JP3231805U - Pipe canal water supply system - Google Patents

Pipe canal water supply system Download PDF

Info

Publication number
JP3231805U
JP3231805U JP2021000494U JP2021000494U JP3231805U JP 3231805 U JP3231805 U JP 3231805U JP 2021000494 U JP2021000494 U JP 2021000494U JP 2021000494 U JP2021000494 U JP 2021000494U JP 3231805 U JP3231805 U JP 3231805U
Authority
JP
Japan
Prior art keywords
pipe
channel
water
open channel
laid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021000494U
Other languages
Japanese (ja)
Inventor
隆美 西段
隆美 西段
Original Assignee
株式会社美鷹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社美鷹 filed Critical 株式会社美鷹
Priority to JP2021000494U priority Critical patent/JP3231805U/en
Application granted granted Critical
Publication of JP3231805U publication Critical patent/JP3231805U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pipeline Systems (AREA)

Abstract

【課題】開水路において、単位時間当たりの流水の移動量を増加させて水面の上昇を抑制することに適した管水路送水システムを提供する。【解決手段】管水路送水システム1は、大気圧と接する自由水面を持たない管水路2にポンプ3が取り付けられたものであって、管水路は開水路4の流路5に存在し、管水路の一方端7の設置標高Z1と他方端8の設置標高Z2が異なるように敷設されている。【選択図】図1PROBLEM TO BE SOLVED: To provide a pipe water supply system suitable for increasing a moving amount of running water per unit time and suppressing an increase in water level in an open channel. SOLUTION: A pipe water supply system 1 is a pipe water channel 2 in which a pump 3 is attached to a pipe water channel 2 having no free water surface in contact with atmospheric pressure, and the pipe water channel exists in a flow path 5 of an open channel 4 and is a pipe. The installation altitude Z1 at one end 7 of the waterway and the installation altitude Z2 at the other end 8 are laid so as to be different. [Selection diagram] Fig. 1

Description

本考案は、開水路の送水に用いられる管水路送水システムに関する。 The present invention relates to a pipe water supply system used for water supply in an open channel.

国土交通省『水管理・国土保全』ホームページによれば、我が国の年間平均降雨量1718mmは世界平均降雨量880mmと比べて2倍近くにのぼり、降雨のほとんどが梅雨や台風の時期に集中している。また、我が国の河川は、外国の河川と比べて川の長さが短く、河川勾配が急であるため、集中豪雨が発生して、雨水が大量に河川に流入すると、河川が急に増水し短時間のうちに大洪水となって河道を流下するという特徴がある。特に、都市部では洪水時の河川水位が市街地よりも標高の高いところが多く、洪水時に堤防の決壊などにより浸水を受けやすい状況下にある。 According to the Ministry of Land, Infrastructure, Transport and Tourism's "Water Management and Land Conservation" website, Japan's annual average rainfall of 1718 mm is nearly double that of the world average rainfall of 880 mm, and most of the rainfall is concentrated during the rainy season and typhoons. There is. In addition, the length of rivers in Japan is shorter than that of foreign rivers, and the river gradient is steep. Therefore, when a large amount of rainwater flows into a river due to a concentrated heavy rain, the river suddenly rises. It is characterized by a large flood in a short period of time and flowing down the river channel. In particular, in urban areas, the river water level during floods is often higher than that in urban areas, and it is vulnerable to flooding due to the collapse of embankments during floods.

そこで、我が国では洪水に対処するために下記のような様々な治水対策が講じられてきた。(1)河床掘削や河道拡幅(河床を掘削したり、川幅を広げて流下断面を大きくして、流下能力を向上させる)、(2)築堤・嵩上げ(堤防を造ったり、既存堤防の嵩上げをして流下断面を大きくする)、(3)ダム(ダムの貯水池で洪水を貯留して下流河川に流れる流量を調整する)、(4)遊水地(河川の氾濫が発生しそうになった場合に洪水を遊水地に導水して一時的に貯留する)、(5)放水路や捷水路(河川の途中から分岐する新川を開削し、海、他の河川又は当該河川の下流に流して流量を低減させる)。なお、これらの治水対策を組み合わせて水害の軽減と防止を総合的に実施することも行われている。 Therefore, in Japan, the following various hydraulic control measures have been taken to deal with floods. (1) Riverbed excavation and river channel widening (excavating the riverbed, widening the river width to increase the flow section to improve the flow capacity), (2) Embankment / raising (building a dam or raising the existing embankment) (To increase the flow section), (3) Dam (stores floods in the dam's reservoir and adjusts the flow rate to downstream rivers), (4) Reservoir (when river flooding is about to occur) Floods are introduced to the playground and temporarily stored), (5) Flood discharge channels and drainage channels (new rivers that branch off from the middle of rivers are excavated and flowed to the sea, other rivers, or downstream of the rivers to reduce the flow rate. To reduce). In addition, these flood control measures are combined to comprehensively implement the reduction and prevention of flood damage.

さらには、河道内に管路を設けて、流入部と流出部における圧力の差や標高の差を利用する技術が考えられている(特許文献1及び2)。これら特許文献に記載されている技術は、自由水面を持つ水路(河川を含む)の流路に、気密状態(水の流入及び流出が管路の両端部のみで行われる状態)とした管路を設置し、動力を用いずに、運動方程式を水理学に応用したベルヌーイの定理に基づいて、管路の流入部と流出部における圧力の差及び管路の勾配(傾き)による流入部と流出部の標高の差を利用して、管路内の流速を開水路の流速よりも速めて、単位時間当たりの流水の移動量を増加させることにより、水面の上昇を抑制するものである。 Further, a technique of providing a pipeline in the river channel and utilizing the difference in pressure and the difference in altitude between the inflow portion and the outflow portion has been considered (Patent Documents 1 and 2). The technology described in these patent documents is a pipeline in which the flow path of a hydraulic channel (including a river) having a free water surface is airtight (a state in which water inflow and outflow are performed only at both ends of the pipeline). Based on Bernoulli's theorem, which applies the equation of motion to hydraulics without using power, the inflow and outflow due to the difference in pressure between the inflow and outflow of the pipeline and the slope (inclination) of the pipeline. By utilizing the difference in altitude of the section, the flow velocity in the pipeline is made faster than the flow velocity in the open channel to increase the amount of flowing water moving per unit time, thereby suppressing the rise in water level.

