JPH0694284A - Air-conditioning machine - Google Patents

Air-conditioning machine

Info

Publication number
JPH0694284A
JPH0694284A JP4246543A JP24654392A JPH0694284A JP H0694284 A JPH0694284 A JP H0694284A JP 4246543 A JP4246543 A JP 4246543A JP 24654392 A JP24654392 A JP 24654392A JP H0694284 A JPH0694284 A JP H0694284A
Authority
JP
Japan
Prior art keywords
heat storage
heat
refrigerant
pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4246543A
Other languages
Japanese (ja)
Other versions
JP3213773B2 (en
Inventor
Takashi Sano
孝 佐野
Naoto Katsumata
直登 勝又
Toshiyuki Hojo
俊幸 北條
Makoto Ito
伊藤  誠
Nobu Yasuda
引 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24654392A priority Critical patent/JP3213773B2/en
Publication of JPH0694284A publication Critical patent/JPH0694284A/en
Application granted granted Critical
Publication of JP3213773B2 publication Critical patent/JP3213773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide an air-conditioning machine, capable of accumulating cold heat efficiently, in the air-conditioning machine, which accumulates cold heat as ice upon the cold heat accumulating operation at night and discharges the accumulated cold heat upon the cooling operation of daytime. CONSTITUTION:An air-conditioning machine is provided with an outdoor machine A, having a compessor 1 for discharging high-temperature refrigerant and a heat exchanger 3 for condensating the refrigerant into refrigerant solution, and a heat accumulator D, having a flow rate control valve 9 for expanding the refrigerant solution, a heat accumulating heat exchanger 8 for evaporating the expanded refrigerant and a heat accumulating tank 10 for reserving heat accumulating medium 11 and accumulating ice, produced by effecting heat exchange in a heat exchanger 8 provided therein, as cold heat. Further, the air-conditioning machine is constituted of controllers 24A, 25, having a water level detecting means 22 for detecting a water level changing by the freezing of the heat accumulating medium 11 and a pressure detecting means 21 for detecting an evaporating pressure in the heat accumulating heat exchanger 8 and operating the frequency of an inverter for controlling the number of rotation of the compressor 1 based on respective detecting values of the water level detecting means 22 and the pressure detecting means 21 to drive the inverter, and indoor machines B, C, effecting cooling operation utilizing the refrigerant solution supplied from the outdoor machine A and overcooled by the heat accumulator D.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱媒体を氷結させて冷
熱として蓄える蓄熱器を備えた空気調和機に係り、特に
冷熱の蓄熱を効率よく行うに好適な空気調和機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner provided with a heat accumulator that freezes a heat medium and stores it as cold heat, and more particularly to an air conditioner suitable for efficiently storing cold heat.

【0002】[0002]

【従来の技術】従来の装置としては、冷凍−第65巻
第752号(1990)第33〜38頁に記載の「個別
分散ビル空調における直膨氷蓄熱システム」がある。こ
の蓄熱システムを備えた空気調和機は、夜間に割安な電
力を用いて蓄熱媒体を凍らせて氷の状態で蓄熱器に蓄え
ておき、そして昼間の電力料金の高い時間帯に蓄えられ
た氷の冷熱を放出して冷房に供給するものである。この
蓄熱システムは熱媒体を貯えた蓄熱器と、その熱媒体中
に設けられた熱交換器と備えており、空気調和機に組み
込まれている。蓄熱器に冷熱を蓄えるためには、空気調
和機を構成する圧縮機、室外機、膨張弁等が作動する。
その際、圧縮機から吐出された高温高圧の冷媒は、室外
機で外気との熱交換により凝縮され、膨張弁を介して熱
交換器中に送給される。そこで膨張した冷媒は蒸発して
蓄熱器中の熱媒体から熱を奪い、熱媒体を熱交換器回り
に氷結させる。かくして蓄熱器は冷熱を氷として蓄える
ことになる。
2. Description of the Related Art As a conventional device, refrigeration-Vol.
No. 752 (1990), pp. 33-38, there is "a direct ice storage system for individual distributed building air conditioning". An air conditioner equipped with this heat storage system freezes the heat storage medium using cheap electric power at night and stores it in a heat storage unit in the state of ice, and the ice stored in the daytime when the electricity rate is high. It releases the cold heat of and supplies it to the air conditioner. This heat storage system includes a heat storage device that stores a heat medium and a heat exchanger provided in the heat medium, and is incorporated in an air conditioner. In order to store cold heat in the heat accumulator, the compressor, the outdoor unit, the expansion valve, etc., which constitute the air conditioner, operate.
At that time, the high-temperature and high-pressure refrigerant discharged from the compressor is condensed by heat exchange with the outside air in the outdoor unit, and is fed into the heat exchanger via the expansion valve. Thereupon, the expanded refrigerant evaporates and takes heat from the heat medium in the heat storage device, causing the heat medium to freeze around the heat exchanger. Thus, the heat accumulator stores cold heat as ice.

【0003】蓄熱器中の熱媒体に冷熱エネルギ−を貯え
る蓄冷運転中は、蓄熱器中の熱媒体が一部氷となって膨
張するので、それにつれて熱媒体の水位が上昇する。上
記の蓄熱システムを備えた空気調和機は、図10に示す
制御ダイアグラムのように、熱媒体の水位を検出し、水
位変化を演算し、それを基に製氷量を求め、これから製
氷すべき量と予定の製氷時間とから製氷能力を求め、そ
の製氷能力に対応する圧縮機のインバ−タ周波数を演算
する。そのインバ−タ周波数で圧縮機からの冷媒吐出量
が調整され、その結果蓄熱器中の氷の生成速度すなわち
蓄熱能力が制御される。
During a cold storage operation in which cold energy is stored in the heat medium in the heat storage unit, the heat medium in the heat storage unit partially expands as ice, and the water level of the heat medium rises accordingly. The air conditioner equipped with the above heat storage system detects the water level of the heat medium, calculates the water level change, obtains the ice making amount based on the detected water level, as shown in the control diagram of FIG. Then, the ice making capacity is obtained from the planned ice making time, and the inverter frequency of the compressor corresponding to the ice making capacity is calculated. The amount of refrigerant discharged from the compressor is adjusted by the inverter frequency, and as a result, the ice generation rate in the heat accumulator, that is, the heat storage capacity is controlled.

【0004】[0004]

【発明が解決しようとする課題】従来例では、図10に
示すように、蓄熱器中の熱媒体の水位変化に伴ってイン
バ−タ周波数を設定する制御方式が採用されている。こ
の制御方式によれば、インバ−タ周波数を制御して時間
当りの製氷能力が設定されるため、冷凍サイクル中に循
環する冷媒循環量を変更して製氷能力を制御することは
可能である。しかしながら、図5に示すように、インバ
−タ周波数が同一であっても、蓄熱器の熱交換器中での
冷媒の蒸発圧力によって蓄熱能力は異なるので、蓄熱能
力はインバ−タ周波数のみによって一義的に定まらな
い。従って熱交換器中での冷媒の蒸発圧力を考慮しない
場合には、効率的な蓄熱運転を行うに支障を生ずる事が
ある。
In the conventional example, as shown in FIG. 10, a control system is employed in which the inverter frequency is set in accordance with the water level change of the heat medium in the heat accumulator. According to this control method, since the inverter frequency is controlled to set the ice making capacity per hour, it is possible to control the ice making capacity by changing the amount of refrigerant circulating in the refrigeration cycle. However, as shown in FIG. 5, even if the inverter frequency is the same, the heat storage capacity is different depending on the evaporation pressure of the refrigerant in the heat exchanger of the heat storage unit. Not fixed. Therefore, if the evaporating pressure of the refrigerant in the heat exchanger is not taken into consideration, it may hinder efficient heat storage operation.

【0005】蓄熱器中で熱媒体を凝固し、氷として蓄熱
するためには、蓄熱熱交換器で冷媒の蒸発圧力を少なく
とも熱媒体が凝固温度以下になるように圧力制御して蓄
熱運転を行う必要がある。単にインバ−タ周波数により
冷凍サイクル中の冷媒循環量を制御するのみでは、蓄熱
器の熱交換器中での冷媒の蒸発圧力について考慮でき
ず、必ずしも熱媒体の凝固を伴う蓄熱運転となるとは限
らずない。従って、従来の蓄熱運転は、熱媒体の潜熱を
利用して熱エネルギ−を蓄えるのに有効でなくなる可能
性があった。
In order to solidify the heat medium in the heat accumulator and store it as ice, the heat accumulation operation is performed by controlling the evaporation pressure of the refrigerant in the heat accumulator so that at least the heat medium is below the coagulation temperature. There is a need. Only by controlling the refrigerant circulation amount in the refrigeration cycle by the inverter frequency, the evaporating pressure of the refrigerant in the heat exchanger of the heat accumulator cannot be taken into consideration, and it is not always the case that the heat storage operation involves solidification of the heat medium. I'm sorry. Therefore, the conventional heat storage operation may not be effective in storing the heat energy by utilizing the latent heat of the heat medium.

【0006】本発明は、上記の問題点に鑑みてなされた
ものであり、その目的は蓄冷運転中の冷媒の蒸発圧力を
蓄熱器中の熱媒体が凝固温度以下になるような値に設定
し、その圧力設定値に冷媒の蒸発圧力が一致するように
圧縮機を運転するインバータ周波数を制御し、蓄冷運転
の冷凍サイクルを熱媒体が確実に凝固しうる状態とし、
効率的且つ確実に蓄熱する空気調和機を提供することに
ある。
The present invention has been made in view of the above problems, and an object thereof is to set the evaporation pressure of the refrigerant during the cold storage operation to a value such that the heat medium in the heat accumulator becomes equal to or lower than the solidification temperature. , Controlling the inverter frequency to operate the compressor so that the evaporation pressure of the refrigerant matches the pressure setting value, and put the refrigeration cycle of the cold storage operation in a state in which the heat medium can solidify reliably,
It is to provide an air conditioner that efficiently and reliably stores heat.

【0007】[0007]

【課題を解決するための手段】上記問題点を解決するた
めの本発明の解決手段を、図3に示す制御ダイアグラム
により説明すると、蓄冷運転中は水位変化により蓄熱量
を監視すると共に、蓄熱運転のために適当な目標の設定
圧力PSsetを設定し、逐次検出する低圧圧力検出手段か
らの蒸発圧力信号PSと設定圧力PSsetとの比較を行い、
インバータの周波数演算手段により設定圧力PSsetとな
るように容量制御機能付圧縮機を駆動する。従ってイン
バ−タ周波数変更を行うことにより蒸発圧力を一定に保
ち蓄熱量を一定にするフィ−ドバック制御機能を空気調
和機に設けている。
The solution means of the present invention for solving the above problems will be described with reference to the control diagram shown in FIG. 3. During the cold storage operation, the heat storage amount is monitored by the water level change, and the heat storage operation is performed. In order to set an appropriate target set pressure PSset for, to compare the evaporation pressure signal PS from the low pressure detection means to detect sequentially and the set pressure PSset,
The compressor with a capacity control function is driven by the frequency calculation means of the inverter so that the set pressure becomes PSset. Therefore, the air conditioner is provided with a feedback control function that keeps the evaporation pressure constant and the heat storage amount constant by changing the inverter frequency.

【0008】本発明の第1の空気調和機は、インバータ
制御されて高温高圧の冷媒を吐出する圧縮機と、その高
温高圧の冷媒を冷却して冷媒液に凝縮する室外熱交換器
とを有する室外機と;その冷媒液を減圧し膨張させる流
量制御弁と、膨張した冷媒を蒸発させる蓄熱熱交換器
と、この蓄熱熱交換器を液状の蓄熱媒体に入れて収納し
その蓄熱熱交換器の冷媒と熱交換して氷結する蓄熱媒体
の氷を冷熱として蓄える蓄熱槽と有する蓄熱器と;室外
熱交換器から送り出され、蓄熱熱交換器で冷熱により過
冷却された冷媒液を膨張させる室内流量制御弁と、その
膨張した冷媒と熱交換して冷気を室内に供給する室内熱
交換器とを有する室内機と;を備え、蓄熱器に冷熱を蓄
える蓄冷運転を夜間に行う空気調和機において、蓄冷運
転の予定時間と蓄熱器の蓄熱容量とから算定された蓄熱
能力に対して、蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能
力との関係から、冷媒蒸発圧力を演算し、その演算され
た冷媒蒸発圧力に蓄熱熱交換器中の冷媒蒸発圧力との差
を求め、その差に応じて圧縮機を回転制御するインバー
タ周波数を修正し、演算された冷媒蒸発圧力に蓄熱熱交
換器中の冷媒蒸発圧力が一致するようにフィードバック
制御を行うことを特徴としている。
A first air conditioner of the present invention comprises a compressor that is inverter-controlled to discharge a high-temperature high-pressure refrigerant, and an outdoor heat exchanger that cools the high-temperature high-pressure refrigerant and condenses it into a refrigerant liquid. An outdoor unit; a flow control valve for decompressing and expanding the refrigerant liquid, a heat storage heat exchanger for evaporating the expanded refrigerant, and a heat storage heat exchanger for storing the heat storage heat exchanger in a liquid heat storage medium. A heat storage device having a heat storage tank that stores ice of a heat storage medium that freezes by exchanging heat with a refrigerant as cold heat; an indoor flow rate for expanding a refrigerant liquid sent from an outdoor heat exchanger and supercooled by cold heat in the heat storage heat exchanger An indoor unit having a control valve and an indoor heat exchanger that exchanges heat with the expanded refrigerant to supply cold air to the room; and an air conditioner that performs cold storage operation for storing cold heat in a heat storage device at night. Scheduled time for cold storage operation and heat storage For the heat storage capacity calculated from the heat storage capacity of, the refrigerant evaporation pressure is calculated from the relationship between the refrigerant evaporation pressure in the heat storage heat exchanger and the heat storage capacity, and the heat storage heat exchanger is calculated to the calculated refrigerant evaporation pressure. Calculate the difference with the refrigerant evaporation pressure inside, correct the inverter frequency that controls the rotation of the compressor according to the difference, and feed back so that the refrigerant evaporation pressure in the heat storage heat exchanger matches the calculated refrigerant evaporation pressure. It is characterized by performing control.

