JP3213773B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3213773B2
JP3213773B2 JP24654392A JP24654392A JP3213773B2 JP 3213773 B2 JP3213773 B2 JP 3213773B2 JP 24654392 A JP24654392 A JP 24654392A JP 24654392 A JP24654392 A JP 24654392A JP 3213773 B2 JP3213773 B2 JP 3213773B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
pressure
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24654392A
Other languages
Japanese (ja)
Other versions
JPH0694284A (en
Inventor
孝 佐野
直登 勝又
俊幸 北條
伊藤  誠
引 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24654392A priority Critical patent/JP3213773B2/en
Publication of JPH0694284A publication Critical patent/JPH0694284A/en
Application granted granted Critical
Publication of JP3213773B2 publication Critical patent/JP3213773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱媒体を氷結させて冷
熱として蓄える蓄熱器を備えた空気調和機に係り、特に
冷熱の蓄熱を効率よく行うに好適な空気調和機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner having a regenerator for freezing a heat medium and storing it as cold heat, and more particularly to an air conditioner suitable for efficiently storing cold heat.

【0002】[0002]

【従来の技術】従来の装置としては、冷凍−第65巻
第752号(1990)第33〜38頁に記載の「個別
分散ビル空調における直膨氷蓄熱システム」がある。こ
の蓄熱システムを備えた空気調和機は、夜間に割安な電
力を用いて蓄熱媒体を凍らせて氷の状態で蓄熱器に蓄え
ておき、そして昼間の電力料金の高い時間帯に蓄えられ
た氷の冷熱を放出して冷房に供給するものである。この
蓄熱システムは熱媒体を貯えた蓄熱器と、その熱媒体中
に設けられた熱交換器と備えており、空気調和機に組み
込まれている。蓄熱器に冷熱を蓄えるためには、空気調
和機を構成する圧縮機、室外機、膨張弁等が作動する。
その際、圧縮機から吐出された高温高圧の冷媒は、室外
機で外気との熱交換により凝縮され、膨張弁を介して熱
交換器中に送給される。そこで膨張した冷媒は蒸発して
蓄熱器中の熱媒体から熱を奪い、熱媒体を熱交換器回り
に氷結させる。かくして蓄熱器は冷熱を氷として蓄える
ことになる。
2. Description of the Related Art As a conventional apparatus, a freezing method, Vol.
No. 752 (1990) pp. 33-38, entitled "Direct Expansion Ice Thermal Storage System in Individually Distributed Building Air Conditioning". The air conditioner equipped with this heat storage system freezes the heat storage medium using cheap power at night, stores it in the heat storage in the form of ice, and stores the ice stored during the daytime when the electricity rate is high. Is released and supplied to cooling. This heat storage system includes a heat storage device storing a heat medium, and a heat exchanger provided in the heat medium, and is incorporated in an air conditioner. In order to store cold heat in the regenerator, a compressor, an outdoor unit, an expansion valve, and the like that constitute the air conditioner are operated.
At this time, the high-temperature and high-pressure refrigerant discharged from the compressor is condensed by heat exchange with the outside air in the outdoor unit, and is fed into the heat exchanger via the expansion valve. The expanded refrigerant evaporates and removes heat from the heat medium in the regenerator, and freezes the heat medium around the heat exchanger. Thus, the regenerator stores cold heat as ice.

【0003】蓄熱器中の熱媒体に冷熱エネルギ−を貯え
る蓄冷運転中は、蓄熱器中の熱媒体が一部氷となって膨
張するので、それにつれて熱媒体の水位が上昇する。上
記の蓄熱システムを備えた空気調和機は、図10に示す
制御ダイアグラムのように、熱媒体の水位を検出し、水
位変化を演算し、それを基に製氷量を求め、これから製
氷すべき量と予定の製氷時間とから製氷能力を求め、そ
の製氷能力に対応する圧縮機のインバ−タ周波数を演算
する。そのインバ−タ周波数で圧縮機からの冷媒吐出量
が調整され、その結果蓄熱器中の氷の生成速度すなわち
蓄熱能力が制御される。
[0003] During a cold storage operation in which cold energy is stored in the heat medium in the heat accumulator, the heat medium in the heat accumulator partially expands as ice and the water level of the heat medium rises accordingly. The air conditioner equipped with the heat storage system detects the water level of the heat medium, calculates the water level change, calculates the ice making amount based on the detected water level, and calculates the ice making amount based on the detected water level as shown in the control diagram of FIG. The ice making capacity is determined from the expected ice making time and the inverter frequency of the compressor corresponding to the ice making capacity is calculated. The amount of refrigerant discharged from the compressor is adjusted by the inverter frequency, and as a result, the speed of ice formation in the heat accumulator, that is, the heat storage capacity is controlled.

【0004】[0004]

【発明が解決しようとする課題】従来例では、図10に
示すように、蓄熱器中の熱媒体の水位変化に伴ってイン
バ−タ周波数を設定する制御方式が採用されている。こ
の制御方式によれば、インバ−タ周波数を制御して時間
当りの製氷能力が設定されるため、冷凍サイクル中に循
環する冷媒循環量を変更して製氷能力を制御することは
可能である。しかしながら、図5に示すように、インバ
−タ周波数が同一であっても、蓄熱器の熱交換器中での
冷媒の蒸発圧力によって蓄熱能力は異なるので、蓄熱能
力はインバ−タ周波数のみによって一義的に定まらな
い。従って熱交換器中での冷媒の蒸発圧力を考慮しない
場合には、効率的な蓄熱運転を行うに支障を生ずる事が
ある。
In the prior art, as shown in FIG. 10, a control system for setting an inverter frequency in accordance with a change in the water level of a heat medium in a heat storage device is employed. According to this control method, since the ice making capacity per time is set by controlling the inverter frequency, it is possible to control the ice making capacity by changing the amount of refrigerant circulating in the refrigeration cycle. However, as shown in FIG. 5, even if the inverter frequency is the same, since the heat storage capacity differs depending on the evaporation pressure of the refrigerant in the heat exchanger of the heat storage, the heat storage capacity is unique only by the inverter frequency. It is not fixed. Therefore, when the evaporating pressure of the refrigerant in the heat exchanger is not taken into consideration, there may be a problem in performing the efficient heat storage operation.

【0005】蓄熱器中で熱媒体を凝固し、氷として蓄熱
するためには、蓄熱熱交換器で冷媒の蒸発圧力を少なく
とも熱媒体が凝固温度以下になるように圧力制御して蓄
熱運転を行う必要がある。単にインバ−タ周波数により
冷凍サイクル中の冷媒循環量を制御するのみでは、蓄熱
器の熱交換器中での冷媒の蒸発圧力について考慮でき
ず、必ずしも熱媒体の凝固を伴う蓄熱運転となるとは限
らずない。従って、従来の蓄熱運転は、熱媒体の潜熱を
利用して熱エネルギ−を蓄えるのに有効でなくなる可能
性があった。
In order to solidify the heat medium in the heat accumulator and store the heat as ice, the heat storage operation is performed by controlling the evaporation pressure of the refrigerant in the heat storage heat exchanger so that at least the heat medium has a solidification temperature or lower. There is a need. Simply controlling the circulating amount of the refrigerant in the refrigeration cycle by the inverter frequency cannot take into account the evaporation pressure of the refrigerant in the heat exchanger of the regenerator, and does not always result in the heat storage operation accompanied by the solidification of the heat medium. I do not. Therefore, the conventional heat storage operation may not be effective in storing heat energy using the latent heat of the heat medium.

【0006】本発明は、上記の問題点に鑑みてなされた
ものであり、その目的は蓄冷運転中の冷媒の蒸発圧力を
蓄熱器中の熱媒体が凝固温度以下になるような値に設定
し、その圧力設定値に冷媒の蒸発圧力が一致するように
圧縮機を運転するインバータ周波数を制御し、蓄冷運転
の冷凍サイクルを熱媒体が確実に凝固しうる状態とし、
効率的且つ確実に蓄熱する空気調和機を提供することに
ある。
The present invention has been made in view of the above problems, and an object of the present invention is to set the evaporating pressure of the refrigerant during the cold storage operation to a value such that the heat medium in the regenerator becomes equal to or lower than the solidification temperature. Controlling the inverter frequency for operating the compressor so that the evaporating pressure of the refrigerant matches the pressure set value, and setting the refrigeration cycle of the cold storage operation to a state in which the heat medium can solidify reliably,
An object of the present invention is to provide an air conditioner that efficiently and reliably stores heat.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めの本発明の解決手段を、図3に示す制御ダイアグラム
により説明すると、蓄冷運転中は水位変化により蓄熱量
を監視すると共に、蓄熱運転のために適当な目標の設定
圧力PSsetを設定し、逐次検出する低圧圧力検出手段か
らの蒸発圧力信号PSと設定圧力PSsetとの比較を行い、
インバータの周波数演算手段により設定圧力PSsetとな
るように容量制御機能付圧縮機を駆動する。従ってイン
バ−タ周波数変更を行うことにより蒸発圧力を一定に保
ち蓄熱量を一定にするフィ−ドバック制御機能を空気調
和機に設けている。
Means for solving the above problems according to the present invention will be described with reference to a control diagram shown in FIG. 3. During the cold storage operation, the amount of stored heat is monitored by the water level change, and the heat storage operation is performed. Set an appropriate target set pressure PSset for, and compare the set pressure PSset with the evaporating pressure signal PS from the low pressure detecting means for sequentially detecting,
The compressor with the capacity control function is driven by the frequency calculating means of the inverter so that the set pressure PSset is obtained. Therefore, the air conditioner is provided with a feedback control function for keeping the evaporation pressure constant and the heat storage amount constant by changing the inverter frequency.

【0008】本発明の第1の空気調和機は、インバータ
制御されて高温高圧の冷媒を吐出する圧縮機と、その高
温高圧の冷媒を冷却して冷媒液に凝縮する室外熱交換器
とを有する室外機と;その冷媒液を減圧し膨張させる流
量制御弁と、膨張した冷媒を蒸発させる蓄熱熱交換器
と、この蓄熱熱交換器を液状の蓄熱媒体に入れて収納し
その蓄熱熱交換器の冷媒と熱交換して氷結する蓄熱媒体
の氷を冷熱として蓄える蓄熱槽と有する蓄熱器と;室外
熱交換器から送り出され、蓄熱熱交換器で冷熱により過
冷却された冷媒液を膨張させる室内流量制御弁と、その
膨張した冷媒と熱交換して冷気を室内に供給する室内熱
交換器とを有する室内機と;を備え、蓄熱器に冷熱を蓄
える蓄冷運転を夜間に行う空気調和機において、蓄冷運
転の予定時間と蓄熱器の蓄熱容量とから算定された蓄熱
能力に対して、蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能
力との関係から、冷媒蒸発圧力を演算し、その演算され
た冷媒蒸発圧力に蓄熱熱交換器中の冷媒蒸発圧力との差
を求め、その差に応じて圧縮機を回転制御するインバー
タ周波数を修正し、演算された冷媒蒸発圧力に蓄熱熱交
換器中の冷媒蒸発圧力が一致するようにフィードバック
制御を行うことを特徴としている。
A first air conditioner of the present invention has a compressor that discharges high-temperature and high-pressure refrigerant under inverter control, and an outdoor heat exchanger that cools the high-temperature and high-pressure refrigerant and condenses it into refrigerant liquid. An outdoor unit; a flow control valve that decompresses and expands the refrigerant liquid, a heat storage heat exchanger that evaporates the expanded refrigerant, and a heat storage heat exchanger that stores and stores the heat storage heat exchanger in a liquid heat storage medium. A heat storage unit having a heat storage tank for storing ice of a heat storage medium that exchanges heat with a refrigerant as ice and cooling water; and an indoor flow rate for expanding a refrigerant liquid sent from the outdoor heat exchanger and supercooled by cold heat in the heat storage heat exchanger. An indoor unit having a control valve and an indoor heat exchanger that supplies heat to the room by exchanging heat with the expanded refrigerant; and an air conditioner that performs a cold storage operation for storing cold heat in a heat storage unit at night. Expected time of cold storage operation and heat storage For the heat storage capacity calculated from the heat storage capacity, the refrigerant evaporation pressure is calculated from the relationship between the refrigerant evaporation pressure and the heat storage capacity in the heat storage heat exchanger, and the calculated refrigerant evaporation pressure is used as the heat storage heat exchanger. Calculate the difference between the refrigerant evaporation pressure and the inverter frequency that controls the rotation of the compressor according to the difference, and provide feedback so that the refrigerant evaporation pressure in the heat storage heat exchanger matches the calculated refrigerant evaporation pressure. It is characterized by performing control.