特許第6751981号公報Japanese Patent No. 6751981 実用新案登録第3224678号公報Utility Model Registration No. 322467

しかし、河床掘削や河道拡幅は、大量の掘削土砂の発生、魚類等の生息環境への影響、海水の逆流、川沿いの土地の確保といった問題が生じる。また、築堤や嵩上げを行っても、勢力の強い台風による大洪水が発生した場合に堤防からの越水や堤防の決壊が生じ得る。また、ダムによる洪水調整能力は、ダム地点から下流に遠ざかるほど小さくなり、その効果はダム近くの下流域に限定して発現される。また、ダムは貯水池の堆砂による背面水位の上昇や赤潮の発生により河川環境を悪化させ、さらには緊急放流による河川の氾濫といった問題が生じ得る。また、遊水地は、その築造に広大な用地を確保する必要がある。また、放水路等の場合、河床の安定を崩し、さらには下流域に土砂を堆積させて水位を上昇させるといったリスクが伴うこととなる。 However, riverbed excavation and river channel widening cause problems such as the generation of a large amount of excavated soil, the impact on the habitat of fish, the backflow of seawater, and the securing of land along the river. In addition, even if the embankment is built or raised, if a large flood occurs due to a powerful typhoon, water may overflow from the embankment or the embankment may collapse. In addition, the flood control capacity of the dam becomes smaller as it goes downstream from the dam point, and the effect is exhibited only in the downstream area near the dam. In addition, the dam may worsen the river environment due to the rise in the back water level due to the sedimentation of the reservoir and the occurrence of red tide, and may cause problems such as flooding of the river due to emergency discharge. In addition, it is necessary to secure a vast land for the construction of the retarding basin. In addition, in the case of flood canals, there is a risk that the stability of the riverbed will be disrupted and that sediment will be deposited in the downstream area to raise the water level.

また、特許文献に記載されている技術では、管路の流入部及び流出部のいずれもが水中にある場合には圧力の差が小さくなり、また、管路の勾配が緩い場合には、流入部と流出部の標高の差も小さくなる。その結果、水面の上昇を抑制させるだけの送水能力を発揮することが困難となる。また、管路全長にわたって大きく作用する摩擦抵抗を考慮すると圧力の差及び標高の差だけにより送水させることはきわめて困難であるという問題がある。 Further, in the technique described in the patent document, the pressure difference becomes small when both the inflow part and the outflow part of the pipeline are in water, and the inflow occurs when the slope of the pipeline is gentle. The difference in elevation between the part and the outflow part is also small. As a result, it becomes difficult to exert the water supply capacity sufficient to suppress the rise of the water surface. Further, considering the frictional resistance that greatly acts over the entire length of the pipeline, there is a problem that it is extremely difficult to supply water only by the difference in pressure and the difference in altitude.

本考案は、上記従来の治水対策における課題を解決するものであり、管路の圧力の差及び標高の差が小さい場合又は摩擦抵抗が大きい場合であっても、水面の上昇を抑制させるのに必要な流量を送水させるシステムを提供するものである。 The present invention solves the above-mentioned problems in the conventional hydraulic control measures, and suppresses the rise of the water surface even when the difference in pressure and altitude of the pipeline is small or the frictional resistance is large. It provides a system for delivering the required flow rate.

上記課題を解決するために本考案は、大気圧と接する自由水面を持つ河川などの開水路の流路に大気圧と接する自由水面を持たない管水路を敷設する。前記管水路の一方端の設置標高は他方端の設置標高よりも高くなるように敷設する。また、前記管水路には動力により稼働するポンプを取り付けるものとする。そして、前記管水路の一方端の敷設位置における圧力と前記管水路の他方端の敷設位置における圧力の差(以下、「圧力水頭」という)、前記管水路の勾配により生ずる前記一方端と前記他方端の間に生ずる標高の差(以下、「位置水頭」という)及び前記ポンプの動力を利用して、前記管水路の一方端から流入した前記開水路の流水の一部を前記他方端から流出させる。これは同一流積(開水路の流水方向に対する直角方向における流水の断面積)当りに占める流水の移動量が前記開水路よりも前記管水路の方が大きいことを利用するものであり、前記開水路の流水の移動量の一部を前記管水路に負担させることにより、前記開水路単独で移動させるよりも、単位時間当たりの流水の移動量を増加させて、前記開水路の水面の上昇を抑制させるものである。 In order to solve the above problems, the present invention lays a pipe channel having no free water surface in contact with atmospheric pressure in the flow path of an open channel such as a river having a free water surface in contact with atmospheric pressure. The installation altitude at one end of the pipe channel is higher than the installation altitude at the other end. In addition, a pump operated by power shall be attached to the pipe channel. Then, the difference between the pressure at the laying position of one end of the pipe channel and the pressure at the laying position of the other end of the conduit (hereinafter referred to as "pressure head"), the one end and the other caused by the gradient of the conduit. A part of the flowing water of the open channel that has flowed in from one end of the pipe channel flows out from the other end by utilizing the difference in altitude generated between the ends (hereinafter referred to as "position head") and the power of the pump. Let me. This utilizes the fact that the amount of movement of the flowing water per the same flow (the cross-sectional area of the flowing water in the direction perpendicular to the flowing direction of the open channel) is larger in the pipe channel than in the open channel. By making the pipe channel bear a part of the movement amount of the flowing water in the water channel, the movement amount of the flowing water per unit time is increased as compared with the movement of the open channel alone, and the water level of the open channel is raised. It suppresses it.

また、前記ポンプの動力の大きさや取り付け台数は、前記管水路の圧力水頭、位置水頭、摩擦損失との関係により決定される。なお、摩擦損失は前記管水路の送水量、長さ、管径との関係によって定まり、送水量が多いほど、管水路長が長いほど、管径が小さいほど摩擦損失は大きくなり、送水量が少ないほど、管水路長が短いほど、管径が大きいほど摩擦損失は小さくなる。例えば、前記管水路の圧力水頭ないし位置水頭が小さく、送水量が多く、管路長が長く、管径が小さい場合には、そうでない場合に比べて前記ポンプの動力を大きくし、又は取り付け台数を増やす。一方、前記管水路の圧力水頭ないし位置水頭が十分あり、送水量が多くなく、管路長が長くなく、管径が小さくない場合には、そうでない場合に比べて前記ポンプの動力を小さくし、又は取り付け台数を少なくする。 Further, the magnitude of the power of the pump and the number of installed pumps are determined by the relationship with the pressure head, the position head, and the friction loss of the pipe channel. The friction loss is determined by the relationship between the water supply amount, the length, and the pipe diameter of the pipe channel. The larger the water supply amount, the longer the pipe water channel length, and the smaller the pipe diameter, the larger the friction loss. The smaller the number, the shorter the pipe length, and the larger the pipe diameter, the smaller the friction loss. For example, when the pressure head or the position head of the pipe channel is small, the amount of water supplied is large, the length of the pipeline is long, and the diameter of the pipe is small, the power of the pump is increased or the number of installed pumps is increased as compared with the case where it is not. To increase. On the other hand, when the pressure head or the position head of the pipe channel is sufficient, the amount of water supply is not large, the length of the conduit is not long, and the pipe diameter is not small, the power of the pump is reduced as compared with the case where it is not. Or, reduce the number of installations.

また、複数の開水路が存在し、そのうちの一の開水路に他の開水路が合流する場合であって、前記合流地点において、前記一の開水路に敷設された前記管水路に前記他の開水路に敷設された前記管水路を並設させ、前記合流地点から前記一の開水路の下流域にかけて、前記他の開水路に敷設された前記管水路を前記一の開水路に敷設させてもよい。これにより、前記他の開水路に敷設された前記管水路内の流水が前記合流地点において前記一の開水路に送水されて前記一の開水路の水面が上昇するのを抑制させることができる。 Further, when there are a plurality of open channels and another open channel joins one of the open channels, the other open channel is laid in the one open channel at the confluence point. The pipes laid in the open channel are arranged side by side, and the pipes laid in the other open channel are laid in the one open channel from the confluence point to the downstream area of the one open channel. May be good. As a result, it is possible to prevent the flowing water in the pipe channel laid in the other open channel from being sent to the one open channel at the confluence and the water level of the one open channel from rising.

本考案の管水路送水システムは、開水路よりも速く水を移動させることができる管水路を開水路の流路に敷設することにより、敷設しない場合と比べて、単位時間当たりの流水の移動量を増加させるという利点がある。 In the pipe water supply system of the present invention, by laying a pipe channel that can move water faster than the open channel in the flow path of the open channel, the amount of flowing water per unit time is compared with the case where it is not laid. Has the advantage of increasing.

図1は、 本考案の実施の形態に係る管水路送水システムの構造及び動作原理を示す縦断図である。FIG. 1 is a longitudinal view showing the structure and operating principle of the pipe water supply system according to the embodiment of the present invention. 図2は、複数の管水路を開水路の水が流れる方向(以下、「流水方向」という)には間隔をあけず、流水方向に対して直角となる方向(以下、「横断方向」という)に間隔をあけて敷設した状態を示す図である。In FIG. 2, there is no interval in the direction in which water flows through the open channel (hereinafter referred to as “flowing direction”) in a plurality of pipe channels, and the direction is perpendicular to the flowing water direction (hereinafter referred to as “crossing direction”). It is a figure which shows the state which laid at a space. 図3は、複数の管水路を開水路の流水方向には間隔をあけず、開水路の横断方向に隣接させて敷設した状態を示す図である。FIG. 3 is a diagram showing a state in which a plurality of pipe channels are laid adjacent to each other in the transverse direction of the open channel without spacing in the flow direction of the open channel. 図4は、複数の管水路を開水路の流水方向及び横断方向に間隔をあけて敷設した状態を示す図である。FIG. 4 is a diagram showing a state in which a plurality of pipe channels are laid at intervals in the flow direction and the crossing direction of the open channel. 図5は、二つの開水路が合流している場合における管水路の敷設状態を示す図である。FIG. 5 is a diagram showing a laying state of a pipe channel when two open channels are merged. 図6は、開水路に様々な配置で管水路を敷設する場合の一例を示す図である。FIG. 6 is a diagram showing an example of laying a pipe channel in various arrangements in an open channel.

図1を参照して本考案の管水路送水システムの実施の形態について説明する。なお、本考案の実施の形態は、以下に限定されるものではない。 An embodiment of the pipe water supply system of the present invention will be described with reference to FIG. The embodiment of the present invention is not limited to the following.

図1は、管水路送水システムの構造及び動作原理を示す縦断図である。管水路送水システム1は、管水路2と、ポンプ3を備えるものであり、前記管水路2に前記ポンプ3が取り付けられている。前記管水路2は開水路4の流路5にあって、底部6に敷設されている。また、前記管水路2は、一方端7の敷設標高が他方端8の敷設標高よりも高い位置となるように敷設する。なお、ここでいう開水路4は、大気圧と接する自由水面を持ち、河川のような自然に形成されたもの又はコンクリート用水路のような人工構造物であってもよい。図1では、前記管水路2の右端が一方端7であり、左端が他方端8であって、定常流では、水が右から左に流れる。 FIG. 1 is a longitudinal view showing the structure and operating principle of a pipe water supply system. The pipe water supply system 1 includes a pipe water passage 2 and a pump 3, and the pump 3 is attached to the pipe water passage 2. The pipe channel 2 is located in the channel 5 of the open channel 4 and is laid at the bottom 6. Further, the pipe channel 2 is laid so that the laying altitude of one end 7 is higher than the laying altitude of the other end 8. The open channel 4 referred to here may have a free water surface in contact with atmospheric pressure and may be a naturally formed structure such as a river or an artificial structure such as a concrete canal. In FIG. 1, the right end of the pipe channel 2 is one end 7, the left end is the other end 8, and in a steady flow, water flows from right to left.

前記管水路2は大気圧と接する自由水面を持たない管水路であり、前記ポンプ3から前記管水路2へ前記開水路4の流水は入り込まず、前記開水路4の流水は前記一方端7から前記管水路2に流入し、前記他方端8から流出される。また、前記管水路2は、鋼管、硬質塩化ビニル管、強化プラスチック複合管、ダクタイル鋳鉄管、遠心力鉄筋コンクリート管、コルゲートパイプ、高密度ポリエチレン管などのいずれであってもよい。 The pipe water channel 2 is a pipe water channel having no free water surface in contact with atmospheric pressure, and the flowing water of the open channel 4 does not enter the pipe water channel 2 from the pump 3, and the flowing water of the open channel 4 flows from the one end 7. It flows into the pipe channel 2 and flows out from the other end 8. Further, the pipe channel 2 may be any of a steel pipe, a hard vinyl chloride pipe, a reinforced plastic composite pipe, a ductile cast iron pipe, a centrifugal reinforced concrete pipe, a corrugated pipe, a high-density polyethylene pipe and the like.

前記ポンプ3は、前記管水路2に取り付けられており、前記一方端7から前記管水路2に流入した水を前記他方端8から流出させるために用いられるものである。また、前記ポンプ3は、防水性及び耐水性を備えたものであって、動力により稼働し、その動力源は電動機、電磁気、熱機関などのいずれでもよい。また、前記ポンプ3は、手動操作または自動操作によって始動及び停止するものであって、例えば、前記開水路4に水位計を取り付けて、流水の水位が一定以上となった場合に始動させ、一定以下となった場合に停止させる。又は前記管水路2に水圧計を取り付けて、水圧が一定以上となった場合に始動させ、一定以下となった場合に停止させる、などの方法で制御してもよい。また、遠隔制御(無線通信などによる制御信号を伝送する方式)であってもよい。 The pump 3 is attached to the pipe water channel 2 and is used to let the water flowing into the pipe water channel 2 from the one end 7 flow out from the other end 8. Further, the pump 3 is waterproof and water resistant, operates by power, and the power source may be any of an electric motor, an electromagnetic wave, a heat engine, and the like. Further, the pump 3 is started and stopped by manual operation or automatic operation. For example, a water level gauge is attached to the open channel 4 to start and stop when the water level of running water becomes constant. Stop when the following occurs. Alternatively, a water pressure gauge may be attached to the pipe water channel 2 and controlled by a method such as starting when the water pressure exceeds a certain level and stopping when the water pressure falls below a certain level. Further, remote control (a method of transmitting a control signal by wireless communication or the like) may be used.

本管水路送水システム1の作動原理は、ベルヌーイの定理に基づくものであり、ベルヌーイの定理では、前記ポンプ3の動力Wは、前記管水路2の一方端7の位置における圧力Pと前記他方端8の位置における圧力Pの差(以下、P−Pを「圧力水頭」という)、前記一方端7の位置における基準線9から前記開水路4の底部6までの高さZと前記他方端8の位置における前記基準線9から前記底部6までの高さZの差(以下、Z−Zを「位置水頭」という)及び前記管水路2の流水による摩擦抵抗Fの関数となり、前記管水路2から同一の流量を送水するとした場合、摩擦損失Fが大きくなるに従い、又は圧力水頭や位置水頭が小さくなるに従い、前記ポンプ3の動力Wは大きくなり、摩擦損失Fが小さくなるに従い、又は圧力水頭や位置水頭が大きくなるに従い、前記ポンプ3の動力は小さくなる、という相関関係が成立する。 The operating principle of the main canal water system 1 is based on Bernoulli's theorem, the Bernoulli's theorem, the power W of the pump 3, the pressure P 1 and the position of the one end 7 of the tube waterway 2 other Difference in pressure P 2 at the position of the end 8 (hereinafter, P 1- P 2 is referred to as "pressure head"), height Z 1 from the reference line 9 at the position of the one end 7 to the bottom 6 of the open channel 4. And the difference in height Z 2 from the reference line 9 to the bottom 6 at the position of the other end 8 (hereinafter, Z 1 to Z 2 is referred to as “position head”) and frictional resistance F due to running water in the pipe channel 2. Assuming that the same flow rate is sent from the pipe water channel 2, the power W of the pump 3 increases as the friction loss F increases, or as the pressure head and the position head decrease, and the friction loss F increases. A correlation is established in which the power of the pump 3 decreases as the pressure head and the position head increase.

ベルヌーイの定理では、前記一方端7の位置における水深(管水路中心から開水路の水面までの距離)、圧力、流速、前記基準線9から前記底部6までの高さをそれぞれh、P、V、Zとし、前記他方端8の位置における水深、圧力、流速、前記基準線9から前記底部6までの高さをそれぞれh、P、V、Zとした場合、P/ρg+V /2g+Z+W/g=P/ρg+V /2g+Z+F/gの関係が成立する(この関係を「式1」とする)。ここに、圧力は、大気圧と水圧の和となるが、前記一方端7の位置における大気圧と前記他方端8の位置における大気圧は等しいため、各々の位置における圧力は水圧のみを考慮するものとし、前記一方端7の位置における圧力Pは、P=ρghとなり、前記他方端8の位置における圧力Pは、P=ρghとなる。また、前記一方端7からの流入量と前記他方端8からの流出量が同じであるとすると、V=V=4Q/πDとなる。なお、Dは前記管水路2の管径、πは円周率、ρは水の密度であり(例えば、水温4℃の場合はρ=1,000kg/m)、gは重力加速度である(g≒9.80665m/s)。 According to Bernoulli's theorem, the water depth (distance from the center of the pipe channel to the water surface of the open channel), the pressure, the flow velocity, and the height from the reference line 9 to the bottom 6 at the position of the one end 7 are h 1 , P 1, respectively. , V 1 , Z 1, and the water depth, pressure, flow velocity at the position of the other end 8, and the height from the reference line 9 to the bottom 6 are h 2 , P 2 , V 2 , and Z 2 , respectively. P 1 / ρg + V 1 2 / 2g + Z 1 + W / g = P 2 / ρg + V 2 2 / 2g + Z 2 + F / g which satisfy the relationship of (the relationship as "equation 1"). Here, the pressure is the sum of the atmospheric pressure and the water pressure, but since the atmospheric pressure at the position of the one end 7 and the atmospheric pressure at the position of the other end 8 are equal, only the water pressure is considered as the pressure at each position. The pressure P 1 at the position of the one end 7 is P 1 = ρgh 1 , and the pressure P 2 at the position of the other end 8 is P 2 = ρgh 2 . Further, assuming that the inflow amount from the one end 7 and the outflow amount from the other end 8 are the same, V 1 = V 2 = 4Q / πD 2 . Note that D is the pipe diameter of the water channel 2, π is the pi, ρ is the density of water (for example, ρ = 1,000 kg / m 3 when the water temperature is 4 ° C.), and g is the gravitational acceleration. (G≈9.80665 m / s 2 ).

前記式1をポンプ動力を求める式に変換すると、W/g=F/g−(P−P2)/ρg−(Z−Z)=F/g−〔(h−h)+(Z−Z)〕となる(この式を「式2」とする)。なお、前記式2はポンプ動力W[J/kg]及び摩擦損失F[J/kg]を重力加速度gで除しているため、前記ポンプ動力及び前記摩擦損失が力から長さ[m]を表すものとされており、この長さに変換された後のポンプ動力をW(=W/g)、摩擦損失は摩擦損失水頭となりF(=F/g)とする。前記式2から、ポンプ動力Wは、前記管水路2の摩擦損失水頭F、前記管水路2の圧力水頭(h−h)及び前記管水路2の位置水頭(Z−Z)の関数となり、圧力水頭と位置水頭の和が、摩擦損失水頭Fよりも大きい場合には、ポンプ動力Wが0より小さくなるため、ポンプを用いることなく、前記管水路2の圧力水頭(P−P)及び前記管水路2の位置水頭(Z−Z)のみを利用して送水することができ、一方、圧力水頭と位置水頭の和が、摩擦損失水頭Fよりも小さい場合には、ポンプ動力Wが0より大きくなるため、ポンプを用いなければ送水することができない。 When the above equation 1 is converted into the equation for obtaining the pump power, W / g = F / g- (P 1 −P 2 ) / ρg− (Z 1 −Z 2 ) = F / g − [(h 1 −h 2). ) + (Z 1 −Z 2 )] (this equation is referred to as “Equation 2”). In Equation 2, the pump power W [J / kg] and the friction loss F [J / kg] are divided by the gravitational acceleration g, so that the pump power and the friction loss have a length [m] from the force. The pump power after being converted to this length is W h (= W / g), and the friction loss is the friction loss head, which is F h (= F / g). From the equation 2, the pump power W h, the tube waterway 2 friction head losses F h, pressure head of the tube waterway 2 (h 1 -h 2) and elevation head of the tube waterway 2 (Z 1 -Z 2 ), And when the sum of the pressure head and the position head is larger than the friction loss head F h , the pump power W h becomes smaller than 0. Therefore, the pressure head of the pipe head 2 is used without using a pump. Water can be supplied using only (P 1 − P 2 ) and the positional head (Z 1 −Z 2 ) of the pipe head 2, while the sum of the pressure head and the positional head is from the friction loss head F h . If also small, the pump power W h is greater than 0, it is impossible to water unless a pump.