【0009】また上記目的を達成するために、本発明の
第2の空気調和機は、上記第1の空気調和機と同一の機
械要素、すなわち圧縮機と室外熱交換器とを有する室外
機と;流量制御弁と蓄熱熱交換器と蓄熱槽と有する蓄熱
器と;室内流量制御弁と室内熱交換器とを有する室内機
と;を備えた空気調和機であって、蓄熱器に冷熱を蓄え
る蓄冷運転の予定時間と蓄熱器の蓄熱容量とから算定さ
れた蓄熱能力に対応して、蓄熱熱交換器中の冷媒蒸発圧
力と蓄熱能力との相関を示す式により、冷媒蒸発圧力を
演算しその冷媒蒸発圧力を目標値として設定する設定圧
力演算手段と、設定された冷媒蒸発圧力の目標値に対応
して、インバータ周波数と冷媒蒸発圧力との相関を示す
式から、インバータ周波数を演算するインバータ周波数
演算手段と、演算されたインバータ周波数により圧縮機
を制御するインバータ制御装置と、蓄冷運転時に蓄熱熱
交換器内の冷媒蒸発圧力を検出する低圧圧力検出手段
と、蓄熱槽中の蓄熱媒体の氷結により変化する水位を検
出する水位検出手段と、この水位検出器の検出値から単
位時間あたりの水位変化を求め、氷の生成速度即ち蓄熱
能力に換算する蓄熱能力演算手段と、を有し、かつイン
バータ周波数演算手段は、低圧圧力検出手段により検出
される冷媒蒸気圧力が設定圧力演算手段により設定され
た冷媒蒸発圧力の目標値に一致するようにインバータ周
波数を修正する機能を備えていることを特徴としてい
る。
In order to achieve the above object, a second air conditioner of the present invention is the same mechanical element as the first air conditioner, that is, an outdoor unit having a compressor and an outdoor heat exchanger. An air conditioner including: a heat accumulator having a flow rate control valve, a heat storage heat exchanger, and a heat storage tank; an indoor unit having an indoor flow rate control valve and an indoor heat exchanger; and storing cold heat in the heat storage device. Corresponding to the heat storage capacity calculated from the scheduled time of cold storage operation and the heat storage capacity of the heat storage device, the refrigerant evaporating pressure is calculated by the formula showing the correlation between the refrigerant evaporating pressure in the heat storage heat exchanger and the heat storage capacity. Set pressure calculation means for setting the refrigerant evaporating pressure as a target value, and an inverter frequency for calculating the inverter frequency from the equation showing the correlation between the inverter frequency and the refrigerant evaporating pressure corresponding to the set target value of the refrigerant evaporating pressure. Calculation means and calculation The inverter control device that controls the compressor by the stored inverter frequency, the low pressure detection means that detects the refrigerant evaporation pressure in the heat storage heat exchanger during the cold storage operation, and the water level that changes due to the freezing of the heat storage medium in the heat storage tank The water level detection means, and the water level change per unit time from the detection value of the water level detector, and has a heat storage capacity calculation means for converting into ice generation rate, that is, heat storage capacity, and the inverter frequency calculation means, It is characterized in that it has a function of correcting the inverter frequency so that the refrigerant vapor pressure detected by the low pressure detecting means matches the target value of the refrigerant evaporation pressure set by the set pressure calculating means.

【0010】そして本発明の第2の空気調和機に加え
て、蓄冷運転の予定時間を設定するための蓄冷時間設定
手段と、その蓄冷運転の予定時間と蓄熱器の蓄熱容量と
から蓄冷能力を演算する蓄熱能力演算手段とを設け、演
算された蓄熱能力は設定圧力演算手段に出力するよう
に、空気調和機を構成することが好ましい。
In addition to the second air conditioner of the present invention, the cool storage capacity is set from the cool storage time setting means for setting the scheduled time of the cold storage operation, the scheduled time of the cold storage operation and the heat storage capacity of the heat accumulator. It is preferable that the air conditioner is configured such that a heat storage capacity calculating means for calculating is provided and the calculated heat storage capacity is output to the set pressure calculating means.

【0011】さらに本発明の第2の空気調和機に加え
て、水位検出手段の検出値が水位変化の無い状態を示す
蓄冷運転開始から、水位変化を示すまでの間は、蓄熱熱
交換器中の冷媒蒸発圧力と蓄熱能力との相関を示す式で
最大蓄熱能力に対応する冷媒蒸発圧力を設定圧力演算手
段に出力する蓄熱運転開始手段と、水位検出手段が水位
変化ありを検出した時に蓄冷運転予定時間と蓄熱器の蓄
熱容量とから算定された蓄熱能力に対応する冷媒蒸発圧
力の目標値に切り替える切替手段とを設けて、空気調和
機を構成するとよい。
In addition to the second air conditioner of the present invention, in the heat storage heat exchanger from the start of the cold storage operation in which the detected value of the water level detecting means indicates a state in which there is no change in the water level until the change in the water level is indicated. The heat storage operation start means for outputting the refrigerant evaporation pressure corresponding to the maximum heat storage capacity to the set pressure calculation means by the equation showing the correlation between the refrigerant evaporation pressure and the heat storage capacity, and the cold storage operation when the water level detection means detects the water level change The air conditioner may be configured by providing switching means for switching to the target value of the refrigerant evaporation pressure corresponding to the heat storage capacity calculated from the scheduled time and the heat storage capacity of the heat storage device.

【0012】また本発明の第2の空気調和機において、
低圧圧力検出手段を室外機内に設置し、低圧圧力検出手
段から蓄熱熱交換器と接続する配管長を設定する配管長
設定手段を設け、インバータ周波数演算手段は、低圧圧
力検出手段の検出値を、配管長設定手段により設定され
た配管長に対応する圧力損失だけ補正して、蓄熱熱交換
器の冷媒蒸発圧力に換算する機能を有するように構成し
てもよい。
In the second air conditioner of the present invention,
The low-pressure pressure detection means is installed in the outdoor unit, the pipe length setting means for setting the pipe length to be connected to the heat storage heat exchanger from the low-pressure pressure detection means is provided, the inverter frequency calculation means, the detection value of the low-pressure pressure detection means, It may be configured to have a function of correcting only the pressure loss corresponding to the pipe length set by the pipe length setting means and converting it into the refrigerant evaporation pressure of the heat storage heat exchanger.

【0013】また、上記目的を達成するために、本発明
の第3の空気調和機は、上記第1の空気調和機と同一の
機械要素、すなわち圧縮機と室外熱交換器とを有する室
外機と;流量制御弁と蓄熱熱交換器と蓄熱槽と有する蓄
熱器と;室内流量制御弁と室内熱交換器とを有する室内
機と;を備えた空気調和機であって、蓄熱器に冷熱を蓄
える蓄冷運転の予定時間を設定するための蓄冷時間設定
手段と、その予定時間と蓄熱器の蓄熱容量とから蓄冷能
力を演算する蓄熱能力演算手段と、この蓄熱能力演算手
段により演算された蓄熱能力に対応して、蓄熱熱交換器
中の冷媒蒸発圧力と蓄熱能力との相関を示す式により、
冷媒蒸発圧力を演算して、その冷媒蒸発圧力を目標値と
して設定する設定圧力演算手段と、設定された冷媒蒸発
圧力の目標値に対応して、インバータ周波数と冷媒蒸発
圧力との相関を示す式から、インバータ周波数を演算す
るインバータ周波数演算手段と、演算されたインバータ
周波数により圧縮機を制御するインバータ制御装置と、
蓄冷運転時に蓄熱熱交換器内の冷媒蒸発圧力を検出する
低圧圧力検出手段と、蓄熱槽中の蓄熱媒体の氷結により
変化する水位を検出する水位検出手段と、一定時間毎に
水位検出器の検出値から単位時間あたりの水位変化を求
め、氷の生成速度即ち蓄熱能力に換算する蓄熱能力演算
手段と、この蓄熱能力演算手段により求められた蓄熱能
力の実績値と蓄熱能力演算手段により演算された蓄熱能
力の設定値との差を演算する蓄熱能力比較手段とを有
し、かつ設定圧力演算手段は、蓄熱能力の実績値が蓄熱
能力の設定値に近づくように、蓄熱熱交換器中の冷媒蒸
発圧力と蓄熱能力との相関を示す式により、冷媒蒸発圧
力を修正する機能を備え、かつインバータ周波数演算手
段は、低圧圧力検出手段により検出される冷媒蒸気圧力
が設定圧力演算手段により設定された冷媒蒸発圧力の目
標値に一致するようにインバータ周波数を変更する機能
を備えていることを特徴としている。
To achieve the above object, a third air conditioner of the present invention is an outdoor unit having the same mechanical elements as the first air conditioner, that is, a compressor and an outdoor heat exchanger. An air conditioner including: a heat storage device having a flow rate control valve, a heat storage heat exchanger, and a heat storage tank; and an indoor unit having an indoor flow rate control valve and an indoor heat exchanger, wherein cold heat is applied to the heat storage device. Cold storage time setting means for setting the scheduled time of the cold storage operation to be stored, heat storage capacity calculation means for calculating the cold storage capacity from the scheduled time and the heat storage capacity of the heat storage unit, and the heat storage capacity calculated by this heat storage capacity calculation means Corresponding to, by the equation showing the correlation between the refrigerant evaporation pressure in the heat storage heat exchanger and the heat storage capacity,
A set pressure calculation means for calculating the refrigerant evaporating pressure and setting the refrigerant evaporating pressure as a target value, and an expression showing a correlation between the inverter frequency and the refrigerant evaporating pressure corresponding to the set target value of the refrigerant evaporating pressure. From, an inverter frequency calculation means for calculating the inverter frequency, an inverter control device for controlling the compressor by the calculated inverter frequency,
Low pressure detection means to detect the refrigerant evaporation pressure in the heat storage heat exchanger during cold storage operation, water level detection means to detect the water level that changes due to freezing of the heat storage medium in the heat storage tank, and detection of the water level detector at regular intervals The water level change per unit time is calculated from the value, and the heat storage capacity calculation means for converting into the ice production rate, that is, the heat storage capacity, and the actual value of the heat storage capacity calculated by this heat storage capacity calculation means and the heat storage capacity calculation means are calculated. It has a heat storage capacity comparison means for calculating the difference with the set value of the heat storage capacity, and the set pressure calculation means, the refrigerant in the heat storage heat exchanger so that the actual value of the heat storage capacity approaches the set value of the heat storage capacity. The inverter frequency calculating means has a function of correcting the refrigerant vaporizing pressure by an equation showing the correlation between the vaporizing pressure and the heat storage capacity, and the inverter frequency calculating means calculates the refrigerant vapor pressure detected by the low pressure detecting means. It is characterized in that it comprises a function of changing the inverter frequency to match the more set target value of the refrigerant evaporation pressure.

【0014】そして。本発明の第3の空気調和機に加え
て、水位検出手段の検出値が水位変化の無い状態を示す
蓄冷運転開始から、水位変化を示すまでの間は、蓄熱熱
交換器中の冷媒蒸発圧力と蓄熱能力との相関を示す式で
最大蓄熱能力に対応する冷媒蒸発圧力を前記設定圧力演
算手段に出力する蓄熱運転開始手段と、水位検出手段が
水位変化ありを検出した時に蓄冷運転予定時間と蓄熱器
の蓄熱容量とから算定された蓄熱能力に対応する冷媒蒸
発圧力の目標値に切り替える切替手段とを設けて、空気
調和機を構成することが好ましい。
And. In addition to the third air conditioner of the present invention, the refrigerant evaporating pressure in the heat storage heat exchanger from the start of the cold storage operation in which the detection value of the water level detecting means indicates a state in which there is no water level change to the time when the water level changes And a heat storage operation start means for outputting the refrigerant evaporating pressure corresponding to the maximum heat storage capacity to the set pressure calculation means in an equation showing the correlation between the heat storage capacity and the heat storage capacity, and the cool storage operation scheduled time when the water level detection means detects that there is a water level change. It is preferable that the air conditioner is configured by providing switching means for switching to a target value of the refrigerant evaporation pressure corresponding to the heat storage capacity calculated from the heat storage capacity of the heat storage device.

【0015】また本発明の第3の空気調和機において、
低圧圧力検出手段を室外機内に設置してもよく、その際
には、低圧圧力検出手段から蓄熱熱交換器と接続する配
管長を設定する配管長設定手段を設け、さらにインバー
タ周波数演算手段は、低圧圧力検出手段の検出値を、配
管長設定手段により設定された配管長に対応する圧力損
失だけ補正して、蓄熱熱交換器の冷媒蒸発圧力に換算す
る機能を持つように構成する。
In the third air conditioner of the present invention,
The low-pressure pressure detecting means may be installed in the outdoor unit, in which case, a pipe length setting means for setting the pipe length to be connected to the heat storage heat exchanger from the low-pressure pressure detecting means is provided, and the inverter frequency calculating means is The detection value of the low pressure detection means is corrected by the pressure loss corresponding to the pipe length set by the pipe length setting means, and is converted into the refrigerant evaporation pressure of the heat storage heat exchanger.

【0016】[0016]

【作用】本発明の第1の空気調和機の機械系において
は、室外機の圧縮機はインバータ制御されて高温高圧の
冷媒を吐出し、室外熱交換器は、その高温高圧の冷媒を
冷却して冷媒液に凝縮し、そして蓄熱器の流量制御弁は
その冷媒液を減圧し膨張させ、蓄熱熱交換器は膨張した
冷媒を蓄熱槽中蓄熱媒体と熱交換して蒸発させるととも
に、蓄熱槽は蓄熱熱交換器の冷媒と熱交換して氷結する
蓄熱媒体の氷を冷熱として蓄える。このように第1の空
気調和機の蓄熱運転が行われる。
In the mechanical system of the first air conditioner of the present invention, the compressor of the outdoor unit is inverter-controlled to discharge the high-temperature and high-pressure refrigerant, and the outdoor heat exchanger cools the high-temperature and high-pressure refrigerant. To condense into the refrigerant liquid, and the flow control valve of the heat storage unit decompresses and expands the refrigerant liquid, and the heat storage heat exchanger heat-exchanges the expanded refrigerant with the heat storage medium in the heat storage tank and evaporates, and the heat storage tank The ice of the heat storage medium that freezes by exchanging heat with the refrigerant of the heat storage heat exchanger is stored as cold heat. In this way, the heat storage operation of the first air conditioner is performed.

【0017】蓄熱運転により蓄熱槽に蓄えられた冷熱を
利用する冷房運転では、室内機の室内流量制御弁は室外
熱交換器から送り出され、蓄熱熱交換器で冷熱により過
冷却された冷媒液を膨張させ、室内熱交換器は、その膨
張した冷媒と熱交換して冷気を室内に供給する。
In the cooling operation utilizing the cold heat stored in the heat storage tank by the heat storage operation, the indoor flow rate control valve of the indoor unit is sent out from the outdoor heat exchanger and the refrigerant liquid supercooled by cold heat in the heat storage heat exchanger is discharged. When expanded, the indoor heat exchanger exchanges heat with the expanded refrigerant and supplies cold air to the room.

【0018】蓄冷運転時における本発明の第1の空気調
和機の制御は、蓄冷運転の予定時間と蓄熱器の蓄熱容量
とから算定された蓄熱能力に対して、蓄熱熱交換器中の
冷媒蒸発圧力と蓄熱能力との関係から、冷媒蒸発圧力を
演算し、この演算された冷媒蒸発圧力と蓄熱熱交換器中
の冷媒蒸発圧力との差を求め、その差に応じて圧縮機を
回転制御するインバータ周波数を修正し、演算された冷
媒蒸発圧力に蓄熱熱交換器中の冷媒蒸発圧力が一致する
ようにフィードバック制御を行うことを特徴するもので
ある次に本発明の第2の空気調和機の動作について説明
する。本発明の第2の空気調和機の機械系は第1の空気
調和機と同一であるので、説明を省略したい。
The control of the first air conditioner of the present invention during the cold storage operation is performed by the evaporation of the refrigerant in the heat storage heat exchanger with respect to the heat storage capacity calculated from the scheduled time of the cold storage operation and the heat storage capacity of the heat storage device. The refrigerant evaporating pressure is calculated from the relationship between the pressure and the heat storage capacity, the difference between the calculated refrigerant evaporating pressure and the refrigerant evaporating pressure in the heat storage heat exchanger is obtained, and the compressor is rotationally controlled according to the difference. The inverter frequency is corrected and feedback control is performed so that the calculated refrigerant evaporation pressure matches the refrigerant evaporation pressure in the heat storage heat exchanger. Next, the second air conditioner of the present invention will be described. The operation will be described. Since the mechanical system of the second air conditioner of the present invention is the same as that of the first air conditioner, its explanation is omitted.

【0019】蓄冷運転時に本発明の第2の空気調和機の
制御系においては、設定圧力演算手段は、蓄冷運転予定
時間と蓄熱器の蓄熱容量とから算定された蓄熱能力に対
応して、蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能力との
相関を示す式により、冷媒蒸発圧力を演算しその冷媒蒸
発圧力を目標値として設定し、そしてインバータ周波数
演算手段は、設定された冷媒蒸発圧力の目標値に対応し
て、インバータ周波数と冷媒蒸発圧力との相関を示す式
から、インバータ周波数を演算し、そしてインバータ制
御装置は、演算されたインバータ周波数により圧縮機を
制御する。
In the control system of the second air conditioner of the present invention during the cold storage operation, the set pressure calculating means corresponds to the heat storage capacity calculated from the scheduled cold storage operation time and the heat storage capacity of the heat accumulator. By the equation showing the correlation between the refrigerant evaporation pressure in the heat exchanger and the heat storage capacity, the refrigerant evaporation pressure is calculated and the refrigerant evaporation pressure is set as a target value, and the inverter frequency calculation means is set to the set refrigerant evaporation pressure. Corresponding to the target value, the inverter frequency is calculated from the equation showing the correlation between the inverter frequency and the refrigerant evaporation pressure, and the inverter control device controls the compressor by the calculated inverter frequency.

【0020】また低圧圧力検出手段は蓄熱熱交換器内の
冷媒蒸発圧力を検出し、そして水位検出手段は蓄熱槽中
の蓄熱媒体の氷結により変化する水位を検出し、そして
蓄熱能力演算手段は水位検出器の検出値から単位時間あ
たりの水位変化を求め、氷の生成速度即ち蓄熱能力に換
算する。
The low pressure detecting means detects the refrigerant evaporating pressure in the heat storage heat exchanger, the water level detecting means detects the water level which changes due to the freezing of the heat storage medium in the heat storage tank, and the heat storage capacity calculating means detects the water level. The water level change per unit time is calculated from the detection value of the detector and converted into the ice generation rate, that is, the heat storage capacity.

【0021】さらに、インバータ周波数演算手段は、低
圧圧力検出手段により検出される冷媒蒸気圧力が設定圧
力演算手段により設定された冷媒蒸発圧力の目標値に一
致するようにインバータ周波数を修正するように機能す
る。
Further, the inverter frequency calculation means functions to correct the inverter frequency so that the refrigerant vapor pressure detected by the low pressure detection means matches the target value of the refrigerant evaporation pressure set by the set pressure calculation means. To do.

【0022】また蓄冷時間設定手段は、ユーザが蓄冷運
転の予定時間を設定するために用いられ、そして蓄熱能
力演算手段は、その予定時間と前記蓄熱器の蓄熱容量と
から蓄冷能力を演算して設定圧力演算手段に出力する。
The cold storage time setting means is used by the user to set the scheduled time of the cold storage operation, and the heat storage capacity calculation means calculates the cold storage capacity from the scheduled time and the heat storage capacity of the heat storage unit. Output to the set pressure calculation means.

【0023】蓄熱運転開始手段は、水位検出手段の検出
値がゼロを示す蓄冷運転開始から、水位変化を示すまで
の間は、蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能力との
相関を示す式で最大蓄熱能力に対応する冷媒蒸発圧力を
設定圧力演算手段に出力し、そして切替手段は、水位検
出手段が水位変化ありを検出した時に蓄冷運転予定時間
と蓄熱器Dの蓄熱容量とから算定された蓄熱能力に対応
する冷媒蒸発圧力の目標値に切り替える。
The heat storage operation starting means shows the correlation between the refrigerant evaporation pressure in the heat storage heat exchanger and the heat storage capacity from the start of the cold storage operation when the detection value of the water level detection means is zero to the time when the water level changes. The refrigerant evaporating pressure corresponding to the maximum heat storage capacity is output to the set pressure calculating means by the formula, and the switching means calculates from the scheduled cool storage operation time and the heat storage capacity of the heat storage device D when the water level detecting means detects the water level change. The target value of the refrigerant evaporation pressure corresponding to the stored heat storage capacity is switched.

【0024】また本発明の第2の空気調和機において、
低圧圧力検出手段を室外機内に設置した場合に設ける配
管長設定手段は、低圧圧力検出手段から前記蓄熱熱交換
器と接続する配管長をユーザが設定するために用いら
れ、この際、インバータ周波数演算手段は、低圧圧力検
出手段の検出値を、配管長設定手段により設定された配
管長に対応する圧力損失だけ補正して、蓄熱熱交換器の
冷媒蒸発圧力に換算するように機能する。
In the second air conditioner of the present invention,
The pipe length setting means provided when the low pressure detection means is installed in the outdoor unit is used by the user to set the length of the pipe connected to the heat storage heat exchanger from the low pressure detection means. The means functions to correct the detected value of the low pressure detecting means by the pressure loss corresponding to the pipe length set by the pipe length setting means, and convert it into the refrigerant evaporation pressure of the heat storage heat exchanger.

【0025】次に本発明の第3の空気調和機の動作につ
いて説明する。本発明の第3の空気調和機の機械系は第
1の空気調和機と同一であるので、説明を省略する。
Next, the operation of the third air conditioner of the present invention will be described. Since the mechanical system of the third air conditioner of the present invention is the same as that of the first air conditioner, the description thereof will be omitted.

【0026】本発明の第3の空気調和機の制御系におい
て、蓄冷時間設定手段はユーザが蓄冷運転の予定時間を
設定するために用いられ、そして蓄熱能力演算手段は、
その予定時間と蓄熱器の蓄熱容量とから蓄冷能力を演算
し、そして設定圧力演算手段は蓄熱能力演算手段により
演算された蓄熱能力に対応して、蓄熱熱交換器中の冷媒
蒸発圧力と蓄熱能力との相関を示す式により、冷媒蒸発
圧力を演算して、その冷媒蒸発圧力を目標値として設定
し、そしてインバータ周波数演算手段は、設定された冷
媒蒸発圧力の目標値に対応して、インバータ周波数と冷
媒蒸発圧力との相関を示す式から、インバータ周波数を
演算し、そしてインバータ制御装置は、演算されたイン
バータ周波数により圧縮機を制御する。
In the control system of the third air conditioner of the present invention, the cold storage time setting means is used by the user to set the scheduled time of the cold storage operation, and the heat storage capacity computing means is
The cool storage capacity is calculated from the scheduled time and the heat storage capacity of the heat storage unit, and the set pressure calculation means corresponds to the heat storage capacity calculated by the heat storage capacity calculation means, and the refrigerant evaporation pressure and the heat storage capacity in the heat storage heat exchanger. The refrigerant evaporating pressure is calculated by the equation showing the correlation with, and the refrigerant evaporating pressure is set as a target value, and the inverter frequency calculating means corresponds to the set target value of the refrigerant evaporating pressure, The inverter frequency is calculated from the equation indicating the correlation between the refrigerant evaporation pressure and the refrigerant evaporation pressure, and the inverter control device controls the compressor by the calculated inverter frequency.

【0027】また低圧圧力検出手段は、蓄熱熱交換器内
の冷媒蒸発圧力を検出し、そして水位検出手段は、蓄熱
槽中の蓄熱媒体の氷結により変化する水位を検出し、そ
して蓄熱能力演算手段は、一定時間毎に水位検出器の検
出値から単位時間あたりの水位変化を求め、氷の生成速
度即ち蓄熱能力に換算するし、そして蓄熱能力比較手段
は、蓄熱能力演算手段により求められた蓄熱能力の設定
値と蓄熱能力演算手段により演算された蓄熱能力の実績
値との差を演算する。
The low pressure detecting means detects the refrigerant evaporation pressure in the heat storage heat exchanger, and the water level detecting means detects the water level which changes due to the freezing of the heat storage medium in the heat storage tank, and the heat storage capacity calculating means. Calculates the water level change per unit time from the detection value of the water level detector at regular intervals and converts it to the ice production rate, that is, the heat storage capacity, and the heat storage capacity comparison means calculates the heat storage capacity calculated by the heat storage capacity calculation means. The difference between the set value of the capacity and the actual value of the heat storage capacity calculated by the heat storage capacity calculation means is calculated.

【0028】さらに、設定圧力演算手段は、一定時間毎
に、蓄熱能力の実績値が蓄熱能力の設定値に近づくよう
に、蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能力との相関
を示す式により、冷媒蒸発圧力を修正するように機能
し、そしてインバータ周波数演算手段は、低圧圧力検出
手段により検出される冷媒蒸気圧力が設定圧力演算手段
により設定された冷媒蒸発圧力の目標値に一致するよう
にインバータ周波数を変更するように機能する。
Further, the set pressure calculating means is an expression showing the correlation between the refrigerant evaporation pressure in the heat storage heat exchanger and the heat storage capacity so that the actual value of the heat storage capacity approaches the set value of the heat storage capacity at regular intervals. Function to correct the refrigerant evaporating pressure, and the inverter frequency calculating means adjusts the refrigerant vapor pressure detected by the low pressure detecting means to the target value of the refrigerant evaporating pressure set by the set pressure calculating means. Function to change the inverter frequency.

【0029】第3の空気調和機の蓄熱運転開始手段及び
切替手段は、上記第1の空気調和機のそれぞれと同様に
作用する。また低圧圧力検出手段を室外機内に設置した
場合に設ける配管長設定手段、それを設けた際のインバ
ータ周波数演算手段の機能は第1の空気調和機と同様で
ある。
The heat storage operation starting means and switching means of the third air conditioner operate similarly to each of the first air conditioners. The function of the pipe length setting means provided when the low pressure detecting means is installed in the outdoor unit, and the function of the inverter frequency calculating means when the low pressure detecting means is provided are the same as those of the first air conditioner.

【0030】以上のように、本発明の各空気調和機は、
蓄熱熱交換器中の冷媒蒸発圧力を蓄熱槽の蓄熱媒体を氷
結するに適当な圧力になるようフィードバック制御する
制御系を備えており、所要量の冷熱を氷の潜熱として確
実に蓄えることができる。特に夜間の安価な電気量を利
用し、空気調和機の蓄冷運転を行うと経済的である。
As described above, each air conditioner of the present invention is
It is equipped with a control system that feedback-controls the evaporation pressure of the refrigerant in the heat storage heat exchanger to a pressure suitable for freezing the heat storage medium in the heat storage tank, and can reliably store the required amount of cold heat as latent heat of ice. . In particular, it is economical to carry out cool storage operation of the air conditioner by using inexpensive electricity at night.

【0031】[0031]

【実施例】本発明の実施例を図1〜図9を参照して説明
する。
Embodiments of the present invention will be described with reference to FIGS.

【0032】図1に本発明の一実施例になる空気調和機
の全体構成を示す。この空気調和機は、大別して室外機
A、室内機B、室内機C及び蓄熱器Dの各ユニットと、
室外機Aから蓄熱器Dを経て室内機B、Cまで延び冷媒
液を搬送する液管14aと、室内機B、Cから室外機A
に延び冷媒蒸気を搬送するガス管14bとから構成され
ている。そしてこの空気調和機は冷房、蓄冷及び暖房の
3つの運転モードで運転される。
FIG. 1 shows the overall construction of an air conditioner according to an embodiment of the present invention. This air conditioner is roughly classified into an outdoor unit A, an indoor unit B, an indoor unit C, and a heat storage unit D,
A liquid pipe 14a that extends from the outdoor unit A to the indoor units B and C through the heat storage unit D to convey the refrigerant liquid, and the indoor units B and C to the outdoor unit A.
And a gas pipe 14b for extending the refrigerant vapor and carrying the refrigerant vapor. The air conditioner is operated in three operation modes of cooling, cold storage and heating.

【0033】冷房運転時には、室外機Aは冷媒を圧縮し
て高温高圧の冷媒を作り、外気により冷却して凝縮、液
化し、蓄熱器D(詳しくは後述)及び液管14aを通じ
て室内機B,Cに供給し、そして室内機B,Cは液化さ
れた冷媒液を減圧、膨張させた後に室内空気と熱交換し
て蒸発させ、その室内空気を冷気として供給する。蒸発
した冷媒はガス管14bを通じて室外機Aに還流され
る。かくして冷媒は、圧縮、凝縮、膨張及び蒸発の冷凍
サイクルで作動する。
During the cooling operation, the outdoor unit A compresses the refrigerant to produce a high-temperature and high-pressure refrigerant, which is cooled by the outside air to be condensed and liquefied, and the indoor unit B, which is described later in detail, and the liquid pipe 14a, Then, the indoor units B and C decompress and expand the liquefied refrigerant liquid, heat-exchange it with room air to evaporate it, and supply the room air as cold air. The evaporated refrigerant is returned to the outdoor unit A through the gas pipe 14b. Thus, the refrigerant operates in a refrigeration cycle of compression, condensation, expansion and evaporation.

【0034】蓄冷運転時には、室外機Aは、外気により
冷却して凝縮、液化した冷媒を蓄熱器Dに送給し、そし
て蓄熱器Dは、冷媒液を減圧、膨張させた後に蓄熱器D
中に貯えた液状の蓄熱媒体と熱交換して蒸発させ、蓄熱
媒体を氷結させ、その氷を冷熱として蓄える。蒸発した
冷媒はガス管14bを通じて室外機Aに還流される。こ
の蓄冷運転は冷房の行わない夜間の時間帯に行われる。
蓄熱槽中に氷として蓄えられた冷熱は、冷房運転時に室
外機Aから送給された冷媒液を過冷却し、室内機に供給
される。
During the cold storage operation, the outdoor unit A sends the condensed and liquefied refrigerant cooled by the outside air to the heat storage D, and the heat storage D depressurizes and expands the refrigerant liquid and then the heat storage D.
It exchanges heat with the liquid heat storage medium stored therein to evaporate it, freeze the heat storage medium, and store the ice as cold heat. The evaporated refrigerant is returned to the outdoor unit A through the gas pipe 14b. This cold storage operation is performed during the nighttime hours when cooling is not performed.
The cold heat stored as ice in the heat storage tank supercools the refrigerant liquid sent from the outdoor unit A during the cooling operation, and is supplied to the indoor unit.

【0035】暖房運転時には、室外機Aは外気により冷
媒を加熱し、加熱されて蒸気となった冷媒蒸気をガス管
14bを通じて室内機B,Cに送給し、そして室内機
B,Cは、冷媒蒸気と室内空気とを熱交換して放熱し、
室内に暖気を供給する。放熱により凝縮した冷媒液は室
外機Aに還流される。
During the heating operation, the outdoor unit A heats the refrigerant by the outside air, and sends the heated refrigerant vapor to the indoor units B and C through the gas pipe 14b. Dissipates heat by exchanging heat between the refrigerant vapor and indoor air,
Supply warm air to the room. The refrigerant liquid condensed by heat dissipation is returned to the outdoor unit A.

【0036】次に空気調和機の構成をより詳細に説明す
る。室外機Aは、インバータ制御され容量制御機能を有
する圧縮機1と、圧縮機1から吐出された冷媒の流れ方
向を運転モードに応じて切り替える四方弁2と、冷房運
転及び蓄冷運転時に、凝縮器として機能し、四方弁2を
通じて送給される冷媒を外気により冷却して冷媒液に凝
縮する室外熱交換器3と、室外熱交換器3からの冷媒液
を”開”状態で通過させ蓄熱器Dへ送り出す室外流量制
御弁4と、圧縮機1の入り側に設けられ室内機A,Bか
ら還流する冷媒蒸気を気液分離して圧縮機1にガス冷媒
のみを送給するアキュムレータ5と、四方弁2とアキュ
ムレーター5間にあって間接的に蓄熱器における冷媒蒸
発圧力を検出する低圧圧力検出手段21と、から構成さ
れている。
Next, the structure of the air conditioner will be described in more detail. The outdoor unit A includes a compressor 1 having an inverter-controlled capacity control function, a four-way valve 2 that switches the flow direction of the refrigerant discharged from the compressor 1 according to an operation mode, and a condenser during cooling operation and cold storage operation. And an outdoor heat exchanger 3 that cools the refrigerant sent through the four-way valve 2 by the outside air to condense it into a refrigerant liquid, and a refrigerant liquid from the outdoor heat exchanger 3 is passed through in an "open" state to store heat. An outdoor flow rate control valve 4 for sending to the D, an accumulator 5 provided on the inlet side of the compressor 1 for gas-liquid separating the refrigerant vapor flowing back from the indoor units A and B, and sending only the gas refrigerant to the compressor 1. It is composed of a low pressure detection means 21 which is located between the four-way valve 2 and the accumulator 5 and indirectly detects the refrigerant evaporation pressure in the heat storage device.

【0037】なお、暖房運転時には、室外流量制御弁4
は膨張弁として機能し、室内機B,Cから蓄熱器Dを素
通りして還流する冷媒液を減圧、膨張させ、そして室外
熱交換器3は蒸発器として機能し、室外流量制御弁4で
膨張した冷媒を加熱して蒸発させる。その蒸発した冷媒
は四方弁2及びアキュムレーター5を介して圧縮機1に
戻される。この時、四方弁2はその内部に破線で示す流
路を形成する。
During the heating operation, the outdoor flow control valve 4
Functions as an expansion valve, decompresses and expands the refrigerant liquid that flows from the indoor units B and C through the heat storage device D and recirculates, and the outdoor heat exchanger 3 functions as an evaporator, and the outdoor flow control valve 4 expands it. The refrigerant is heated to evaporate. The evaporated refrigerant is returned to the compressor 1 via the four-way valve 2 and the accumulator 5. At this time, the four-way valve 2 forms a flow path shown by a broken line therein.

【0038】室内機B及び室内機Cは、冷凍サイクル構
成が同一である。それぞれの室内機は、冷房運転時に室
外機Aから吐出され蓄熱機Dで過冷却された冷媒液を減
圧、膨張させる膨張弁として機能する室内流量制御弁7
と、膨張した冷媒を蒸発させる蒸発器として機能し、そ
の冷媒蒸気と室内空気を熱交換させて冷気を室内に供給
する室内熱交換器6とから構成されている。なお、暖房
運転時には、室内熱交換器6は凝縮器として機能し、室
外機Aからの高温の冷媒を室内空気により冷却し、室内
に暖気を供給する。この時、室内流量制御弁7は、”
開”状態となり、室内熱交換器6からの冷媒液を通過さ
せ、室外機Aへ送り出す。
The indoor unit B and the indoor unit C have the same refrigeration cycle configuration. Each indoor unit functions as an indoor flow control valve 7 that functions as an expansion valve that decompresses and expands the refrigerant liquid discharged from the outdoor unit A and supercooled by the heat storage device D during the cooling operation.
And an indoor heat exchanger 6 that functions as an evaporator that evaporates the expanded refrigerant and that exchanges heat between the refrigerant vapor and indoor air to supply cool air to the room. During the heating operation, the indoor heat exchanger 6 functions as a condenser, cools the high-temperature refrigerant from the outdoor unit A with indoor air, and supplies warm air to the room. At this time, the indoor flow control valve 7 is
In the "open" state, the refrigerant liquid from the indoor heat exchanger 6 passes through and is sent to the outdoor unit A.

【0039】蓄熱器Dは、液状の蓄熱媒体11を貯留す
る蓄熱槽10と、蓄熱媒体11内に設けられ蓄冷運転時
に蒸発器として機能する蓄熱熱交換器8と、室外機Aか
らの冷媒液を減圧、膨張させる膨張弁として機能し、膨
張した冷媒を蓄熱用熱交換器8に送り出す蓄熱流量制御
弁9と、蓄冷運転時に開路して蓄熱用熱交換器8出側か
ら室外機Aへの戻り流路を導通させる切替弁12と、蓄
冷運転時に閉路して蓄熱用熱交換器8出側から室内機
A,Bへの管路を閉じるもう一つの切替弁13とから構
成されている。
The heat storage device D includes a heat storage tank 10 for storing a liquid heat storage medium 11, a heat storage heat exchanger 8 provided in the heat storage medium 11 and functioning as an evaporator during a cold storage operation, and a refrigerant liquid from the outdoor unit A. The heat storage flow control valve 9 that functions as an expansion valve that decompresses and expands the refrigerant and sends the expanded refrigerant to the heat storage heat exchanger 8, and from the heat storage heat exchanger 8 outlet side to the outdoor unit A that is opened during the cold storage operation. It is composed of a switching valve 12 that connects the return flow path, and another switching valve 13 that is closed during the cold storage operation to close the conduit from the outlet side of the heat storage heat exchanger 8 to the indoor units A and B.

【0040】蓄冷運転時、蓄熱熱交換器8は、蓄熱流量
制御弁9からの膨張した冷媒を蓄熱槽10中の蓄熱媒体
11と熱交換して蒸発させ、蓄熱槽10中の蓄熱媒体1
1から吸熱して蓄熱熱交換器8回りに蓄熱媒体11を氷
結させる。かくして蓄熱槽10は冷熱を氷の状態で蓄え
ることになる。なお、氷結が進むにつれて、蓄熱媒体1
1の水位は上昇する。
During the cold storage operation, the heat storage heat exchanger 8 exchanges heat with the heat storage medium 11 in the heat storage tank 10 to evaporate the expanded refrigerant from the heat storage flow control valve 9 to evaporate the heat storage medium 1 in the heat storage tank 10.
The heat is absorbed from 1 and the heat storage medium 11 is frozen around the heat storage heat exchanger 8. Thus, the heat storage tank 10 stores cold heat in the state of ice. As freezing progresses, the heat storage medium 1
The water level of 1 rises.

【0041】また、冷房運転時には、蓄熱熱交換器8
は、室外機Aから送り込まれた冷媒液を蓄熱槽10中の
冷熱により過冷却して室内機A,Bに送り出す。この
時、切替弁13は”開”状態であり、蓄熱熱交換器8出
側と室内機A,Bとを室内流量制御弁7を介して導通さ
せる、一方、切替弁12は”閉”状態であって蓄熱熱交
換器8出側と室外機A間の流路を遮断する。
During the cooling operation, the heat storage heat exchanger 8
Supplies the refrigerant liquid sent from the outdoor unit A to the indoor units A and B after supercooling it by the cold heat in the heat storage tank 10. At this time, the switching valve 13 is in the “open” state, and the outlet side of the heat storage heat exchanger 8 and the indoor units A and B are electrically connected via the indoor flow rate control valve 7, while the switching valve 12 is in the “closed” state. Therefore, the flow path between the outlet side of the heat storage heat exchanger 8 and the outdoor unit A is shut off.

【0042】なお、暖房運転では、蓄熱器Dは機能せ
ず、室内熱交換器A,Bから出た冷媒は、蓄熱器D中の
切替弁13、蓄熱熱交換器8、蓄熱流量制御弁9を順次
通過して室外機Aに還流する。
In the heating operation, the heat storage device D does not function, and the refrigerant discharged from the indoor heat exchangers A and B is the switching valve 13, the heat storage heat exchanger 8, and the heat storage flow control valve 9 in the heat storage device D. And is returned to the outdoor unit A.

【0043】かかる機器にて構成される空気調和機は、
室外機に複数の室内機を並列に接続する、いわゆるマル
チ型の装置である。
An air conditioner composed of such equipment is
This is a so-called multi-type device in which a plurality of indoor units are connected in parallel to an outdoor unit.

【0044】次に本発明を特徴づける蓄冷運転の制御に
ついて説明する。本実施例の空気調和機は、蓄熱熱交換
器8における冷媒の蒸発圧力を検出する低圧圧力検出手
段21と、蓄熱槽10内における蓄熱媒体11の凝固
(氷結)によって生ずる水位変化を検出する水位検出手
段22を設けており、更にその水位検出手段22からの
検出信号により冷凍サイクル中の冷媒循環量を制御する
制御装置24と、圧縮機1を駆動するインバ−タ制御装
置25を具備する。
Next, the control of the cold storage operation, which characterizes the present invention, will be described. The air conditioner of the present embodiment includes a low pressure detecting means 21 for detecting the evaporation pressure of the refrigerant in the heat storage heat exchanger 8 and a water level for detecting a water level change caused by solidification (freezing) of the heat storage medium 11 in the heat storage tank 10. The detection means 22 is provided, and further comprises a control device 24 for controlling the refrigerant circulation amount in the refrigeration cycle by a detection signal from the water level detection means 22 and an inverter control device 25 for driving the compressor 1.

【0045】図1に示す構成において、蓄熱器Dに蓄え
られた冷熱を利用する冷房運転時に、圧縮機1から吐出
された高温高圧の冷媒は、四方切換弁2を介して室外熱
交換器3に送給され、凝縮されて冷媒液となる。冷媒液
は、蓄熱器Dに搬送されて、そこで、既に蓄冷運転によ
り蓄熱槽10中に氷として蓄熱された低温の蓄熱媒体1
1と、蓄熱熱交換器8を介して熱交換することにより過
冷却される。過冷却された冷媒液は、膨張弁として動作
する室内流量制御弁7で断熱膨張した後、室内側熱交換
器6で蒸発して室内空気を冷却し、それから圧縮機1に
戻される。したがって、蓄熱熱交換器8で過冷却された
分の冷房能力が増加するために冷凍サイクル内の冷媒循
環量を減少させることが可能となり、冷媒循環量の減少
により圧縮機1を駆動する動力が減少し、蓄熱器のない
空気調和器の冷房運転に比較し、圧縮機1の冷房運転時
における消費電力を少なくすることができる。
In the configuration shown in FIG. 1, the high-temperature and high-pressure refrigerant discharged from the compressor 1 during the cooling operation utilizing the cold heat stored in the heat storage device D passes through the four-way switching valve 2 and the outdoor heat exchanger 3 And is condensed into a refrigerant liquid. The refrigerant liquid is conveyed to the heat storage device D, where the low-temperature heat storage medium 1 that has already been stored as ice in the heat storage tank 10 by the cold storage operation is stored.
1 and the heat storage heat exchanger 8 to exchange heat with each other to supercool. The supercooled refrigerant liquid is adiabatically expanded by the indoor flow control valve 7 that operates as an expansion valve, then evaporated by the indoor heat exchanger 6 to cool the indoor air, and then returned to the compressor 1. Therefore, since the cooling capacity of the portion supercooled by the heat storage heat exchanger 8 increases, it becomes possible to reduce the refrigerant circulation amount in the refrigeration cycle, and the power for driving the compressor 1 is reduced by the reduction of the refrigerant circulation amount. It is possible to reduce the power consumption during the cooling operation of the compressor 1 as compared with the cooling operation of the air conditioner having no heat storage device.

【0046】次に、図2を用いて制御装置24A及びイ
ンバ−タ制御装置25の動作について説明する。蓄冷運
転時には、まず水位変化演算手段101は、一定時間毎
に水位検出手段22からの検出信号を受けて、その検出
信号から蓄熱媒体11の凝固により生ずる蓄熱槽10中
での水位変化を演算する。ところで、液状の蓄熱媒体1
1は氷になるとその体積を10%程度増すので、水位は
上昇する。次にその演算結果の水位変化により設定蓄熱
能力演算手段102は単位時間あたりの製氷量を演算
し、単位時間あたりの蓄熱量、即ち蓄熱能力を把握す
る。
Next, the operation of the controller 24A and the inverter controller 25 will be described with reference to FIG. During the cold storage operation, first, the water level change calculating means 101 receives a detection signal from the water level detecting means 22 at regular time intervals, and calculates the water level change in the heat storage tank 10 caused by the solidification of the heat storage medium 11 from the detection signal. . By the way, liquid heat storage medium 1
When No. 1 becomes ice, its volume increases by about 10%, so the water level rises. Next, the set heat storage capacity calculating means 102 calculates the amount of ice making per unit time based on the change in the water level of the calculation result, and grasps the heat storage amount per unit time, that is, the heat storage capacity.

【0047】一方、設定圧力演算手段105には、蓄熱
熱交換器8の容量や圧縮機1の容量ら冷媒蒸発圧力によ
り決定される蓄熱器Dの蓄熱能力について、冷媒蒸発圧
力と蓄熱能力との関係があらかじめ記憶されており、そ
の冷媒蒸発圧力と蓄熱能力との関係から、蓄冷運転時の
冷媒蒸発圧力の目標値PSsetを設定圧力演算手段105
が設定する。ここで、蓄熱能力と冷媒蒸発圧力との関係
を図4に示す。蓄熱器Dの蓄熱能力は、蓄熱熱交換器8
における冷媒蒸発圧力に逆比例し、冷媒圧力が低くなる
ほど、蓄熱能力は高くなる。
On the other hand, in the set pressure calculation means 105, regarding the heat storage capacity of the heat storage device D determined by the capacity of the heat storage heat exchanger 8 and the capacity of the compressor 1 by the refrigerant evaporation pressure, the refrigerant evaporation pressure and the heat storage capacity are calculated. The relationship is stored in advance, and the target value PSset of the refrigerant evaporation pressure during the cold storage operation is set based on the relationship between the refrigerant evaporation pressure and the heat storage capacity.
Set by. Here, the relationship between the heat storage capacity and the refrigerant evaporation pressure is shown in FIG. The heat storage capacity of the heat storage device D is the heat storage heat exchanger 8
Inversely proportional to the refrigerant vaporization pressure at, the lower the refrigerant pressure, the higher the heat storage capacity.

【0048】インバ−タ周波数演算手段107は圧力設
定値PSsetと低圧圧力検出手段21からの蒸発圧力検出
信号PSとにより、圧縮機1を駆動するインバ−タ周波数
を微分、積分、差分の項からみるPID制御演算式によ
り増減し、PSがPSsetに一致するように修正インバータ
周波数を演算し、インバ−タ周波数演算結果をインバ−
タ制御装置25に出力する。インバ−タ制御装置25は
圧縮機1をインバ−タ周波数演算結果によって運転す
る。
The inverter frequency calculation means 107 uses the pressure set value PSset and the evaporation pressure detection signal PS from the low pressure detection means 21 to determine the inverter frequency for driving the compressor 1 from the terms of differentiation, integration and difference. See the PID control calculation formula to increase / decrease, calculate the corrected inverter frequency so that PS matches PSset, and output the inverter frequency calculation result.
Output to the controller 25. The inverter control device 25 operates the compressor 1 according to the inverter frequency calculation result.

【0049】また圧縮機1は、運転周波数を変更するこ
とにより容量制御が可能なため、冷凍サイクル中の冷媒
循環量を変更し、蓄冷運転時に蓄熱媒体11への蓄熱量
を可変する機能を有している。一方、蓄熱熱交換器8に
おける冷媒の蒸発圧力と蓄熱能力との関係は、図4に示
すように、冷媒の蒸発圧力が低くなれば蓄熱能力が高く
なり、逆に蒸発圧力が高くなれば蓄熱能力が低くなる特
性を持ち、かつその関係は一義的に定まる。ちなみに、
周知のモリエル線図(図示なし)でわかるように、冷媒
の蒸発圧力が低くなると、冷媒温度が低くなるので、冷
媒の温度と蓄熱媒体11との温度差が大きくなり、冷媒
温度と蓄熱媒体11との温度差が大きくなり、蓄熱熱交
換器8は製氷する能力、即ち蓄熱能力を増加させる。
Since the compressor 1 can control the capacity by changing the operating frequency, it has a function of changing the amount of refrigerant circulation in the refrigeration cycle and varying the amount of heat stored in the heat storage medium 11 during the cold storage operation. is doing. On the other hand, as shown in FIG. 4, the relationship between the refrigerant evaporation pressure and the heat storage capacity in the heat storage heat exchanger 8 is such that when the refrigerant evaporation pressure is low, the heat storage capacity is high, and conversely, when the evaporation pressure is high, the heat storage capacity is high. It has the characteristic of lowering the ability, and its relationship is uniquely determined. By the way,
As can be seen from the well-known Mollier diagram (not shown), when the evaporation pressure of the refrigerant decreases, the refrigerant temperature decreases, so the temperature difference between the refrigerant temperature and the heat storage medium 11 increases, and the refrigerant temperature and the heat storage medium 11 increase. And the heat storage heat exchanger 8 increases the ability to make ice, that is, the heat storage capacity.

【0050】制御装置24Aは、一定時間毎に蒸発圧力
検出手段21から蒸発圧力検出信号PSを検出し、インバ
−タ周波数演算を行い、蒸発圧力検出信号PSが圧力設定
値PSsetに近ずくようにフィ−ドバック制御する機能を
有するので、蓄熱熱交換器8での冷媒の蒸発圧力PSを、
蓄熱媒体11の凝固し得る適当な圧力に制御し、確実な
蓄熱能力制御を行う事が可能となる。更に、制御装置2
4Aは水位検出手段22により検出する水位から蓄熱槽
10中に生成された製氷量、換言すれば蓄えられた蓄熱
量を監視する。
The controller 24A detects the evaporation pressure detection signal PS from the evaporation pressure detection means 21 at regular time intervals and calculates the inverter frequency so that the evaporation pressure detection signal PS approaches the pressure set value PSset. Since it has the function of feedback control, the evaporation pressure PS of the refrigerant in the heat storage heat exchanger 8 is
It is possible to control the heat storage medium 11 to an appropriate pressure at which the heat storage medium 11 can be solidified and to reliably control the heat storage capacity. Further, the control device 2
4A monitors the amount of ice making generated in the heat storage tank 10 from the water level detected by the water level detection means 22, in other words, the amount of stored heat.

【0051】また、かかる制御によれば、圧力設定値PS
setを、蓄熱媒体11が凝固温度以下になるような冷媒
の蒸発圧力に設定することにより、蓄熱熱交換器8にお
ける冷媒蒸発温度を蓄熱媒体11の凝固温度以下に制御
し、蓄冷運転時に生ずる熱エネルギ−を蓄熱媒体11の
潜熱により蓄熱することが可能となり、効率の良い蓄冷
運転を実現できる効果が期待できる。
Further, according to such control, the pressure set value PS
By setting set to the evaporation pressure of the refrigerant such that the heat storage medium 11 becomes equal to or lower than the solidification temperature, the refrigerant evaporation temperature in the heat storage heat exchanger 8 is controlled to be equal to or lower than the solidification temperature of the heat storage medium 11, and heat generated during the cold storage operation is controlled. Energy can be stored by the latent heat of the heat storage medium 11, and an effect that an efficient cold storage operation can be realized can be expected.

【0052】図6は、本発明の第2の実施例の空気調和
機における制御装置24Bの機能図である。この制御装
置24Bは、図2に示す制御装置24Aに蓄冷時間設定
手段110を付加し、ユ−ザが蓄冷時間設定手段110
により蓄冷運転時間を設定できるようにしたものであ
る。制御装置24Bは、また、蓄冷時間設定手段110
に順次つながる蓄熱能力設定手段106および蓄熱能力
比較手段104を設けている。
FIG. 6 is a functional diagram of the controller 24B in the air conditioner of the second embodiment of the present invention. This control device 24B has a cool storage time setting means 110 added to the control device 24A shown in FIG.
The cool storage operation time can be set by. The controller 24B also controls the cool storage time setting means 110.
A heat storage capacity setting means 106 and a heat storage capacity comparing means 104, which are sequentially connected to, are provided.

【0053】図7は蓄熱器における冷媒の蒸発圧力と圧
縮機の消費電力の関係、およびその冷媒の蒸発圧力と成
績係数の関係を示す。消費電力は蒸発圧力の上昇につれ
て下降し、そして成績係数は蒸発圧力の上昇につれて上
昇する特性を有している。一方、図4に示すように、蓄
熱能力は、冷媒の蒸発圧力が低下するにつれて上昇する
特性であり、蓄熱能力のみを重視すると消費電力が上昇
して経済的な運転に支障を来す一方、経済性のみを重視
すると蓄冷運転設定時間内に所定の蓄熱量が確保されな
いことが生ずる。従って蓄冷運転設定時間によって、成
績係数すなわち圧縮機の消費電力に対する蓄熱能力の比
率について考慮しておく必要がある。
FIG. 7 shows the relationship between the evaporation pressure of the refrigerant in the heat storage unit and the power consumption of the compressor, and the relationship between the evaporation pressure of the refrigerant and the coefficient of performance. The power consumption has a characteristic that it decreases as the evaporation pressure increases, and the coefficient of performance increases as the evaporation pressure increases. On the other hand, as shown in FIG. 4, the heat storage capacity is a characteristic that increases as the evaporation pressure of the refrigerant decreases, and if only the heat storage capacity is emphasized, power consumption increases and economic operation is hindered. If only economic efficiency is emphasized, a predetermined amount of heat storage may not be secured within the cool storage operation set time. Therefore, it is necessary to consider the coefficient of performance, that is, the ratio of the heat storage capacity to the power consumption of the compressor, depending on the set time for the cold storage operation.

【0054】そこで図8に示す設定蓄熱能力と圧力設定
値PSsetの関係に従うように、蓄冷運転が制御される。
蓄熱能力設定手段106は、蓄熱時間設定手段110に
より設定された蓄熱設定時間により、設定蓄熱能力を算
出する。設定圧力演算手段105はその設定蓄熱能力か
ら図8に示すように圧力設定値 PSsetを演算し、設定す
る。即ち、設定圧力演算手段105は、設定蓄熱能力が
高い程、圧力設定値 PSsetを低く設定し、逆に設定蓄熱
能力が低い程、圧力設定値 PSsetを高く設定する。
Therefore, the cold storage operation is controlled so as to follow the relationship between the preset heat storage capacity and the pressure set value PSset shown in FIG.
The heat storage capacity setting means 106 calculates the set heat storage capacity based on the heat storage setting time set by the heat storage time setting means 110. The set pressure calculation means 105 calculates and sets the pressure set value PSset from the set heat storage capacity as shown in FIG. That is, the set pressure calculation means 105 sets the pressure set value PSset lower as the set heat storage capacity is higher, and conversely sets the pressure set value PSset higher as the set heat storage capacity is lower.

【0055】図6に示す制御装置24Bの機能を説明す
る。蓄冷時間設定手段110によって設定された蓄冷時
間によって、蓄熱能力設定手段106は単位時間当りの
目標とする蓄熱能力の値を設定する。蓄冷運転開始時
は、蓄熱能力設定手段106は目標とする設定蓄熱能力
値を設定圧力演算手段105に伝送し、設定圧力演算手
段105はその設定蓄熱能力により蓄熱熱交換器8にお
ける冷媒の蒸発圧力の目標値を演算し、演算結果を圧力
設定値PSsetとする。インバ−タ周波数演算手段107
は、圧力設定値PSsetと低圧圧力検出手段21により検
出された冷媒の蒸発圧力PSとから、圧縮機1を駆動する
インバ−タ周波数を増減し、PSがPSsetに一致するよう
に修正インバ−タ周波数を演算し、そのインバ−タ周波
数をインバ−タ制御装置25に出力する。インバ−タ制
御装置25はそのインバ−タ周波数によって圧縮機1を
運転する。また制御装置24Bは、一定時間毎に蒸発圧
力検出手段21からの蒸発圧力検出信号PSを検出し、イ
ンバ−タ周波数演算を行い、蒸発圧力を圧力設定値PSse
tに近ずける。
The function of the controller 24B shown in FIG. 6 will be described. According to the cold storage time set by the cold storage time setting means 110, the heat storage capacity setting means 106 sets a value of a target heat storage capacity per unit time. At the start of the cold storage operation, the heat storage capacity setting means 106 transmits the target set heat storage capacity value to the set pressure calculation means 105, and the set pressure calculation means 105 uses the set heat storage capacity to evaporate the refrigerant pressure in the heat storage heat exchanger 8. The target value of is calculated and the calculation result is used as the pressure set value PSset. Inverter frequency calculation means 107
Is based on the pressure set value PSset and the evaporation pressure PS of the refrigerant detected by the low pressure detecting means 21, the inverter frequency for driving the compressor 1 is increased or decreased, and the inverter is corrected so that PS matches PSset. The frequency is calculated and the inverter frequency is output to the inverter control device 25. The inverter control device 25 operates the compressor 1 at the inverter frequency. Further, the control device 24B detects the evaporation pressure detection signal PS from the evaporation pressure detecting means 21 at regular intervals, calculates the inverter frequency, and sets the evaporation pressure to the pressure set value PSse.
approach t.

【0056】更に水位変化演算手段101は、蓄冷運転
中一定時間毎に、水位検出手段22からの信号により蓄
熱槽10中に生ずる水位変化を演算し、その演算結果に
より蓄熱能力演算手段102は蓄熱能力を把握する。蓄
熱能力比較手段104は、蓄冷時間を基に設定された設
定蓄熱能力と、水位変化を基に演算された蓄熱能力とを
比較することにより、目標とする設定蓄熱能力が確保さ
れているかを把握し、設定蓄熱能力と蓄熱能力の演算結
果が不一致の場合は、積分項、微分項、差分項からみる
PID制御により設定蓄熱能力を増減し、新たな設定蓄
熱能力を設定し、設定圧力演算手段105に出力する。
設定圧力演算手段105はその設定蓄熱能力により、図
8に示す関係を用いて蓄熱熱交換器8における冷媒の蒸
発圧力の目標値を演算し、圧力設定値PSsetを変更す
る。
Further, the water level change calculating means 101 calculates a water level change occurring in the heat storage tank 10 by a signal from the water level detecting means 22 at constant time intervals during the cold storage operation, and the heat storage capacity calculating means 102 calculates heat storage by the calculation result. Understand your ability. The heat storage capacity comparing unit 104 compares the set heat storage capacity set based on the cold storage time with the heat storage capacity calculated based on the water level change, thereby recognizing whether the target set heat storage capacity is secured. If the set heat storage capacity and the calculation result of the heat storage capacity do not match, the set heat storage capacity is increased / decreased by the PID control based on the integral term, the differential term, and the difference term to set a new set heat storage capacity, and the set pressure calculating means is set. Output to 105.
Based on the set heat storage capacity, the set pressure calculation means 105 calculates the target value of the evaporation pressure of the refrigerant in the heat storage heat exchanger 8 using the relationship shown in FIG. 8, and changes the pressure set value PSset.

【0057】本実施例の空調装置の蓄冷運転は、当初に
設定した圧力設定値PSsetにより一定の冷媒蒸発圧力に
て開始される。その後、一定時間毎に水位検出手段22
からの信号により蓄熱能力を監視し、蓄熱能力に過不足
を生じた場合は、設定蓄熱能力が確保されるように蓄熱
能力を可変するフィ−ドバック制御により蓄冷運転が行
われる。従ってユ−ザが設定した蓄冷時間内に確実に蓄
冷運転を完了することが可能となる。また本発明の空気
調和機は、本来は夜間の安価な電力を使用し蓄冷を行う
空気調和機であるが、冷房運転の妨げにならない配慮を
すれば夜間に限らずユ−ザの希望する時間帯で蓄冷運転
を行ってもよいことは勿論である。
The cold storage operation of the air conditioner of this embodiment is started at a constant refrigerant evaporation pressure with the initially set pressure set value PSset. After that, the water level detecting means 22 is set at regular intervals.
The heat storage capacity is monitored by a signal from the cold storage operation, and when the heat storage capacity is excessive or insufficient, the cold storage operation is performed by the feedback control for varying the heat storage capacity so as to secure the set heat storage capacity. Therefore, the cold storage operation can be surely completed within the cool storage time set by the user. Further, the air conditioner of the present invention is originally an air conditioner that stores cold by using inexpensive electric power at night, but if consideration is given so as not to hinder the cooling operation, it is not limited to night time and the time desired by the user. Of course, the cool storage operation may be performed in the belt.

【0058】さらに、蓄冷能力設定手段106がユーザ
により設定された蓄冷運転時間を基に設定蓄熱能力を設
定し、その設定蓄熱能力に対して設定圧力演算手段10
5が圧力設定値PSsetを定めるが、冷媒の蒸発圧力と成
績係数の関係を考慮して圧力設定値PSsetを決定してい
るため、蓄冷運転中の圧力設定値PSsetを最適化し、消
費電力を軽減することが期待できる。
Further, the cool storage capacity setting means 106 sets a set heat storage capacity on the basis of the cool storage operating time set by the user, and the set pressure calculating means 10 with respect to the set heat storage capacity.
5 determines the pressure set value PSset, but since the pressure set value PSset is determined in consideration of the relationship between the evaporating pressure of the refrigerant and the coefficient of performance, the pressure set value PSset during cold storage operation is optimized to reduce power consumption. Can be expected to do.

【0059】次に本発明の第3の実施例の空気調和機に
ついて説明する。この実施例の空気調和機は、前述した
第の2実施例における制御装置24Bに蓄冷運転開始時
の蒸発圧力を設定する方法について案出したものであ
る。蓄冷運転開始時は蓄熱媒体11の温度が蓄熱媒体1
1の凝固温度より高く、蓄熱媒体11が凝固し始めるま
で水位変化が発生しない。従って水位変化演算手段10
1は水位変化無しと演算し、蓄熱能力を演算する制御装
置24は蓄熱能力量無しと演算する状態にある。そこで
本実施例の制御装置は、前述の制御装置24Bに加え
て、水位変化無しの間は圧力設定値PSsetを蓄冷運転に
支障の無い範囲で最小と定め、冷媒循環量を最大として
蓄熱媒体11を早急に凝固させ、水位変化が生じて蓄熱
能力を演算できるように制御する機能を設ける。その制
御機能により目標蓄熱量を蓄熱するための補完を行い、
安定した蓄熱能力を確保する。
Next, an air conditioner according to a third embodiment of the present invention will be described. The air conditioner of this embodiment has devised a method for setting the evaporation pressure at the start of the cold storage operation in the control device 24B in the second embodiment described above. When the cold storage operation starts, the temperature of the heat storage medium 11 is 1
It is higher than the solidification temperature of 1, and the water level does not change until the heat storage medium 11 starts to solidify. Therefore, the water level change calculation means 10
1 indicates that there is no change in the water level, and the control device 24 that calculates the heat storage capacity is in the state of calculating that there is no heat storage capacity. Therefore, in addition to the above-described control device 24B, the control device of the present embodiment sets the pressure set value PSset to the minimum while there is no hindrance to the cold storage operation while the water level does not change, and sets the refrigerant circulation amount to the maximum to set the heat storage medium 11 A function is provided to control the heat storage capacity so that it can be solidified immediately and the water level changes and the heat storage capacity can be calculated. With its control function, it complements to store the target amount of heat,
Secure a stable heat storage capacity.

【0060】図9は本発明の第4実施例の空気調和機に
おける制御装置24Cの機能を示す。この制御装置24
Cは、図6に示す制御装置24Bの機能に加えて、室外
機Aと蓄熱器Dとを接続する配管14の長さを設定する
配管長さ設定手段26と、その配管長さにおける圧力損
失を演算する蒸発圧力演算手段108とを設けたもので
ある。空気調和機を設備する建物あるいは場所が変わる
と、室外機A、蓄熱器Dを設置する位置が変わる。従っ
て、それら機器の相互間距離は一定せず、空気調和機を
据え付ける現地の状況で接続配管14の長さは異なる。
蓄熱器Dの蓄熱熱交換器8から出た冷媒は、配管14の
経路中で流れによる圧力損失を生じるため、蒸発圧力検
出手段21を蓄熱熱交換器8出口から圧縮機1入り口に
至る配管系統のどの位置に設置するかにより、蒸発圧力
検出手段21によって検出する冷媒蒸発圧力と蓄熱熱熱
交換器8における冷媒蒸発圧力との間に相違が生じる。
低圧圧力検出手段21は冷房または暖房運転時に冷凍サ
イクル制御に使用するため、通常、室外機ユニットA内
の圧縮機1の近傍に設置される。
FIG. 9 shows the function of the controller 24C in the air conditioner of the fourth embodiment of the present invention. This controller 24
In addition to the function of the control device 24B shown in FIG. 6, C is a pipe length setting means 26 that sets the length of the pipe 14 that connects the outdoor unit A and the heat storage device D, and a pressure loss in the pipe length. And an evaporation pressure calculating means 108 for calculating When the building or place where the air conditioner is installed changes, the positions where the outdoor unit A and the heat storage device D are installed also change. Therefore, the mutual distance between these devices is not constant, and the length of the connection pipe 14 differs depending on the local situation where the air conditioner is installed.
Since the refrigerant discharged from the heat storage heat exchanger 8 of the heat storage device D causes a pressure loss due to the flow in the path of the pipe 14, the evaporative pressure detection means 21 is connected to the heat storage heat exchanger 8 outlet to the compressor 1 inlet piping system. A difference occurs between the refrigerant evaporation pressure detected by the evaporation pressure detecting means 21 and the refrigerant evaporation pressure in the heat storage heat exchanger 8 depending on which position of the refrigerant is installed.
Since the low pressure detection means 21 is used for refrigeration cycle control during cooling or heating operation, it is usually installed near the compressor 1 in the outdoor unit A.

【0061】低圧圧力検出手段21を蓄熱熱交換器8出
口に設置する場合は、圧縮機1の近傍に設置されるもの
の他に低圧圧力検出手段21がもう一つ必要となり、コ
ストアップの問題が発生する。このような不具合の改善
するために、圧縮機1近傍に設けた蒸発圧力検出手段2
1による検出値に対し圧力損失補正を行い、蓄熱熱交換
器8における冷媒蒸発圧力を求める補完機能を制御装置
24Cに設ける。
When the low pressure detecting means 21 is installed at the outlet of the heat storage heat exchanger 8, another low pressure detecting means 21 is required in addition to the one installed near the compressor 1, which causes a problem of cost increase. Occur. In order to improve such a problem, the evaporation pressure detecting means 2 provided near the compressor 1
The controller 24C is provided with a complementary function of performing pressure loss correction on the detected value of 1 and obtaining the refrigerant evaporation pressure in the heat storage heat exchanger 8.

【0062】図9における制御装置24Cの機能を説明
する。蒸発圧力演算手段108は、配管長さ設定手段2
6により設定された接続配管14の配管長さから、その
配管長さにおける冷媒の圧力損失を演算し、その圧力損
失分だけ四方弁2からアキュムレーター5の間の配管経
路に取り付けた低圧圧力検出手段21の検知圧力値を補
正する。この補正によって、蓄熱熱交換器8における冷
媒の蒸発圧力が演算される。その補正された冷媒蒸発圧
力と圧力設定値PSsetとの比較によりインバ−タ周波数
演算手段107は圧縮機1を駆動するインバ−タ周波数
を演算し、インバ−タ周波数演算結果をインバ−タ制御
装置25に出力する。
The function of the control device 24C in FIG. 9 will be described. The evaporation pressure calculation means 108 is the pipe length setting means 2
From the pipe length of the connection pipe 14 set by 6, the pressure loss of the refrigerant in the pipe length is calculated, and the low pressure detection which is attached to the pipe path between the four-way valve 2 and the accumulator 5 by the pressure loss is calculated. The pressure value detected by the means 21 is corrected. By this correction, the evaporation pressure of the refrigerant in the heat storage heat exchanger 8 is calculated. The inverter frequency calculation means 107 calculates the inverter frequency for driving the compressor 1 by comparing the corrected refrigerant evaporation pressure with the pressure set value PSset, and the inverter frequency calculation result is used as the inverter control device. Output to 25.

【0063】従ってユ−ザが設定する配管長さ設定手段
26を設けることにより、据付け現地状況で異なる接続
配管14長さによる圧力損失値を考慮し、室外機Aに蒸
発圧力検出手段21を設置しても蓄熱熱交換器8での冷
媒蒸発圧力を検知することが可能となり、コストアップ
を防止できる。
Therefore, by providing the pipe length setting means 26 set by the user, the evaporation pressure detecting means 21 is installed in the outdoor unit A in consideration of the pressure loss value due to the length of the connecting pipe 14 which differs depending on the installation site situation. Even in this case, the refrigerant evaporation pressure in the heat storage heat exchanger 8 can be detected, and the cost increase can be prevented.

【0064】[0064]

【発明の効果】本発明によれば、夜間の蓄冷運転で冷熱
を蓄え、そして昼間の冷房運転時に蓄えた冷熱を利用す
ることにより消費電力を抑えることができる蓄熱器を有
した空気調和機において、蓄冷運転時の冷凍サイクル制
御機能を冷媒の蒸発圧力を制御することにより、蓄熱媒
体を凝固し、確実な蓄熱能力の制御を行うことができ、
運転時の時間の設定等の制約条件に拘らず目標とする蓄
熱量に確実に蓄熱し且つ省電力を図ることができ、信頼
性、使い勝手に優れた空気調和機を提供できる。
According to the present invention, in an air conditioner having a regenerator capable of storing cold heat in a cold storage operation at night and using the cold heat stored in a cooling operation in the daytime to reduce power consumption. By controlling the refrigeration cycle control function during the cold storage operation to control the evaporation pressure of the refrigerant, the heat storage medium can be solidified and the heat storage capacity can be reliably controlled.
It is possible to reliably store heat to a target heat storage amount and save power regardless of constraints such as the setting of time during operation, and to provide an air conditioner excellent in reliability and usability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一実施例の空気調和機の全体構成
図である。
FIG. 1 is an overall configuration diagram of an air conditioner of an embodiment according to the present invention.

【図2】本発明による一実施例の空気調和機の制御機能
図である。
FIG. 2 is a control function diagram of the air conditioner of one embodiment according to the present invention.

【図3】本発明による一実施例の制御方法を示すダイア
グラムである。
FIG. 3 is a diagram showing a control method according to an embodiment of the present invention.

【図4】蓄熱器における冷媒蒸発圧力と冷熱の蓄熱能力
との相関を示す特性図である。
FIG. 4 is a characteristic diagram showing a correlation between a refrigerant evaporation pressure and a heat storage capacity of cold heat in a heat storage device.

【図5】圧縮機を制御するインバータ周波数と蓄熱器の
蓄熱能力とを冷媒蒸発圧力に対応して示す特性図であ
る。
FIG. 5 is a characteristic diagram showing the inverter frequency for controlling the compressor and the heat storage capacity of the heat storage device in correspondence with the refrigerant evaporation pressure.

【図6】本発明による第2実施例の空気調和機の制御機
能図である。
FIG. 6 is a control function diagram of the air conditioner of the second embodiment according to the present invention.

【図7】蓄冷運転時における冷媒蒸発圧力と圧縮機の消
費電力及び成績係数の相関を示す特性図である。
FIG. 7 is a characteristic diagram showing the correlation between the refrigerant evaporation pressure, the power consumption of the compressor, and the coefficient of performance during the cold storage operation.

【図8】蓄熱器における設定蓄熱能力と冷媒蒸発圧力設
定値 PSsetとの相関を示す特性図である。
FIG. 8 is a characteristic diagram showing a correlation between a set heat storage capacity in the heat storage unit and a refrigerant evaporation pressure set value PSset.

【図9】本発明による第4実施例の空気調和機の制御機
能図である。
FIG. 9 is a control function diagram of the air conditioner of the fourth embodiment according to the present invention.

【図10】従来の蓄熱器付き空気調和機の制御方法を示
すダイアグラムである。
FIG. 10 is a diagram showing a control method of a conventional air conditioner with a heat storage device.

【符号の説明】[Explanation of symbols]

A 室外機 B,C 室内機 D 蓄熱器 1 圧縮機 2 四方弁 3 室外熱交換器 4 室外流量制御弁 5 アキュムレーター 6 室内熱交換器 7 室内流量制御弁 8 蓄熱熱交換器 9 蓄熱流量制御弁 10 蓄熱槽 11 蓄熱媒体 12,13 切替弁 14a 液管 14b ガス管 21 低圧圧力検出手段 22 水位検出手段 23 運転設定装置 24A,B,C 制御装置 25 インバ−タ制御装置 26 配管長さ設定手段 101 水位変化演算手段 102 蓄熱能力演算手段 104 蓄熱能力比較手段 105 設定圧力演算手段 106 蓄熱能力設定手段 107 インバータ周波数演算手段 108 蒸発圧力演算手段 110 蓄冷時間設定手段 A outdoor unit B, C indoor unit D heat storage device 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 outdoor flow control valve 5 accumulator 6 indoor heat exchanger 7 indoor flow control valve 8 heat storage heat exchanger 9 heat storage flow control valve 10 heat storage tank 11 heat storage medium 12, 13 switching valve 14a liquid pipe 14b gas pipe 21 low pressure detection means 22 water level detection means 23 operation setting device 24A, B, C control device 25 inverter control device 26 pipe length setting means 101 Water level change calculation means 102 Heat storage capacity calculation means 104 Heat storage capacity comparison means 105 Set pressure calculation means 106 Heat storage capacity setting means 107 Inverter frequency calculation means 108 Evaporation pressure calculation means 110 Cool storage time setting means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 誠 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 安田 引 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Ito 390 Muramatsu, Shimizu, Shizuoka Prefecture, Shimizu Plant, Hitachi, Ltd. In-house

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 インバータ制御されて高温高圧の冷媒を
吐出する圧縮機と、該吐出された高温高圧の冷媒を冷却
して冷媒液に凝縮する室外熱交換器とを有する室外機
と、 該冷媒液を減圧し膨張させる流量制御弁と、該膨張した
冷媒を蒸発させる蓄熱熱交換器と、該蓄熱熱交換器を液
状の蓄熱媒体に入れて収納し該蓄熱熱交換器で蒸発する
冷媒と熱交換して氷結する蓄熱媒体を冷熱として蓄える
蓄熱槽とを有する蓄熱器と、 前記室外熱交換器から送り出され、前記蓄熱熱交換器で
冷熱により過冷却された冷媒液を膨張させる室内流量制
御弁と、該膨張した冷媒と熱交換して冷気を室内に供給
する室内熱交換器とを有する室内機とを備え、前記蓄熱
器に冷熱を蓄える蓄冷運転を夜間に行う空気調和機にお
いて、 前記蓄冷運転の予定時間と前記蓄熱器の蓄熱容量とから
算定された蓄熱能力に対して、前記蓄熱熱交換器中の冷
媒蒸発圧力と蓄熱能力との関係から、冷媒蒸発圧力を演
算し、該演算された冷媒蒸発圧力に前記蓄熱熱交換器中
の冷媒蒸発圧力との差を求め、該差に応じて前記圧縮機
を回転制御するインバータ周波数を修正し、演算された
冷媒蒸発圧力に前記蓄熱熱交換器中の冷媒蒸発圧力が一
致するようにフィードバック制御を行うことを特徴とす
る空気調和機。
1. An outdoor unit having an inverter-controlled compressor for discharging a high-temperature and high-pressure refrigerant, and an outdoor heat exchanger for cooling the discharged high-temperature and high-pressure refrigerant and condensing the refrigerant liquid. A flow rate control valve that decompresses and expands the liquid, a heat storage heat exchanger that evaporates the expanded refrigerant, a heat storage heat exchanger that stores the heat storage heat exchanger in a liquid heat storage medium, and a refrigerant and heat that evaporate in the heat storage heat exchanger. An indoor flow rate control valve for expanding a refrigerant liquid sent from the outdoor heat exchanger and supercooled by cold heat in the heat storage heat exchanger, the heat storage having a heat storage tank that stores a heat storage medium that is exchanged and freezes as cold heat And an indoor unit having an indoor heat exchanger that supplies cold air to the room by exchanging heat with the expanded refrigerant, in an air conditioner performing a cold storage operation for storing cold heat in the heat storage device at night, Scheduled operating time and heat storage For the heat storage capacity calculated from the heat storage capacity of the vessel, the refrigerant evaporating pressure is calculated from the relationship between the refrigerant evaporating pressure and the heat storing capacity in the heat storage heat exchanger, and the heat accumulating is calculated as the calculated refrigerant evaporating pressure. Obtain the difference with the refrigerant evaporation pressure in the heat exchanger, correct the inverter frequency to control the rotation of the compressor according to the difference, the refrigerant evaporation pressure in the heat storage heat exchanger to the calculated refrigerant evaporation pressure. An air conditioner characterized by performing feedback control so that they match.
【請求項2】 インバータ制御されて高温高圧の冷媒を
吐出する圧縮機と、該吐出された高温高圧の冷媒を冷却
して冷媒液に凝縮する室外熱交換器とを有する室外機
と、 該冷媒液を減圧し膨張させる流量制御弁と、該膨張した
冷媒を蒸発させる蓄熱熱交換器と、該蓄熱熱交換器を液
状の蓄熱媒体に入れて収納し該蓄熱熱交換器で蒸発する
冷媒と熱交換して氷結する蓄熱媒体を冷熱として蓄える
蓄熱槽とを有する蓄熱器と、 前記室外熱交換器から送り出され、前記蓄熱熱交換器で
冷熱により過冷却された冷媒液を膨張させる室内流量制
御弁と、該膨張した冷媒と熱交換して冷気を室内に供給
する室内熱交換器とを有する室内機と、を備えた空気調
和機において、 前記蓄熱器に冷熱を蓄える蓄冷運転
の予定時間と前記蓄熱器の蓄熱容量とから算定された蓄
熱能力に対応して、前記蓄熱熱交換器中の冷媒蒸発圧力
と蓄熱能力との相関を示す式により、冷媒蒸発圧力を演
算し該冷媒蒸発圧力を目標値として設定する設定圧力演
算手段と、 該設定された冷媒蒸発圧力の目標値に対応して、インバ
ータ周波数と冷媒蒸発圧力との相関を示す式から、イン
バータ周波数を演算するインバータ周波数演算手段と、 該演算されたインバータ周波数により前記圧縮機を制御
するインバータ制御装置と、 蓄冷運転時に前記蓄熱熱交換器内の冷媒蒸発圧力を検出
する低圧圧力検出手段と、 前記蓄熱槽中の蓄熱媒体の氷結により変化する水位を検
出する水位検出手段と、 該水位検出器の検出値から単位時間あたりの水位変化を
求め、氷の生成速度即ち蓄熱能力に換算する蓄熱能力演
算手段と、を有し、 かつ前記インバータ周波数演算手段は、前記低圧圧力検
出手段により検出される冷媒蒸気圧力が前記設定圧力演
算手段により設定された冷媒蒸発圧力の目標値に一致す
るようにインバータ周波数を修正する機能を備えている
ことを特徴とする空気調和機。
2. An outdoor unit having an inverter-controlled compressor that discharges a high-temperature high-pressure refrigerant, and an outdoor heat exchanger that cools the discharged high-temperature high-pressure refrigerant and condenses it into a refrigerant liquid; A flow rate control valve that decompresses and expands the liquid, a heat storage heat exchanger that evaporates the expanded refrigerant, a heat storage heat exchanger that stores the heat storage heat exchanger in a liquid heat storage medium, and a refrigerant and heat that evaporate in the heat storage heat exchanger. An indoor flow rate control valve for expanding a refrigerant liquid sent from the outdoor heat exchanger and supercooled by cold heat in the heat storage heat exchanger, the heat storage having a heat storage tank that stores a heat storage medium that is exchanged and freezes as cold heat In an air conditioner having an indoor unit having an indoor heat exchanger that exchanges heat with the expanded refrigerant to supply cold air to the room, the scheduled time of cold storage operation for storing cold heat in the heat storage device, and Calculated from the heat storage capacity of the heat storage unit Corresponding to the stored heat storage capacity, a set pressure calculation means for calculating the refrigerant evaporation pressure and setting the refrigerant evaporation pressure as a target value by an equation showing the correlation between the refrigerant evaporation pressure in the heat storage heat exchanger and the heat storage capacity. And an inverter frequency calculating means for calculating the inverter frequency from an equation showing the correlation between the inverter frequency and the refrigerant evaporation pressure, corresponding to the set target value of the refrigerant evaporation pressure, and the inverter frequency calculating means for calculating the inverter frequency by the calculated inverter frequency. An inverter control device for controlling the compressor, a low pressure detection means for detecting the refrigerant evaporation pressure in the heat storage heat exchanger during cold storage operation, and a water level detection for detecting a water level that changes due to freezing of the heat storage medium in the heat storage tank. Means, and a heat storage capacity calculation means for obtaining a water level change per unit time from the detected value of the water level detector and converting it to an ice generation rate, that is, a heat storage capacity, and The inverter frequency calculation means has a function of correcting the inverter frequency so that the refrigerant vapor pressure detected by the low pressure detection means matches the target value of the refrigerant evaporation pressure set by the set pressure calculation means. An air conditioner characterized by that.
【請求項3】 請求項2記載の空気調和機に加えて、 前記蓄冷運転の予定時間を設定するための蓄冷時間設定
手段と、 該設定された蓄冷運転の予定時間と前記蓄熱器の蓄熱容
量とから蓄冷能力を演算する蓄熱能力演算手段とを設
け、該演算された蓄熱能力は前記設定圧力演算手段に出
力されることを特徴とする空気調和機。
3. In addition to the air conditioner according to claim 2, a cold storage time setting means for setting a scheduled time of the cold storage operation, the set scheduled time of the cold storage operation, and a heat storage capacity of the heat accumulator. An air conditioner comprising: a heat storage capacity calculating means for calculating a cold storage capacity from the above, and the calculated heat storage capacity is output to the set pressure calculating means.
【請求項4】 請求項2記載の空気調和機に加えて、 前記水位検出手段の検出値が水位変化の無い状態を示す
蓄冷運転開始から、水位変化を示すまでの間は、前記蓄
熱熱交換器中の冷媒蒸発圧力と蓄熱能力との相関を示す
式で最大蓄熱能力に対応する冷媒蒸発圧力を前記設定圧
力演算手段に出力する蓄熱運転開始手段と、 前記水位検出手段が水位変化ありを検出した時に前記蓄
冷運転予定時間と前記蓄熱器の蓄熱容量とから算定され
た蓄熱能力に対応する冷媒蒸発圧力の目標値に切り替え
る切替手段と、を設けたことを特徴とする空気調和機。
4. In addition to the air conditioner according to claim 2, the heat storage heat exchange is performed from the start of the cold storage operation in which the detection value of the water level detection means indicates a state in which there is no change in the water level until the change in the water level is indicated. A heat storage operation starting means for outputting the refrigerant evaporation pressure corresponding to the maximum heat storage capacity to the set pressure calculation means by an expression showing the correlation between the refrigerant evaporation pressure in the container and the heat storage capacity, and the water level detection means detects a water level change An air conditioner provided with a switching means for switching to a target value of the refrigerant evaporation pressure corresponding to the heat storage capacity calculated from the scheduled cool storage operation time and the heat storage capacity of the heat storage device.
【請求項5】 請求項2記載の空気調和機において、前
記低圧圧力検出手段を前記室外機内に設置し、該低圧圧
力検出手段から前記蓄熱熱交換器と接続する配管長を設
定する配管長設定手段を設け、前記インバータ周波数演
算手段は、前記低圧圧力検出手段の検出値を、前記配管
長設定手段により設定された配管長に対応する圧力損失
だけ補正して、前記蓄熱熱交換器の冷媒蒸発圧力に換算
する機能を有すること特徴とする空気調和機。
5. The air conditioner according to claim 2, wherein the low pressure detecting means is installed in the outdoor unit, and a pipe length setting for setting a pipe length connected to the heat storage heat exchanger from the low pressure detecting means. Means is provided, and the inverter frequency calculation means corrects the detection value of the low pressure detection means by the pressure loss corresponding to the pipe length set by the pipe length setting means, and the refrigerant evaporation of the heat storage heat exchanger. An air conditioner characterized by having a function of converting to pressure.
【請求項6】 インバータ制御されて高温高圧の冷媒を
吐出する圧縮機と、該吐出された高温高圧の冷媒を冷却
して冷媒液に凝縮する室外熱交換器とを有する室外機
と、 該冷媒液を減圧し膨張させる流量制御弁と、該膨張した
冷媒を蒸発させる蓄熱熱交換器と、該蓄熱熱交換器を液
状の蓄熱媒体に入れて収納し該蓄熱熱交換器で蒸発する
冷媒と熱交換して氷結する蓄熱媒体を冷熱として蓄える
蓄熱槽とを有する蓄熱器と、 前記室外熱交換器から送り出され、前記蓄熱熱交換器で
冷熱により過冷却された冷媒液を膨張させる室内流量制
御弁と、該膨張した冷媒と熱交換して冷気を室内に供給
する室内熱交換器とを有する室内機と、を備えた空気調
和機において、 前記蓄熱器に冷熱を蓄える蓄冷運転
の予定時間を設定するための蓄冷時間設定手段と、 該設定された蓄冷運転の予定時間と前記蓄熱器の蓄熱容
量とから蓄冷能力を演算する蓄熱能力演算手段と、 該蓄熱能力演算手段により演算された蓄熱能力に対応し
て、前記蓄熱熱交換器中の冷媒蒸発圧力と蓄熱能力との
相関を示す式により、冷媒蒸発圧力を演算し、該演算さ
れたその冷媒蒸発圧力を目標値として設定する設定圧力
演算手段と、 該設定された冷媒蒸発圧力の目標値に対応して、インバ
ータ周波数と冷媒蒸発圧力との相関を示す式から、イン
バータ周波数を演算するインバータ周波数演算手段と、 該演算されたインバータ周波数により前記圧縮機を制御
するインバータ制御装置と、 蓄冷運転時に前記蓄熱熱交換器内の冷媒蒸発圧力を検出
する低圧圧力検出手段と、 前記蓄熱槽中の蓄熱媒体の氷結により変化する水位を検
出する水位検出手段と、 一定時間毎に前記水位検出器の検出値から単位時間あた
りの水位変化を求め、氷の生成速度即ち蓄熱能力に換算
する蓄熱能力演算手段と、 該蓄熱能力演算手段により求められた蓄熱能力の実績値
と蓄熱能力設定手段により演算された蓄熱能力の設定値
との差を演算する蓄熱能力比較手段と、を有し、 かつ前記設定圧力演算手段は、前記蓄熱能力の実績値が
前記蓄熱能力の設定値に近づくように、前記蓄熱熱交換
器中の冷媒蒸発圧力と蓄熱能力との相関を示す式によ
り、冷媒蒸発圧力を修正する機能を備え、 かつ前記インバータ周波数演算手段は、前記低圧圧力検
出手段により検出される冷媒蒸気圧力が前記設定圧力演
算手段により設定された冷媒蒸発圧力の目標値に一致す
るようにインバータ周波数を変更する機能を備えている
ことを特徴とする空気調和機。
6. An outdoor unit having an inverter-controlled compressor that discharges a high-temperature high-pressure refrigerant, and an outdoor heat exchanger that cools the discharged high-temperature high-pressure refrigerant and condenses it into a refrigerant liquid; A flow rate control valve that decompresses and expands the liquid, a heat storage heat exchanger that evaporates the expanded refrigerant, a heat storage heat exchanger that stores the heat storage heat exchanger in a liquid heat storage medium, and a refrigerant and heat that evaporate in the heat storage heat exchanger. An indoor flow rate control valve for expanding a refrigerant liquid sent from the outdoor heat exchanger and supercooled by cold heat in the heat storage heat exchanger, the heat storage having a heat storage tank that stores a heat storage medium that is exchanged and freezes as cold heat And an indoor unit having an indoor unit having an indoor heat exchanger that exchanges heat with the expanded refrigerant to supply cold air to the room, and sets a scheduled time of a cold storage operation for storing cold heat in the heat storage unit. Cooling time setting means for A heat storage capacity calculating means for calculating a cool storage capacity from the set scheduled storage time of the cool storage operation and the heat storage capacity of the heat accumulator; and the heat storage capacity corresponding to the heat storage capacity calculated by the heat storage capacity calculating means. Set pressure calculation means for calculating the refrigerant evaporation pressure by an equation showing the correlation between the refrigerant evaporation pressure in the exchanger and the heat storage capacity, and setting the calculated refrigerant evaporation pressure as a target value, and the set refrigerant Inverter frequency calculation means for calculating the inverter frequency from an equation showing the correlation between the inverter frequency and the refrigerant evaporation pressure corresponding to the target value of the evaporation pressure, and inverter control for controlling the compressor by the calculated inverter frequency. An apparatus, a low pressure detecting means for detecting the refrigerant evaporation pressure in the heat storage heat exchanger during cold storage operation, and a water level which changes due to freezing of the heat storage medium in the heat storage tank. Water level detection means for calculating the water level change per unit time from the detection value of the water level detector at fixed time intervals, and a heat storage capacity calculation means for converting into ice generation rate, that is, heat storage capacity, and the heat storage capacity calculation means. The heat storage capacity comparison means for calculating the difference between the actual value of the stored heat storage capacity and the set value of the heat storage capacity calculated by the heat storage capacity setting means, and the set pressure calculation means is the result of the heat storage capacity. The inverter frequency calculating means has a function of correcting the refrigerant evaporation pressure by an equation showing the correlation between the refrigerant evaporation pressure in the heat storage heat exchanger and the heat storage capacity so that the value approaches the set value of the heat storage capacity. Is a function of changing the inverter frequency so that the refrigerant vapor pressure detected by the low pressure detection means matches the target value of the refrigerant evaporation pressure set by the set pressure calculation means. An air conditioner characterized in that it comprises.
【請求項7】 請求項6記載の空気調和機に加えて、前
記水位検出手段の検出値が水位変化の無い状態を示す蓄
冷運転開始から、水位変化を示すまでの間は、前記蓄熱
熱交換器中の冷媒蒸発圧力と蓄熱能力との相関を示す式
で最大蓄熱能力に対応する冷媒蒸発圧力を前記設定圧力
演算手段に出力する蓄熱運転開始手段と、 前記水位検出手段が水位変化ありを検出した時に前記蓄
冷運転予定時間と前記蓄熱器の蓄熱容量とから算定され
た蓄熱能力に対応する冷媒蒸発圧力の目標値に切り替え
る切替手段と、を設けたことを特徴とする空気調和機。
7. In addition to the air conditioner according to claim 6, the heat storage heat exchange is performed from the start of the cold storage operation in which the detection value of the water level detecting means indicates a state in which there is no change in the water level until the change in the water level is indicated. A heat storage operation starting means for outputting the refrigerant evaporation pressure corresponding to the maximum heat storage capacity to the set pressure calculation means by an expression showing the correlation between the refrigerant evaporation pressure in the container and the heat storage capacity, and the water level detection means detects a water level change An air conditioner provided with a switching means for switching to a target value of the refrigerant evaporation pressure corresponding to the heat storage capacity calculated from the scheduled cool storage operation time and the heat storage capacity of the heat storage device.
【請求項8】請求項6記載の空気調和機において、前記
低圧圧力検出手段を前記室外機内に設置し、前記低圧圧
力検出手段から前記蓄熱熱交換器と接続する配管長を設
定する配管長設定手段を設け、 インバータ周波数演算手段は、前記低圧圧力検出手段の
検出値を、前記配管長設定手段により設定された配管長
に対応する圧力損失だけ補正して、前記蓄熱熱交換器の
冷媒蒸発圧力に換算する機能を有すること特徴とする空
気調和機。
8. The air conditioner according to claim 6, wherein the low pressure detecting means is installed in the outdoor unit, and a pipe length is set by the low pressure detecting means to set a pipe length to be connected to the heat storage heat exchanger. Inverter frequency calculation means corrects the detection value of the low pressure detection means by the pressure loss corresponding to the pipe length set by the pipe length setting means, and the refrigerant evaporation pressure of the heat storage heat exchanger. An air conditioner characterized by having a function of converting to.
JP24654392A 1992-09-16 1992-09-16 Air conditioner Expired - Fee Related JP3213773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24654392A JP3213773B2 (en) 1992-09-16 1992-09-16 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24654392A JP3213773B2 (en) 1992-09-16 1992-09-16 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0694284A true JPH0694284A (en) 1994-04-05
JP3213773B2 JP3213773B2 (en) 2001-10-02

Family

ID=17149977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24654392A Expired - Fee Related JP3213773B2 (en) 1992-09-16 1992-09-16 Air conditioner

Country Status (1)

Country Link
JP (1) JP3213773B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302088A (en) * 2002-04-12 2003-10-24 Asahi Kogyosha Co Ltd Precision temperature/humidity control method and its device
JP2010071599A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Ice thermal storage system
CN105674509A (en) * 2016-03-25 2016-06-15 广东美的制冷设备有限公司 Air-conditioner and air-conditioner control method
WO2016103690A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
JP2017146009A (en) * 2016-02-17 2017-08-24 タカギ冷機株式会社 Circulation type water cooler
CN113932399A (en) * 2020-07-13 2022-01-14 广东美的暖通设备有限公司 Anti-freezing control method and device, cold and hot water machine and computer storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302088A (en) * 2002-04-12 2003-10-24 Asahi Kogyosha Co Ltd Precision temperature/humidity control method and its device
JP2010071599A (en) * 2008-09-22 2010-04-02 Sanyo Electric Co Ltd Ice thermal storage system
WO2016103690A1 (en) * 2014-12-26 2016-06-30 ダイキン工業株式会社 Regenerative air conditioner
JP2016125736A (en) * 2014-12-26 2016-07-11 ダイキン工業株式会社 Storage air conditioner
JP2017146009A (en) * 2016-02-17 2017-08-24 タカギ冷機株式会社 Circulation type water cooler
CN105674509A (en) * 2016-03-25 2016-06-15 广东美的制冷设备有限公司 Air-conditioner and air-conditioner control method
CN113932399A (en) * 2020-07-13 2022-01-14 广东美的暖通设备有限公司 Anti-freezing control method and device, cold and hot water machine and computer storage medium
CN113932399B (en) * 2020-07-13 2023-07-07 广东美的暖通设备有限公司 Antifreezing control method and device, cold and hot water machine and computer storage medium

Also Published As

Publication number Publication date
JP3213773B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
US4471630A (en) Cooling system having combination of compression and absorption type units
CN111780362B (en) Air conditioner and control method thereof
JP5854751B2 (en) Cooling system
JP2012093054A (en) Refrigerating apparatus
CN111928435A (en) Air conditioner
CN101231052A (en) System and method for controlling superheating degree of air conditioner
US10928107B2 (en) Method for operating a vapour compression system with heat recovery
JP3213773B2 (en) Air conditioner
JP3567168B2 (en) Thermal storage heat pump air conditioner for cold regions
JP4650086B2 (en) Thermal storage heat recovery device
JP3668750B2 (en) Air conditioner
US11940192B2 (en) Air conditioning device
JP2011007482A (en) Air conditioner
JP5641636B2 (en) Facility horticulture air heat source heat pump system and operation method thereof
JP2017161159A (en) Outdoor uni of air conditioner
CN113883579B (en) Water system air conditioner
JP3319676B2 (en) Thermal storage type air conditioner and its operation control method
WO2019026731A1 (en) Air-conditioning device
JP6554903B2 (en) Air conditioner
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JPH0996476A (en) Manufacture of supercooling water type chilled water
JP2002106998A (en) Heat storage type heat pump air conditioner
KR101314676B1 (en) Refrigerating system and control method thereof
KR100639488B1 (en) Air conditional and overload controlling method the same
JP3370501B2 (en) Cooling system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070727

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080727

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090727

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees