JP3231805U - 管水路送水システム - Google Patents

管水路送水システム Download PDF

Info

Publication number
JP3231805U
JP3231805U JP2021000494U JP2021000494U JP3231805U JP 3231805 U JP3231805 U JP 3231805U JP 2021000494 U JP2021000494 U JP 2021000494U JP 2021000494 U JP2021000494 U JP 2021000494U JP 3231805 U JP3231805 U JP 3231805U
Authority
JP
Japan
Prior art keywords
pipe
channel
water
open channel
laid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021000494U
Other languages
English (en)
Inventor
隆美 西段
隆美 西段
Original Assignee
株式会社美鷹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社美鷹 filed Critical 株式会社美鷹
Priority to JP2021000494U priority Critical patent/JP3231805U/ja
Application granted granted Critical
Publication of JP3231805U publication Critical patent/JP3231805U/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pipeline Systems (AREA)

Abstract

【課題】開水路において、単位時間当たりの流水の移動量を増加させて水面の上昇を抑制することに適した管水路送水システムを提供する。【解決手段】管水路送水システム1は、大気圧と接する自由水面を持たない管水路2にポンプ3が取り付けられたものであって、管水路は開水路4の流路5に存在し、管水路の一方端7の設置標高Z1と他方端8の設置標高Z2が異なるように敷設されている。【選択図】図1

Description

本考案は、開水路の送水に用いられる管水路送水システムに関する。
国土交通省『水管理・国土保全』ホームページによれば、我が国の年間平均降雨量1718mmは世界平均降雨量880mmと比べて2倍近くにのぼり、降雨のほとんどが梅雨や台風の時期に集中している。また、我が国の河川は、外国の河川と比べて川の長さが短く、河川勾配が急であるため、集中豪雨が発生して、雨水が大量に河川に流入すると、河川が急に増水し短時間のうちに大洪水となって河道を流下するという特徴がある。特に、都市部では洪水時の河川水位が市街地よりも標高の高いところが多く、洪水時に堤防の決壊などにより浸水を受けやすい状況下にある。
そこで、我が国では洪水に対処するために下記のような様々な治水対策が講じられてきた。(1)河床掘削や河道拡幅(河床を掘削したり、川幅を広げて流下断面を大きくして、流下能力を向上させる)、(2)築堤・嵩上げ(堤防を造ったり、既存堤防の嵩上げをして流下断面を大きくする)、(3)ダム(ダムの貯水池で洪水を貯留して下流河川に流れる流量を調整する)、(4)遊水地(河川の氾濫が発生しそうになった場合に洪水を遊水地に導水して一時的に貯留する)、(5)放水路や捷水路(河川の途中から分岐する新川を開削し、海、他の河川又は当該河川の下流に流して流量を低減させる)。なお、これらの治水対策を組み合わせて水害の軽減と防止を総合的に実施することも行われている。
さらには、河道内に管路を設けて、流入部と流出部における圧力の差や標高の差を利用する技術が考えられている(特許文献1及び2)。これら特許文献に記載されている技術は、自由水面を持つ水路(河川を含む)の流路に、気密状態(水の流入及び流出が管路の両端部のみで行われる状態)とした管路を設置し、動力を用いずに、運動方程式を水理学に応用したベルヌーイの定理に基づいて、管路の流入部と流出部における圧力の差及び管路の勾配(傾き)による流入部と流出部の標高の差を利用して、管路内の流速を開水路の流速よりも速めて、単位時間当たりの流水の移動量を増加させることにより、水面の上昇を抑制するものである。
特許第6751981号公報 実用新案登録第3224678号公報
しかし、河床掘削や河道拡幅は、大量の掘削土砂の発生、魚類等の生息環境への影響、海水の逆流、川沿いの土地の確保といった問題が生じる。また、築堤や嵩上げを行っても、勢力の強い台風による大洪水が発生した場合に堤防からの越水や堤防の決壊が生じ得る。また、ダムによる洪水調整能力は、ダム地点から下流に遠ざかるほど小さくなり、その効果はダム近くの下流域に限定して発現される。また、ダムは貯水池の堆砂による背面水位の上昇や赤潮の発生により河川環境を悪化させ、さらには緊急放流による河川の氾濫といった問題が生じ得る。また、遊水地は、その築造に広大な用地を確保する必要がある。また、放水路等の場合、河床の安定を崩し、さらには下流域に土砂を堆積させて水位を上昇させるといったリスクが伴うこととなる。
また、特許文献に記載されている技術では、管路の流入部及び流出部のいずれもが水中にある場合には圧力の差が小さくなり、また、管路の勾配が緩い場合には、流入部と流出部の標高の差も小さくなる。その結果、水面の上昇を抑制させるだけの送水能力を発揮することが困難となる。また、管路全長にわたって大きく作用する摩擦抵抗を考慮すると圧力の差及び標高の差だけにより送水させることはきわめて困難であるという問題がある。
本考案は、上記従来の治水対策における課題を解決するものであり、管路の圧力の差及び標高の差が小さい場合又は摩擦抵抗が大きい場合であっても、水面の上昇を抑制させるのに必要な流量を送水させるシステムを提供するものである。
上記課題を解決するために本考案は、大気圧と接する自由水面を持つ河川などの開水路の流路に大気圧と接する自由水面を持たない管水路を敷設する。前記管水路の一方端の設置標高は他方端の設置標高よりも高くなるように敷設する。また、前記管水路には動力により稼働するポンプを取り付けるものとする。そして、前記管水路の一方端の敷設位置における圧力と前記管水路の他方端の敷設位置における圧力の差(以下、「圧力水頭」という)、前記管水路の勾配により生ずる前記一方端と前記他方端の間に生ずる標高の差(以下、「位置水頭」という)及び前記ポンプの動力を利用して、前記管水路の一方端から流入した前記開水路の流水の一部を前記他方端から流出させる。これは同一流積(開水路の流水方向に対する直角方向における流水の断面積)当りに占める流水の移動量が前記開水路よりも前記管水路の方が大きいことを利用するものであり、前記開水路の流水の移動量の一部を前記管水路に負担させることにより、前記開水路単独で移動させるよりも、単位時間当たりの流水の移動量を増加させて、前記開水路の水面の上昇を抑制させるものである。
