一体化シートと負極一体化シートの間に、正極・正極一体化シートと負極・負極一体化シートとが交互に積層された積層集合体の断面を示す図である。It is sectional drawing which shows 1 process of the manufacturing method of an electrical storage device in the Example of this invention, (a) shows the process of bonding a negative electrode integrated sheet, a positive electrode / positive electrode integrated sheet, and a negative electrode / negative electrode integrated sheet. (B) is a diagram showing a cross section of a laminated assembly in which a positive electrode / positive electrode integrated sheet and a negative electrode / negative electrode integrated sheet are alternately laminated between a positive electrode integrated sheet and a negative electrode integrated sheet. is there. 従来の蓄電デバイス(電気二重層キャパシタ)を示す断面図である。It is sectional drawing which shows the conventional electrical storage device (electrical double layer capacitor).
 以下に本発明の実施の形態を示して、本発明の特徴とするところを詳しく説明する。 Hereinafter, embodiments of the present invention will be shown, and features of the present invention will be described in detail.
 まず、本発明の大きな特徴は以下の点にある。
 ハイパワー系の蓄電デバイスに用いられるセパレータは、低イオン抵抗であることが要求される。そのためにはセパレータを高PVCするとともに、薄膜とすることが必要になる。
 一方でセパレータを接着層として積層するようにした積層型蓄電デバイスにおいては、積層後の加熱加圧の工程においてセパレータが接着層としても機能することが必要になる。そして、そのためには、低PVCとすることが望ましい。
 このようにPVCという観点では、低イオン抵抗と接着性とはトレードオフの関係になる。
First, the major features of the present invention are as follows.
A separator used for a high-power electricity storage device is required to have low ionic resistance. For that purpose, it is necessary to make the separator high PVC and to make it a thin film.
On the other hand, in a stacked electricity storage device in which separators are stacked as an adhesive layer, it is necessary that the separator also function as an adhesive layer in the heating and pressurizing step after stacking. For that purpose, it is desirable to use a low PVC.
Thus, in terms of PVC, low ionic resistance and adhesiveness are in a trade-off relationship.
 本発明の特徴は、低イオン抵抗と接着性を両立する領域の範囲を、Λ(=PVC/CPVC)というパラメータにより規定したことにある。
 さらに、本発明のセパレータは、低イオン抵抗性と接着性を両立させるとともに、電解液の浸透・含浸性をも満足させるようにしたことを特徴としている。
The feature of the present invention resides in that the range of the region that achieves both low ionic resistance and adhesiveness is defined by the parameter Λ (= PVC / CPVC).
Furthermore, the separator of the present invention is characterized in that both low ion resistance and adhesiveness are satisfied, and the penetration and impregnation properties of the electrolytic solution are also satisfied.
 低イオン抵抗を実現するためにはセパレータを薄膜化する必要がある。しかし、セパレータシートが電解液と共存する状態ではセパレータシートの強度が極端に低下するため、セパレータの膜厚を薄くすることができなかった。これに対し、電解液の浸透性、含浸性を確保することが可能な領域をΛ(=PVC/CPVC)というパラメータにより規定した本発明のセパレータは、電解液の浸透性、含浸性に優れているため、電解液なしの強度の大きい状態でセパレータシートを取り扱い、積層体を形成した後に電解液を含浸させることができるため、セパレータを薄膜化することが可能になる。なお、電解液の浸透性、含浸性は高PVCにするほどよくなる傾向がある。 In order to achieve low ionic resistance, it is necessary to make the separator thin. However, when the separator sheet coexists with the electrolytic solution, the strength of the separator sheet is extremely reduced, and thus the thickness of the separator cannot be reduced. On the other hand, the separator of the present invention in which the region where the permeability and impregnation of the electrolyte can be secured is defined by the parameter Λ (= PVC / CPVC) is excellent in the permeability and impregnation of the electrolyte. Therefore, the separator sheet can be handled in a state of high strength without an electrolytic solution and impregnated with the electrolytic solution after forming a laminate, so that the separator can be thinned. In addition, there exists a tendency for the permeability and impregnation property of electrolyte solution to become so high that it is made high PVC.
 上述のような課題を解決するためになされた本発明の蓄電デバイス用セパレータは、蓄電デバイス(例えば、リチウムイオン2次電池)内において化学的および電気化学的に安定な無機微粒子が、同じく蓄電デバイス内において化学的および電気化学的に安定な有機バインダで結着された複合材料を含む材料から形成されるものであることを特徴としている。 The separator for an electricity storage device of the present invention, which has been made to solve the above-mentioned problems, is the same as the electricity storage device in that the inorganic fine particles that are chemically and electrochemically stable in the electricity storage device (for example, a lithium ion secondary battery) It is characterized in that it is formed from a material including a composite material bound with a chemically and electrochemically stable organic binder.
 本発明の蓄電デバイス用セパレータを構成する無機微粒子としては、例えばシリカ、アルミナ、チタニア、チタン酸バリウムなどの酸化物、窒化ケイ素、窒化アルミニウムなどの窒化物、が挙げられる。
 また有機バインダとしてはポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF-HFP)などが挙げられる。
Examples of the inorganic fine particles constituting the power storage device separator of the present invention include oxides such as silica, alumina, titania and barium titanate, and nitrides such as silicon nitride and aluminum nitride.
Examples of the organic binder include polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP), and the like.
 また、複合材料としては、式(1):
 PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
 (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
 で表される顔料体積濃度PVC(Pigment Volume Concentration)と、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVC(Critical Pigment Volume Concentration)との比Λが、下記の式(2):
 0.7≦Λ≦1.15 ……(2)
の要件を満たすものが用いられる。
Moreover, as a composite material, Formula (1):
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
(However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
The ratio Λ between the pigment volume concentration PVC (Pigment Volume Concentration) represented by the formula (2) and the critical pigment volume concentration CPVC (Critical Pigment Volume Concentration), which is the maximum pigment volume concentration at which voids are considered to be zero, is ):
0.7 ≦ Λ ≦ 1.15 (2)
Those satisfying the above requirements are used.
 なお、Λとは、"Reduced Pigment Volume Concentration"のことであり、下記の式(3)で表される。
  Λ=PVC/CPVC ……(3)
Note that Λ is “Reduced Pigment Volume Concentration” and is represented by the following equation (3).
Λ = PVC / CPVC (3)
 また、上記空隙は以下のように密度法により評価した。
 所定のサイズに打ち抜いた試料の厚みおよび重量を測定し、重量を体積で除することで密度を算出した。そして密度の実測値と、複合材料シートの組成から計算される理論的な密度より、次式により空隙率を算出した。
(空隙率)={1-(密度の実測値)/(理論的な密度)}×100
The voids were evaluated by the density method as follows.
The thickness and weight of a sample punched into a predetermined size were measured, and the density was calculated by dividing the weight by the volume. Then, the porosity was calculated by the following formula from the measured density value and the theoretical density calculated from the composition of the composite material sheet.
(Void ratio) = {1− (actual value of density) / (theoretical density)} × 100
 なお、複合材料は、無機微粒子と、有機バインダと、溶剤とを、例えばボールミルなどを用いて調製したスラリーを、ドクターブレード法などで基材上に流延し、乾燥することにより得られる。 The composite material can be obtained by casting a slurry prepared by using an inorganic fine particle, an organic binder, and a solvent using, for example, a ball mill on a base material by a doctor blade method or the like and drying the slurry.
 以下、本発明の蓄電デバイス用セパレータおよびそれを用いた電池の実施例を示して本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail by showing examples of the separator for an electricity storage device of the present invention and a battery using the same.
 [1]蓄電デバイス用セパレータの作製と評価
 複合材料を構成する無機微粒子として球状シリカ粉末2種(平均粒子径0.3μmおよび3.4μm)を用意した。
 また、複合材料を構成する有機バインダとして、ポリフッ化ビニリデン(PVDF)を用意した。
[1] Production and Evaluation of Power Storage Device Separator Two types of spherical silica powders (average particle diameters of 0.3 μm and 3.4 μm) were prepared as inorganic fine particles constituting the composite material.
Further, polyvinylidene fluoride (PVDF) was prepared as an organic binder constituting the composite material.