【0009】また上記目的を達成するために、本発明の
第2の空気調和機は、上記第1の空気調和機と同一の機
械要素、すなわち圧縮機と室外熱交換器とを有する室外
機と;流量制御弁と蓄熱熱交換器と蓄熱槽と有する蓄熱
器と;室内流量制御弁と室内熱交換器とを有する室内機
と;を備えた空気調和機であって、蓄熱器に冷熱を蓄え
る蓄冷運転の予定時間と蓄熱器の蓄熱容量とから算定さ
れた蓄熱能力に対応して、蓄熱熱交換器中の冷媒蒸発圧
力と蓄熱能力との相関を示す式により、冷媒蒸発圧力を
演算しその冷媒蒸発圧力を目標値として設定する設定圧
力演算手段と、設定された冷媒蒸発圧力の目標値に対応
して、インバータ周波数と冷媒蒸発圧力との相関を示す
式から、インバータ周波数を演算するインバータ周波数
演算手段と、演算されたインバータ周波数により圧縮機
を制御するインバータ制御装置と、蓄冷運転時に蓄熱熱
交換器内の冷媒蒸発圧力を検出する低圧圧力検出手段
と、蓄熱槽中の蓄熱媒体の氷結により変化する水位を検
出する水位検出手段と、この水位検出器の検出値から単
位時間あたりの水位変化を求め、氷の生成速度即ち蓄熱
能力に換算する蓄熱能力演算手段と、を有し、かつイン
バータ周波数演算手段は、低圧圧力検出手段により検出
される冷媒蒸気圧力が設定圧力演算手段により設定され
た冷媒蒸発圧力の目標値に一致するようにインバータ周
波数を修正する機能を備えていることを特徴としてい
る。
In order to achieve the above object, a second air conditioner of the present invention includes an outdoor unit having the same mechanical elements as the first air conditioner, that is, a compressor and an outdoor heat exchanger. An air conditioner comprising: a heat storage unit having a flow control valve, a heat storage heat exchanger, and a heat storage tank; and an indoor unit having an indoor flow control valve and an indoor heat exchanger, wherein cold heat is stored in the heat storage unit. Corresponding to the heat storage capacity calculated from the scheduled time of the cold storage operation and the heat storage capacity of the heat storage device, the refrigerant evaporation pressure is calculated by an equation showing the correlation between the refrigerant evaporation pressure and the heat storage capacity in the heat storage heat exchanger. A set pressure calculating means for setting the refrigerant evaporation pressure as a target value; and an inverter frequency for calculating an inverter frequency from an equation showing a correlation between the inverter frequency and the refrigerant evaporation pressure, corresponding to the set target value of the refrigerant evaporation pressure. Calculation means and calculation Inverter control device that controls the compressor according to the inverter frequency, low-pressure pressure detection means that detects refrigerant evaporation pressure in the heat storage heat exchanger during cold storage operation, and water level that changes due to freezing of the heat storage medium in the heat storage tank Water level detecting means, and a heat storage capacity calculating means for calculating a water level change per unit time from a detection value of the water level detector, and converting it to ice generation speed, that is, a heat storing capacity, and the inverter frequency calculating means, It is characterized in that it has a function of correcting the inverter frequency so that the refrigerant vapor pressure detected by the low pressure detection means matches the target value of the refrigerant evaporation pressure set by the set pressure calculation means.

【0010】そして本発明の第2の空気調和機に加え
て、蓄冷運転の予定時間を設定するための蓄冷時間設定
手段と、その蓄冷運転の予定時間と蓄熱器の蓄熱容量と
から蓄冷能力を演算する蓄熱能力設定手段とを設け、演
算された蓄熱能力は設定圧力演算手段に出力するよう
に、空気調和機を構成することが好ましい。
[0010] In addition to the second air conditioner of the present invention, a cold storage time setting means for setting a scheduled cold storage operation time, and a cold storage capacity based on the scheduled cold storage operation time and the heat storage capacity of the regenerator. It is preferable that the air conditioner be configured so that a heat storage capacity setting means for calculating the heat storage capacity is provided, and the calculated heat storage capacity is output to the set pressure calculating means.

【0011】さらに本発明の第2の空気調和機に加え
て、水位検出手段の検出値が水位変化の無い状態を示す
蓄冷運転開始から、水位変化を示すまでの間は、蓄熱熱
交換器中の冷媒蒸発圧力と蓄熱能力との相関を示す式で
最大蓄熱能力に対応する冷媒蒸発圧力を設定圧力演算手
段に出力する蓄熱運転開始手段と、水位検出手段が水位
変化ありを検出した時に蓄冷運転予定時間と蓄熱器の蓄
熱容量とから算定された蓄熱能力に対応する冷媒蒸発圧
力の目標値に切り替える切替手段とを設けて、空気調和
機を構成するとよい。
Further, in addition to the second air conditioner of the present invention, the heat storage heat exchanger is used for a period from the start of the cold storage operation in which the detected value of the water level detecting means indicates that there is no water level change to the time when the water level changes. A heat storage operation start means for outputting the refrigerant evaporation pressure corresponding to the maximum heat storage capacity to the set pressure calculating means by an expression showing a correlation between the refrigerant evaporation pressure and the heat storage capacity of the refrigerant, and a cold storage operation when the water level detection means detects a change in the water level. The air conditioner may be provided with switching means for switching to a target value of the refrigerant evaporation pressure corresponding to the heat storage capacity calculated from the scheduled time and the heat storage capacity of the heat storage device.

【0012】また本発明の第2の空気調和機において、
低圧圧力検出手段を室外機内に設置し、低圧圧力検出手
段から蓄熱熱交換器と接続する配管長を設定する配管長
設定手段を設け、インバータ周波数演算手段は、低圧圧
力検出手段の検出値を、配管長設定手段により設定され
た配管長に対応する圧力損失だけ補正して、蓄熱熱交換
器の冷媒蒸発圧力に換算する機能を有するように構成し
てもよい。
In the second air conditioner of the present invention,
The low-pressure pressure detecting means is installed in the outdoor unit, and a pipe-length setting means for setting a pipe length to be connected to the heat storage heat exchanger from the low-pressure pressure detecting means is provided.The inverter frequency calculating means detects a value detected by the low-pressure pressure detecting means. You may comprise so that it may correct only the pressure loss corresponding to the piping length set by the piping length setting means, and may convert into the refrigerant | coolant evaporation pressure of a heat storage heat exchanger.

【0013】また、上記目的を達成するために、本発明
の第3の空気調和機は、上記第1の空気調和機と同一の
機械要素、すなわち圧縮機と室外熱交換器とを有する室
外機と;流量制御弁と蓄熱熱交換器と蓄熱槽と有する蓄
熱器と;室内流量制御弁と室内熱交換器とを有する室内
機と;を備えた空気調和機であって、蓄熱器に冷熱を蓄
える蓄冷運転の予定時間を設定するための蓄冷時間設定
手段と、その予定時間と蓄熱器の蓄熱容量とから蓄冷能
力を演算する蓄熱能力設定手段と、この蓄熱能力演算手
段により演算された蓄熱能力に対応して、蓄熱熱交換器
中の冷媒蒸発圧力と蓄熱能力との相関を示す式により、
冷媒蒸発圧力を演算して、その冷媒蒸発圧力を目標値と
して設定する設定圧力演算手段と、設定された冷媒蒸発
圧力の目標値に対応して、インバータ周波数と冷媒蒸発
圧力との相関を示す式から、インバータ周波数を演算す
るインバータ周波数演算手段と、演算されたインバータ
周波数により圧縮機を制御するインバータ制御装置と、
蓄冷運転時に蓄熱熱交換器内の冷媒蒸発圧力を検出する
低圧圧力検出手段と、蓄熱槽中の蓄熱媒体の氷結により
変化する水位を検出する水位検出手段と、一定時間毎に
水位検出器の検出値から単位時間あたりの水位変化を求
め、氷の生成速度即ち蓄熱能力に換算する蓄熱能力演算
手段と、この蓄熱能力演算手段により求められた蓄熱能
力の実績値と蓄熱能力設定手段により演算された蓄熱能
力の設定値との差を演算する蓄熱能力比較手段とを有
し、かつ設定圧力演算手段は、蓄熱能力の実績値が蓄熱
能力の設定値に近づくように、蓄熱熱交換器中の冷媒蒸
発圧力と蓄熱能力との相関を示す式により、冷媒蒸発圧
力を修正する機能を備え、かつインバータ周波数演算手
段は、低圧圧力検出手段により検出される冷媒蒸気圧力
が設定圧力演算手段により設定された冷媒蒸発圧力の目
標値に一致するようにインバータ周波数を変更する機能
を備えていることを特徴としている。
Further, in order to achieve the above object, a third air conditioner of the present invention provides an outdoor unit having the same mechanical elements as the first air conditioner, that is, a compressor and an outdoor heat exchanger. An air conditioner having a flow control valve, a heat storage heat exchanger, and a heat storage tank; and an indoor unit having an indoor flow control valve and an indoor heat exchanger; Cool storage time setting means for setting a scheduled time of the cold storage operation to be stored; heat storage capacity setting means for calculating a cold storage capacity from the scheduled time and the heat storage capacity of the heat storage device; and a heat storage capacity calculated by the heat storage capacity calculating means. Corresponding to, by the equation showing the correlation between the refrigerant evaporation pressure in the heat storage heat exchanger and the heat storage capacity,
Set pressure calculating means for calculating the refrigerant evaporation pressure and setting the refrigerant evaporation pressure as a target value, and an expression indicating the correlation between the inverter frequency and the refrigerant evaporation pressure corresponding to the set target value of the refrigerant evaporation pressure. An inverter frequency calculating means for calculating the inverter frequency, an inverter control device for controlling the compressor based on the calculated inverter frequency,
Low pressure pressure detecting means for detecting the refrigerant evaporation pressure in the heat storage heat exchanger during the cold storage operation, water level detecting means for detecting the water level that changes due to freezing of the heat storage medium in the heat storage tank, and detection of the water level detector at regular intervals The water level change per unit time is obtained from the value, and the heat generation capacity calculation means for converting the ice generation rate, that is, the heat storage capacity, and the actual value of the heat storage capacity obtained by the heat storage capacity calculation means and the heat storage capacity setting means are calculated. Heat storage capacity comparison means for calculating a difference from the set value of the heat storage capacity, and the set pressure calculation means, wherein the actual value of the heat storage capacity is close to the set value of the heat storage capacity, the refrigerant in the heat storage heat exchanger A function for correcting the refrigerant evaporation pressure is provided by an equation showing a correlation between the evaporation pressure and the heat storage capacity, and the inverter frequency calculation means is configured to calculate the refrigerant vapor pressure detected by the low pressure pressure detection means. It is characterized in that it comprises a function of changing the inverter frequency to match the more set target value of the refrigerant evaporation pressure.

【0014】そして。本発明の第3の空気調和機に加え
て、水位検出手段の検出値が水位変化の無い状態を示す
蓄冷運転開始から、水位変化を示すまでの間は、蓄熱熱
交換器中の冷媒蒸発圧力と蓄熱能力との相関を示す式で
最大蓄熱能力に対応する冷媒蒸発圧力を前記設定圧力演
算手段に出力する蓄熱運転開始手段と、水位検出手段が
水位変化ありを検出した時に蓄冷運転予定時間と蓄熱器
の蓄熱容量とから算定された蓄熱能力に対応する冷媒蒸
発圧力の目標値に切り替える切替手段とを設けて、空気
調和機を構成することが好ましい。
And. In addition to the third air conditioner of the present invention, during the period from the start of the cold storage operation in which the detection value of the water level detecting means indicates that there is no change in the water level to the time when the water level changes, the refrigerant evaporation pressure in the heat storage heat exchanger is changed. And a heat storage operation start means for outputting the refrigerant evaporation pressure corresponding to the maximum heat storage capacity to the set pressure calculation means in an expression showing a correlation between the heat storage capacity and a scheduled cold storage operation time when the water level detection means detects a water level change. It is preferable that an air conditioner be provided with switching means for switching to a target value of the refrigerant evaporation pressure corresponding to the heat storage capacity calculated from the heat storage capacity of the heat storage device.

【0015】また本発明の第3の空気調和機において、
低圧圧力検出手段を室外機内に設置してもよく、その際
には、低圧圧力検出手段から蓄熱熱交換器と接続する配
管長を設定する配管長設定手段を設け、さらにインバー
タ周波数演算手段は、低圧圧力検出手段の検出値を、配
管長設定手段により設定された配管長に対応する圧力損
失だけ補正して、蓄熱熱交換器の冷媒蒸発圧力に換算す
る機能を持つように構成する。
In a third air conditioner of the present invention,
The low-pressure pressure detecting means may be installed in the outdoor unit.In that case, a pipe-length setting means for setting a pipe length to be connected to the heat storage heat exchanger from the low-pressure pressure detecting means is provided. It has a function of correcting the detection value of the low pressure detection means by the pressure loss corresponding to the pipe length set by the pipe length setting means, and converting it to the refrigerant evaporation pressure of the heat storage heat exchanger.