また、摩擦損失水頭Fは、我が国で一般に用いられている管路の流量公式のうち最も代表的なヘーゼン=ウィリアムズの公式F=10.666C−1.85×D−4.87× Q1.85×L(この式を「式3」とする)から算出することができる。ここで、Cは流速係数であり、直管部についてはC=130の使用が推奨される。また、Dは管水路の管径、Qは管水路を流れる流量、Lは管水路長である。式3によると摩擦損失水頭Fは、管径、流量及び管水路長の関数となり、管径Dが大きくなるにしたがって摩擦損失水頭Fは小さくなり、流量Qや管水路長Lが大きくなるにしたがって摩擦損失水頭Fも大きくなる。 The friction loss head F h is the most representative Hazen-Williams formula F h = 10.566C -1.85 x D -4.87 x Q among the flow rate formulas of pipelines generally used in Japan. It can be calculated from 1.85 × L (this formula is referred to as “formula 3”). Here, C is a flow velocity coefficient, and it is recommended to use C = 130 for the straight pipe portion. In addition, D is the pipe diameter of the conduit, Q is the flow rate flowing through the conduit, and L is the length of the conduit. According to Equation 3, the friction loss head F h is a function of the pipe diameter, the flow rate, and the pipe channel length. As the pipe diameter D increases, the friction loss head F h decreases, and the flow rate Q and the pipe channel length L increase. The friction loss head F h also increases accordingly.

例えば、管水路長を1,000m、管水路の内径を0.5m、河床勾配を1/1,000、圧力水頭を1m、送水量を0.2m/sと仮定した場合、摩擦損失水頭F(=18.5m)<〔圧力水頭+位置水頭〕(=19.2m)となり、ポンプがなくても送水することができる。一方、前記と同じ条件において送水量を0.3m/sと仮定した場合には、摩擦損失水頭F(=39.5m)>〔圧力水頭+位置水頭〕(=19.2m)となって、ポンプがなければ送水することができない。洪水により開水路の流量が増加して水面が上昇する状況となった場合に、その水面の上昇を抑制するために、摩擦損失水頭Fが圧力水頭と位置水頭の和を超える流量となる0.3m/s以上の流量を管水路で送水することは十分に考えられる。また、河川のような開水路は、形状が複雑であり、流況も一様ではないため、河川勾配が緩くて位置水頭が小さい場合又は本流の流量が増して支流の流量が合流地点でせき止められて行き場を失いあるいは下流で川幅が狭くなって上流の水面が上昇するといった背水現象により圧力水頭が生じないといった状況も生じ得る。このような場合であっても、ポンプを取り付けることによって管水路から送水することができるようになる。 For example, assuming that the pipe head is 1,000 m, the inner diameter of the pipe is 0.5 m, the riverbed gradient is 1/1000, the pressure head is 1 m, and the water supply amount is 0.2 m 3 / s, the friction loss head F h (= 18.5 m) <[pressure head + position head] (= 19.2 m), and water can be sent without a pump. On the other hand, when the water supply amount is assumed to be 0.3 m 3 / s under the same conditions as described above, the friction loss head F h (= 39.5 m)> [pressure head + position head] (= 19.2 m). Therefore, water cannot be sent without a pump. When the flow rate of the open channel increases due to a flood and the water level rises, the friction loss head F h exceeds the sum of the pressure head and the position head in order to suppress the rise of the water level. It is quite conceivable to send water at a flow rate of 3 m 3 / s or more through a pipe headrace. In addition, open channels such as rivers have complicated shapes and uneven flow conditions, so if the river gradient is gentle and the position head is small, or if the flow rate of the main stream increases and the flow rate of the tributaries is dammed at the confluence. There may be a situation where the pressure head does not occur due to the backwater phenomenon such as losing the place to go or the river width narrowing downstream and the water level rising upstream. Even in such a case, by attaching a pump, water can be sent from the pipe channel.

本管水路送水システム1の送水能力は、前記管水路2の管径Dの大きさ及び敷設する本数(=敷設する長さ)、前記ポンプ3の動力の大きさ及び取り付け台数の関数として決定される。本管水路送水システム1の効果を発揮させるためには、開水路のみで流下させる場合よりも前記管水路2を敷設して送水する方が、単位時間当たりの流水の移動量が多くなるように、前記管水路2の管径Dの大きさ及び敷設する本数、前記ポンプ3の動力の大きさ及び取り付け台数を決定する。 The water supply capacity of the main canal water supply system 1 is determined as a function of the size of the pipe diameter D of the main canal 2, the number of pipes to be laid (= length to be laid), the size of the power of the pump 3, and the number of installed pumps. To. In order to exert the effect of the main canal water supply system 1, the amount of flowing water per unit time is larger when the pipe canal 2 is laid and the water is sent than when the water is flowed down only by the open channel. , The size of the pipe diameter D of the pipe water channel 2, the number of pipes to be laid, the size of the power of the pump 3, and the number of installed pumps 3 are determined.

具体的な数値を使って説明する。管水路を敷設していない場合において、開水路の幅が30m、水深を2mとし、勾配が1/1,000、流速が1m/sとした場合における開水路の流積AはA=30m×2m=60mとなり、流量Qは、Q=A×V=60m×1m/s=60m/sとなる。一方、管水路は、長さを1,000m、管径を0.5mとし、圧力水頭を考慮せずに、管水路から1m/sの水を送水する場合には、式(3)において流量係数C=130を用いることにより、約400kwの動力のポンプを備え付ければよいことが計算できる。なお、ポンプの台数を増やして、1台当たりの動力を小さくしてもよい。また、管水路を10本敷設するとした場合、管水路からは合計で10m/sの水を送水することになる。また、管水路10本の断面積は、πD/4×10本≒2mとなり、これが前記管水路の流積となる。一方、前記開水路に前記管水路を敷設することにより、前記開水路の流積は、前記管水路を敷設する前の流積60mから前記管水路の流積2mを引いた58mとなる。前記開水路の流積が60mから58mに減少したことにより、前記開水路の流量も60m/sから58m/sに減少することとなる。そして、前記開水路による流量58m/sと前記管水路からの送水量10m/sを合計した流水の移動量は68m/sとなり、前記管水路を敷設する前の前記開水路だけからの流量60m/sよりも8m/s(比率にして約13%)増加することとなり、前記管水路を敷設する方が単位時間当たりの流水の移動量を増加させて水面の上昇を抑制することができる。更に前記管水路の敷設本数を増やし又はポンプの動力を大きくしあるいは取り付け台数を増やせば、更に単位時間当たりの流水の移動量を増加させることができる。以下に、本管水路送水システムの実施例について説明する。 I will explain using specific numerical values. When the width of the open channel is 30 m, the water depth is 2 m, the gradient is 1/1000, and the flow velocity is 1 m / s when the pipe channel is not laid, the flow volume A of the open channel is A = 30 m × 2m = 60m 2 and the flow rate Q is Q = A × V = 60m 2 × 1m / s = 60m 3 / s. On the other hand, when the length of the pipe channel is 1,000 m and the pipe diameter is 0.5 m, and 1 m 3 / s of water is sent from the pipe channel without considering the pressure head, the formula (3) is used. By using the flow coefficient C = 130, it can be calculated that a pump having a power of about 400 kW may be installed. The number of pumps may be increased to reduce the power per unit. In addition, if 10 pipe canals are laid, a total of 10 m 3 / s of water will be sent from the pipe canals. Further, the cross-sectional area of ten tubes waterways, [pi] D 2/4 × ten ≒ 2m 2 becomes, which is the Nagareseki of the tube waterways. On the other hand, by laying the pipe water channel to the open channel, Nagareseki of the open channel has a 58m 2 minus Nagareseki 2m 2 of the pipe waterway from Nagareseki 60 m 2 prior to laying the pipe waterways Become. Since the flow volume of the open channel is reduced from 60 m 2 to 58 m 2 , the flow rate of the open channel is also reduced from 60 m 3 / s to 58 m 3 / s. Then, the total movement amount of the flowing water, which is the sum of the flow rate of 58 m 3 / s by the open channel and the water supply amount of 10 m 3 / s from the pipe channel, is 68 m 3 / s, and only from the open channel before the pipe channel is laid. The flow rate will increase by 8 m 3 / s (about 13% in terms of ratio) from the flow rate of 60 m 3 / s, and laying the pipe channel will increase the amount of running water movement per unit time and suppress the rise in water level. can do. Further, by increasing the number of pipes laid, increasing the power of the pump, or increasing the number of installed pumps, the amount of running water moving per unit time can be further increased. An example of the main canal water supply system will be described below.

図2は、複数の管水路が流水方向では連続した一つの管水路とされ、横断方向には間隔をあけて敷設された状態を示す図である。図2のうち、(a)は平面、(b)は横断面、(c)は縦断面である。ポンプ11が取り付けられた管水路10を開水路12の流路に敷設する。この場合において、前記管水路10は流水方向において途切れることなく連続している。前記管水路10は、管の結合部を持たない一つの管で構成されてもよく、複数の管を結合して一つの管水路としたものであってもよい。また、前記開水路12の横断方向に複数の前記管水路10が任意の間隔をあけて敷設されている。そして、前記ポンプ11は、一つの前記管水路10に1台又は前記管水路10の流水方向に任意の間隔で複数取り付けてもよい。 FIG. 2 is a diagram showing a state in which a plurality of pipe channels are regarded as one continuous pipe channel in the water flow direction and laid at intervals in the transverse direction. In FIG. 2, (a) is a plane, (b) is a cross section, and (c) is a vertical cross section. The pipe channel 10 to which the pump 11 is attached is laid in the flow path of the open channel 12. In this case, the pipe channel 10 is continuous in the flowing water direction without interruption. The pipe channel 10 may be composed of one pipe having no connecting portion of pipes, or may be formed by connecting a plurality of pipes into one pipe channel. Further, a plurality of the pipe water channels 10 are laid at arbitrary intervals in the transverse direction of the open channel 12. Then, one pump 11 may be attached to one of the pipe water passages 10, or a plurality of the pumps 11 may be attached to the pipe water passage 10 at arbitrary intervals in the water flow direction.

前記管水路10の長さ、管径、本数及び敷設間隔並びに前記ポンプ11の動力の大きさ及び取り付け台数は、前記管水路10から送水すべき送水量及び前記開水路12の形状によって決定される。例えば、河川において洪水が発生した場合に流量を河川が氾濫する危険のある水位に到達しないようにするために前記管水路10及び前記開水路12から必要な流量を分担して移動させることとなるが、その場合において前記管水路10が負担すべき流量を送水できるように決定される。 The length, diameter, number and laying interval of the pipe water channel 10, the magnitude of the power of the pump 11 and the number of installed pumps 11 are determined by the amount of water to be sent from the pipe water channel 10 and the shape of the open channel 12. .. For example, in the event of a flood in a river, the required flow rate is shared and moved from the pipe channel 10 and the open channel 12 so that the flow rate does not reach the water level at which the river is in danger of flooding. However, in that case, it is determined so that the flow rate to be borne by the pipe channel 10 can be sent.

図3は、複数の管水路が流水方向では連続した一つの管水路とし、横断方向には間隔をあけずに敷設された状態を示す図である。図3のうち、(a)は平面、(b)は横断面、(c)は縦断面である。ポンプ14が取り付けられた管水路13を開水路15の流路に敷設する。この場合において、前記管水路13は流水方向において途切れることなく連続している。前記管水路13は、管の結合部を持たない一つの管で構成されてもよく、複数の管を結合して一つの管水路としたものであってもよい。また、前記開水路15の横断方向に複数の前記管水路13が間隔をあけずに敷設されている。そして、前記ポンプ14は、一つの前記管水路13に1台又は前記管水路13の流水方向に任意の距離をおいて複数取り付けてもよい。 FIG. 3 is a diagram showing a state in which a plurality of pipe channels are formed as one continuous pipe channel in the water flow direction and laid at no interval in the crossing direction. In FIG. 3, (a) is a plane, (b) is a cross section, and (c) is a vertical cross section. The pipe channel 13 to which the pump 14 is attached is laid in the flow path of the open channel 15. In this case, the pipe channel 13 is continuous in the flowing water direction without interruption. The pipe channel 13 may be composed of one pipe having no connecting portion of pipes, or may be formed by connecting a plurality of pipes into one pipe channel. Further, a plurality of the pipe water channels 13 are laid at intervals in the transverse direction of the open channel 15. Then, one pump 14 may be attached to one of the pipe water passages 13, or a plurality of the pumps 14 may be attached to the pipe water passage 13 at an arbitrary distance in the water flow direction.

河川において流量が多くなる中流域や下流域などのように、前記開水路15の流量が多い個所では、前記管水路13から送水すべき送水量を増やして、流量が前記開水路15から越水することを防止するなどの必要があることから、複数の前記管水路13を間隔をあけずに敷設する。なお、前記管水路13からの送水量を多くする方法として、管径を大きくし又はポンプの動力を大きくしあるいは取り付け台数を増やしてもよい。 In places where the flow rate of the open channel 15 is high, such as in the middle basin or downstream area where the flow rate is high in a river, the amount of water to be sent from the pipe channel 13 is increased, and the flow rate overflows from the open channel 15. Since it is necessary to prevent this from occurring, a plurality of the pipe water channels 13 are laid at no interval. As a method of increasing the amount of water supplied from the pipe water channel 13, the pipe diameter may be increased, the power of the pump may be increased, or the number of installed units may be increased.

図4は、複数の管水路が流水方向及び横断方向に間隔をあけて敷設された状態を示す図である。図4のうち、(a)は平面、(b)は横断面、(c)は縦断面である。ポンプ17が取り付けられた管水路16を開水路18の流路に敷設する。前記開水路18の流量が少なく、前記管水路16から送水すべき送水量が多くない場合、または河床の形状など開水路の形状に合わせる必要があるために流水方向に連続した長尺の管水路を敷設する必要がない場合又は敷設することが困難な場合などに複数の前記管水路16を流水方向及び横断方向に任意の間隔をあけて敷設する。また、前記ポンプ17は、一つの前記管水路16に1台又は前記管水路16の流水方向に任意の間隔をおいて複数取り付けてもよい。 FIG. 4 is a diagram showing a state in which a plurality of pipe channels are laid at intervals in the flow direction and the transverse direction. In FIG. 4, (a) is a plane, (b) is a cross section, and (c) is a vertical cross section. The pipe channel 16 to which the pump 17 is attached is laid in the flow path of the open channel 18. When the flow rate of the open channel 18 is small and the amount of water to be supplied from the pipe 16 is not large, or because it is necessary to match the shape of the open channel such as the shape of the riverbed, a long pipe channel continuous in the water flow direction When it is not necessary to lay or when it is difficult to lay, a plurality of the pipe waterways 16 are laid at arbitrary intervals in the water flow direction and the crossing direction. Further, one pump 17 may be attached to one of the pipe water passages 16, or a plurality of the pumps 17 may be attached to the pipe water passage 16 at arbitrary intervals in the water flow direction.

図5は、二つの開水路が合流している場合における管水路の敷設状態を示す図である。図5のうち、(a)は平面、(b)は横断面、(c)は縦断面である。一の開水路25と他の開水路26が任意の地点で合流しており、前記一の開水路25には、管水路19及び20が敷設され、前記他の開水路26には管水路21が敷設されている。前記一の開水路25では、前記他の開水路26との合流地点より上流域は、前記合流地点より下流域に比べて流量が少ないため、管水路19を横断方向に間隔をあけて敷設し、前記合流地点より下流域では前記合流地点より上流域に比べて流量が多くなるため、さらに管水路20を増設してもよい。また、前記開水路26に敷設された管水路21は、前記合流地点において前記開水路26の流水方向から前記開水路25の流水方向に屈曲させて前記管水路19又は20と並設させて前記開水路25の流路に敷設する。また、各管水路19〜21は、送水すべき流量に応じて、敷設本数、配置、管径を決定すればよい。なお、開水路の幅が小さいなどの制約により、複数の管水路を流路の底部に敷設することができず、その結果必要な送水量を確保することが困難となるなどの場合には、流路の底部に敷設されている管水路の上に他の管水路を複数段積み重ねて敷設してもよい。 FIG. 5 is a diagram showing a laying state of a pipe channel when two open channels are merged. In FIG. 5, (a) is a plane, (b) is a cross section, and (c) is a vertical cross section. One open channel 25 and another open channel 26 meet at an arbitrary point, pipes 19 and 20 are laid in the one open channel 25, and pipes 21 are laid in the other open channel 26. Is laid. In the one open channel 25, since the flow rate in the upstream area from the confluence with the other open channels 26 is smaller than that in the downstream area from the confluence, the pipe channel 19 is laid at intervals in the transverse direction. Since the flow rate in the downstream area from the confluence point is higher than that in the upstream area from the confluence point, the pipe channel 20 may be further added. Further, the pipe channel 21 laid in the open channel 26 is bent from the flow direction of the open channel 26 to the flow direction of the open channel 25 at the confluence point and juxtaposed with the conduit 19 or 20. It is laid in the flow path of the open channel 25. In addition, the number, arrangement, and diameter of each pipe channel 19 to 21 may be determined according to the flow rate to be supplied. If it is not possible to lay multiple pipe channels at the bottom of the channel due to restrictions such as the width of the open channel being small, and as a result it becomes difficult to secure the required amount of water supply. A plurality of other pipes may be stacked and laid on the pipes laid at the bottom of the flow path.

図6は、開水路に様々な配置で管水路を敷設する場合の一例を示す図である。開水路の流量が少ない場合には、管水路からの送水量を少なくすることができるため、管水路の敷設本数を少なくしあるいは管径を小さくし、又はポンプの動力を小さくしあるいは取り付け台数も少なくしてもよい。一方、開水路の流量が多い場合には、管水路からの送水量を増やして、開水路の水面上昇を抑制する必要があるため、管水路の敷設本数を多くしあるいは管径を大きくし、又はポンプの動力を大きくしあるいは取り付け台数を多くしてもよい。 FIG. 6 is a diagram showing an example of laying a pipe channel in various arrangements in an open channel. When the flow rate of the open channel is small, the amount of water sent from the channel can be reduced, so the number of pipes laid or the diameter of the pipe can be reduced, or the power of the pump can be reduced or the number of installed pumps can be reduced. It may be reduced. On the other hand, when the flow rate of the open channel is large, it is necessary to increase the amount of water sent from the open channel to suppress the rise in the water level of the open channel. Alternatively, the power of the pump may be increased or the number of installed pumps may be increased.

ここに示されている開水路を河川とした場合を例として説明する。例えば、本流51において、流量が相対的に少ない上流域においては、管水路54の本数を少なくしあるいは管径が小さなものを敷設し、又はポンプ55の動力を小さくしあるいは取り付け台数を少なくしてもよい。一方、前記本流51において、支流52が合流し、前記支流52からの流量が流れ込み、上流域よりも流量が多くなる中流域においては、管水路56を増設してもよい。また、前記本流51において、さらに支流53が合流し、前記支流53からの流量が流れ込み、流量が最も多くなる下流域では、さらに管水路58を増設してもよく、その増設方法として管水路を複数段積み重ねて敷設してもよい。 The case where the open channel shown here is a river will be described as an example. For example, in the main stream 51, in the upstream area where the flow rate is relatively small, the number of pipe channels 54 is reduced, a pipe diameter is laid, or the power of the pump 55 is reduced or the number of installed pumps is reduced. May be good. On the other hand, in the main stream 51, in the middle basin where the tributaries 52 merge and the flow rate from the tributary 52 flows in and the flow rate is higher than that in the upstream area, the pipe channel 56 may be added. Further, in the main stream 51, in the downstream area where the tributaries 53 further merge and the flow rate from the tributary 53 flows in and the flow rate is the largest, the pipe channel 58 may be further added, and as a method of the extension, the pipe channel 58 may be added. It may be laid by stacking a plurality of stages.

本考案の管水路送水システムは、例えば、河川や用水路などにおいて流量が多い場合の送水に好適に利用できる。 The pipe water supply system of the present invention can be suitably used for water supply when the flow rate is large in, for example, a river or an irrigation canal.

1 管水路送水システム
2、10、13、16、19、20、21、54、56、58 管水路
3、11、14、17、22、23、24、55、57、59 ポンプ
4、12、15、18、25、26 開水路
5 流路
6 底部
7 一方端
8 他方端
9 基準線
51 河川の本流
52、53 河川の支流
1 Pipe channel water supply system 2, 10, 13, 16, 19, 20, 21, 54, 56, 58 Pipe channel 3, 11, 14, 17, 22, 23, 24, 55, 57, 59 Pump 4, 12, 15, 18, 25, 26 Open channel 5 Channel 6 Bottom 7 One end 8 Other end 9 Reference line 51 River main stream 52, 53 River tributary

Claims (3)

開水路に管水路を敷設する管水路送水システムであって、
当該管水路送水システムは、大気圧と接する自由水面を持たない管水路にポンプが取り付けられたものであって、
前記管水路は開水路の流路に存在し、
前記管水路の一方端の設置標高と前記管水路の他方端の設置標高が異なるものとなるように敷設する、管水路送水システム。
It is a pipe canal water supply system that lays a pipe canal in an open channel.
The pipe water supply system is a pipe water supply system in which a pump is attached to a pipe water channel that does not have a free water surface in contact with atmospheric pressure.
The pipe channel exists in the flow path of the open channel and
A pipe water supply system that is laid so that the installation altitude at one end of the pipe canal and the installation altitude at the other end of the pipe canal are different.
前記管水路に取り付けられるポンプの数が複数である、請求項1記載の管水路送水システム。 The pipe water supply system according to claim 1, wherein a plurality of pumps are attached to the pipe water channel. 一の開水路に他の開水路が合流する場合において、前記一の開水路に前記管水路が敷設され、前記他の開水路に前記管水路が敷設され、前記合流地点から前記一の開水路の流下方向にかけて前記一の開水路に敷設された前記管水路と前記他の開水路に敷設された前記管水路を並設させる、請求項1又は2のいずれかに記載の管水路送水システム。 When another open channel joins one open channel, the pipe channel is laid in the one open channel, the pipe channel is laid in the other open channel, and the one open channel is laid from the confluence point. The pipe water supply system according to any one of claims 1 or 2, wherein the pipe water channel laid in the one open channel and the pipe channel laid in the other open channel are arranged side by side in the flow direction of the above.
JP2021000494U 2021-02-15 2021-02-15 Pipe canal water supply system Active JP3231805U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000494U JP3231805U (en) 2021-02-15 2021-02-15 Pipe canal water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000494U JP3231805U (en) 2021-02-15 2021-02-15 Pipe canal water supply system

Publications (1)

Publication Number Publication Date
JP3231805U true JP3231805U (en) 2021-04-30

Family

ID=75635904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000494U Active JP3231805U (en) 2021-02-15 2021-02-15 Pipe canal water supply system

Country Status (1)

Country Link
JP (1) JP3231805U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127791B1 (en) * 2022-04-11 2022-08-30 株式会社美鷹 Channel system for backwater countermeasures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127791B1 (en) * 2022-04-11 2022-08-30 株式会社美鷹 Channel system for backwater countermeasures

Similar Documents

Publication Publication Date Title
CN103510493B (en) Low overflow dam cave depot type hydropower station
CN104532796B (en) The rubber dam of a kind of wear-resistant steel plate of self-control type band
CN109778798B (en) Multistage hole pipe weir flow dividing and silt discharging method
CN110454223A (en) Counter-slope TBM tunnels tunnel drainage construction method
CN207454966U (en) The tubing of oval cross-section
JP3231805U (en) Pipe canal water supply system
CN102767155B (en) A kind of reservoir desilting pipe-line system and distribution method thereof
CN204343257U (en) The rubber dam of the wear-resistant steel plate of a kind of autocontrol band
CN214460826U (en) Bottom grid barrier and upstream surface seepage flow perforated pipe water collecting gallery water taking system
KR101170789B1 (en) Complex debris barrier of eco-friendly
KR101787818B1 (en) hydroelectric dam has multi-purpose discharge equipment through communicating vessel in underground
CN103114565A (en) River-closure water-diversion system suitable for slope torrent watercourse water-diversion generation and hydropower stations
CN207988083U (en) The orthogonal anti-structure of drainning off floodwaters of Gobi Region solar energy optical-thermal place
CN108149644B (en) Hydraulic automatic silt-reducing system in front of rolling dam and construction method
CN207295638U (en) The draining deep layer tunnel of small flow channel is set
GB2593787A (en) Flood defence system with low environmental impact
CN214089933U (en) Construction structure for passing through pipeline in pipeline river channel
CN107012835B (en) Rolling dam for taking water by pipe burying and construction method
JPWO2004090235A1 (en) Flood control and irrigation system using tidal current generating device by &#34;UTSURO&#34;
JPH07150598A (en) River surface flowing water intake construction method by combining fishway
KR101825070B1 (en) Waterway for reinforcement and runoff control of fallout area
RU2418134C1 (en) Water-engineering system at watercourse of seasonal action under conditions of permafrost soils, cooling unit and method to operate water-engineering system
CN218933008U (en) Check dam overflow pipe
JP2012145090A (en) Power generation method by artificial water channel type water-wheel generator, power generation method by sea-water tide type water-wheel generator, artificial water channel type water-wheel generator, sea-water tide type water-wheel generator, artificial water channel for undershot water-wheel generator, and artificial water channel type irrigation water-wheel
CN217419488U (en) Novel pile foundation and bank wall combined revetment structure

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3231805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350