 そして、以下に説明する方法により、蓄電デバイス(積層体)を形成した段階における、セパレータのPVCが、20,25,30,35,40,45,50,52.5,55,57.5,60,65,70,75%となるような複合材料シートを作製した。 And the PVC of a separator in the step which formed the electrical storage device (laminated body) by the method demonstrated below is 20, 25, 30, 35, 40, 45, 50, 52.5, 55, 57.5, Composite material sheets that would be 60, 65, 70, and 75% were prepared.
 500mlのポットに無機微粒子と、溶剤であるMEKを投入した。さらに5mmφのPSZ製粉砕メディアを入れ、転動ボールミルを用いて4時間混合し、分散を行った。その後、ポリフッ化ビニリデン(PVDF)N-メチル-2-ピロリドン(NMP)溶液を所定量を添加して、転動ボールミルを用いて2時間混合しスラリーを調製した。 Into a 500 ml pot, inorganic fine particles and MEK as a solvent were charged. Furthermore, PSZ grinding media having a diameter of 5 mmφ were put, and mixed for 4 hours using a rolling ball mill to perform dispersion. Thereafter, a predetermined amount of a polyvinylidene fluoride (PVDF) N-methyl-2-pyrrolidone (NMP) solution was added and mixed for 2 hours using a rolling ball mill to prepare a slurry.
 このスラリーをPET(ポリエチレンテレフタレート)フィルム上にドクターブレード法にて塗工した後、乾燥して厚みが25μmの複合材料シート(本発明の蓄電デバイス用セパレータに相当するシート)を得た。 The slurry was coated on a PET (polyethylene terephthalate) film by a doctor blade method and then dried to obtain a composite material sheet having a thickness of 25 μm (a sheet corresponding to the separator for an electricity storage device of the present invention).
 それから、複合材料シート(以下、「セパレータシート」ともいう)を評価するため、臨界顔料体積濃度CPVC、加熱加圧時の接着性、電解液の含液性、イオン抵抗を調べた。なお、イオン抵抗は、後述のように、この実施例のセパレータシートを用いて電池(リチウムイオン二次電池)を作製し、その電池についてイオン抵抗を調べた。 Then, in order to evaluate the composite material sheet (hereinafter also referred to as “separator sheet”), the critical pigment volume concentration CPVC, the adhesiveness during heating and pressing, the liquid content of the electrolytic solution, and the ionic resistance were examined. As will be described later, for the ionic resistance, a battery (lithium ion secondary battery) was produced using the separator sheet of this example, and the ionic resistance of the battery was examined.
 (1)臨界顔料体積濃度CPVC(密度法)
 粒子径0.3μmの球状シリカ粉末を用いたセパレータシートのCPVCは45%であった。
 また、粒子径3.4μmの球状シリカ粉末を用いたセパレータシートのCPVCは50%であった。
(1) Critical pigment volume concentration CPVC (density method)
The CPVC of the separator sheet using spherical silica powder with a particle size of 0.3 μm was 45%.
The CPVC of the separator sheet using spherical silica powder with a particle size of 3.4 μm was 50%.
 (2)加熱加圧時の接着性
 プレス装置にシートの乾燥表面が接着面となるように設置し、150℃、20MPaで2分間加熱加圧してセパレータシートどうしを接合した。このときのセパレータシート間の剥離力が1.0mN/mm以上のものを接着性良好とした。
(2) Adhesiveness at the time of heating and pressing The separator sheets were bonded to each other by being heated and pressed at 150 ° C. and 20 MPa for 2 minutes in a press apparatus so that the dry surface of the sheet becomes an adhesive surface. At this time, a sheet having a peeling force between the separator sheets of 1.0 mN / mm or more was regarded as having good adhesion.
 粒子径0.3μmの球状シリカ粉末を用いたセパレータシートでは、PVCが52.5%(Λ=1.17)以下のものは接着性が良好であったが、PVCが55%(Λ=1.22)以上のものは接着性が不良であった。 In the separator sheet using the spherical silica powder having a particle diameter of 0.3 μm, those having a PVC of 52.5% (Λ = 1.17) or less had good adhesion, but the PVC was 55% (Λ = 1). .22) The above materials had poor adhesion.
 また、粒子径3.4μmの球状シリカ粉末を用いたセパレータシートでは、PVCが57.5%(Λ=1.15)以下のものは接着性が良好であったが、PVCが60%(Λ=1.2)以上のものは接着性が不良であった。 In the separator sheet using the spherical silica powder having a particle diameter of 3.4 μm, the PVC having 57.5% (Λ = 1.15) or less had good adhesion, but the PVC was 60% (Λ = 1.2) The adhesiveness of the above was poor.
 (3)電解液の含液性
 電解液としては以下のものを調製し含液性試験に用いた。
(非水系電解液の作製)
 非水系溶媒として、環状カーボネートであるエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した混合溶媒を用い、この混合溶媒に電解質のLiPF6を1mol・l-1の濃度になるように溶解させて、非水電解液を作製した。
(3) Liquid content of electrolyte solution The following was prepared as an electrolyte solution and used for the liquid content test.
(Preparation of non-aqueous electrolyte)
As a non-aqueous solvent, a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC), which are cyclic carbonates, were mixed at a volume ratio of 3: 7 was used. In this mixed solvent, 1 mol·l −1 of electrolyte LiPF 6 was used. A non-aqueous electrolyte solution was prepared by dissolving to a concentration of.
 そして、1cm×1cm×25μm(厚み)の、乾燥済みのセパレータシートを25℃にて電解液に浸漬し、24時間後の重量増加を測定することにより含液性を評価した。10%以上質量増加したセパレータシートを含液性が良好であるとした。 Then, a dried separator sheet of 1 cm × 1 cm × 25 μm (thickness) was immersed in an electrolytic solution at 25 ° C., and the liquid content was evaluated by measuring the weight increase after 24 hours. A separator sheet having a mass increase of 10% or more was considered to have good liquid-containing properties.
 粒子径0.3μmの球状シリカ粉末を用いたセパレートシートでは、PVCが30%(Λ=0.67)以上のものは含液性が良好であったが、PVCが25%(Λ=0.56)以下のものは含液性が不良であった。 In a separate sheet using a spherical silica powder having a particle diameter of 0.3 μm, those having a PVC of 30% (Λ = 0.67) or more had a good liquid content, but the PVC was 25% (Λ = 0. 56) The following liquids had poor liquid-containing properties.
 また、粒子径3.4μmの球状シリカ粉末を用いたシートでは、PVCが35%(Λ=0.7)以上のものは含液性が良好であったが、PVCが30%(Λ=0.6)以下のもの含液性が不良であった。 Moreover, in the sheet using the spherical silica powder having a particle diameter of 3.4 μm, the liquid content was good when the PVC was 35% (Λ = 0.7) or more, but the PVC was 30% (Λ = 0). .6) The following liquid-containing properties were poor.
 (4)イオン抵抗
 以下のようにしてセパレータを内蔵した電池を作製し、イオン抵抗を評価した。
(4) Ion resistance A battery with a built-in separator was produced as follows, and the ionic resistance was evaluated.
 [2]電池(リチウムイオン二次電池)の作製と評価
 (1)正極の作製
 正極活物質としてLiMn24で表されるリチウムマンガン複合酸化物(LMO)を用い、この正極活物質と、導電助剤の炭素材料と、結着剤のポリフッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロリドン(NMP)溶液とを、正極活物質と導電助剤と結着剤の重量比が88:6:6になるように配合し、混練して正極合剤スラリーを作製した。
[2] Production and Evaluation of Battery (Lithium Ion Secondary Battery) (1) Production of Positive Electrode Using a lithium manganese composite oxide (LMO) represented by LiMn 2 O 4 as a positive electrode active material, The weight ratio of the positive electrode active material, the conductive auxiliary agent and the binder to the carbon material of the conductive auxiliary agent and the N-methyl-2-pyrrolidone (NMP) solution in which the polyvinylidene fluoride (PVDF) binder is dissolved. Was mixed so as to be 88: 6: 6, and kneaded to prepare a positive electrode mixture slurry.
 この正極合剤スラリーをアルミニウム箔からなる正極集電体の上に塗布したものを乾燥させて圧延ローラーにより圧延し、これに集電タブを取り付けて正極を作製した。
 このときの単位面積あたりの正極合材の目付け量を14.0mg・cm-2、充填密度を2.7g・ml-1とした。この正極の単位容量を、電解液の電解質として1mol・l-1のLiPF6、溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した混合溶媒を用い、対極にリチウム金属を用いて、3.0-4.3Vの範囲にて測定した。その結果、1g当たり110mAhの単位容量を得た。
What apply | coated this positive mix slurry on the positive electrode electrical power collector which consists of aluminum foil was dried, and it rolled with the rolling roller, and the current collection tab was attached to this, and the positive electrode was produced.
At this time, the basis weight of the positive electrode mixture per unit area was 14.0 mg · cm −2 , and the packing density was 2.7 g · ml −1 . The unit capacity of this positive electrode is 1 mol·l −1 LiPF 6 as the electrolyte of the electrolyte, and a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 as the solvent, Measurement was performed in the range of 3.0 to 4.3 V using lithium metal as a counter electrode. As a result, a unit capacity of 110 mAh per 1 g was obtained.
 (2)負極の作製
 負極活物質としてLi4Ti512で表されるスピネル型のリチウムチタン複合酸化物と、導電助剤のカーボンと、結着剤のポリフッ化ビニリデン(PVDF)を溶解させたNMP溶液とを、負極活物質と導電助剤と結着剤の重量比が93:3:4になるように配合し、混練して負極合剤スラリーを作製した。
(2) Preparation of negative electrode As a negative electrode active material, a spinel-type lithium titanium composite oxide represented by Li 4 Ti 5 O 12 , carbon as a conductive additive, and polyvinylidene fluoride (PVDF) as a binder are dissolved. The NMP solution was blended so that the weight ratio of the negative electrode active material, the conductive additive and the binder was 93: 3: 4, and kneaded to prepare a negative electrode mixture slurry.
 この負極合剤スラリーをアルミニウム箔からなる負極集電体の上に塗布したものを乾燥させて圧延ローラーにより圧延し、これに集電タブを取り付けて負極を作製した。
 このときの単位面積あたりの正極合材の目付け量を13.5mg・cm-2、充填密度を2.1g・ml-1とした。この正極の単位容量を、電解液の電解質として1mol・l-1のLiPF6、溶媒としてエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した混合溶媒を用い、対極にリチウム金属を用いて、1.0-2.0Vの範囲にて測定した。その結果、1g当たり165mAhの単位容量を得た。 
What apply | coated this negative mix slurry on the negative electrode electrical power collector which consists of aluminum foil was dried, and it rolled with the rolling roller, and attached the current collection tab to this, and produced the negative electrode.
The basis weight of the positive electrode mixture per unit area at this time was 13.5 mg · cm −2 and the packing density was 2.1 g · ml −1 . The unit capacity of this positive electrode is 1 mol·l −1 LiPF 6 as the electrolyte of the electrolyte, and a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 3: 7 as the solvent, Measurement was performed in the range of 1.0 to 2.0 V using lithium metal as a counter electrode. As a result, a unit capacity of 165 mAh per 1 g was obtained.
 (3)非水系電解液の作製
 非水系溶媒として、環状カーボネートであるエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した混合溶媒を用い、この混合溶媒に電解質のLiPF6を1mol・l-1の濃度になるように溶解させて、非水電解液を作製した。
(3) Preparation of non-aqueous electrolyte solution As a non-aqueous solvent, a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC), which are cyclic carbonates, are mixed at a volume ratio of 3: 7 is used. LiPF 6 was dissolved to a concentration of 1 mol·l −1 to prepare a non-aqueous electrolyte.
 (4)電池の作製
 前記(a),(b)で作製した正極(正極層)と負極(負極層)の間に、粒子径3.4μmの球状シリカ粉末(CPVC=50%)を用いたPVC20~75%のセパレータシートを介在させ、熱圧着して積層体を形成した。なお、熱圧着は、加熱板の温度を150℃、加圧の圧力を20MPaとし、加圧時間はそれぞれ30秒とした。この積層体を、アルミニウムを中間層として含むラミネートフィルムからなる外包材の内部に収納した。
 その後、前記(c)で作製した非水系電解液を外包材の内部に注入した後、外包材の開口部を封止することにより電池(特性評価用の電池)を得た。この電池について、初期充放電サイクルを行った。
(4) Production of Battery Spherical silica powder (CPVC = 50%) having a particle size of 3.4 μm was used between the positive electrode (positive electrode layer) and the negative electrode (negative electrode layer) produced in the above (a) and (b). A laminate was formed by thermocompression bonding with a separator sheet of 20 to 75% PVC. In thermocompression bonding, the temperature of the heating plate was 150 ° C., the pressure of the pressurization was 20 MPa, and the pressurization time was 30 seconds. This laminate was housed in an outer packaging material made of a laminate film containing aluminum as an intermediate layer.
Thereafter, the nonaqueous electrolytic solution prepared in (c) was poured into the outer packaging material, and then the opening of the outer packaging material was sealed to obtain a battery (a battery for characteristic evaluation). This battery was subjected to an initial charge / discharge cycle.
 すなわち、25℃にて、充電電流を4.8mA(=0.4C)として、電圧が2.75Vになるまで各電池に充電した後、さらに電圧を2.75Vに維持した状態で充電電流を減衰させ、充電電流が1/50Cになるまで各電池に充電した。10分の放置後、放電電流を4.8mA、終止電圧を1.25Vの定電流放電を実施した。充放電電流値を12mA(=1C)にし、3サイクルの充放電を行った後、初期充放電サイクルと同一の条件で1サイクルの充放電を行い、この時の放電容量を1Cとして算出した。
 この電池の特性として、以下の項目を評価した。
That is, at 25 ° C., the charging current was 4.8 mA (= 0.4 C), and after charging each battery until the voltage reached 2.75 V, the charging current was further maintained with the voltage maintained at 2.75 V. Each battery was charged until it was attenuated and the charging current reached 1 / 50C. After standing for 10 minutes, a constant current discharge with a discharge current of 4.8 mA and a final voltage of 1.25 V was performed. The charge / discharge current value was set to 12 mA (= 1C), and after 3 cycles of charge / discharge, 1 cycle of charge / discharge was performed under the same conditions as the initial charge / discharge cycle, and the discharge capacity at this time was calculated as 1C.
The following items were evaluated as the characteristics of the battery.
 (5)SOC(充電率)60%での25℃入出力DCR測定
 25℃にて、充電電流を4.8mAとして得られた1C容量を100%としたとき、その60%の容量を各電池に充電した。
 充電電流を12mA(=1C)、上限電圧を2.75Vとして10秒間各電池に充電し、10分放置した。その後、放電電流を12mA、下限電圧を1.25Vとして10秒間各電池を放電し、10分放置した。
 続いて、充放電電流値を24mA(=2C)、72mA(=6C)、120mA(=10C)に変更していき、10秒間充放電を行った。そうして得られた、各充電電流値に対する10秒後の電圧値から、各電池の入力DCRを算出した。また同様に、各放電電流値に対する10秒後の電圧値から、各電池の出力DCRを算出した。
 結果を表1に示す。
(5) 25 ° C. input / output DCR measurement with SOC (charge rate) of 60% When 1C capacity obtained at 25 ° C. with a charging current of 4.8 mA is taken as 100%, the capacity of 60% is set for each battery. Charged.
Each battery was charged for 10 seconds with a charging current of 12 mA (= 1 C) and an upper limit voltage of 2.75 V, and left for 10 minutes. Thereafter, each battery was discharged for 10 seconds at a discharge current of 12 mA and a lower limit voltage of 1.25 V, and left for 10 minutes.
Subsequently, the charge / discharge current value was changed to 24 mA (= 2C), 72 mA (= 6 C), and 120 mA (= 10 C), and charge / discharge was performed for 10 seconds. The input DCR of each battery was calculated from the voltage value obtained after 10 seconds for each charging current value. Similarly, the output DCR of each battery was calculated from the voltage value after 10 seconds for each discharge current value.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、Λが0.7以上(PVCが35%以上)の条件では、低抵抗となり、電池に充電することが可能であることが確認された。ただし、Λ0.7未満(PVC35%未満)の場合には、樹脂リッチで抵抗が大きくなるため、電池に充電をすることができなかった。 As shown in Table 1, it was confirmed that when Λ was 0.7 or more (PVC was 35% or more), the resistance was low and the battery could be charged. However, in the case of less than Λ0.7 (less than 35% PVC), the battery was not able to be charged because the resistance was increased due to the resin richness.
 なお、表1に示すように、Λ1.2以上(PVC60%以上)の場合にも、低抵抗で、電池に充電することは可能であるが、上述のように、Λが1.15を超えると、接着性が低下するため、好ましくない。 As shown in Table 1, even when Λ1.2 or more (PVC 60% or more), the battery can be charged with low resistance. However, as described above, Λ exceeds 1.15. And, since adhesiveness falls, it is not preferable.
 上述の評価結果より、Λを1.15以下とすることにより、加熱加圧接着性に優れる蓄電デバイス用セパレータが得られることが確認された。
 またΛを0.7以上とすることにより、電解液含液性に優れ、低イオン抵抗の蓄電デバイス用セパレータが得られることが確認された。
From the above evaluation results, it was confirmed that by setting Λ to 1.15 or less, a power storage device separator having excellent heat and pressure adhesion can be obtained.
It was also confirmed that by setting Λ to 0.7 or more, a separator for an electricity storage device having excellent electrolyte solution-containing properties and low ionic resistance can be obtained.
 したがって、Λを0.7~1.15の範囲とすることにより、接着性、電解液含液性、低イオン抵抗性のいずれの特性にも優れる蓄電デバイス用セパレータを得ることができる。
 また、本発明のセパレータは、電解液含液性に優れていることから、電解液を後添加とすることにより、電解液を含浸させない状態の、シート強度の大きいセパレータシートを積層して、正極層と負極層がセパレータを介して積層された構造を有する積層体(蓄電デバイス用素子)を効率よく、確実に得ることが可能になる。さらに、本発明の蓄電デバイス用セパレータは積層体を形成する工程で、接着層としても機能させることができるため、薄層、かつ、高PVCの低抵抗セパレータが採用された積層型蓄電デバイスを、積層工法により効率よく製造することが可能になる。
Therefore, by setting Λ in the range of 0.7 to 1.15, it is possible to obtain a power storage device separator that is excellent in any of adhesive properties, electrolyte solution-containing properties, and low ion resistance properties.
In addition, since the separator of the present invention is excellent in electrolyte solution-containing properties, a separator sheet having a high sheet strength that is not impregnated with the electrolyte solution is laminated by adding the electrolyte solution after the addition. It becomes possible to efficiently and surely obtain a laminate (element for an electricity storage device) having a structure in which a layer and a negative electrode layer are laminated via a separator. Furthermore, since the separator for an electricity storage device of the present invention can also function as an adhesive layer in the step of forming a laminate, a laminate type electricity storage device employing a thin layer and a low-resistance separator of high PVC, It becomes possible to manufacture efficiently by the lamination method.
 なお、上述の特性に評価に供した電池は、あくまでも特性評価用の電池であるが、本発明を適用して、例えば、図1に示すような構造を有するリチウムイオン二次電池Aを構成することができる。 The battery subjected to the evaluation for the above characteristics is a battery for characteristic evaluation to the last, but the present invention is applied to form, for example, a lithium ion secondary battery A having a structure as shown in FIG. be able to.
 このリチウムイオン二次電池Aは、図1に示すように、正極層21と負極層31とをセパレータ層11を介して積層した積層体1と、電解液14が、ラミネートシートからなる外包材15に収容されているとともに、アルミニウム箔などからなる複数の集電部材13を介して正極層21、負極層31と接続した正極端子121aおよび負極端子131aが外包材15の外周縁から導出された構造を備えている。 As shown in FIG. 1, the lithium ion secondary battery A includes a laminate 1 in which a positive electrode layer 21 and a negative electrode layer 31 are laminated via a separator layer 11, and an outer packaging material 15 in which an electrolytic solution 14 is a laminate sheet. And the positive electrode layer 121, the positive electrode terminal 121 a and the negative electrode terminal 131 a connected to the negative electrode layer 31 through a plurality of current collecting members 13 made of aluminum foil or the like are led out from the outer peripheral edge of the outer packaging material 15. It has.
 そして、積層体1は、具体的には、例えば、アルミニウム箔上にリチウム複合酸化物を含む合剤層を正極活物質層として設けてなる正極層21と、銅箔上にグラファイトを含む合剤層を負極活物質層として設けてなる負極層31とを、セパレータ層11を介して交互に複数積層することにより形成されており、セパレータ層11としては、本発明の要件を備えたセパレータ(蓄電デバイス用セパレータ)が用いられている。 The laminate 1 specifically includes, for example, a positive electrode layer 21 in which a mixture layer containing a lithium composite oxide is provided on an aluminum foil as a positive electrode active material layer, and a mixture containing graphite on a copper foil. A plurality of negative electrode layers 31 each having a layer as a negative electrode active material layer are alternately stacked via a separator layer 11, and the separator layer 11 is a separator (storage battery) having the requirements of the present invention. Device separators) are used.
 また、電解液14としては、例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiPF6を溶解させた非水電解液が用いられている。 As the electrolytic solution 14, for example, a nonaqueous electrolytic solution in which 1 mol / l LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate is used.
 さらに、外包材15としては、例えば、樹脂からなる外側の保護層と、アルミニウムからなる中間のガスバリア層と、樹脂からなる内側の接着層とを積層して一体化したアルミニウムラミネートフィルムからなる外包材が用いられている。 Further, as the outer packaging material 15, for example, an outer packaging material made of an aluminum laminate film in which an outer protective layer made of resin, an intermediate gas barrier layer made of aluminum, and an inner adhesive layer made of resin are laminated and integrated. Is used.
 図1に示すような構成を備えたリチウムイオン二次電池Aにおいては、セパレータ層として本発明の要件を満たす蓄電デバイス用セパレータが用いられているため、生産性が高く、低コストで、イオン抵抗の低い積層型のリチウムイオン二次電池を得ることができる。 In the lithium ion secondary battery A having the configuration shown in FIG. 1, since the separator for an electricity storage device that satisfies the requirements of the present invention is used as the separator layer, the productivity is high, the cost is low, and the ion resistance A laminated lithium ion secondary battery having a low level can be obtained.
 図2は、本発明の実施例(実施例2)にかかる電気二重層キャパシタを示す正面断面図である。
 この実施例2の電気二重層キャパシタBは、図2に示すように、正極集電体層21aの両面に正極活物質21bを設けた正極層21と、負極集電体層31aの両面に負極活物質31bを設けた負極層31とを、セパレータ(層)11を介して積層することにより形成され、第1の端面2および第2の端面3に、正極外部端子電極21tおよび負極外部端子電極31tが配設された積層体1が、電解液とともに、蓋体50a、ベース部50bからなるパッケージ50に収容され、かつ、パッケージ50には、両端から下面側に回り込むように、正極パッケージ電極41および負極パッケージ電極42が形成された構造を有している。
FIG. 2 is a front sectional view showing an electric double layer capacitor according to an example (Example 2) of the present invention.
As shown in FIG. 2, the electric double layer capacitor B of Example 2 includes a positive electrode layer 21 provided with a positive electrode active material 21b on both surfaces of a positive electrode current collector layer 21a, and a negative electrode on both surfaces of a negative electrode current collector layer 31a. A negative electrode layer 31 provided with an active material 31b is laminated by way of a separator (layer) 11, and a positive external terminal electrode 21t and a negative external terminal electrode are formed on the first end surface 2 and the second end surface 3, respectively. The laminated body 1 on which 31t is disposed is housed in the package 50 including the lid 50a and the base portion 50b together with the electrolytic solution, and the positive electrode package electrode 41 is provided in the package 50 so as to wrap around the lower surface from both ends. And the negative electrode package electrode 42 is formed.
 そして、セパレータ(層)11としては、無機微粒子であるシリカと、有機バインダとを含む複合材料からなり、そのPVCが50%、CPVCが45%で、Λが1.11の、本発明の要件を備えた蓄電デバイス用セパレータが用いられている。
 以下に、この電気二重層キャパシタBの製造方法について説明する。
The separator (layer) 11 is made of a composite material containing silica, which is inorganic fine particles, and an organic binder, the PVC is 50%, the CPVC is 45%, and Λ is 1.11. The separator for electrical storage devices provided with this is used.
Below, the manufacturing method of this electric double layer capacitor B is demonstrated.
 [工程1(集電体の作製)]
 離形層としてウレタンが塗布された基材PETフィルム上に、厚さ0.5μmのアルミニウム層を蒸着により形成した。それから、形成されたアルミニウム層の表面に、スクリーン印刷によりエッチングマスクレジストをパターン塗布し、乾燥した。なお、レジストは関西ペイント製アレスSPRを用いた。
[Step 1 (Preparation of current collector)]
An aluminum layer having a thickness of 0.5 μm was formed by vapor deposition on a base material PET film coated with urethane as a release layer. Then, an etching mask resist was applied onto the surface of the formed aluminum layer by screen printing and dried. The resist used was Ares SPR manufactured by Kansai Paint.
 その後、このフィルムを40℃の塩化第二鉄水溶液に浸漬し、アルミニウム層をパターニングした。その後、このフィルムを有機溶剤中に浸漬し、レジストを剥離した後、硫酸とフッ酸の混合水溶液に浸漬して、アルミニウム層表面の酸化層を取り除き、正極集電体層21aを基材PETフィルム100上に形成した(図3(a)参照)。 Thereafter, this film was immersed in an aqueous ferric chloride solution at 40 ° C., and the aluminum layer was patterned. Thereafter, this film is immersed in an organic solvent, the resist is peeled off, and then immersed in a mixed aqueous solution of sulfuric acid and hydrofluoric acid to remove the oxide layer on the surface of the aluminum layer, and the positive electrode current collector layer 21a is formed as a base PET film. 100 (see FIG. 3A).
 [工程2]
 (1)活物質層用スラリーの作製
 活性炭(BET比表面積1668m2/g、平均細孔直径1.83nm、平均粒子径(D50)1.26μm)29.0gと、カーボンブラック(東海カーボン株式会社製「トーカブラック#3855」、BET比表面積90m2/g)2.7gとを秤量して、1000mlのポットに投入し、さらに直径2.0mmのPSZ製粉砕メディアおよび286gの脱イオン水を投入した後、転動ボールミルを用いて150rpmで4時間混合して分散を行った。
 それから、ポットに3.0gのカルボキシメチルセルロース(ダイセル化学工業株式会社製「CMC2260」)と38.8wt%のポリアクリレート樹脂水溶液2.0gを投入し、さらに2時間混合することにより活物質層用スラリーを作製した。
[Step 2]
(1) Preparation of slurry for active material layer 29.0 g of activated carbon (BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 μm), carbon black (Tokai Carbon Co., Ltd.) “Toka Black # 3855”, 2.7 g of BET specific surface area of 90 m 2 / g) was weighed and put into a 1000 ml pot, and PSZ grinding media with a diameter of 2.0 mm and 286 g of deionized water were added. After the addition, the mixture was dispersed by mixing at 150 rpm for 4 hours using a rolling ball mill.
Then, 3.0 g of carboxymethyl cellulose (“CMC2260” manufactured by Daicel Chemical Industries, Ltd.) and 2.0 g of a 38.8 wt% aqueous solution of polyacrylate resin are added to the pot, and further mixed for 2 hours to obtain a slurry for the active material layer. Was made.
 (2)活物質層用スラリーの塗工
 版厚8μmの#500メッシュスクリーン印刷版を使用し、正極集電体層21a上の活物質層塗工部に上記の方法で作製した活物質層用スラリーをスクリーン印刷し、100℃にて30分間乾燥して、厚さ6μmの正極活物質層21bを形成することにより、正極集電体層21aと正極活物質層21bとを備えた正極層21を形成した(図3(a)参照)。
(2) Application of slurry for active material layer Using an # 500 mesh screen printing plate with a plate thickness of 8 μm, for the active material layer produced by the above method on the active material layer coating part on the positive electrode current collector layer 21a The slurry is screen-printed and dried at 100 ° C. for 30 minutes to form a positive electrode active material layer 21b having a thickness of 6 μm, whereby a positive electrode layer 21 including a positive electrode current collector layer 21a and a positive electrode active material layer 21b. (See FIG. 3A).
 なお、正極活物質層21bは、図2に示すように、積層体1の第1の端面2において正極外部端子電極21tに直接接続されないように第1の端面2から所定の距離だけ後退した領域に形成されるようにした。すなわち、活物質層用スラリーを印刷するにあたり、後述の工程6において切断されたときに、その切断面から所定の幅の未塗工領域が形成されるように活物質層用スラリーをスクリーン印刷した。     In addition, as shown in FIG. 2, the positive electrode active material layer 21b is a region that is receded from the first end surface 2 by a predetermined distance so as not to be directly connected to the positive electrode external terminal electrode 21t on the first end surface 2 of the multilayer body 1. To be formed. That is, when printing the active material layer slurry, the active material layer slurry was screen-printed so that an uncoated region having a predetermined width was formed from the cut surface when cut in Step 6 described later. . .
 [工程3]
 (1)セパレータ層用スラリーの作製 500mlのポットにシリカ(電気化学工業(株)製、平均粒子径(D50)0.7μm)を50gと、溶剤としてメチルエチルケトンを50g投入した。さらに直径5mmのPSZ製粉砕メディアを入れ、転動ボールミルを用いて150rpmで16時間混合し、分散を行った。その後、有機バインダ溶液として、ポリフッ化ビニリデン(PVDF)の溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を投入し、転動ボールミルを用いて150rpmで4時間混合し、セパレータ層用スラリーを作製した。
[Step 3]
(1) Preparation of separator layer slurry 50 g of silica (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 μm) and 50 g of methyl ethyl ketone as a solvent were charged into a 500 ml pot. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill. Then, as an organic binder solution, a solution of polyvinylidene fluoride (PVDF) (Kureha L # 1120, molecular weight 280,000, 12 wt% solution) is added and mixed for 4 hours at 150 rpm using a rolling ball mill for separator layer A slurry was prepared.
 (2)セパレータ層用スラリーの塗工
 版厚5μmの#500メッシュスクリーン印刷版を使用し、上記の方法で作製したセパレータ層用スラリーを正極層21上に塗工し、120℃にて30分間乾燥することにより、厚さ3μmのセパレータ(層)11を形成した(図3(a)参照)。
(2) Application of separator layer slurry Using a # 500 mesh screen printing plate having a plate thickness of 5 μm, the separator layer slurry prepared by the above method was applied onto the positive electrode layer 21 and then heated at 120 ° C. for 30 minutes. By drying, a separator (layer) 11 having a thickness of 3 μm was formed (see FIG. 3A).
 以上のようにして、セパレータ層11に複数の正極層21が形成された正極集合シートを基材PETフィルム上に形成した。
 なお、同様にして、このセパレータ層11に複数の正極層21が形成された正極集合シートをもう一枚作製した。
 さらに、同様にして、セパレータ層11に複数の負極層31が形成された負極集合シートを基材PETフィルム上に形成したものを2枚作製した。
As described above, a positive electrode assembly sheet in which a plurality of positive electrode layers 21 were formed on the separator layer 11 was formed on a base material PET film.
Similarly, another positive electrode assembly sheet in which a plurality of positive electrode layers 21 were formed on the separator layer 11 was produced.
Further, similarly, two sheets were produced in which a negative electrode assembly sheet in which a plurality of negative electrode layers 31 were formed on the separator layer 11 was formed on a base PET film.
 [工程4]
 次に、図3(a),(b)に示すように、正極集合シートのブロックを打ち抜いて吸着盤80に吸引・固定した状態で、基材PETフィルム100を剥離した。
[Step 4]
Next, as shown in FIGS. 3 (a) and 3 (b), the base PET film 100 was peeled in a state where the positive electrode assembly sheet block was punched out and sucked and fixed to the suction disk 80.
 [工程5]
 次に、図3(c)に示すように、同様にして準備した基材PETフィルムが剥離された別の正極集合シートの打ち抜きブロックに、吸着盤80に吸引・固定した正極集合シートの打ち抜きブロックを正極集電体層21aどうしが対向するように重ねて配置した。この重ねて配置された正極集合シートの両側から、図示しない加圧板で全面を均等に加圧して、正極集合シートどうしを接合した。このとき、加圧板の温度は150℃、加圧の圧力は20MPa、加圧時間は30秒とした。 
[Step 5]
Next, as shown in FIG. 3 (c), the punching block of the positive electrode assembly sheet sucked and fixed to the suction disk 80 is cut into another punching block of the positive electrode assembly sheet from which the base PET film prepared in the same manner is peeled off. Were stacked so that the positive electrode current collector layers 21a face each other. The entire surface of the positive electrode assembly sheet placed in an overlapping manner was pressed with a pressure plate (not shown) to join the positive electrode assembly sheets. At this time, the temperature of the pressing plate was 150 ° C., the pressing pressure was 20 MPa, and the pressing time was 30 seconds.
 この工程4と工程5により、図3(d)に示す、セパレータ層11の内部に正極層21が埋設された正極・正極一体化シート20を作製した。 同様にして、図3(e)に示す、セパレータ層11の内部に負極層31が埋設された負極・負極一体化シート30を作製した。 By this step 4 and step 5, a positive electrode / positive electrode integrated sheet 20 in which the positive electrode layer 21 was embedded in the separator layer 11 shown in FIG. Similarly, a negative electrode / negative electrode integrated sheet 30 shown in FIG. 3E in which the negative electrode layer 31 was embedded in the separator layer 11 was produced.
 そして、図4(a),(b)に示すように、負極集電体層31aの片面のみに負極活物質層31bが形成された負極層がセパレータ層11に埋設されてなる負極一体化シート30aの上に、正極・正極一体化シート20、負極・負極一体化シート30、正極・正極一体化シート20、負極・負極一体化シート30の順に積層、熱圧着を行い、最後に、正極集電体層21aの片面のみに正極活物質層21bが形成された正極層がセパレータ層11に埋設されてなる正極一体化シート20aを積層、熱圧着して積層集合体を形成した。 4A and 4B, a negative electrode integrated sheet in which a negative electrode layer in which a negative electrode active material layer 31b is formed only on one surface of a negative electrode current collector layer 31a is embedded in a separator layer 11. The positive electrode / positive electrode integrated sheet 20, the negative electrode / negative electrode integrated sheet 30, the positive electrode / positive electrode integrated sheet 20, and the negative electrode / negative electrode integrated sheet 30 are laminated and thermocompression-bonded in this order. A positive electrode integrated sheet 20a in which a positive electrode layer having a positive electrode active material layer 21b formed on only one surface of the electric conductor layer 21a is embedded in the separator layer 11 is laminated and thermocompression bonded to form a laminated assembly.
 なお、熱圧着は、加圧板の温度を150℃、加圧の圧力を20MPaとし、加圧時間をそれぞれ30秒とした。  In thermocompression bonding, the temperature of the pressure plate was 150 ° C., the pressure of the pressure was 20 MPa, and the pressure time was 30 seconds. *
 なお、正極一体化シート20aは、図3(b)に示す正極集合シートの正極集電体21aが形成されている面に、基材PETフィルム上にセパレータ層の成分を含むスラリーを塗布、乾燥することにより作製した3μm厚のセパレータ層を貼り合わせることにより作製した。負極一体化シート30aについても、同様にして負極集合シートの負極集電体31aが形成されている面に、3μm厚のセパレータ層を貼り合わせることにより作製した。以上のようにして、この実施例2では、正極層21と負極層31がセパレータ層11によって接合された積層集合体を作製した。 In addition, the positive electrode integrated sheet 20a is obtained by applying a slurry containing the component of the separator layer on the base PET film on the surface of the positive electrode aggregate sheet shown in FIG. This was prepared by pasting together a 3 μm thick separator layer. Similarly, the negative electrode integrated sheet 30a was prepared by bonding a separator layer having a thickness of 3 μm to the surface of the negative electrode aggregate sheet on which the negative electrode current collector 31a was formed. As described above, in Example 2, a laminated assembly in which the positive electrode layer 21 and the negative electrode layer 31 were joined by the separator layer 11 was produced.
 [工程6(切断工程)]
 上述のようにして工程5で作製した積層集合体を図4(b)に示す裁断線D1に沿ってダイサーにより個片化して、積層体(蓄電デバイス用素子)1を作製した。積層体1の寸法は、長さ4.7mm、幅3.3mm、とした。
[Step 6 (cutting step)]
The laminated assembly produced in the step 5 as described above was separated into pieces by a dicer along the cutting line D1 shown in FIG. 4B to produce a laminated body (element for electric storage device) 1. The dimensions of the laminate 1 were a length of 4.7 mm and a width of 3.3 mm.
 なお、以上の説明で参照した図3(a)~(e)および図4(a),(b)では、作図上の制約により、セパレータ層11、正極層21および負極層31などを厚く描いているが、実寸法を正確に拡大または縮小したものではない。
 また、明細書に添付した他の図面についても、大きさ、または、位置関係を作図上の制約または理解し易いように適宜変形または誇張して示している。
3A to 3E and FIGS. 4A and 4B referred to in the above description, the separator layer 11, the positive electrode layer 21, the negative electrode layer 31, and the like are drawn thick due to restrictions on drawing. However, the actual dimensions are not exactly enlarged or reduced.
In addition, in other drawings attached to the specification, the size or the positional relationship is appropriately modified or exaggerated so that the drawing is restricted or easily understood.
 [工程7]
 それから、正極外部端子電極21tと負極外部端子電極31tをAlスパッタにより形成した(図2参照)。
[Step 7]
Then, the positive external terminal electrode 21t and the negative external terminal electrode 31t were formed by Al sputtering (see FIG. 2).
 [工程8]
 次に、第1の端面2および第2の端面3に、導電性粒子として金を含有する導電性接着剤をディッピングにより塗布して、塗布した導電性接着剤がそれぞれ正極パッケージ電極41および負極パッケージ電極42に接続されるように、積層体1をパッケージ50のベース部50bに配置し、170℃で10分加熱して、導電性接着剤を硬化させた(図2参照)。
[Step 8]
Next, a conductive adhesive containing gold as conductive particles is applied to the first end face 2 and the second end face 3 by dipping, and the applied conductive adhesive is applied to the positive electrode package electrode 41 and the negative electrode package, respectively. The laminate 1 was placed on the base portion 50b of the package 50 so as to be connected to the electrode 42, and heated at 170 ° C. for 10 minutes to cure the conductive adhesive (see FIG. 2).
 以上の工程7および8により、第1の端面2および第2の端面3にそれぞれ正極外部端子電極21tおよび負極外部端子電極31tを形成するとともに、正極外部端子電極21tおよび負極外部端子電極31tをそれぞれ正極パッケージ電極41および負極パッケージ電極42に電気的に接続した(図2参照)。 Through the above steps 7 and 8, the positive external terminal electrode 21t and the negative external terminal electrode 31t are formed on the first end face 2 and the second end face 3, respectively, and the positive external terminal electrode 21t and the negative external terminal electrode 31t are The positive electrode package electrode 41 and the negative electrode package electrode 42 were electrically connected (see FIG. 2).
 [工程9]
 そして、図2に示すパッケージ50の内部に電解液を注液して、封止した。ここでは、電解液として、1-エチル-3-メチルイミダゾリウムテトラフルオロボレートを減圧下で注液し、パッケージ50のベース部50b上面に、ベース部50bと同じく液晶ポリマー製の蓋体50aを配置し、パッケージ50のベース部50bの枠体部分に沿ってレーザー照射することにより、ベース部50bと蓋体50aを溶着した。 
[Step 9]
Then, an electrolytic solution was injected into the package 50 shown in FIG. 2 and sealed. Here, 1-ethyl-3-methylimidazolium tetrafluoroborate is injected as an electrolytic solution under reduced pressure, and a lid 50a made of a liquid crystal polymer is disposed on the upper surface of the base portion 50b of the package 50 in the same manner as the base portion 50b. Then, the base portion 50b and the lid 50a were welded by irradiating laser along the frame portion of the base portion 50b of the package 50.
 以上のように作製した電気二重層コンデンサの電気化学特性は、直流容量が4.37mFであった。 As for the electrochemical characteristics of the electric double layer capacitor produced as described above, the DC capacity was 4.37 mF.
 図2に示すような構成を備えた、この実施例2の電気二重層キャパシタBにおいても、セパレータ層として本発明の要件を満たす蓄電デバイス用セパレータが用いられているため、生産性が高く、低コストで、イオン抵抗の低い電気二重層キャパシタを得ることができる。 Also in the electric double layer capacitor B of Example 2 having the configuration shown in FIG. 2, the separator for an electricity storage device that satisfies the requirements of the present invention is used as the separator layer, so that the productivity is high and low. An electric double layer capacitor with low ionic resistance can be obtained at low cost.
 上記実施例1ではリチウムイオン二次電池、上記実施例2では電気二重層キャパシタを例にとって説明したが、本発明は、以下に説明するような構成を備えたリチウムイオンキャパシタとしても構成することが可能である。 In the first embodiment, the lithium ion secondary battery has been described as an example, and in the second embodiment, the electric double layer capacitor has been described as an example. Is possible.
 リチウムイオンキャパシタを構成する場合には、正極集電体層として、例えば、アルミニウム箔を用い、そのアルミニウム箔上に活性炭を含む合剤層を正極活物質層として設けた電極を正極層として用いる。 When constituting a lithium ion capacitor, for example, an aluminum foil is used as the positive electrode current collector layer, and an electrode in which a mixture layer containing activated carbon is provided on the aluminum foil as the positive electrode active material layer is used as the positive electrode layer.
 また、負極集電体層として、例えば、銅箔を用い、その銅箔上にグラファイトを含む合剤層を負極活物質層として設けた電極を負極層とし、その負極層にさらにリチウムイオンをプレドープする。 Further, as the negative electrode current collector layer, for example, a copper foil is used, and an electrode provided with a mixture layer containing graphite as a negative electrode active material layer on the copper foil is used as the negative electrode layer, and lithium ions are further pre-doped into the negative electrode layer. To do.
 そして、正極層と負極層とを上述したような本発明の要件を備えたセパレータを介して積層する。 Then, the positive electrode layer and the negative electrode layer are laminated via the separator having the above-described requirements of the present invention.
 電解液として、例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiPF6を溶解させたものを電解液(非水電解液)として用いる。
 これによりリチウムイオンキャパシタを得ることができる。
As the electrolytic solution, for example, a solution obtained by dissolving 1 mol / l LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate is used as the electrolytic solution (nonaqueous electrolytic solution).
Thereby, a lithium ion capacitor can be obtained.
 なお、本発明は、上記の各実施例に限定されるものではなく、正極層や負極層の構成材料や形成方法、蓄電要素の具体的な構成(正極層、負極層、セパレータの積層態様や積層数など)、電解液の種類、外包材の構成や構造材料などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to each of the above-described examples. The constituent material and forming method of the positive electrode layer and the negative electrode layer, the specific configuration of the storage element (the positive electrode layer, the negative electrode layer, the stacking mode of the separator, Various applications and modifications can be made within the scope of the invention with respect to the number of stacks, etc., the type of electrolyte, the structure of the outer packaging material, the structural material, and the like.
1    積層体
2    第1の端面
3    第2の端面 
11   セパレータ(層)
14   電解液
13   集電部材
15   外包材
20   正極・正極一体化シート
20a  正極一体化シート
21   正極層
21a  正極集電体層
21b  正極活物質層
21t  正極外部端子電極
30   負極・負極一体化シート
30a  負極一体化シート
31   負極層
31a  負極集電体層
31b  負極活物質層
31t  負極外部端子電極
41   正極パッケージ電極
42   負極パッケージ電極
50   パッケージ
50a  蓋体
50b  ベース部
100  基材PETフィルム
121a 正極端子
131a 負極端子
A    リチウムイオン二次電池(蓄電デバイス)
B    電気二重層キャパシタ(蓄電デバイス)
DESCRIPTION OF SYMBOLS 1 Laminated body 2 1st end surface 3 2nd end surface
11 Separator (layer)
14 Electrolyte 13 Current collecting member 15 Outer packaging material 20 Positive electrode / positive electrode integrated sheet 20a Positive electrode integrated sheet 21 Positive electrode layer 21a Positive electrode current collector layer 21b Positive electrode active material layer 21t Positive electrode external terminal electrode 30 Negative electrode / negative electrode integrated sheet 30a Negative electrode Integrated sheet 31 Negative electrode layer 31a Negative electrode current collector layer 31b Negative electrode active material layer 31t Negative electrode external terminal electrode 41 Positive electrode package electrode 42 Negative electrode package electrode 50 Package 50a Lid 50b Base part 100 Base PET film 121a Positive electrode terminal 131a Negative electrode terminal A Lithium ion secondary battery (power storage device)
B Electric double layer capacitor (electric storage device)

Claims (5)

  1.  正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体を備えた蓄電デバイスに用いられるセパレータであって、
     無機微粒子と有機バインダを含む複合材料からなり、
     前記複合材料の、下記の式(1):
     PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
     (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
     で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
     0.7≦Λ≦1.15 ……(2)
     (ただし、Λ=PVC/CPVC)
    の要件を満たすこと
     を特徴とする蓄電デバイス用セパレータ。
    Separator for use in an electricity storage device comprising a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator Because
    Composed of a composite material containing inorganic fine particles and an organic binder,
    The following formula (1) of the composite material:
    PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
    (However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
    The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
    0.7 ≦ Λ ≦ 1.15 (2)
    (However, Λ = PVC / CPVC)
    An electrical storage device separator characterized by satisfying the above requirements.
  2.  正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体を備えた蓄電デバイス用素子であって、
     前記セパレータとして、請求項1記載の蓄電デバイス用セパレータが用いられていること
     を特徴とする蓄電デバイス用素子。
    An element for an electricity storage device comprising a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly bonded to the separator. And
    The power storage device separator according to claim 1 is used as the separator.
  3.  正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体と、電解液と、前記積層体と前記電解液が収納されるパッケージとを備えた蓄電デバイスであって、
     前記セパレータとして、請求項1記載の蓄電デバイス用セパレータが用いられていること
     を特徴とする蓄電デバイス。
    A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator, an electrolyte solution, and the laminate And an electricity storage device comprising a package in which the electrolytic solution is stored,
    The electrical storage device according to claim 1, wherein the electrical storage device separator according to claim 1 is used as the separator.
  4.  正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体を備えた蓄電デバイス用素子の製造方法において、
     前記正極層となる正極層用材料と前記負極層となる負極層用材料とを、前記セパレータとなる材料であって、前記積層体において、接着層としても機能するセパレータ用材料を介して対向するように配置し、加熱・加圧することにより前記正極層と、前記負極層と、前記セパレータとが一体化した前記積層体を形成する工程を備えているとともに、
     前記セパレータ用材料として、前記積層体を形成する工程を経て得られる前記積層体における前記セパレータが、無機微粒子と有機バインダを含む複合材料からなり、
     前記複合材料の、下記の式(1):
     PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
     (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
     で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
     0.7≦Λ≦1.15 ……(2)
     (ただし、Λ=PVC/CPVC)
    の要件を満たすことになるようなセパレータ用材料を用いること
     を特徴とする蓄電デバイス用素子の製造方法。
    Production of an element for an electricity storage device comprising a laminate in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator In the method
    The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are opposed to each other through the separator material that also functions as an adhesive layer in the laminate. And forming the laminate in which the positive electrode layer, the negative electrode layer, and the separator are integrated by heating and pressurizing,
    As the separator material, the separator in the laminate obtained through the step of forming the laminate comprises a composite material containing inorganic fine particles and an organic binder,
    The following formula (1) of the composite material:
    PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
    (However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
    The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
    0.7 ≦ Λ ≦ 1.15 (2)
    (However, Λ = PVC / CPVC)
    A method for producing an element for an electricity storage device, comprising using a separator material that satisfies the above requirements.
  5.  正極層と負極層とがセパレータを介して積層され、かつ、前記セパレータと接する前記正極層と前記負極層とが前記セパレータに直接接合された構造を有する積層体と、電解液と、前記積層体と前記電解液が収納されるパッケージとを備えた蓄電デバイスの製造方法において、
     (1)前記正極層となる正極層用材料と前記負極層となる負極層用材料とを、前記セパレータとなる材料であって、前記積層体において、接着層としても機能するセパレータ用材料を介して対向するように配置し、加熱・加圧することにより前記正極層と、前記負極層と、前記セパレータとが一体化した前記積層体を形成する工程であって、前記セパレータ用材料として、前記積層体を形成する工程を経て得られる前記積層体における前記セパレータが、無機微粒子と有機バインダを含む複合材料からなり、
     前記複合材料の、下記の式(1):
     PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
     (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
     で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
     0.7≦Λ≦1.15 ……(2)
     (ただし、Λ=PVC/CPVC)
    の要件を満たすことになるようなセパレータ用材料を用いて前記積層体を形成する工程と、
     (2)前記積層体を、前記電解液とともに、前記パッケージ内に収容し、前記電解液を前記積層体の外部から内部へ浸透・含浸させる工程と
     を具備することを特徴とする蓄電デバイスの製造方法。
    A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator, and the positive electrode layer and the negative electrode layer in contact with the separator are directly joined to the separator, an electrolyte solution, and the laminate And a method of manufacturing an electricity storage device comprising a package in which the electrolytic solution is stored,
    (1) The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are the materials to be the separator, and in the laminate, the separator material that also functions as an adhesive layer is interposed. The positive electrode layer, the negative electrode layer, and the separator are integrally formed by heating and pressurizing the laminated body, and the separator material is used as the separator material. The separator in the laminate obtained through the step of forming a body is made of a composite material containing inorganic fine particles and an organic binder,
    The following formula (1) of the composite material:
    PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
    (However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
    The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
    0.7 ≦ Λ ≦ 1.15 (2)
    (However, Λ = PVC / CPVC)
    Forming the laminate using a separator material that will satisfy the requirements of
    (2) A process for storing the laminate together with the electrolytic solution in the package, and impregnating and impregnating the electrolytic solution from the outside to the inside of the laminated body. Method.
PCT/JP2012/063637 2011-06-28 2012-05-28 Electrical storage device separator, electrical storage device element, electrical storage device, and method for manufacturing these WO2013001960A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522541A JP5880555B2 (en) 2011-06-28 2012-05-28 Power storage device separator, power storage device element, power storage device, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011142470 2011-06-28
JP2011-142470 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013001960A1 true WO2013001960A1 (en) 2013-01-03

Family

ID=47423861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063637 WO2013001960A1 (en) 2011-06-28 2012-05-28 Electrical storage device separator, electrical storage device element, electrical storage device, and method for manufacturing these

Country Status (3)

Country Link
JP (1) JP5880555B2 (en)
TW (1) TW201303935A (en)
WO (1) WO2013001960A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015526874A (en) * 2013-05-23 2015-09-10 エルジー・ケム・リミテッド Method for manufacturing electrode assembly
JP2018163781A (en) * 2017-03-24 2018-10-18 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US10270134B2 (en) 2013-05-23 2019-04-23 Lg Chem, Ltd. Method of manufacturing electrode assembly
WO2019116761A1 (en) * 2017-12-11 2019-06-20 株式会社村田製作所 Lithium-ion secondary battery and method for manufacturing same
US10770713B2 (en) 2012-05-23 2020-09-08 Lg Chem, Ltd. Fabricating method of electrode assembly and electrochemical cell containing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230282936A1 (en) 2020-07-28 2023-09-07 Teijin Limited Non-aqueous secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185773A (en) * 1997-12-18 1999-07-09 Sony Corp Gelled electrolyte cell
JPH11297360A (en) * 1998-04-08 1999-10-29 Tdk Corp Manufacture of sheet electrode/electrolyte structural body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171723B1 (en) * 1997-10-10 2001-01-09 3M Innovative Properties Company Batteries with porous components
JP5082197B2 (en) * 2005-03-09 2012-11-28 日産自動車株式会社 battery
JP5195499B2 (en) * 2009-02-17 2013-05-08 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP5381636B2 (en) * 2009-11-18 2014-01-08 コニカミノルタ株式会社 Solid electrolyte for battery and lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185773A (en) * 1997-12-18 1999-07-09 Sony Corp Gelled electrolyte cell
JPH11297360A (en) * 1998-04-08 1999-10-29 Tdk Corp Manufacture of sheet electrode/electrolyte structural body

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10770713B2 (en) 2012-05-23 2020-09-08 Lg Chem, Ltd. Fabricating method of electrode assembly and electrochemical cell containing the same
US11081682B2 (en) 2012-05-23 2021-08-03 Lg Chem, Ltd. Fabricating method of electrode assembly and electrochemical cell containing the same
JP2015526874A (en) * 2013-05-23 2015-09-10 エルジー・ケム・リミテッド Method for manufacturing electrode assembly
US10270134B2 (en) 2013-05-23 2019-04-23 Lg Chem, Ltd. Method of manufacturing electrode assembly
JP2018163781A (en) * 2017-03-24 2018-10-18 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2019116761A1 (en) * 2017-12-11 2019-06-20 株式会社村田製作所 Lithium-ion secondary battery and method for manufacturing same
CN111164820A (en) * 2017-12-11 2020-05-15 株式会社村田制作所 Lithium ion secondary battery and method for manufacturing same
JPWO2019116761A1 (en) * 2017-12-11 2020-10-22 株式会社村田製作所 Lithium-ion secondary battery and its manufacturing method
JP7036125B2 (en) 2017-12-11 2022-03-15 株式会社村田製作所 Lithium-ion secondary battery and its manufacturing method
US11411252B2 (en) 2017-12-11 2022-08-09 Murata Manufacturing Co., Ltd. Lithium ion secondary battery and method of manufacturing the same
CN111164820B (en) * 2017-12-11 2023-06-30 株式会社村田制作所 Lithium ion secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
TW201303935A (en) 2013-01-16
JPWO2013001960A1 (en) 2015-02-23
JP5880555B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5867044B2 (en) Insulating adhesive layer and power storage device using the same
JP3613400B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP4293501B2 (en) Electrochemical devices
JP5879018B2 (en) Electrochemical element and method for producing the same
TWI702750B (en) Method for producing electrode, electrode and secondary battery
KR101792296B1 (en) Lithium ion secondary battery
JP5880555B2 (en) Power storage device separator, power storage device element, power storage device, and method for manufacturing the same
JP4008508B2 (en) Method for producing lithium ion secondary battery
WO2002071529A1 (en) Nonaqueous electrolyte secondary battery and its producing method
WO1999026307A1 (en) Lithium ion secondary battery and manufacture thereof
WO2000013252A1 (en) Method for producing nonaqueous gel electrolyte cell
JP5614560B2 (en) Power storage device separator and power storage device
JP5025936B2 (en) Method for producing electrode-porous sheet composite for electronic component
WO2013002119A1 (en) Power storage device and method of manufacturing thereof
WO2013001961A1 (en) Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
JPH10241656A (en) Battery
JP4954468B2 (en) Winding electrode, manufacturing method thereof, and battery manufacturing method
WO2013001962A1 (en) Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
JP2006086148A (en) Electric double layer capacitor and its manufacturing method
JP3648540B2 (en) Nonaqueous electrolyte secondary battery
JP5845896B2 (en) Power storage device
CN110783518B (en) Method for manufacturing electrode for solid battery
JP2016131056A (en) Power storage device
JP5829564B2 (en) Electrode structure and power storage device using the same
JP2011108538A (en) Laminate battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522541

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804743

Country of ref document: EP

Kind code of ref document: A1