【0016】[0016]

【作用】本発明の第1の空気調和機の機械系において
は、室外機の圧縮機はインバータ制御されて高温高圧の
冷媒を吐出し、室外熱交換器は、その高温高圧の冷媒を
冷却して冷媒液に凝縮し、そして蓄熱器の流量制御弁は
その冷媒液を減圧し膨張させ、蓄熱熱交換器は膨張した
冷媒を蓄熱槽中蓄熱媒体と熱交換して蒸発させるととも
に、蓄熱槽は蓄熱熱交換器の冷媒と熱交換して氷結する
蓄熱媒体の氷を冷熱として蓄える。このように第1の空
気調和機の蓄熱運転が行われる。
In the mechanical system of the first air conditioner of the present invention, the compressor of the outdoor unit is controlled by an inverter to discharge high-temperature and high-pressure refrigerant, and the outdoor heat exchanger cools the high-temperature and high-pressure refrigerant. The heat storage heat exchanger exchanges heat with the heat storage medium in the heat storage tank to evaporate the expanded refrigerant and evaporates the heat storage tank. Ice of the heat storage medium that freezes by exchanging heat with the refrigerant of the heat storage heat exchanger is stored as cold heat. Thus, the heat storage operation of the first air conditioner is performed.

【0017】蓄熱運転により蓄熱槽に蓄えられた冷熱を
利用する冷房運転では、室内機の室内流量制御弁は室外
熱交換器から送り出され、蓄熱熱交換器で冷熱により過
冷却された冷媒液を膨張させ、室内熱交換器は、その膨
張した冷媒と熱交換して冷気を室内に供給する。
In the cooling operation utilizing the cold stored in the heat storage tank by the heat storage operation, the indoor flow rate control valve of the indoor unit is sent out of the outdoor heat exchanger to remove the refrigerant liquid supercooled by the cold heat in the heat storage heat exchanger. When expanded, the indoor heat exchanger exchanges heat with the expanded refrigerant to supply cool air to the room.

【0018】蓄冷運転時における本発明の第1の空気調
和機の制御は、蓄冷運転の予定時間と蓄熱器の蓄熱容量
とから算定された蓄熱能力に対して、蓄熱熱交換器中の
冷媒蒸発圧力と蓄熱能力との関係から、冷媒蒸発圧力を
演算し、この演算された冷媒蒸発圧力と蓄熱熱交換器中
の冷媒蒸発圧力との差を求め、その差に応じて圧縮機を
回転制御するインバータ周波数を修正し、演算された冷
媒蒸発圧力に蓄熱熱交換器中の冷媒蒸発圧力が一致する
ようにフィードバック制御を行うことを特徴するもので
ある次に本発明の第2の空気調和機の動作について説明
する。本発明の第2の空気調和機の機械系は第1の空気
調和機と同一であるので、説明を省略したい。
The control of the first air conditioner of the present invention at the time of the cold storage operation is performed by comparing the heat storage capacity calculated from the scheduled time of the cold storage operation and the heat storage capacity of the regenerator with the evaporation of the refrigerant in the heat storage heat exchanger. The refrigerant evaporation pressure is calculated from the relationship between the pressure and the heat storage capacity, the difference between the calculated refrigerant evaporation pressure and the refrigerant evaporation pressure in the heat storage heat exchanger is determined, and the compressor is rotationally controlled according to the difference. The inverter frequency is corrected, and the feedback control is performed so that the calculated refrigerant evaporation pressure matches the refrigerant evaporation pressure in the heat storage heat exchanger. Next, the second air conditioner of the present invention is characterized in that: The operation will be described. Since the mechanical system of the second air conditioner of the present invention is the same as that of the first air conditioner, description thereof is omitted.

【0019】蓄冷運転時に本発明の第2の空気調和機の
制御系においては、設定圧力演算手段は、蓄冷運転予定
時間と蓄熱器の蓄熱容量とから算定された蓄熱能力に対
応して、蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能力との
相関を示す式により、冷媒蒸発圧力を演算しその冷媒蒸
発圧力を目標値として設定し、そしてインバータ周波数
演算手段は、設定された冷媒蒸発圧力の目標値に対応し
て、インバータ周波数と冷媒蒸発圧力との相関を示す式
から、インバータ周波数を演算し、そしてインバータ制
御装置は、演算されたインバータ周波数により圧縮機を
制御する。
In the control system of the second air conditioner of the present invention during the cold storage operation, the set pressure calculating means corresponds to the heat storage capacity calculated from the scheduled cold storage operation time and the heat storage capacity of the heat storage device. A refrigerant evaporation pressure is calculated by an equation showing a correlation between the refrigerant evaporation pressure in the heat exchanger and the heat storage capacity, the refrigerant evaporation pressure is set as a target value, and the inverter frequency calculation means calculates the refrigerant evaporation pressure of the set refrigerant evaporation pressure. The inverter frequency is calculated from an equation indicating the correlation between the inverter frequency and the refrigerant evaporation pressure corresponding to the target value, and the inverter control device controls the compressor based on the calculated inverter frequency.

【0020】また低圧圧力検出手段は蓄熱熱交換器内の
冷媒蒸発圧力を検出し、そして水位検出手段は蓄熱槽中
の蓄熱媒体の氷結により変化する水位を検出し、そして
蓄熱能力演算手段は水位検出器の検出値から単位時間あ
たりの水位変化を求め、氷の生成速度即ち蓄熱能力に換
算する。
The low pressure detecting means detects the refrigerant evaporation pressure in the heat storage heat exchanger, the water level detecting means detects a water level which changes due to freezing of the heat storage medium in the heat storage tank, and the heat storage capacity calculating means detects the water level. The change in water level per unit time is obtained from the detection value of the detector, and the result is converted into the ice formation speed, that is, the heat storage capacity.

【0021】さらに、インバータ周波数演算手段は、低
圧圧力検出手段により検出される冷媒蒸気圧力が設定圧
力演算手段により設定された冷媒蒸発圧力の目標値に一
致するようにインバータ周波数を修正するように機能す
る。
Further, the inverter frequency calculating means has a function of correcting the inverter frequency so that the refrigerant vapor pressure detected by the low pressure detecting means matches the target value of the refrigerant evaporation pressure set by the set pressure calculating means. I do.

【0022】また蓄冷時間設定手段は、ユーザが蓄冷運
転の予定時間を設定するために用いられ、そして蓄熱能
設定手段は、その予定時間と前記蓄熱器の蓄熱容量と
から蓄冷能力を演算して設定圧力演算手段に出力する。
The cold storage time setting means is used by a user to set a scheduled cold storage operation time, and the heat storage capacity setting means calculates a cold storage capacity from the scheduled time and the heat storage capacity of the heat storage device. Output to the set pressure calculation means.

【0023】蓄熱運転開始手段は、水位検出手段の検出
値がゼロを示す蓄冷運転開始から、水位変化を示すまで
の間は、蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能力との
相関を示す式で最大蓄熱能力に対応する冷媒蒸発圧力を
設定圧力演算手段に出力し、そして切替手段は、水位検
出手段が水位変化ありを検出した時に蓄冷運転予定時間
と蓄熱器Dの蓄熱容量とから算定された蓄熱能力に対応
する冷媒蒸発圧力の目標値に切り替える。
The heat storage operation start means shows a correlation between the refrigerant evaporation pressure in the heat storage heat exchanger and the heat storage capacity from the start of the cold storage operation when the detection value of the water level detection means shows zero to the time when the water level changes. The refrigerant evaporating pressure corresponding to the maximum heat storage capacity is output to the set pressure calculating means in the formula, and the switching means calculates the cooling storage operation scheduled time and the heat storage capacity of the heat storage device D when the water level detecting means detects a change in the water level. To the target value of the refrigerant evaporation pressure corresponding to the determined heat storage capacity.

【0024】また本発明の第2の空気調和機において、
低圧圧力検出手段を室外機内に設置した場合に設ける配
管長設定手段は、低圧圧力検出手段から前記蓄熱熱交換
器と接続する配管長をユーザが設定するために用いら
れ、この際、インバータ周波数演算手段は、低圧圧力検
出手段の検出値を、配管長設定手段により設定された配
管長に対応する圧力損失だけ補正して、蓄熱熱交換器の
冷媒蒸発圧力に換算するように機能する。
Further, in the second air conditioner of the present invention,
The pipe length setting means provided when the low pressure pressure detection means is installed in the outdoor unit is used by a user to set the length of the pipe connected to the heat storage heat exchanger from the low pressure pressure detection means. The means functions to correct the value detected by the low-pressure pressure detecting means by the pressure loss corresponding to the pipe length set by the pipe length setting means, and to convert the corrected value into the refrigerant evaporation pressure of the heat storage heat exchanger.

【0025】次に本発明の第3の空気調和機の動作につ
いて説明する。本発明の第3の空気調和機の機械系は第
1の空気調和機と同一であるので、説明を省略する。
Next, the operation of the third air conditioner of the present invention will be described. Since the mechanical system of the third air conditioner of the present invention is the same as that of the first air conditioner, the description is omitted.

【0026】本発明の第3の空気調和機の制御系におい
て、蓄冷時間設定手段はユーザが蓄冷運転の予定時間を
設定するために用いられ、そして蓄熱能力設定手段は、
その予定時間と蓄熱器の蓄熱容量とから蓄冷能力を演算
し、そして設定圧力演算手段は蓄熱能力設定手段により
演算された蓄熱能力に対応して、蓄熱熱交換器中の冷媒
蒸発圧力と蓄熱能力との相関を示す式により、冷媒蒸発
圧力を演算して、その冷媒蒸発圧力を目標値として設定
し、そしてインバータ周波数演算手段は、設定された冷
媒蒸発圧力の目標値に対応して、インバータ周波数と冷
媒蒸発圧力との相関を示す式から、インバータ周波数を
演算し、そしてインバータ制御装置は、演算されたイン
バータ周波数により圧縮機を制御する。
In the control system of the third air conditioner of the present invention, the cool storage time setting means is used by the user to set the scheduled time of the cool storage operation, and the heat storage capacity setting means is
The cold storage capacity is calculated from the scheduled time and the heat storage capacity of the heat storage device, and the set pressure calculation means corresponds to the heat storage capacity calculated by the heat storage capacity setting means, and the refrigerant evaporation pressure and the heat storage capacity in the heat storage heat exchanger. The refrigerant evaporating pressure is calculated by a formula indicating the correlation with the above, the refrigerant evaporating pressure is set as a target value, and the inverter frequency calculating means outputs the inverter frequency corresponding to the set refrigerant evaporating pressure target value. The inverter frequency is calculated from an equation showing the correlation between the inverter frequency and the refrigerant evaporation pressure, and the inverter control device controls the compressor based on the calculated inverter frequency.

【0027】また低圧圧力検出手段は、蓄熱熱交換器内
の冷媒蒸発圧力を検出し、そして水位検出手段は、蓄熱
槽中の蓄熱媒体の氷結により変化する水位を検出し、そ
して蓄熱能力演算手段は、一定時間毎に水位検出器の検
出値から単位時間あたりの水位変化を求め、氷の生成速
度即ち蓄熱能力に換算するし、そして蓄熱能力比較手段
は、蓄熱能力演算手段により求められた蓄熱能力の設定
値と蓄熱能力演算手段により演算された蓄熱能力の実績
値との差を演算する。
The low pressure detecting means detects the refrigerant evaporation pressure in the heat storage heat exchanger, the water level detecting means detects a water level changing due to freezing of the heat storage medium in the heat storage tank, and the heat storage capacity calculating means. Calculates the water level change per unit time from the detection value of the water level detector at regular intervals, converts it into ice formation speed, that is, the heat storage capacity, and the heat storage capacity comparison means uses the heat storage capacity calculated by the heat storage capacity calculation means. The difference between the set value of the capacity and the actual value of the heat storage capacity calculated by the heat storage capacity calculating means is calculated.

【0028】さらに、設定圧力演算手段は、一定時間毎
に、蓄熱能力の実績値が蓄熱能力の設定値に近づくよう
に、蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能力との相関
を示す式により、冷媒蒸発圧力を修正するように機能
し、そしてインバータ周波数演算手段は、低圧圧力検出
手段により検出される冷媒蒸気圧力が設定圧力演算手段
により設定された冷媒蒸発圧力の目標値に一致するよう
にインバータ周波数を変更するように機能する。
Further, the set pressure calculating means calculates the correlation between the evaporation pressure of the refrigerant in the heat storage heat exchanger and the heat storage capacity such that the actual value of the heat storage capacity approaches the set value of the heat storage capacity at regular intervals. Thus, the inverter frequency calculating means operates such that the refrigerant vapor pressure detected by the low-pressure pressure detecting means matches the target value of the refrigerant evaporating pressure set by the set pressure calculating means. Function to change the inverter frequency.

【0029】第3の空気調和機の蓄熱運転開始手段及び
切替手段は、上記第1の空気調和機のそれぞれと同様に
作用する。また低圧圧力検出手段を室外機内に設置した
場合に設ける配管長設定手段、それを設けた際のインバ
ータ周波数演算手段の機能は第1の空気調和機と同様で
ある。
The heat storage operation start means and the switching means of the third air conditioner operate in the same manner as each of the first air conditioners. The function of the pipe length setting means provided when the low pressure pressure detecting means is installed in the outdoor unit and the function of the inverter frequency calculating means provided with the pipe length setting means are the same as those of the first air conditioner.