また、前記ポンプの動力の大きさや取り付け台数は、前記管水路の圧力水頭、位置水頭、摩擦損失との関係により決定される。なお、摩擦損失は前記管水路の送水量、長さ、管径との関係によって定まり、送水量が多いほど、管水路長が長いほど、管径が小さいほど摩擦損失は大きくなり、送水量が少ないほど、管水路長が短いほど、管径が大きいほど摩擦損失は小さくなる。例えば、前記管水路の圧力水頭ないし位置水頭が小さく、送水量が多く、管路長が長く、管径が小さい場合には、そうでない場合に比べて前記ポンプの動力を大きくし、又は取り付け台数を増やす。一方、前記管水路の圧力水頭ないし位置水頭が十分あり、送水量が多くなく、管路長が長くなく、管径が小さくない場合には、そうでない場合に比べて前記ポンプの動力を小さくし、又は取り付け台数を少なくする。
また、複数の開水路が存在し、そのうちの一の開水路に他の開水路が合流する場合であって、前記合流地点において、前記一の開水路に敷設された前記管水路に前記他の開水路に敷設された前記管水路を並設させ、前記合流地点から前記一の開水路の下流域にかけて、前記他の開水路に敷設された前記管水路を前記一の開水路に敷設させてもよい。これにより、前記他の開水路に敷設された前記管水路内の流水が前記合流地点において前記一の開水路に送水されて前記一の開水路の水面が上昇するのを抑制させることができる。
本考案の管水路送水システムは、開水路よりも速く水を移動させることができる管水路を開水路の流路に敷設することにより、敷設しない場合と比べて、単位時間当たりの流水の移動量を増加させるという利点がある。
図1は、 本考案の実施の形態に係る管水路送水システムの構造及び動作原理を示す縦断図である。 図2は、複数の管水路を開水路の水が流れる方向(以下、「流水方向」という)には間隔をあけず、流水方向に対して直角となる方向(以下、「横断方向」という)に間隔をあけて敷設した状態を示す図である。 図3は、複数の管水路を開水路の流水方向には間隔をあけず、開水路の横断方向に隣接させて敷設した状態を示す図である。 図4は、複数の管水路を開水路の流水方向及び横断方向に間隔をあけて敷設した状態を示す図である。 図5は、二つの開水路が合流している場合における管水路の敷設状態を示す図である。 図6は、開水路に様々な配置で管水路を敷設する場合の一例を示す図である。
図1を参照して本考案の管水路送水システムの実施の形態について説明する。なお、本考案の実施の形態は、以下に限定されるものではない。
図1は、管水路送水システムの構造及び動作原理を示す縦断図である。管水路送水システム1は、管水路2と、ポンプ3を備えるものであり、前記管水路2に前記ポンプ3が取り付けられている。前記管水路2は開水路4の流路5にあって、底部6に敷設されている。また、前記管水路2は、一方端7の敷設標高が他方端8の敷設標高よりも高い位置となるように敷設する。なお、ここでいう開水路4は、大気圧と接する自由水面を持ち、河川のような自然に形成されたもの又はコンクリート用水路のような人工構造物であってもよい。図1では、前記管水路2の右端が一方端7であり、左端が他方端8であって、定常流では、水が右から左に流れる。
前記管水路2は大気圧と接する自由水面を持たない管水路であり、前記ポンプ3から前記管水路2へ前記開水路4の流水は入り込まず、前記開水路4の流水は前記一方端7から前記管水路2に流入し、前記他方端8から流出される。また、前記管水路2は、鋼管、硬質塩化ビニル管、強化プラスチック複合管、ダクタイル鋳鉄管、遠心力鉄筋コンクリート管、コルゲートパイプ、高密度ポリエチレン管などのいずれであってもよい。
前記ポンプ3は、前記管水路2に取り付けられており、前記一方端7から前記管水路2に流入した水を前記他方端8から流出させるために用いられるものである。また、前記ポンプ3は、防水性及び耐水性を備えたものであって、動力により稼働し、その動力源は電動機、電磁気、熱機関などのいずれでもよい。また、前記ポンプ3は、手動操作または自動操作によって始動及び停止するものであって、例えば、前記開水路4に水位計を取り付けて、流水の水位が一定以上となった場合に始動させ、一定以下となった場合に停止させる。又は前記管水路2に水圧計を取り付けて、水圧が一定以上となった場合に始動させ、一定以下となった場合に停止させる、などの方法で制御してもよい。また、遠隔制御(無線通信などによる制御信号を伝送する方式)であってもよい。
本管水路送水システム1の作動原理は、ベルヌーイの定理に基づくものであり、ベルヌーイの定理では、前記ポンプ3の動力Wは、前記管水路2の一方端7の位置における圧力Pと前記他方端8の位置における圧力Pの差(以下、P−Pを「圧力水頭」という)、前記一方端7の位置における基準線9から前記開水路4の底部6までの高さZと前記他方端8の位置における前記基準線9から前記底部6までの高さZの差(以下、Z−Zを「位置水頭」という)及び前記管水路2の流水による摩擦抵抗Fの関数となり、前記管水路2から同一の流量を送水するとした場合、摩擦損失Fが大きくなるに従い、又は圧力水頭や位置水頭が小さくなるに従い、前記ポンプ3の動力Wは大きくなり、摩擦損失Fが小さくなるに従い、又は圧力水頭や位置水頭が大きくなるに従い、前記ポンプ3の動力は小さくなる、という相関関係が成立する。
ベルヌーイの定理では、前記一方端7の位置における水深(管水路中心から開水路の水面までの距離)、圧力、流速、前記基準線9から前記底部6までの高さをそれぞれh、P、V、Zとし、前記他方端8の位置における水深、圧力、流速、前記基準線9から前記底部6までの高さをそれぞれh、P、V、Zとした場合、P/ρg+V /2g+Z+W/g=P/ρg+V /2g+Z+F/gの関係が成立する(この関係を「式1」とする)。ここに、圧力は、大気圧と水圧の和となるが、前記一方端7の位置における大気圧と前記他方端8の位置における大気圧は等しいため、各々の位置における圧力は水圧のみを考慮するものとし、前記一方端7の位置における圧力Pは、P=ρghとなり、前記他方端8の位置における圧力Pは、P=ρghとなる。また、前記一方端7からの流入量と前記他方端8からの流出量が同じであるとすると、V=V=4Q/πDとなる。なお、Dは前記管水路2の管径、πは円周率、ρは水の密度であり(例えば、水温4℃の場合はρ=1,000kg/m)、gは重力加速度である(g≒9.80665m/s)。
前記式1をポンプ動力を求める式に変換すると、W/g=F/g−(P−P2)/ρg−(Z−Z)=F/g−〔(h−h)+(Z−Z)〕となる(この式を「式2」とする)。なお、前記式2はポンプ動力W[J/kg]及び摩擦損失F[J/kg]を重力加速度gで除しているため、前記ポンプ動力及び前記摩擦損失が力から長さ[m]を表すものとされており、この長さに変換された後のポンプ動力をW(=W/g)、摩擦損失は摩擦損失水頭となりF(=F/g)とする。前記式2から、ポンプ動力Wは、前記管水路2の摩擦損失水頭F、前記管水路2の圧力水頭(h−h)及び前記管水路2の位置水頭(Z−Z)の関数となり、圧力水頭と位置水頭の和が、摩擦損失水頭Fよりも大きい場合には、ポンプ動力Wが0より小さくなるため、ポンプを用いることなく、前記管水路2の圧力水頭(P−P)及び前記管水路2の位置水頭(Z−Z)のみを利用して送水することができ、一方、圧力水頭と位置水頭の和が、摩擦損失水頭Fよりも小さい場合には、ポンプ動力Wが0より大きくなるため、ポンプを用いなければ送水することができない。
また、摩擦損失水頭Fは、我が国で一般に用いられている管路の流量公式のうち最も代表的なヘーゼン=ウィリアムズの公式F=10.666C−1.85×D−4.87× Q1.85×L(この式を「式3」とする)から算出することができる。ここで、Cは流速係数であり、直管部についてはC=130の使用が推奨される。また、Dは管水路の管径、Qは管水路を流れる流量、Lは管水路長である。式3によると摩擦損失水頭Fは、管径、流量及び管水路長の関数となり、管径Dが大きくなるにしたがって摩擦損失水頭Fは小さくなり、流量Qや管水路長Lが大きくなるにしたがって摩擦損失水頭Fも大きくなる。
例えば、管水路長を1,000m、管水路の内径を0.5m、河床勾配を1/1,000、圧力水頭を1m、送水量を0.2m/sと仮定した場合、摩擦損失水頭F(=18.5m)<〔圧力水頭+位置水頭〕(=19.2m)となり、ポンプがなくても送水することができる。一方、前記と同じ条件において送水量を0.3m/sと仮定した場合には、摩擦損失水頭F(=39.5m)>〔圧力水頭+位置水頭〕(=19.2m)となって、ポンプがなければ送水することができない。洪水により開水路の流量が増加して水面が上昇する状況となった場合に、その水面の上昇を抑制するために、摩擦損失水頭Fが圧力水頭と位置水頭の和を超える流量となる0.3m/s以上の流量を管水路で送水することは十分に考えられる。また、河川のような開水路は、形状が複雑であり、流況も一様ではないため、河川勾配が緩くて位置水頭が小さい場合又は本流の流量が増して支流の流量が合流地点でせき止められて行き場を失いあるいは下流で川幅が狭くなって上流の水面が上昇するといった背水現象により圧力水頭が生じないといった状況も生じ得る。このような場合であっても、ポンプを取り付けることによって管水路から送水することができるようになる。
本管水路送水システム1の送水能力は、前記管水路2の管径Dの大きさ及び敷設する本数(=敷設する長さ)、前記ポンプ3の動力の大きさ及び取り付け台数の関数として決定される。本管水路送水システム1の効果を発揮させるためには、開水路のみで流下させる場合よりも前記管水路2を敷設して送水する方が、単位時間当たりの流水の移動量が多くなるように、前記管水路2の管径Dの大きさ及び敷設する本数、前記ポンプ3の動力の大きさ及び取り付け台数を決定する。
具体的な数値を使って説明する。管水路を敷設していない場合において、開水路の幅が30m、水深を2mとし、勾配が1/1,000、流速が1m/sとした場合における開水路の流積AはA=30m×2m=60mとなり、流量Qは、Q=A×V=60m×1m/s=60m/sとなる。一方、管水路は、長さを1,000m、管径を0.5mとし、圧力水頭を考慮せずに、管水路から1m/sの水を送水する場合には、式(3)において流量係数C=130を用いることにより、約400kwの動力のポンプを備え付ければよいことが計算できる。なお、ポンプの台数を増やして、1台当たりの動力を小さくしてもよい。また、管水路を10本敷設するとした場合、管水路からは合計で10m/sの水を送水することになる。また、管水路10本の断面積は、πD/4×10本≒2mとなり、これが前記管水路の流積となる。一方、前記開水路に前記管水路を敷設することにより、前記開水路の流積は、前記管水路を敷設する前の流積60mから前記管水路の流積2mを引いた58mとなる。前記開水路の流積が60mから58mに減少したことにより、前記開水路の流量も60m/sから58m/sに減少することとなる。そして、前記開水路による流量58m/sと前記管水路からの送水量10m/sを合計した流水の移動量は68m/sとなり、前記管水路を敷設する前の前記開水路だけからの流量60m/sよりも8m/s(比率にして約13%)増加することとなり、前記管水路を敷設する方が単位時間当たりの流水の移動量を増加させて水面の上昇を抑制することができる。更に前記管水路の敷設本数を増やし又はポンプの動力を大きくしあるいは取り付け台数を増やせば、更に単位時間当たりの流水の移動量を増加させることができる。以下に、本管水路送水システムの実施例について説明する。
図2は、複数の管水路が流水方向では連続した一つの管水路とされ、横断方向には間隔をあけて敷設された状態を示す図である。図2のうち、(a)は平面、(b)は横断面、(c)は縦断面である。ポンプ11が取り付けられた管水路10を開水路12の流路に敷設する。この場合において、前記管水路10は流水方向において途切れることなく連続している。前記管水路10は、管の結合部を持たない一つの管で構成されてもよく、複数の管を結合して一つの管水路としたものであってもよい。また、前記開水路12の横断方向に複数の前記管水路10が任意の間隔をあけて敷設されている。そして、前記ポンプ11は、一つの前記管水路10に1台又は前記管水路10の流水方向に任意の間隔で複数取り付けてもよい。
前記管水路10の長さ、管径、本数及び敷設間隔並びに前記ポンプ11の動力の大きさ及び取り付け台数は、前記管水路10から送水すべき送水量及び前記開水路12の形状によって決定される。例えば、河川において洪水が発生した場合に流量を河川が氾濫する危険のある水位に到達しないようにするために前記管水路10及び前記開水路12から必要な流量を分担して移動させることとなるが、その場合において前記管水路10が負担すべき流量を送水できるように決定される。
図3は、複数の管水路が流水方向では連続した一つの管水路とし、横断方向には間隔をあけずに敷設された状態を示す図である。図3のうち、(a)は平面、(b)は横断面、(c)は縦断面である。ポンプ14が取り付けられた管水路13を開水路15の流路に敷設する。この場合において、前記管水路13は流水方向において途切れることなく連続している。前記管水路13は、管の結合部を持たない一つの管で構成されてもよく、複数の管を結合して一つの管水路としたものであってもよい。また、前記開水路15の横断方向に複数の前記管水路13が間隔をあけずに敷設されている。そして、前記ポンプ14は、一つの前記管水路13に1台又は前記管水路13の流水方向に任意の距離をおいて複数取り付けてもよい。
河川において流量が多くなる中流域や下流域などのように、前記開水路15の流量が多い個所では、前記管水路13から送水すべき送水量を増やして、流量が前記開水路15から越水することを防止するなどの必要があることから、複数の前記管水路13を間隔をあけずに敷設する。なお、前記管水路13からの送水量を多くする方法として、管径を大きくし又はポンプの動力を大きくしあるいは取り付け台数を増やしてもよい。
図4は、複数の管水路が流水方向及び横断方向に間隔をあけて敷設された状態を示す図である。図4のうち、(a)は平面、(b)は横断面、(c)は縦断面である。ポンプ17が取り付けられた管水路16を開水路18の流路に敷設する。前記開水路18の流量が少なく、前記管水路16から送水すべき送水量が多くない場合、または河床の形状など開水路の形状に合わせる必要があるために流水方向に連続した長尺の管水路を敷設する必要がない場合又は敷設することが困難な場合などに複数の前記管水路16を流水方向及び横断方向に任意の間隔をあけて敷設する。また、前記ポンプ17は、一つの前記管水路16に1台又は前記管水路16の流水方向に任意の間隔をおいて複数取り付けてもよい。
図5は、二つの開水路が合流している場合における管水路の敷設状態を示す図である。図5のうち、(a)は平面、(b)は横断面、(c)は縦断面である。一の開水路25と他の開水路26が任意の地点で合流しており、前記一の開水路25には、管水路19及び20が敷設され、前記他の開水路26には管水路21が敷設されている。前記一の開水路25では、前記他の開水路26との合流地点より上流域は、前記合流地点より下流域に比べて流量が少ないため、管水路19を横断方向に間隔をあけて敷設し、前記合流地点より下流域では前記合流地点より上流域に比べて流量が多くなるため、さらに管水路20を増設してもよい。また、前記開水路26に敷設された管水路21は、前記合流地点において前記開水路26の流水方向から前記開水路25の流水方向に屈曲させて前記管水路19又は20と並設させて前記開水路25の流路に敷設する。また、各管水路19〜21は、送水すべき流量に応じて、敷設本数、配置、管径を決定すればよい。なお、開水路の幅が小さいなどの制約により、複数の管水路を流路の底部に敷設することができず、その結果必要な送水量を確保することが困難となるなどの場合には、流路の底部に敷設されている管水路の上に他の管水路を複数段積み重ねて敷設してもよい。
図6は、開水路に様々な配置で管水路を敷設する場合の一例を示す図である。開水路の流量が少ない場合には、管水路からの送水量を少なくすることができるため、管水路の敷設本数を少なくしあるいは管径を小さくし、又はポンプの動力を小さくしあるいは取り付け台数も少なくしてもよい。一方、開水路の流量が多い場合には、管水路からの送水量を増やして、開水路の水面上昇を抑制する必要があるため、管水路の敷設本数を多くしあるいは管径を大きくし、又はポンプの動力を大きくしあるいは取り付け台数を多くしてもよい。
ここに示されている開水路を河川とした場合を例として説明する。例えば、本流51において、流量が相対的に少ない上流域においては、管水路54の本数を少なくしあるいは管径が小さなものを敷設し、又はポンプ55の動力を小さくしあるいは取り付け台数を少なくしてもよい。一方、前記本流51において、支流52が合流し、前記支流52からの流量が流れ込み、上流域よりも流量が多くなる中流域においては、管水路56を増設してもよい。また、前記本流51において、さらに支流53が合流し、前記支流53からの流量が流れ込み、流量が最も多くなる下流域では、さらに管水路58を増設してもよく、その増設方法として管水路を複数段積み重ねて敷設してもよい。
本考案の管水路送水システムは、例えば、河川や用水路などにおいて流量が多い場合の送水に好適に利用できる。
1 管水路送水システム
2、10、13、16、19、20、21、54、56、58 管水路
3、11、14、17、22、23、24、55、57、59 ポンプ
4、12、15、18、25、26 開水路
5 流路
6 底部
7 一方端
8 他方端
9 基準線
51 河川の本流
52、53 河川の支流

Claims (3)

  1. 開水路に管水路を敷設する管水路送水システムであって、
    当該管水路送水システムは、大気圧と接する自由水面を持たない管水路にポンプが取り付けられたものであって、
    前記管水路は開水路の流路に存在し、
    前記管水路の一方端の設置標高と前記管水路の他方端の設置標高が異なるものとなるように敷設する、管水路送水システム。
  2. 前記管水路に取り付けられるポンプの数が複数である、請求項1記載の管水路送水システム。
  3. 一の開水路に他の開水路が合流する場合において、前記一の開水路に前記管水路が敷設され、前記他の開水路に前記管水路が敷設され、前記合流地点から前記一の開水路の流下方向にかけて前記一の開水路に敷設された前記管水路と前記他の開水路に敷設された前記管水路を並設させる、請求項1又は2のいずれかに記載の管水路送水システム。
JP2021000494U 2021-02-15 2021-02-15 管水路送水システム Active JP3231805U (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021000494U JP3231805U (ja) 2021-02-15 2021-02-15 管水路送水システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021000494U JP3231805U (ja) 2021-02-15 2021-02-15 管水路送水システム

Publications (1)

Publication Number Publication Date
JP3231805U true JP3231805U (ja) 2021-04-30

Family

ID=75635904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021000494U Active JP3231805U (ja) 2021-02-15 2021-02-15 管水路送水システム

Country Status (1)

Country Link
JP (1) JP3231805U (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127791B1 (ja) * 2022-04-11 2022-08-30 株式会社美鷹 バックウォーター対策用水路システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127791B1 (ja) * 2022-04-11 2022-08-30 株式会社美鷹 バックウォーター対策用水路システム

Similar Documents

Publication Publication Date Title
CN103510493B (zh) 过水低坝洞库式水电站
CN104532796B (zh) 一种自控式带抗磨钢板的橡胶坝
CN107620285B (zh) 一种悬河治理***和方法
CN109778798B (zh) 多级孔管堰分流放淤方法
CN110454223A (zh) 反坡tbm掘进隧洞排水施工方法
CN207454966U (zh) 蛋形截面的管材
JP3231805U (ja) 管水路送水システム
CN102767155B (zh) 一种水库清淤管道***及其布设方法
CN204343257U (zh) 一种自控式带抗磨钢板的橡胶坝
CN103114565B (zh) 适用于斜坡急流河道引流发电的截流引水***及水电站
CN214460826U (zh) 底格栏栅兼迎水面渗流花管集水廊道取水***
KR101170789B1 (ko) 친환경 복합 사방댐
KR101787818B1 (ko) 지하 연통관 방류 다목적 요철광장 수력 발전 댐
CN108149644B (zh) 一种滚水坝前水力自动减淤***及施工方法
GB2593787A (en) Flood defence system with low environmental impact
CN214089933U (zh) 一种管道河道内穿越管道施工结构
CN107012835B (zh) 一种埋管取水的滚水坝及施工方法
JPWO2004090235A1 (ja) 「海洋の空(utsuro)」による潮流発生装置を利用した治水および水利システム
JPH07150598A (ja) 魚道を組み合わせた河川表流水取水工法
CN218933008U (zh) 一种谷坊溢流管
CN217419488U (zh) 一种新型桩基与岸墙结合护岸结构
CN215715055U (zh) 一种渠道水流倒虹吸管组结构
CN220377137U (zh) 穿护岸涵管出口结构
KR102672873B1 (ko) 부력 보조 위어
CN214530905U (zh) 一种生态取水枢纽***

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3231805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350