【0030】以上のように、本発明の各空気調和機は、
蓄熱熱交換器中の冷媒蒸発圧力を蓄熱槽の蓄熱媒体を氷
結するに適当な圧力になるようフィードバック制御する
制御系を備えており、所要量の冷熱を氷の潜熱として確
実に蓄えることができる。特に夜間の安価な電気量を利
用し、空気調和機の蓄冷運転を行うと経済的である。
As described above, each air conditioner of the present invention
Equipped with a control system that feedback controls the refrigerant evaporation pressure in the heat storage heat exchanger to a pressure suitable for freezing the heat storage medium in the heat storage tank, and can reliably store the required amount of cold heat as ice latent heat. . In particular, it is economical to perform the cold storage operation of the air conditioner by using cheap electricity at night.

【0031】[0031]

【実施例】本発明の実施例を図1〜図9を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS.

【0032】図1に本発明の一実施例になる空気調和機
の全体構成を示す。この空気調和機は、大別して室外機
A、室内機B、室内機C及び蓄熱器Dの各ユニットと、
室外機Aから蓄熱器Dを経て室内機B、Cまで延び冷媒
液を搬送する液管14aと、室内機B、Cから室外機A
に延び冷媒蒸気を搬送するガス管14bとから構成され
ている。そしてこの空気調和機は冷房、蓄冷及び暖房の
3つの運転モードで運転される。
FIG. 1 shows the overall configuration of an air conditioner according to an embodiment of the present invention. This air conditioner is roughly divided into units of an outdoor unit A, an indoor unit B, an indoor unit C, and a regenerator D,
A liquid pipe 14a extending from the outdoor unit A to the indoor units B and C via the regenerator D to convey the refrigerant liquid, and a liquid pipe 14a from the indoor units B and C to the outdoor unit A
And a gas pipe 14b for extending the refrigerant vapor. The air conditioner is operated in three operation modes: cooling, cooling and heating.

【0033】冷房運転時には、室外機Aは冷媒を圧縮し
て高温高圧の冷媒を作り、外気により冷却して凝縮、液
化し、蓄熱器D(詳しくは後述)及び液管14aを通じ
て室内機B,Cに供給し、そして室内機B,Cは液化さ
れた冷媒液を減圧、膨張させた後に室内空気と熱交換し
て蒸発させ、その室内空気を冷気として供給する。蒸発
した冷媒はガス管14bを通じて室外機Aに還流され
る。かくして冷媒は、圧縮、凝縮、膨張及び蒸発の冷凍
サイクルで作動する。
During the cooling operation, the outdoor unit A compresses the refrigerant to produce a high-temperature and high-pressure refrigerant, cools it with outside air, condenses and liquefies it, and passes through the indoor unit B, C, and the indoor units B and C decompress and expand the liquefied refrigerant liquid, exchange heat with room air to evaporate, and supply the room air as cool air. The evaporated refrigerant is returned to the outdoor unit A through the gas pipe 14b. Thus, the refrigerant operates in a refrigeration cycle of compression, condensation, expansion and evaporation.

【0034】蓄冷運転時には、室外機Aは、外気により
冷却して凝縮、液化した冷媒を蓄熱器Dに送給し、そし
て蓄熱器Dは、冷媒液を減圧、膨張させた後に蓄熱器D
中に貯えた液状の蓄熱媒体と熱交換して蒸発させ、蓄熱
媒体を氷結させ、その氷を冷熱として蓄える。蒸発した
冷媒はガス管14bを通じて室外機Aに還流される。こ
の蓄冷運転は冷房の行わない夜間の時間帯に行われる。
蓄熱槽中に氷として蓄えられた冷熱は、冷房運転時に室
外機Aから送給された冷媒液を過冷却し、室内機に供給
される。
During the cold storage operation, the outdoor unit A sends the refrigerant cooled by the outside air, condensed and liquefied to the regenerator D, and the regenerator D decompresses and expands the refrigerant liquid and then regenerates the regenerator D.
It exchanges heat with the liquid heat storage medium stored therein to evaporate, freezes the heat storage medium, and stores the ice as cold heat. The evaporated refrigerant is returned to the outdoor unit A through the gas pipe 14b. This cold storage operation is performed during the night time when cooling is not performed.
The cold heat stored as ice in the heat storage tank supercools the refrigerant liquid sent from the outdoor unit A during the cooling operation and is supplied to the indoor unit.

【0035】暖房運転時には、室外機Aは外気により冷
媒を加熱し、加熱されて蒸気となった冷媒蒸気をガス管
14bを通じて室内機B,Cに送給し、そして室内機
B,Cは、冷媒蒸気と室内空気とを熱交換して放熱し、
室内に暖気を供給する。放熱により凝縮した冷媒液は室
外機Aに還流される。
At the time of the heating operation, the outdoor unit A heats the refrigerant by the outside air, and sends the heated refrigerant vapor to the indoor units B and C through the gas pipe 14b. Heat exchange between refrigerant vapor and indoor air to release heat,
Supply warm air to the room. The refrigerant liquid condensed by the heat release is returned to the outdoor unit A.

【0036】次に空気調和機の構成をより詳細に説明す
る。室外機Aは、インバータ制御され容量制御機能を有
する圧縮機1と、圧縮機1から吐出された冷媒の流れ方
向を運転モードに応じて切り替える四方弁2と、冷房運
転及び蓄冷運転時に、凝縮器として機能し、四方弁2を
通じて送給される冷媒を外気により冷却して冷媒液に凝
縮する室外熱交換器3と、室外熱交換器3からの冷媒液
を”開”状態で通過させ蓄熱器Dへ送り出す室外流量制
御弁4と、圧縮機1の入り側に設けられ室内機A,Bか
ら還流する冷媒蒸気を気液分離して圧縮機1にガス冷媒
のみを送給するアキュムレータ5と、四方弁2とアキュ
ムレーター5間にあって間接的に蓄熱器における冷媒蒸
発圧力を検出する低圧圧力検出手段21と、から構成さ
れている。
Next, the configuration of the air conditioner will be described in more detail. The outdoor unit A includes a compressor 1 that is inverter-controlled and has a capacity control function, a four-way valve 2 that switches a flow direction of a refrigerant discharged from the compressor 1 according to an operation mode, and a condenser that performs cooling operation and cold storage operation. An outdoor heat exchanger 3 which cools the refrigerant supplied through the four-way valve 2 by outside air and condenses it into a refrigerant liquid, and a regenerator which allows the refrigerant liquid from the outdoor heat exchanger 3 to pass in an "open" state. An outdoor flow control valve 4 for sending to the compressor D; an accumulator 5 provided on the inlet side of the compressor 1 for separating the refrigerant vapor flowing back from the indoor units A and B into gas and liquid to supply only the gas refrigerant to the compressor 1; A low-pressure pressure detecting means 21 which is located between the four-way valve 2 and the accumulator 5 and indirectly detects the refrigerant evaporation pressure in the heat storage device.

【0037】なお、暖房運転時には、室外流量制御弁4
は膨張弁として機能し、室内機B,Cから蓄熱器Dを素
通りして還流する冷媒液を減圧、膨張させ、そして室外
熱交換器3は蒸発器として機能し、室外流量制御弁4で
膨張した冷媒を加熱して蒸発させる。その蒸発した冷媒
は四方弁2及びアキュムレーター5を介して圧縮機1に
戻される。この時、四方弁2はその内部に破線で示す流
路を形成する。
During the heating operation, the outdoor flow control valve 4
Functions as an expansion valve, decompresses and expands the refrigerant liquid flowing back from the indoor units B and C through the heat accumulator D, and the outdoor heat exchanger 3 functions as an evaporator and expands with the outdoor flow control valve 4. The heated refrigerant is evaporated by heating. The evaporated refrigerant is returned to the compressor 1 via the four-way valve 2 and the accumulator 5. At this time, the four-way valve 2 forms a flow path indicated by a broken line inside thereof.

【0038】室内機B及び室内機Cは、冷凍サイクル構
成が同一である。それぞれの室内機は、冷房運転時に室
外機Aから吐出され蓄熱機Dで過冷却された冷媒液を減
圧、膨張させる膨張弁として機能する室内流量制御弁7
と、膨張した冷媒を蒸発させる蒸発器として機能し、そ
の冷媒蒸気と室内空気を熱交換させて冷気を室内に供給
する室内熱交換器6とから構成されている。なお、暖房
運転時には、室内熱交換器6は凝縮器として機能し、室
外機Aからの高温の冷媒を室内空気により冷却し、室内
に暖気を供給する。この時、室内流量制御弁7は、”
開”状態となり、室内熱交換器6からの冷媒液を通過さ
せ、室外機Aへ送り出す。
The indoor unit B and the indoor unit C have the same refrigeration cycle configuration. Each indoor unit has an indoor flow rate control valve 7 functioning as an expansion valve for decompressing and expanding the refrigerant liquid discharged from the outdoor unit A and supercooled by the heat accumulator D during the cooling operation.
And an indoor heat exchanger 6 that functions as an evaporator for evaporating the expanded refrigerant, exchanges heat between the refrigerant vapor and the indoor air, and supplies cool air into the room. During the heating operation, the indoor heat exchanger 6 functions as a condenser, cools the high-temperature refrigerant from the outdoor unit A with the indoor air, and supplies warm air to the room. At this time, the indoor flow control valve 7
The state is “open”, and the refrigerant liquid from the indoor heat exchanger 6 is passed through and sent to the outdoor unit A.

【0039】蓄熱器Dは、液状の蓄熱媒体11を貯留す
る蓄熱槽10と、蓄熱媒体11内に設けられ蓄冷運転時
に蒸発器として機能する蓄熱熱交換器8と、室外機Aか
らの冷媒液を減圧、膨張させる膨張弁として機能し、膨
張した冷媒を蓄熱用熱交換器8に送り出す蓄熱流量制御
弁9と、蓄冷運転時に開路して蓄熱用熱交換器8出側か
ら室外機Aへの戻り流路を導通させる切替弁12と、蓄
冷運転時に閉路して蓄熱用熱交換器8出側から室内機
A,Bへの管路を閉じるもう一つの切替弁13とから構
成されている。
The heat storage device D includes a heat storage tank 10 for storing a liquid heat storage medium 11, a heat storage heat exchanger 8 provided in the heat storage medium 11 and functioning as an evaporator during a cold storage operation, and a refrigerant liquid from the outdoor unit A. A heat storage flow rate control valve 9 that functions as an expansion valve that reduces and expands the refrigerant, and sends out the expanded refrigerant to the heat storage heat exchanger 8; The switching valve 12 includes a switching valve 12 for conducting the return flow path, and another switching valve 13 that is closed during the cold storage operation and closes a pipeline from the outlet side of the heat storage heat exchanger 8 to the indoor units A and B.

【0040】蓄冷運転時、蓄熱熱交換器8は、蓄熱流量
制御弁9からの膨張した冷媒を蓄熱槽10中の蓄熱媒体
11と熱交換して蒸発させ、蓄熱槽10中の蓄熱媒体1
1から吸熱して蓄熱熱交換器8回りに蓄熱媒体11を氷
結させる。かくして蓄熱槽10は冷熱を氷の状態で蓄え
ることになる。なお、氷結が進むにつれて、蓄熱媒体1
1の水位は上昇する。
During the cold storage operation, the heat storage heat exchanger 8 exchanges heat with the heat storage medium 11 in the heat storage tank 10 to evaporate the expanded refrigerant from the heat storage flow rate control valve 9 and evaporates the heat.
Heat is absorbed from the heat storage medium 1 and the heat storage medium 11 is frozen around the heat storage heat exchanger 8. Thus, the heat storage tank 10 stores cold heat in an ice state. Note that as the icing progresses, the heat storage medium 1
The water level of 1 rises.

【0041】また、冷房運転時には、蓄熱熱交換器8
は、室外機Aから送り込まれた冷媒液を蓄熱槽10中の
冷熱により過冷却して室内機A,Bに送り出す。この
時、切替弁13は”開”状態であり、蓄熱熱交換器8出
側と室内機A,Bとを室内流量制御弁7を介して導通さ
せる、一方、切替弁12は”閉”状態であって蓄熱熱交
換器8出側と室外機A間の流路を遮断する。
During the cooling operation, the heat storage heat exchanger 8
, Supercools the refrigerant liquid sent from the outdoor unit A by the cool heat in the heat storage tank 10 and sends it out to the indoor units A and B. At this time, the switching valve 13 is in the "open" state, and the outlet side of the heat storage heat exchanger 8 and the indoor units A and B are conducted through the indoor flow control valve 7, while the switching valve 12 is in the "closed" state. Then, the flow path between the outlet side of the heat storage heat exchanger 8 and the outdoor unit A is shut off.

【0042】なお、暖房運転では、蓄熱器Dは機能せ
ず、室内熱交換器A,Bから出た冷媒は、蓄熱器D中の
切替弁13、蓄熱熱交換器8、蓄熱流量制御弁9を順次
通過して室外機Aに還流する。
In the heating operation, the heat storage device D does not function, and the refrigerant flowing out of the indoor heat exchangers A and B is supplied to the switching valve 13, the heat storage heat exchanger 8, and the heat storage flow control valve 9 in the heat storage device D. , And is returned to the outdoor unit A.

【0043】かかる機器にて構成される空気調和機は、
室外機に複数の室内機を並列に接続する、いわゆるマル
チ型の装置である。
An air conditioner composed of such devices is as follows:
This is a so-called multi-type device in which a plurality of indoor units are connected in parallel to the outdoor unit.

【0044】次に本発明を特徴づける蓄冷運転の制御に
ついて説明する。本実施例の空気調和機は、蓄熱熱交換
器8における冷媒の蒸発圧力を検出する低圧圧力検出手
段21と、蓄熱槽10内における蓄熱媒体11の凝固
(氷結)によって生ずる水位変化を検出する水位検出手
段22を設けており、更にその水位検出手段22からの
検出信号により冷凍サイクル中の冷媒循環量を制御する
制御装置24と、圧縮機1を駆動するインバ−タ制御装
置25を具備する。
Next, control of the cold storage operation, which characterizes the present invention, will be described. The air conditioner according to the present embodiment includes a low pressure detection unit 21 that detects the evaporation pressure of the refrigerant in the heat storage heat exchanger 8 and a water level that detects a change in water level caused by solidification (freezing) of the heat storage medium 11 in the heat storage tank 10. A detection unit 22 is provided. The control unit 24 further controls a refrigerant circulating amount in the refrigeration cycle based on a detection signal from the water level detection unit 22 and an inverter control unit 25 for driving the compressor 1.

【0045】図1に示す構成において、蓄熱器Dに蓄え
られた冷熱を利用する冷房運転時に、圧縮機1から吐出
された高温高圧の冷媒は、四方切換弁2を介して室外熱
交換器3に送給され、凝縮されて冷媒液となる。冷媒液
は、蓄熱器Dに搬送されて、そこで、既に蓄冷運転によ
り蓄熱槽10中に氷として蓄熱された低温の蓄熱媒体1
1と、蓄熱熱交換器8を介して熱交換することにより過
冷却される。過冷却された冷媒液は、膨張弁として動作
する室内流量制御弁7で断熱膨張した後、室内側熱交換
器6で蒸発して室内空気を冷却し、それから圧縮機1に
戻される。したがって、蓄熱熱交換器8で過冷却された
分の冷房能力が増加するために冷凍サイクル内の冷媒循
環量を減少させることが可能となり、冷媒循環量の減少
により圧縮機1を駆動する動力が減少し、蓄熱器のない
空気調和器の冷房運転に比較し、圧縮機1の冷房運転時
における消費電力を少なくすることができる。
In the configuration shown in FIG. 1, during the cooling operation using the cold stored in the regenerator D, the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows through the four-way switching valve 2 to the outdoor heat exchanger 3. And is condensed into a refrigerant liquid. The refrigerant liquid is transported to the heat storage device D, where the low-temperature heat storage medium 1 already stored as ice in the heat storage tank 10 by the cold storage operation.
1 is supercooled by exchanging heat with the heat storage heat exchanger 8. The supercooled refrigerant liquid is adiabatically expanded by the indoor flow rate control valve 7 operating as an expansion valve, then evaporated by the indoor heat exchanger 6 to cool the indoor air, and then returned to the compressor 1. Therefore, the cooling capacity of the subcooling in the heat storage heat exchanger 8 is increased, so that the amount of circulating refrigerant in the refrigeration cycle can be reduced, and the power for driving the compressor 1 due to the decrease in the amount of circulating refrigerant is reduced. The power consumption during the cooling operation of the compressor 1 can be reduced as compared with the cooling operation of the air conditioner without the regenerator.

【0046】次に、図2を用いて制御装置24A及びイ
ンバ−タ制御装置25の動作について説明する。蓄冷運
転時には、まず水位変化演算手段101は、一定時間毎
に水位検出手段22からの検出信号を受けて、その検出
信号から蓄熱媒体11の凝固により生ずる蓄熱槽10中
での水位変化を演算する。ところで、液状の蓄熱媒体1
1は氷になるとその体積を10%程度増すので、水位は
上昇する。次にその演算結果の水位変化により設定蓄熱
能力演算手段102は単位時間あたりの製氷量を演算
し、単位時間あたりの蓄熱量、即ち蓄熱能力を把握す
る。
Next, the operation of the control unit 24A and the inverter control unit 25 will be described with reference to FIG. During the cold storage operation, first, the water level change calculating means 101 receives a detection signal from the water level detecting means 22 at regular intervals, and calculates the water level change in the heat storage tank 10 caused by the solidification of the heat storage medium 11 from the detection signal. . By the way, the liquid heat storage medium 1
1 increases the volume of ice by about 10%, so that the water level rises. Next, the set heat storage capacity calculation means 102 calculates the amount of ice making per unit time based on the water level change of the calculation result, and grasps the heat storage capacity per unit time, that is, the heat storage capacity.

【0047】一方、設定圧力演算手段105には、蓄熱
熱交換器8の容量や圧縮機1の容量ら冷媒蒸発圧力によ
り決定される蓄熱器Dの蓄熱能力について、冷媒蒸発圧
力と蓄熱能力との関係があらかじめ記憶されており、そ
の冷媒蒸発圧力と蓄熱能力との関係から、蓄冷運転時の
冷媒蒸発圧力の目標値PSsetを設定圧力演算手段105
が設定する。ここで、蓄熱能力と冷媒蒸発圧力との関係
を図4に示す。蓄熱器Dの蓄熱能力は、蓄熱熱交換器8
における冷媒蒸発圧力に逆比例し、冷媒圧力が低くなる
ほど、蓄熱能力は高くなる。
On the other hand, the set pressure calculating means 105 stores the heat storage capacity of the heat storage device D determined by the refrigerant evaporation pressure based on the capacity of the heat storage heat exchanger 8 and the capacity of the compressor 1 as a function of the refrigerant evaporation pressure and the heat storage capacity. The relationship is stored in advance, and from the relationship between the refrigerant evaporation pressure and the heat storage capacity, the target value PSset of the refrigerant evaporation pressure during the cold storage operation is set to the set pressure calculation means 105.
Is set. Here, the relationship between the heat storage capacity and the refrigerant evaporation pressure is shown in FIG. The heat storage capacity of the heat storage device D is the heat storage heat exchanger 8
Is inversely proportional to the refrigerant evaporation pressure, and the lower the refrigerant pressure, the higher the heat storage capacity.

【0048】インバ−タ周波数演算手段107は圧力設
定値PSsetと低圧圧力検出手段21からの蒸発圧力検出
信号PSとにより、圧縮機1を駆動するインバ−タ周波数
を微分、積分、差分の項からみるPID制御演算式によ
り増減し、PSがPSsetに一致するように修正インバータ
周波数を演算し、インバ−タ周波数演算結果をインバ−
タ制御装置25に出力する。インバ−タ制御装置25は
圧縮機1をインバ−タ周波数演算結果によって運転す
る。
The inverter frequency calculating means 107 differentiates the inverter frequency for driving the compressor 1 based on the pressure set value PSset and the evaporating pressure detection signal PS from the low pressure detecting means 21 from the terms of differentiation, integration and difference. The corrected inverter frequency is calculated so that PS is equal to PSset, and the result of the inverter frequency calculation is calculated by the PID control calculation formula.
Output to the data controller 25. The inverter control device 25 operates the compressor 1 based on the result of the inverter frequency calculation.

【0049】また圧縮機1は、運転周波数を変更するこ
とにより容量制御が可能なため、冷凍サイクル中の冷媒
循環量を変更し、蓄冷運転時に蓄熱媒体11への蓄熱量
を可変する機能を有している。一方、蓄熱熱交換器8に
おける冷媒の蒸発圧力と蓄熱能力との関係は、図4に示
すように、冷媒の蒸発圧力が低くなれば蓄熱能力が高く
なり、逆に蒸発圧力が高くなれば蓄熱能力が低くなる特
性を持ち、かつその関係は一義的に定まる。ちなみに、
周知のモリエル線図(図示なし)でわかるように、冷媒
の蒸発圧力が低くなると、冷媒温度が低くなるので、冷
媒の温度と蓄熱媒体11との温度差が大きくなり、冷媒
温度と蓄熱媒体11との温度差が大きくなり、蓄熱熱交
換器8は製氷する能力、即ち蓄熱能力を増加させる。
The capacity of the compressor 1 can be controlled by changing the operating frequency. Therefore, the compressor 1 has a function of changing the amount of refrigerant circulating in the refrigeration cycle and changing the amount of heat stored in the heat storage medium 11 during the cold storage operation. are doing. On the other hand, as shown in FIG. 4, the relationship between the evaporation pressure of the refrigerant and the heat storage capacity in the heat storage heat exchanger 8 is such that the lower the evaporation pressure of the refrigerant, the higher the heat storage capacity, and conversely, the higher the evaporation pressure, the higher the heat storage capacity. It has the characteristic of reduced ability, and the relationship is uniquely determined. By the way,
As can be seen from the well-known Mollier diagram (not shown), when the evaporation pressure of the refrigerant decreases, the refrigerant temperature decreases, so that the temperature difference between the refrigerant temperature and the heat storage medium 11 increases, and the refrigerant temperature and the heat storage medium 11 decrease. Is increased, and the heat storage heat exchanger 8 increases the ability to make ice, that is, the heat storage capacity.

【0050】制御装置24Aは、一定時間毎に蒸発圧力
検出手段21から蒸発圧力検出信号PSを検出し、インバ
−タ周波数演算を行い、蒸発圧力検出信号PSが圧力設定
値PSsetに近ずくようにフィ−ドバック制御する機能を
有するので、蓄熱熱交換器8での冷媒の蒸発圧力PSを、
蓄熱媒体11の凝固し得る適当な圧力に制御し、確実な
蓄熱能力制御を行う事が可能となる。更に、制御装置2
4Aは水位検出手段22により検出する水位から蓄熱槽
10中に生成された製氷量、換言すれば蓄えられた蓄熱
量を監視する。
The control device 24A detects the evaporating pressure detection signal PS from the evaporating pressure detecting means 21 at regular intervals and performs an inverter frequency calculation so that the evaporating pressure detection signal PS approaches the pressure set value PSset. Since it has the function of feedback control, the evaporation pressure PS of the refrigerant in the heat storage heat exchanger 8 is
It is possible to control the heat storage medium 11 to an appropriate pressure at which the heat storage medium 11 can be solidified, and to perform reliable heat storage capacity control. Further, the control device 2
4A monitors the amount of ice produced in the heat storage tank 10 from the water level detected by the water level detection means 22, in other words, the stored heat storage amount.

【0051】また、かかる制御によれば、圧力設定値PS
setを、蓄熱媒体11が凝固温度以下になるような冷媒
の蒸発圧力に設定することにより、蓄熱熱交換器8にお
ける冷媒蒸発温度を蓄熱媒体11の凝固温度以下に制御
し、蓄冷運転時に生ずる熱エネルギ−を蓄熱媒体11の
潜熱により蓄熱することが可能となり、効率の良い蓄冷
運転を実現できる効果が期待できる。
According to such control, the pressure set value PS
By setting “set” to the evaporating pressure of the refrigerant such that the heat storage medium 11 becomes equal to or lower than the solidification temperature, the refrigerant evaporation temperature in the heat storage heat exchanger 8 is controlled to be equal to or lower than the solidification temperature of the heat storage medium 11, and the heat generated during the cold storage operation Energy can be stored by the latent heat of the heat storage medium 11, and an effect of realizing an efficient cold storage operation can be expected.

【0052】図6は、本発明の第2の実施例の空気調和
機における制御装置24Bの機能図である。この制御装
置24Bは、図2に示す制御装置24Aに蓄冷時間設定
手段110を付加し、ユ−ザが蓄冷時間設定手段110
により蓄冷運転時間を設定できるようにしたものであ
る。制御装置24Bは、また、蓄冷時間設定手段110
に順次つながる蓄熱能力設定手段106および蓄熱能力
比較手段104を設けている。
FIG. 6 is a functional diagram of the control device 24B in the air conditioner according to the second embodiment of the present invention. This control device 24B adds a cool storage time setting means 110 to the control device 24A shown in FIG.
Thus, the cold storage operation time can be set. The control device 24B also includes a cool storage time setting unit 110.
Is provided with a heat storage capacity setting means 106 and a heat storage capacity comparison means 104 which are successively connected to each other.

【0053】図7は蓄熱器における冷媒の蒸発圧力と圧
縮機の消費電力の関係、およびその冷媒の蒸発圧力と成
績係数の関係を示す。消費電力は蒸発圧力の上昇につれ
て下降し、そして成績係数は蒸発圧力の上昇につれて上
昇する特性を有している。一方、図4に示すように、蓄
熱能力は、冷媒の蒸発圧力が低下するにつれて上昇する
特性であり、蓄熱能力のみを重視すると消費電力が上昇
して経済的な運転に支障を来す一方、経済性のみを重視
すると蓄冷運転設定時間内に所定の蓄熱量が確保されな
いことが生ずる。従って蓄冷運転設定時間によって、成
績係数すなわち圧縮機の消費電力に対する蓄熱能力の比
率について考慮しておく必要がある。
FIG. 7 shows the relationship between the evaporating pressure of the refrigerant in the regenerator and the power consumption of the compressor, and the relationship between the evaporating pressure of the refrigerant and the coefficient of performance. The power consumption decreases as the evaporation pressure increases, and the coefficient of performance increases as the evaporation pressure increases. On the other hand, as shown in FIG. 4, the heat storage capacity is a characteristic that increases as the evaporating pressure of the refrigerant decreases. If only the heat storage capacity is emphasized, power consumption increases and hinders economical operation. If only economic efficiency is emphasized, a predetermined amount of heat storage may not be secured within the cold storage operation set time. Therefore, it is necessary to consider the coefficient of performance, that is, the ratio of the heat storage capacity to the power consumption of the compressor, depending on the cold storage operation set time.

【0054】そこで図8に示す設定蓄熱能力と圧力設定
値PSsetの関係に従うように、蓄冷運転が制御される。
蓄熱能力設定手段106は、蓄熱時間設定手段110に
より設定された蓄熱設定時間により、設定蓄熱能力を算
出する。設定圧力演算手段105はその設定蓄熱能力か
ら図8に示すように圧力設定値 PSsetを演算し、設定す
る。即ち、設定圧力演算手段105は、設定蓄熱能力が
高い程、圧力設定値 PSsetを低く設定し、逆に設定蓄熱
能力が低い程、圧力設定値 PSsetを高く設定する。
Therefore, the cold storage operation is controlled so as to follow the relationship between the set heat storage capacity and the pressure set value PSset shown in FIG.
The heat storage capacity setting means 106 calculates a set heat storage capacity based on the heat storage setting time set by the heat storage time setting means 110. The set pressure calculating means 105 calculates and sets a pressure set value PSset from the set heat storage capacity as shown in FIG. That is, the set pressure calculating means 105 sets the pressure set value PSset lower as the set heat storage capacity is higher, and sets the pressure set value PSset higher as the set heat storage capacity is lower.

【0055】図6に示す制御装置24Bの機能を説明す
る。蓄冷時間設定手段110によって設定された蓄冷時
間によって、蓄熱能力設定手段106は単位時間当りの
目標とする蓄熱能力の値を設定する。蓄冷運転開始時
は、蓄熱能力設定手段106は目標とする設定蓄熱能力
値を設定圧力演算手段105に伝送し、設定圧力演算手
段105はその設定蓄熱能力により蓄熱熱交換器8にお
ける冷媒の蒸発圧力の目標値を演算し、演算結果を圧力
設定値PSsetとする。インバ−タ周波数演算手段107
は、圧力設定値PSsetと低圧圧力検出手段21により検
出された冷媒の蒸発圧力PSとから、圧縮機1を駆動する
インバ−タ周波数を増減し、PSがPSsetに一致するよう
に修正インバ−タ周波数を演算し、そのインバ−タ周波
数をインバ−タ制御装置25に出力する。インバ−タ制
御装置25はそのインバ−タ周波数によって圧縮機1を
運転する。また制御装置24Bは、一定時間毎に蒸発圧
力検出手段21からの蒸発圧力検出信号PSを検出し、イ
ンバ−タ周波数演算を行い、蒸発圧力を圧力設定値PSse
tに近ずける。
The function of the control device 24B shown in FIG. 6 will be described. Based on the cool storage time set by the cool storage time setting means 110, the heat storage capacity setting means 106 sets a target heat storage capacity value per unit time. At the start of the cold storage operation, the heat storage capacity setting means 106 transmits the target set heat storage capacity value to the set pressure calculation means 105, and the set pressure calculation means 105 uses the set heat storage capacity to set the evaporation pressure of the refrigerant in the heat storage heat exchanger 8. Is calculated, and the calculation result is set as the pressure set value PSset. Inverter frequency calculation means 107
Means that the inverter frequency for driving the compressor 1 is increased or decreased based on the pressure set value PSset and the evaporation pressure PS of the refrigerant detected by the low pressure detection means 21 so that the modified inverter is adjusted so that the PS matches the PSset. The frequency is calculated, and the inverter frequency is output to the inverter controller 25. The inverter control device 25 operates the compressor 1 according to the inverter frequency. The control device 24B detects the evaporating pressure detection signal PS from the evaporating pressure detecting means 21 at regular intervals, performs an inverter frequency calculation, and sets the evaporating pressure to a pressure set value PSse.
Approach t.

【0056】更に水位変化演算手段101は、蓄冷運転
中一定時間毎に、水位検出手段22からの信号により蓄
熱槽10中に生ずる水位変化を演算し、その演算結果に
より蓄熱能力演算手段102は蓄熱能力を把握する。蓄
熱能力比較手段104は、蓄冷時間を基に設定された設
定蓄熱能力と、水位変化を基に演算された蓄熱能力とを
比較することにより、目標とする設定蓄熱能力が確保さ
れているかを把握し、設定蓄熱能力と蓄熱能力の演算結
果が不一致の場合は、積分項、微分項、差分項からみる
PID制御により設定蓄熱能力を増減し、新たな設定蓄
熱能力を設定し、設定圧力演算手段105に出力する。
設定圧力演算手段105はその設定蓄熱能力により、図
8に示す関係を用いて蓄熱熱交換器8における冷媒の蒸
発圧力の目標値を演算し、圧力設定値PSsetを変更す
る。
Further, the water level change calculating means 101 calculates a water level change occurring in the heat storage tank 10 based on a signal from the water level detecting means 22 at regular intervals during the cold storage operation. Understand your abilities. The heat storage capacity comparing means 104 grasps whether the target set heat storage capacity is secured by comparing the set heat storage capacity set based on the cold storage time with the heat storage capacity calculated based on the water level change. If the calculation results of the set heat storage capacity and the heat storage capacity do not match, the set heat storage capacity is increased or decreased by PID control based on the integral term, differential term, and difference term, a new set heat storage capacity is set, and the set pressure calculation means is set. Output to 105.
The set pressure calculation means 105 calculates the target value of the evaporation pressure of the refrigerant in the heat storage heat exchanger 8 using the relation shown in FIG. 8 based on the set heat storage capacity, and changes the pressure set value PSset.

【0057】本実施例の空調装置の蓄冷運転は、当初に
設定した圧力設定値PSsetにより一定の冷媒蒸発圧力に
て開始される。その後、一定時間毎に水位検出手段22
からの信号により蓄熱能力を監視し、蓄熱能力に過不足
を生じた場合は、設定蓄熱能力が確保されるように蓄熱
能力を可変するフィ−ドバック制御により蓄冷運転が行
われる。従ってユ−ザが設定した蓄冷時間内に確実に蓄
冷運転を完了することが可能となる。また本発明の空気
調和機は、本来は夜間の安価な電力を使用し蓄冷を行う
空気調和機であるが、冷房運転の妨げにならない配慮を
すれば夜間に限らずユ−ザの希望する時間帯で蓄冷運転
を行ってもよいことは勿論である。
The cold storage operation of the air conditioner of this embodiment is started at a constant refrigerant evaporation pressure according to the initially set pressure value PSset. Thereafter, the water level detecting means 22 is
The heat storage capacity is monitored based on the signal from the controller, and if the heat storage capacity becomes excessive or insufficient, the cold storage operation is performed by feedback control that varies the heat storage capacity so that the set heat storage capacity is secured. Therefore, the cold storage operation can be reliably completed within the cold storage time set by the user. The air conditioner of the present invention is originally an air conditioner that uses inexpensive electric power at night to store cold energy. However, if consideration is given not to hinder cooling operation, the air conditioner is not limited to night time and can be operated at any time desired by the user. Needless to say, the cold storage operation may be performed in the zone.

【0058】さらに、蓄冷能力設定手段106がユーザ
により設定された蓄冷運転時間を基に設定蓄熱能力を設
定し、その設定蓄熱能力に対して設定圧力演算手段10
5が圧力設定値PSsetを定めるが、冷媒の蒸発圧力と成
績係数の関係を考慮して圧力設定値PSsetを決定してい
るため、蓄冷運転中の圧力設定値PSsetを最適化し、消
費電力を軽減することが期待できる。
Further, the cold storage capacity setting means 106 sets the set heat storage capacity based on the cold storage operation time set by the user, and sets the set pressure calculation means 10 to the set heat storage capacity.
5 sets the pressure set value PSset, but since the pressure set value PSset is determined in consideration of the relationship between the evaporating pressure of the refrigerant and the coefficient of performance, the pressure set value PSset during the cold storage operation is optimized to reduce power consumption. Can be expected.

【0059】次に本発明の第3の実施例の空気調和機に
ついて説明する。この実施例の空気調和機は、前述した
第の2実施例における制御装置24Bに蓄冷運転開始時
の蒸発圧力を設定する方法について案出したものであ
る。蓄冷運転開始時は蓄熱媒体11の温度が蓄熱媒体1
1の凝固温度より高く、蓄熱媒体11が凝固し始めるま
で水位変化が発生しない。従って水位変化演算手段10
1は水位変化無しと演算し、蓄熱能力を演算する制御装
置24は蓄熱能力量無しと演算する状態にある。そこで
本実施例の制御装置は、前述の制御装置24Bに加え
て、水位変化無しの間は圧力設定値PSsetを蓄冷運転に
支障の無い範囲で最小と定め、冷媒循環量を最大として
蓄熱媒体11を早急に凝固させ、水位変化が生じて蓄熱
能力を演算できるように制御する機能を設ける。その制
御機能により目標蓄熱量を蓄熱するための補完を行い、
安定した蓄熱能力を確保する。
Next, an air conditioner according to a third embodiment of the present invention will be described. The air conditioner of this embodiment is devised for a method of setting the evaporating pressure at the start of the cold storage operation in the control device 24B in the second embodiment described above. At the start of the cold storage operation, the temperature of the heat storage medium 11 is
The water level does not change until the heat storage medium 11 starts to solidify, which is higher than the solidification temperature of No. 1. Therefore, the water level change calculating means 10
Reference numeral 1 indicates that there is no change in water level, and the control device 24 that calculates the heat storage capacity is in a state of calculating that there is no heat storage capacity. Therefore, in addition to the control device 24B described above, the control device of the present embodiment determines the pressure set value PSset to be the minimum within a range that does not hinder the cold storage operation while the water level does not change, and sets the maximum refrigerant circulation amount to the heat storage medium 11 Is quickly coagulated, and a function is provided to control so that the heat storage capacity can be calculated due to a change in water level. The control function complements the target heat storage to store heat,
Ensure stable heat storage capacity.

【0060】図9は本発明の第4実施例の空気調和機に
おける制御装置24Cの機能を示す。この制御装置24
Cは、図6に示す制御装置24Bの機能に加えて、室外
機Aと蓄熱器Dとを接続する配管14の長さを設定する
配管長さ設定手段26と、その配管長さにおける圧力損
失を演算する蒸発圧力演算手段108とを設けたもので
ある。空気調和機を設備する建物あるいは場所が変わる
と、室外機A、蓄熱器Dを設置する位置が変わる。従っ
て、それら機器の相互間距離は一定せず、空気調和機を
据え付ける現地の状況で接続配管14の長さは異なる。
蓄熱器Dの蓄熱熱交換器8から出た冷媒は、配管14の
経路中で流れによる圧力損失を生じるため、蒸発圧力検
出手段21を蓄熱熱交換器8出口から圧縮機1入り口に
至る配管系統のどの位置に設置するかにより、蒸発圧力
検出手段21によって検出する冷媒蒸発圧力と蓄熱熱熱
交換器8における冷媒蒸発圧力との間に相違が生じる。
低圧圧力検出手段21は冷房または暖房運転時に冷凍サ
イクル制御に使用するため、通常、室外機ユニットA内
の圧縮機1の近傍に設置される。
FIG. 9 shows the function of the control device 24C in the air conditioner according to the fourth embodiment of the present invention. This control device 24
C is a pipe length setting means 26 for setting the length of the pipe 14 connecting the outdoor unit A and the regenerator D, in addition to the function of the control device 24B shown in FIG. And evaporating pressure calculating means 108 for calculating. When the building or place where the air conditioner is installed changes, the position where the outdoor unit A and the heat storage unit D are installed changes. Therefore, the distance between these devices is not constant, and the length of the connection pipe 14 differs depending on the local situation where the air conditioner is installed.
Since the refrigerant that has flowed out of the heat storage heat exchanger 8 of the heat storage device D causes a pressure loss due to the flow in the path of the pipe 14, the evaporating pressure detecting means 21 is connected to the piping system from the heat storage heat exchanger 8 outlet to the compressor 1 inlet. The difference between the refrigerant evaporating pressure detected by the evaporating pressure detecting means 21 and the refrigerant evaporating pressure in the heat storage heat exchanger 8 occurs depending on which of the positions is installed.
The low-pressure pressure detecting means 21 is usually installed near the compressor 1 in the outdoor unit A, because it is used for refrigeration cycle control during cooling or heating operation.

【0061】低圧圧力検出手段21を蓄熱熱交換器8出
口に設置する場合は、圧縮機1の近傍に設置されるもの
の他に低圧圧力検出手段21がもう一つ必要となり、コ
ストアップの問題が発生する。このような不具合の改善
するために、圧縮機1近傍に設けた蒸発圧力検出手段2
1による検出値に対し圧力損失補正を行い、蓄熱熱交換
器8における冷媒蒸発圧力を求める補完機能を制御装置
24Cに設ける。
When the low pressure pressure detecting means 21 is installed at the outlet of the heat storage heat exchanger 8, another low pressure pressure detecting means 21 is required in addition to the one installed near the compressor 1, which raises the problem of cost increase. appear. In order to improve such a problem, an evaporating pressure detecting means 2 provided near the compressor 1 is provided.
The control device 24C is provided with a supplementary function of performing pressure loss correction on the detection value obtained by 1 and obtaining the refrigerant evaporation pressure in the heat storage heat exchanger 8.

【0062】図9における制御装置24Cの機能を説明
する。蒸発圧力演算手段108は、配管長さ設定手段2
6により設定された接続配管14の配管長さから、その
配管長さにおける冷媒の圧力損失を演算し、その圧力損
失分だけ四方弁2からアキュムレーター5の間の配管経
路に取り付けた低圧圧力検出手段21の検知圧力値を補
正する。この補正によって、蓄熱熱交換器8における冷
媒の蒸発圧力が演算される。その補正された冷媒蒸発圧
力と圧力設定値PSsetとの比較によりインバ−タ周波数
演算手段107は圧縮機1を駆動するインバ−タ周波数
を演算し、インバ−タ周波数演算結果をインバ−タ制御
装置25に出力する。
The function of the control device 24C in FIG. 9 will be described. The evaporating pressure calculating means 108 is provided by the pipe length setting means 2
6, the pressure loss of the refrigerant at the pipe length is calculated from the pipe length of the connection pipe 14 set by 6 and the low pressure pressure detection attached to the pipe route between the four-way valve 2 and the accumulator 5 by the pressure loss. The detected pressure value of the means 21 is corrected. By this correction, the evaporation pressure of the refrigerant in the heat storage heat exchanger 8 is calculated. The inverter frequency calculation means 107 calculates the inverter frequency for driving the compressor 1 by comparing the corrected refrigerant evaporation pressure with the pressure set value PSset, and outputs the inverter frequency calculation result to the inverter control device. 25.

【0063】従ってユ−ザが設定する配管長さ設定手段
26を設けることにより、据付け現地状況で異なる接続
配管14長さによる圧力損失値を考慮し、室外機Aに蒸
発圧力検出手段21を設置しても蓄熱熱交換器8での冷
媒蒸発圧力を検知することが可能となり、コストアップ
を防止できる。
Therefore, by providing the pipe length setting means 26 set by the user, the evaporation pressure detecting means 21 is installed in the outdoor unit A in consideration of the pressure loss value due to the different length of the connection pipe 14 depending on the installation site conditions. Even in this case, the refrigerant evaporation pressure in the heat storage heat exchanger 8 can be detected, so that cost increase can be prevented.

【0064】[0064]

【発明の効果】本発明によれば、夜間の蓄冷運転で冷熱
を蓄え、そして昼間の冷房運転時に蓄えた冷熱を利用す
ることにより消費電力を抑えることができる蓄熱器を有
した空気調和機において、蓄冷運転時の冷凍サイクル制
御機能を冷媒の蒸発圧力を制御することにより、蓄熱媒
体を凝固し、確実な蓄熱能力の制御を行うことができ、
運転時の時間の設定等の制約条件に拘らず目標とする蓄
熱量に確実に蓄熱し且つ省電力を図ることができ、信頼
性、使い勝手に優れた空気調和機を提供できる。
According to the present invention, there is provided an air conditioner having a regenerator capable of storing cold heat in a cold storage operation at night and suppressing power consumption by utilizing the cold heat stored during a cooling operation in daytime. By controlling the evaporating pressure of the refrigerant, the refrigeration cycle control function during the cold storage operation allows the heat storage medium to be solidified and the heat storage capacity to be reliably controlled.
It is possible to reliably store heat to a target amount of heat storage and save power irrespective of constraints such as the setting of operation time, and to provide an air conditioner excellent in reliability and usability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の空気調和機の全体構成
図である。
FIG. 1 is an overall configuration diagram of an air conditioner of one embodiment according to the present invention.

【図2】本発明による一実施例の空気調和機の制御機能
図である。
FIG. 2 is a control function diagram of the air conditioner of one embodiment according to the present invention.

【図3】本発明による一実施例の制御方法を示すダイア
グラムである。
FIG. 3 is a diagram illustrating a control method according to an embodiment of the present invention.

【図4】蓄熱器における冷媒蒸発圧力と冷熱の蓄熱能力
との相関を示す特性図である。
FIG. 4 is a characteristic diagram showing a correlation between a refrigerant evaporation pressure and a heat storage capacity of cold heat in a heat storage device.

【図5】圧縮機を制御するインバータ周波数と蓄熱器の
蓄熱能力とを冷媒蒸発圧力に対応して示す特性図であ
る。
FIG. 5 is a characteristic diagram showing an inverter frequency for controlling a compressor and a heat storage capacity of a heat storage device in accordance with a refrigerant evaporation pressure.

【図6】本発明による第2実施例の空気調和機の制御機
能図である。
FIG. 6 is a control function diagram of the air conditioner of the second embodiment according to the present invention.

【図7】蓄冷運転時における冷媒蒸発圧力と圧縮機の消
費電力及び成績係数の相関を示す特性図である。
FIG. 7 is a characteristic diagram showing a correlation between a refrigerant evaporation pressure, a power consumption of a compressor, and a coefficient of performance during a cold storage operation.

【図8】蓄熱器における設定蓄熱能力と冷媒蒸発圧力設
定値 PSsetとの相関を示す特性図である。
FIG. 8 is a characteristic diagram showing a correlation between a set heat storage capacity of a heat storage device and a refrigerant evaporation pressure set value PSset.

【図9】本発明による第4実施例の空気調和機の制御機
能図である。
FIG. 9 is a control function diagram of an air conditioner according to a fourth embodiment of the present invention.

【図10】従来の蓄熱器付き空気調和機の制御方法を示
すダイアグラムである。
FIG. 10 is a diagram showing a control method of a conventional air conditioner with a heat storage device.

【符号の説明】[Explanation of symbols]

A 室外機 B,C 室内機 D 蓄熱器 1 圧縮機 2 四方弁 3 室外熱交換器 4 室外流量制御弁 5 アキュムレーター 6 室内熱交換器 7 室内流量制御弁 8 蓄熱熱交換器 9 蓄熱流量制御弁 10 蓄熱槽 11 蓄熱媒体 12,13 切替弁 14a 液管 14b ガス管 21 低圧圧力検出手段 22 水位検出手段 23 運転設定装置 24A,B,C 制御装置 25 インバ−タ制御装置 26 配管長さ設定手段 101 水位変化演算手段 102 蓄熱能力演算手段 104 蓄熱能力比較手段 105 設定圧力演算手段 106 蓄熱能力設定手段 107 インバータ周波数演算手段 108 蒸発圧力演算手段 110 蓄冷時間設定手段 Reference Signs List A outdoor unit B, C indoor unit D heat storage device 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 outdoor flow control valve 5 accumulator 6 indoor heat exchanger 7 indoor flow control valve 8 heat storage heat exchanger 9 heat storage flow control valve DESCRIPTION OF SYMBOLS 10 Thermal storage tank 11 Thermal storage medium 12, 13 Switching valve 14a Liquid pipe 14b Gas pipe 21 Low pressure pressure detecting means 22 Water level detecting means 23 Operation setting device 24A, B, C control device 25 Inverter control device 26 Pipe length setting means 101 Water level change calculation means 102 Heat storage capacity calculation means 104 Heat storage capacity comparison means 105 Set pressure calculation means 106 Heat storage capacity setting means 107 Inverter frequency calculation means 108 Evaporation pressure calculation means 110 Cold storage time setting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 誠 静岡県清水市村松390番地 株式会社 日立製作所 清水工場内 (72)発明者 安田 引 茨城県土浦市神立町502番地 株式会社 日立製作所 機械研究所内 (56)参考文献 特開 平3−63443(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 F25B 13/00 351 F25C 1/00 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Makoto Ito 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Inside the Shimizu Plant, Hitachi, Ltd. (56) References JP-A-3-63443 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F24F 11/02 102 F25B 13/00 351 F25C 1/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 インバータ制御されて高温高圧の冷媒を
吐出する圧縮機と、該吐出された高温高圧の冷媒を冷却
して冷媒液に凝縮する室外熱交換器とを有する室外機
と、 該冷媒液を減圧し膨張させる流量制御弁と、該膨張した
冷媒を蒸発させる蓄熱熱交換器と、該蓄熱熱交換器を液
状の蓄熱媒体に入れて収納し該蓄熱熱交換器で蒸発する
冷媒と熱交換して氷結する蓄熱媒体を冷熱として蓄える
蓄熱槽とを有する蓄熱器と、 前記室外熱交換器から送り出され、前記蓄熱熱交換器で
冷熱により過冷却された冷媒液を膨張させる室内流量制
御弁と、該膨張した冷媒と熱交換して冷気を室内に供給
する室内熱交換器とを有する室内機とを備え、前記蓄熱
器に冷熱を蓄える蓄冷運転を夜間に行う空気調和機にお
いて、 前記蓄冷運転の予定時間と前記蓄熱器の蓄熱容量とから
算定された蓄熱能力に対して、前記蓄熱熱交換器中の冷
媒蒸発圧力と蓄熱能力との関係から、冷媒蒸発圧力を演
算し、該演算された冷媒蒸発圧力に前記蓄熱熱交換器中
の冷媒蒸発圧力との差を求め、該差に応じて前記圧縮機
を回転制御するインバータ周波数を修正し、演算された
冷媒蒸発圧力に前記蓄熱熱交換器中の冷媒蒸発圧力が一
致するようにフィードバック制御を行うことを特徴とす
る空気調和機。
1. An outdoor unit comprising: a compressor that is controlled by an inverter to discharge a high-temperature and high-pressure refrigerant; an outdoor heat exchanger that cools the discharged high-temperature and high-pressure refrigerant and condenses the refrigerant into a refrigerant liquid; A flow control valve for decompressing and expanding the liquid, a heat storage heat exchanger for evaporating the expanded refrigerant, and a refrigerant and heat for storing and storing the heat storage heat exchanger in a liquid heat storage medium and evaporating in the heat storage heat exchanger. A heat storage unit having a heat storage tank for storing a heat storage medium to be exchanged and frozen as cold heat; and an indoor flow rate control valve for expanding a refrigerant liquid sent from the outdoor heat exchanger and supercooled by cold heat in the heat storage heat exchanger. And an indoor unit having an indoor heat exchanger that exchanges heat with the expanded refrigerant and supplies cold air to the room, wherein the air conditioner performs nighttime cold storage operation for storing cold heat in the regenerator. Scheduled operation time and heat storage With respect to the heat storage capacity calculated from the heat storage capacity of the heat exchanger, the refrigerant evaporation pressure is calculated from the relationship between the refrigerant evaporation pressure and the heat storage capacity in the heat storage heat exchanger, and the calculated heat storage capacity is calculated based on the calculated refrigerant evaporation pressure. The difference between the refrigerant evaporation pressure in the heat exchanger and the inverter frequency for controlling the rotation of the compressor is corrected according to the difference, and the refrigerant evaporation pressure in the heat storage heat exchanger becomes the calculated refrigerant evaporation pressure. An air conditioner characterized by performing feedback control so as to match.
【請求項2】 インバータ制御されて高温高圧の冷媒を
吐出する圧縮機と、該吐出された高温高圧の冷媒を冷却
して冷媒液に凝縮する室外熱交換器とを有する室外機
と、該冷媒液を減圧し膨張させる流量制御弁と、該膨張
した冷媒を蒸発させる蓄熱熱交換器と、該蓄熱熱交換器
を液状の蓄熱媒体に入れて収納し該蓄熱熱交換器で蒸発
する冷媒と熱交換して氷結する蓄熱媒体を冷熱として蓄
える蓄熱槽とを有する蓄熱器と、前記室外熱交換器から
送り出され、前記蓄熱熱交換器で冷熱により過冷却され
た冷媒液を膨張させる室内流量制御弁と、該膨張した冷
媒と熱交換して冷気を室内に供給する室内熱交換器とを
有する室内機と、を備えた空気調和機において、 前記蓄熱器に冷熱を蓄える蓄冷運転の予定時間と前記蓄
熱器の蓄熱容量とから算定された蓄熱能力に対応して、
前記蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能力との相関
を示す式により、冷媒蒸発圧力を演算し該冷媒蒸発圧力
を目標値として設定する設定圧力演算手段と、該設定さ
れた冷媒蒸発圧力の目標値に対応して、インバータ周波
数と冷媒蒸発圧力との相関を示す式から、インバータ周
波数を演算するインバータ周波数演算手段と、該演算さ
れたインバータ周波数により前記圧縮機を制御するイン
バータ制御装置と、蓄冷運転時に前記蓄熱熱交換器内の
冷媒蒸発圧力を検出する低圧圧力検出手段と、前記蓄熱
槽中の蓄熱媒体の氷結により変化する水位を検出する水
位検出手段と、該水位検出器の検出値から単位時間あた
りの水位変化を求め、氷の生成速度即ち蓄熱能力に換算
する蓄熱能力演算手段と、を有し、かつ前記インバータ
周波数演算手段は、前記低圧圧力検出手段により検出さ
れる冷媒蒸気圧力が前記設定圧力演算手段により設定さ
れた冷媒蒸発圧力の目標値に一致するようにインバータ
周波数を修正する機能を備えていることを特徴とする空
気調和機。
2. An outdoor unit comprising: a compressor that is controlled by an inverter to discharge a high-temperature and high-pressure refrigerant; an outdoor heat exchanger that cools the discharged high-temperature and high-pressure refrigerant and condenses the refrigerant into a refrigerant liquid; A flow control valve for decompressing and expanding the liquid, a heat storage heat exchanger for evaporating the expanded refrigerant, and a refrigerant and heat for storing and storing the heat storage heat exchanger in a liquid heat storage medium and evaporating in the heat storage heat exchanger. A heat storage unit having a heat storage tank for storing a heat storage medium to be exchanged and frozen as cold heat, and an indoor flow rate control valve for expanding a refrigerant liquid sent out from the outdoor heat exchanger and supercooled by cold heat in the heat storage heat exchanger. And an indoor unit having an indoor heat exchanger that supplies heat to the room by exchanging heat with the expanded refrigerant, wherein the scheduled time of the cold storage operation for storing cold heat in the heat storage device and Calculated from the heat storage capacity of the heat storage device The corresponding to the heat storage capacity,
Setting pressure calculating means for calculating a refrigerant evaporation pressure and setting the refrigerant evaporation pressure as a target value by an equation showing a correlation between the refrigerant evaporation pressure and the heat storage capacity in the heat storage heat exchanger; and the set refrigerant evaporation pressure An inverter frequency calculating means for calculating an inverter frequency from an equation showing a correlation between the inverter frequency and the refrigerant evaporation pressure, and an inverter control device for controlling the compressor based on the calculated inverter frequency. A low-pressure pressure detecting means for detecting a refrigerant evaporation pressure in the heat storage heat exchanger during a cold storage operation; a water level detecting means for detecting a water level that changes due to freezing of the heat storage medium in the heat storage tank; and a detection of the water level detector. Heat storage capacity calculating means for calculating a water level change per unit time from the value and converting it into ice formation speed, that is, heat storage capacity, and wherein the inverter frequency calculating means is provided. The air conditioner has a function of correcting an inverter frequency so that a refrigerant vapor pressure detected by the low-pressure pressure detection means matches a target value of the refrigerant evaporation pressure set by the set pressure calculation means. Machine.
【請求項3】 請求項2記載の空気調和機に加えて、前
記蓄冷運転の予定時間を設定するための蓄冷時間設定手
段と、該設定された蓄冷運転の予定時間と前記蓄熱器の
蓄熱容量とから蓄冷能力を演算する蓄熱能力設定手段と
を設け、該演算された蓄熱能力は前記設定圧力演算手段
に出力されることを特徴とする空気調和機。
3. A cold storage time setting means for setting the scheduled time of the cold storage operation, in addition to the air conditioner according to claim 2, the set scheduled time of the cold storage operation and the heat storage capacity of the heat storage unit. And a heat storage capacity setting means for calculating the cold storage capacity from the above, and the calculated heat storage capacity is output to the set pressure calculating means.
【請求項4】 請求項2記載の空気調和機において、 前記低圧圧力検出手段を前記室外機内に設置し、該低圧
圧力検出手段から前記蓄熱熱交換器と接続する配管長を
設定する配管長設定手段を設け、前記インバータ周波数
演算手段は、前記低圧圧力検出手段の検出値を、前記配
管長設定手段により設定された配管長に対応する圧力損
失だけ補正して、前記蓄熱熱交換器の冷媒蒸発圧力に換
算する機能を有すること特徴とする空気調和機。
4. The air conditioner according to claim 2, wherein the low pressure detection means is installed in the outdoor unit, and a pipe length setting for connecting the heat storage heat exchanger with the low pressure detection means is provided. Means, and the inverter frequency calculating means corrects the detected value of the low-pressure pressure detecting means by a pressure loss corresponding to the pipe length set by the pipe length setting means, thereby evaporating the refrigerant of the heat storage heat exchanger. An air conditioner having a function of converting pressure.
【請求項5】 インバータ制御されて高温高圧の冷媒を
吐出する圧縮機と、該吐出された高温高圧の冷媒を冷却
して冷媒液に凝縮する室外熱交換器とを有する室外機
と、該冷媒液を減圧し膨張させる流量制御弁と、該膨張
した冷媒を蒸発させる蓄熱熱交換器と、該蓄熱熱交換器
を液状の蓄熱媒体に入れて収納し該蓄熱熱交換器で蒸発
する冷媒と熱交換して氷結する蓄熱媒体を冷熱として蓄
える蓄熱槽とを有する蓄熱器と、前記室外熱交換器から
送り出され、前記蓄熱熱交換器で冷熱により過冷却され
た冷媒液を膨張させる室内流量制御弁と、該膨張した冷
媒と熱交換して冷気を室内に供給する室内熱交換器とを
有する室内機と、を備えた空気調和機において、 前記蓄熱器に冷熱を蓄える蓄冷運転の予定時間を設定す
るための蓄冷時間設定手段と、該設定された蓄冷運転の
予定時間と前記蓄熱器の蓄熱容量とから蓄冷能力を演算
する蓄熱能力設定手段と、該蓄熱能力演算手段により演
算された蓄熱能力に対応して、前記蓄熱熱交換器中の冷
媒蒸発圧力と蓄熱能力との相関を示す式により、冷媒蒸
発圧力を演算し、該演算されたその冷媒蒸発圧力を目標
値として設定する設定圧力演算手段と、該設定された冷
媒蒸発圧力の目標値に対応して、インバータ周波数と冷
媒蒸発圧力との相関を示す式から、インバータ周波数を
演算するインバータ周波数演算手段と、該演算されたイ
ンバータ周波数により前記圧縮機を制御するインバータ
制御装置と、蓄冷運転時に前記蓄熱熱交換器内の冷媒蒸
発圧力を検出する低圧圧力検出手段と、前記蓄熱槽中の
蓄熱媒体の氷結により変化する水位を検出する水位検出
手段と、一定時間毎に前記水位検出器の検出値から単位
時間あたりの水位変化を求め、氷の生成速度即ち蓄熱能
力に換算する蓄熱能力演算手段と、該蓄熱能力演算手段
により求められた蓄熱能力の実績値と前記蓄熱能力設定
手段により演算された蓄熱能力の設定値との差を演算す
る蓄熱能力比較手段と、を有し、かつ前記設定圧力演算
手段は、前記蓄熱能力の実績値が前記蓄熱能力の設定値
に近づくように、前記蓄熱熱交換器中の冷媒蒸発圧力と
蓄熱能力との相関を示す式により、冷媒蒸発圧力を修正
する機能を備え、かつ前記インバータ周波数演算手段
は、前記低圧圧力検出手段により検出される冷媒蒸気圧
力が前記設定圧力演算手段により設定された冷媒蒸発圧
力の目標値に一致するようにインバータ周波数を変更す
る機能を備えていることを特徴とする空気調和機。
5. An outdoor unit comprising: a compressor that is controlled by an inverter to discharge a high-temperature and high-pressure refrigerant; an outdoor heat exchanger that cools the discharged high-temperature and high-pressure refrigerant and condenses the refrigerant into a refrigerant liquid; A flow control valve for decompressing and expanding the liquid, a heat storage heat exchanger for evaporating the expanded refrigerant, and a refrigerant and heat for storing and storing the heat storage heat exchanger in a liquid heat storage medium and evaporating in the heat storage heat exchanger. A heat storage unit having a heat storage tank for storing a heat storage medium to be exchanged and frozen as cold heat, and an indoor flow rate control valve for expanding a refrigerant liquid sent out from the outdoor heat exchanger and supercooled by cold heat in the heat storage heat exchanger. An indoor unit having an indoor heat exchanger that supplies heat to the room by exchanging heat with the expanded refrigerant, and setting an estimated time of a cold storage operation for storing cold heat in the heat storage device. Storage time setting means for performing A heat storage capability setting means for calculating a cold storage capacity from the heat storage capacity of the scheduled time and the heat accumulator of the cold storage operation is the set, corresponding to the calculated heat storage capacity by accumulating heat capacity calculating means, the heat storage heat exchanger Setting pressure calculating means for calculating the refrigerant evaporation pressure by an equation showing a correlation between the refrigerant evaporation pressure in the vessel and the heat storage capacity, and setting the calculated refrigerant evaporation pressure as a target value; An inverter frequency calculating means for calculating an inverter frequency from an equation showing a correlation between the inverter frequency and the refrigerant evaporation pressure in accordance with a target value of the pressure; and an inverter control device for controlling the compressor by the calculated inverter frequency. And a low-pressure pressure detecting means for detecting a refrigerant evaporation pressure in the heat storage heat exchanger during the cold storage operation, and detecting a water level that changes due to freezing of the heat storage medium in the heat storage tank. A water level detecting means, a heat storage capacity calculating means for calculating a water level change per unit time from a detection value of the water level detector at regular time intervals, and converting it into an ice formation speed, that is, a heat storage capacity, and a heat storage capacity calculating means. anda heat storage capacity comparing means for calculating a difference between the actual value of the heat storage capacity and the set value of the heat storage capacity set computed heat storage capacity by means was, and the set pressure calculation means, record of the heat storage capacity A function of correcting the refrigerant evaporation pressure by an equation showing a correlation between the refrigerant evaporation pressure and the heat storage capacity in the heat storage heat exchanger so that the value approaches the set value of the heat storage capacity; and Has a function of changing the inverter frequency so that the refrigerant vapor pressure detected by the low-pressure pressure detection means matches the target value of the refrigerant evaporation pressure set by the set pressure calculation means. Air conditioner, characterized by that.
JP24654392A 1992-09-16 1992-09-16 Air conditioner Expired - Fee Related JP3213773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24654392A JP3213773B2 (en) 1992-09-16 1992-09-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24654392A JP3213773B2 (en) 1992-09-16 1992-09-16 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0694284A JPH0694284A (en) 1994-04-05
JP3213773B2 true JP3213773B2 (en) 2001-10-02

Family

ID=17149977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24654392A Expired - Fee Related JP3213773B2 (en) 1992-09-16 1992-09-16 Air conditioner

Country Status (1)

Country Link
JP (1) JP3213773B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650758B2 (en) * 2002-04-12 2005-05-25 株式会社朝日工業社 Precision temperature and humidity controller
JP5537788B2 (en) * 2008-09-22 2014-07-02 三洋電機株式会社 Ice heat storage system
JP6020550B2 (en) * 2014-12-26 2016-11-02 ダイキン工業株式会社 Thermal storage air conditioner
JP2017146009A (en) * 2016-02-17 2017-08-24 タカギ冷機株式会社 Circulation type water cooler
CN105674509A (en) * 2016-03-25 2016-06-15 广东美的制冷设备有限公司 Air-conditioner and air-conditioner control method
CN113932399B (en) * 2020-07-13 2023-07-07 广东美的暖通设备有限公司 Antifreezing control method and device, cold and hot water machine and computer storage medium

Also Published As

Publication number Publication date
JPH0694284A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
JP5984965B2 (en) Air conditioning and hot water supply complex system
AU1050195A (en) Tandem refrigeration system
JP5854751B2 (en) Cooling system
WO2006114983A1 (en) Refrigeration cycle device
KR101890473B1 (en) A system for combining refrigerator and air conditioner, and control method thereof
JP3213773B2 (en) Air conditioner
JP2005233559A (en) Air conditioning/refrigerating/freezing equipment and its operation method
KR20100027353A (en) Refrigerating and freezing apparatus
US11940192B2 (en) Air conditioning device
JP4650086B2 (en) Thermal storage heat recovery device
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP2017161159A (en) Outdoor uni of air conditioner
JP3319676B2 (en) Thermal storage type air conditioner and its operation control method
JP2011122801A (en) Air heat source heat pump system and method of operating the same
JP3370501B2 (en) Cooling system
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP3164079B2 (en) Refrigeration equipment
JP2795070B2 (en) Ice making equipment
JP2541172B2 (en) Operation control device for air conditioner
JPH0526481A (en) Heat source employing heating tower
JP2855954B2 (en) Thermal storage type air conditioner
JP3097971U (en) Refrigeration equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees