WO2006114983A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2006114983A1
WO2006114983A1 PCT/JP2006/306686 JP2006306686W WO2006114983A1 WO 2006114983 A1 WO2006114983 A1 WO 2006114983A1 JP 2006306686 W JP2006306686 W JP 2006306686W WO 2006114983 A1 WO2006114983 A1 WO 2006114983A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
hot water
evaporator
heat
heat exchanger
Prior art date
Application number
PCT/JP2006/306686
Other languages
French (fr)
Japanese (ja)
Inventor
Masaya Honma
Yuuichi Yakumaru
Kou Komori
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006114983A1 publication Critical patent/WO2006114983A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a refrigeration cycle apparatus that uses hot air as heat source to collect heat with an evaporator.
  • FIG. 8 shows a conventional heat pump device described in Patent Document 1. As shown in FIG.
  • this heat pump device has a compressor 40, a four-way valve 41 as a cooling / heating switching valve, an indoor heat exchanger 42, an indoor decompression device 43, an outdoor decompression device 44, and an outdoor heat exchanger 45 in this order. It is connected so as to be a closed circuit.
  • a hot water supply pressure reducing device 47 is installed at the outlet of the hot water supply heat exchange, and the inlet of the hot water supply heat exchanger 46 is connected to the piping between the discharge side of the compressor 40 and the four-way valve 41 for hot water supply.
  • the outlet of the heat exchanger 46 is connected to a pipe between the indoor decompression device 43 and the outdoor decompression device 44 via a hot water decompression device 47, thereby forming a refrigerant circulation circuit.
  • the circulation pump 48 is activated to perform the defrosting operation using the hot water in the hot water storage tank 49 as a heat source.
  • the circulation pump is operated to circulate the hot water in the hot water storage tank to the heat exchanger near the evaporator, and the evaporator is heated to thereby form the frost formation. Arise I was trying not to let it.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-218944
  • Patent Document 2 Japanese Utility Model Publication No. 55-96370
  • Patent Document 3 Japanese Utility Model Publication No. 55-17126
  • the present invention has been made in view of the above-described problems of the prior art, and is provided with a hot water refrigerant heat exchanger on the inlet side of the evaporator to remove the frost without reducing the heating capacity.
  • An object of the present invention is to provide a refrigeration cycle apparatus capable of performing the above.
  • the present invention provides a compressor that compresses a refrigerant, a radiator that exchanges heat between the refrigerant compressed by the compressor and water, and supplies hot water to a use terminal, and a radiator
  • An expansion mechanism that reduces the pressure of the refrigerant radiated by the refrigerant and an evaporator that evaporates the refrigerant reduced by the expansion mechanism are connected by a refrigerant path, and hot water and refrigerant are connected to the refrigerant path between the expansion mechanism and the evaporator.
  • a hot water refrigerant heat exchanger for heat exchange is provided.
  • the refrigerant in the refrigerant path between the expansion mechanism and the evaporator can be efficiently heated with hot water, so that hot water can be continuously generated, Addition A defrosting operation without reducing the heat capacity can be performed.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of a refrigeration cycle apparatus according to a modification of the first embodiment of the present invention.
  • Fig. 3 is a partial sectional plan view of the hot water refrigerant heat exchanger provided in the refrigeration cycle apparatus of Fig. 1 or Fig. 2.
  • FIG. 4 is a Mollier diagram of the refrigeration cycle according to the first embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the refrigerant dryness and the refrigerant heat transfer coefficient according to the first embodiment of the present invention.
  • FIG. 6 is a configuration diagram of a refrigeration cycle apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram of a modified example of the refrigeration cycle apparatus of FIG.
  • Figure 8 shows the configuration of a conventional heat pump device
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 10 with a hot water tank according to a first embodiment of the present invention, which includes a refrigeration cycle 11, a hot water tank 12, a hot water supply load unit 13 as a use terminal, and a controller 14. It is composed of carbon dioxide as a refrigerant.
  • a compressor 15, a radiator 16, an expansion valve 17, which is an expansion mechanism, a hot water refrigerant heat exchanger 18, and an evaporator 19 are connected through a path through which a refrigerant flows to form a closed cycle.
  • the hot water refrigerant heat exchanger 18 is provided downstream of the expansion valve 17 and upstream of the evaporator 19 in the refrigerant flow.
  • the refrigerant is discharged at a high temperature and high pressure by the compressor 15, and dissipates heat by exchanging heat with the cold water supplied from the hot water storage tank 12 by the radiator 16.
  • the refrigerant heat-exchanged with the cold water is reduced in pressure by the expansion valve 17 and then heated by hot water supplied from the hot water tank 12 by the hot water refrigerant heat exchanger 18 as necessary, and heat from the atmosphere is obtained by the evaporator 19. Take it, vaporize, and return to compressor 15.
  • the refrigerant is heated by the hot water refrigerant heat exchanger 18 when the evaporator 19 needs to be defrosted, and when the evaporator 19 does not need to be defrosted, the hot water refrigerant heat exchange is performed. Do not pour hot water into 18
  • the cold water drawn from the lower part of the hot water storage tank 12 is radiated by the first circulation pump 20 to the radiator.
  • the hot water in the hot water tank 12 is circulated by the first circulation pump 20 by a temperature sensor (not shown) provided in the hot water tank 12 until the set temperature is reached.
  • a temperature sensor not shown
  • cold water and hot water form a temperature stratification, so the temperature of the stored water increases from the lower part of the hot water storage tank 12 toward the upper part.
  • the hot water in the hot water storage tank 12 that has reached the set temperature is supplied from the upper part of the hot water storage tank 12 to the hot water supply load unit 13 such as a bath tank.
  • the lower part of the hot water storage tank 12 is connected to a water supply source 24 via an electromagnetic valve 23, and a level detector (not shown) such as a float switch is provided inside the hot water storage tank 12.
  • a level detector such as a float switch
  • the solenoid valve 23 is controlled to open, and the hot water storage tank 12 is supplied with water.
  • the solenoid valve 23 is closed and the water supply from the water supply source 24 is stopped.
  • the controller 14 includes a microcomputer, and a refrigerant temperature detector 21 such as a thermistor for measuring the refrigerant evaporation temperature at the inlet of the evaporator 19, and hot water stored in the hot water tank 12 is used as a hot water refrigerant heat exchanger.
  • the second circulating pump 22 supplied to 18 and the above-described solenoid valve 23 and the like are connected via a signal line 25.
  • a signal for operating the second circulation pump 22 is output from the refrigerant temperature detector 21 to the controller 14, and the controller 14
  • the second circulation pump 22 is activated in response to the output signal from the hot water, the hot water taken out from the central part of the hot water tank 12 is heated by the hot water refrigerant heat exchanger 18 to heat the refrigerant at the lower part of the hot water tank 12.
  • the refrigeration cycle apparatus 10 shown in FIG. 1 heats cold water stored in the hot water tank 12 at night by using inexpensive late-night power, for example, when the capacity of the hot water tank 12 is relatively large. Is suitable when the hot water stored in the hot water tank 12 covers all of the hot water consumed by the hot water supply load unit 13.
  • FIG. 2 shows a modified example 10A of the refrigeration cycle apparatus 10 shown in FIG. 1, and this refrigeration cycle apparatus 10A has a configuration suitable when the capacity of the hot water tank 12 is relatively small.
  • this refrigeration cycle apparatus 10A has a configuration suitable when the capacity of the hot water tank 12 is relatively small.
  • differences between this refrigeration cycle apparatus 10A and the above-described refrigeration cycle apparatus 10 will be described.
  • the hot water tank 12, the radiator 16, and the first circulation pump 20 are connected in a loop like the refrigeration cycle device 10 of Fig. 1. It is also connected to the water supply 24 via a valve 23.
  • the first circulation pump 20 is connected to the hot water storage tank 12 via a check valve 26 and a three-way valve 27, and the three-way valve 27 is further connected to the hot water supply load unit 13.
  • the pipe between the three-way valve 27 and the hot water supply load unit 13 is connected to the pipe connecting the hot water tank 12 and the second circulation pump 22, and the pipe connecting the radiator 16 and the solenoid valve 23. It is connected via an on-off valve 28.
  • the solenoid valve 23 is controlled to open to store water in the hot water storage tank 12, and the first circulation pump 20 is driven to store cold water stored in the hot water storage tank 12 with a predetermined amount. Heated to temperature.
  • the solenoid valve 23 is controlled to open and water is supplied from the water supply source 24 to the hot water tank 12, but all of the hot water stored in the hot water tank 12 is lost.
  • the hot water is directly supplied from the radiator 16 to the hot water supply load unit 13 by the first circulation pump 20, so that hot water can be used in the hot water supply load unit 13.
  • the hot water from the heat radiator 16 is supplied to the second circulation pump 22 by the first circulation pump 20, and the heat exchange of the hot water refrigerant is further performed. Since the hot water is directly supplied to the hot water tank, the predetermined defrosting can be performed even when the hot water tank 12 becomes empty.
  • the temperature of the hot water used in the hot water supply load unit 13 can be lowered, and the hot water supplied from the hot water tank 12 or the first circulation pump 20 can be used.
  • cold water from the water supply source 24 is also supplied to the hot water supply load unit 13. Can be used.
  • the above-described operation is automatically performed by using a solenoid valve that is preferably composed of an electromagnetic valve whose opening degree can be adjusted as the three-way valve 27 and the on-off valve 28.
  • the hot water refrigerant heat exchange can employ various structures, but the double tube structure shown in Fig. 3 is preferred.
  • the hot water refrigerant heat exchange is constituted by a double pipe,
  • the refrigerant is flown in the pipe on the side and the hot water from the hot water storage tank 12 is allowed to flow in the outer pipe so as to exchange heat between the refrigerant and the hot water.
  • the temperature of the refrigerant having a high heat exchange efficiency between the hot water and the refrigerant tends to be uniform.
  • the heat transfer rate from the hot water to the refrigerant is 100WZm 2 K ⁇ 15, 000WZm 2 K .
  • the Mollier diagram in FIG. 4 shows the case where the refrigerant is carbon dioxide, and the saturation curve 50 shows a line connecting the saturated liquid line and the saturated vapor line.
  • the closed cycle A B C D 51 is a Mollier diagram in the case where the atmospheric temperature is high and the evaporation pressure is high, and it is not necessary to defrost the evaporator.
  • the effects of the refrigeration cycle apparatuses 10, 10A of the first embodiment of the present invention Will be described.
  • the following shows the amount of heat required for defrosting of the evaporator 19 according to the present invention, and the amount of heat generated when defrosting is not performed.
  • an evaporator with a heat exchange amount H of 3.25kW the dry bulb temperature in the atmosphere before passing through the evaporator is 7 ° C, the wet bulb temperature is 6 ° C, and the dry bulb temperature after passing through the evaporator The case where the wet bulb temperature is 2 ° C is explained.
  • the flow rate G (m 3 Zs) of the evaporator is as follows from (Equation 1).
  • V f px GxAx x 3600
  • ⁇ : V 2.066 from the absolute humidity difference (0.00539 kg / kg-0.0045 kg / kg) before and after passing through the evaporator.
  • the amount of heat Q (kjZh) required to melt this amount of frost formation V is (f f 1
  • the refrigeration cycle apparatuses 10 and 10A of the first embodiment of the present invention even when the evaporator 19 is frosted, hot water refrigerant heat exchange is performed while continuing the generation of hot water.
  • the refrigerant can be defrosted by heating in the vessel 18.
  • the amount of heat required for defrosting is 723 kjZh, which is about 1Z3 of the amount of heat 2160 kjZh that does not contribute to hot water generation in the case of the conventional defrosting operation in which the refrigerant flow is reversed.
  • the heat transfer coefficient of heat exchange for circulating the hot water from the hot water tank in the vicinity of the evaporator and heating the evaporator is 5 WZm 2 K to 25 WZm 2 K
  • the hot water refrigerant of the present invention heat exchanger 100WZm 2 K ⁇ 15 since it is 000WZm 2 K, it is much more heat transfer coefficient towards the present invention. Therefore, it is better to use the hot water refrigerant heat exchange 18 of the refrigeration cycle apparatus 10, 10A with the hot water tank of the first embodiment of the present invention than to use the heat exchange that heats the evaporator. Therefore, the amount of heat used for defrosting is small.
  • Figure 5 shows the relationship of the refrigerant heat transfer coefficient to the dryness of the heat exchanger (air conditioning, Proceedings of the Refrigeration Union Lecture, VOL. 37th; PAGE 124). As shown in Fig. 5, heat exchange is performed on the inlet side where the refrigerant heat transfer coefficient is higher on the inlet side of the heat exchanger (refrigerant dryness of 0.2) than on the outlet side (refrigerant dryness of 1). Can obtain a higher amount of heat exchange.
  • the reason why the refrigerant heat transfer rate is higher on the heat exchanger inlet side (refrigerant dryness of 0.2) than on the outlet side (refrigerant dryness of 1) is that the heat exchanger inlet side is Most of them are liquid, but most of the refrigerant is gas at the outlet, and the heat transfer coefficient of liquid refrigerant is several times higher than that of gas refrigerant.
  • the refrigerant is superheated beyond the outlet side.
  • the local heat transfer coefficient decreases rapidly, it is installed on the heat inlet side where the local heat transfer coefficient is kept high on average. It is possible to obtain a higher amount of heat exchange when placed.
  • the amount of heat used for defrosting can be reduced while continuing the generation of hot water.
  • the original amount of hot water used can be increased.
  • a sufficient amount of heat exchange can be secured by providing hot water refrigerant heat exchange on the inlet side of the evaporator.
  • a force indicating a method for detecting and controlling the refrigerant temperature at the inlet of the evaporator 19 is detected and the value is input to the controller 14.
  • the method may be used.
  • the measurement position may be inside the evaporator without being limited to the evaporator inlet.
  • FIG. 6 shows a refrigeration cycle apparatus 30 with a hot water tank according to the second embodiment of the present invention.
  • the refrigeration cycle 31 has the same configuration as the refrigeration cycle 11 of the first embodiment of the present invention except that an indoor heat exchange 32 is provided between the radiator 16 and the expansion valve 17.
  • devices having the same functions are denoted by the same reference numerals as those in the first embodiment of the present invention, and description of the configuration and operation thereof is omitted.
  • the indoor heat exchange is provided in the refrigerant path between the radiator 16 and the expansion valve 17, and heats the room air to heat the room to be heated 33.
  • a blower fan 34 is provided in the vicinity of the indoor heat exchanger 32 in order to promote heat exchange between the indoor heat exchanger 32 and the indoor air.
  • the cooling heat radiated by the radiator 16 which is a heat exchanger for hot water supply is used.
  • the medium is further radiated by indoor heat exchange 32.
  • the heated room 33 can be heated by the indoor heat exchanger 32 while hot water is generated by the radiator 16.
  • the refrigerant temperature detector 21 detects whether frost has been formed, and the refrigerant temperature detector 21 detects a predetermined temperature or lower.
  • the second circulation pump 22 is operated, and the hot water in the hot water storage tank 12 is caused to flow through the hot water refrigerant heat exchanger 18.
  • the evaporator 19 can continue the heat collecting operation without frost formation, and the indoor heat exchanger 32 can continue to heat the heated room 33 while the radiator 16 generates hot water.
  • a conventional refrigeration cycle apparatus that performs heating performs a defrosting operation, and during the defrosting operation, cool air is not sent indoors, so that the blower fan near the indoor heat exchange is stopped, The As described above, since the heating operation is completely stopped during the defrosting operation in the past, the user is uncomfortable, but according to the second embodiment of the present invention, the heating operation is stopped. Hana! ⁇ so don't give the user such a bad feeling.
  • the indoor heat exchanger 32 is provided in series on the downstream side of the radiator 16, but the indoor heat exchanger 32 may be provided in series on the upstream side of the radiator 16. .
  • the heated room 33 can be heated by the indoor heat exchanger 32 while generating hot water by the radiator 16, as described above.
  • the capacity of the upstream equipment heatsink 16 or indoor heat exchange 32
  • the capacity of the downstream equipment room heat exchange or heatsink 16
  • the capacity of the hot water tank 12 is set to be relatively large. For example, hot water is generated at midnight and stored in the hot water tank 12, while heating operation is performed during daytime and nighttime as needed and the hot water is stored. When necessary, hot water stored in the hot water tank 12 may be used.
  • FIG. 1 In the case where it is desired to simultaneously generate hot water and heat in a state where the capabilities of both the radiator 16 and the indoor heat exchanger 32 are sufficiently secured (a state where the heated fluid can be sufficiently heated), FIG. As shown in the figure, the indoor heat exchanger 32 and the radiator 16 may be connected in parallel in the path of the counter-current refrigerant from the compressor 15 to the expansion valve 17. Further, a part of the radiator 16 may be used as the indoor heat exchanger 32.
  • the refrigerant temperature detector 21 is employed as the frost detection means, and the evaporation temperature of the refrigerant measured by the refrigerant temperature detector 21 is equal to or less than a predetermined value. Then, it is determined that the evaporator 19 is frosted and the second circulation pump 22 is operated to heat the refrigerant with the hot water refrigerant heat exchanger 18, but the refrigerant temperature detector 21 is used instead.
  • the following detectors can also be employed as the frost detection means.
  • an expansion valve is used as an expansion mechanism, but an expansion machine using an electric motor as a drive source may be used.
  • the refrigeration cycle apparatus with a hot water tank that is effective in the present invention can reduce the amount of hot water used in the hot water tank for defrosting and increase the amount of original hot water supply. It is useful as a heating device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A warm water/refrigerant heat exchanger (18) for exchanging heat between warm water and refrigerant is provided in a refrigerant route between an expansion mechanism (17) and an evaporator (19). When a refrigerant temperature detector (21) detects a temperature, for example, equal to or less than 0ºC, a second circulation pump (22) is operated to cause warm water in a warm water container (12) to flow to the warm water/refrigerant heat exchanger (18). This heats the refrigerant to increase evaporation pressure, and heat collection operation is performed by the evaporator (19) while the evaporator (19) is defrosted. Although vapor pressure rises with the defrosting, a refrigerant cycle (11) continues the heat collection operation so that warm water can be continuously produced.

Description

明 細 書  Specification
冷凍サイクル装置  Refrigeration cycle equipment
技術分野  Technical field
[0001] 本発明は、大気を熱源とし蒸発器で集熱して温水を作るようにした冷凍サイクル装 置に関するものである。  TECHNICAL FIELD [0001] The present invention relates to a refrigeration cycle apparatus that uses hot air as heat source to collect heat with an evaporator.
背景技術  Background art
[0002] 大気を熱源とする冷凍サイクル装置は、大気が氷点近傍となり蒸発器での冷媒温 度が氷点下となる条件で運転すると、大気中の水分が蒸発器表面で結露するととも に氷結して着霜する場合がある。蒸発器表面が着霜すると大気からの伝熱量が低下 するため、蒸発器で集熱する冷凍サイクル装置は、十分な量の温水を作れなくなる。  [0002] When the refrigeration cycle apparatus using the atmosphere as a heat source is operated under conditions where the atmosphere is near the freezing point and the refrigerant temperature in the evaporator is below the freezing point, moisture in the atmosphere condenses on the surface of the evaporator and freezes. There may be frost formation. When the evaporator surface frosts, the amount of heat transferred from the atmosphere decreases, so the refrigeration cycle device that collects heat with the evaporator cannot produce a sufficient amount of hot water.
[0003] そこで、従来の冷凍サイクル装置では、蒸発器が着霜すると、冷媒の循環経路を逆 にして着霜した蒸発器を高温の冷媒を流す放熱器にして、霜を溶かす除霜運転を行 つていた。しかし、このような除霜運転を行っている時、冷凍サイクル装置は温水を作 ることができな 、ため、必要な温水を供給できな 、場合があった。  [0003] Therefore, in the conventional refrigeration cycle apparatus, when the evaporator is frosted, the frosted evaporator is turned into a radiator that flows the high-temperature refrigerant by reversing the refrigerant circulation path, and defrosting operation is performed to melt the frost. I was going. However, during such a defrosting operation, the refrigeration cycle apparatus could not produce hot water, and therefore, required hot water could not be supplied in some cases.
[0004] これに対して、蒸発器の近傍に貯湯槽からの温水を循環させ、蒸発器を加熱する 熱交翻を設置した構成が提案されている (例えば、特許文献 1あるいは 2参照)。  [0004] On the other hand, a configuration has been proposed in which hot water from a hot water storage tank is circulated in the vicinity of the evaporator and heat exchange is installed to heat the evaporator (see, for example, Patent Document 1 or 2).
[0005] 図 8は特許文献 1に記載された従来のヒートポンプ装置を示すものである。  FIG. 8 shows a conventional heat pump device described in Patent Document 1. As shown in FIG.
図 8に示すように、このヒートポンプ装置は、圧縮機 40、冷暖房切替弁としての四方 弁 41、室内熱交換器 42、室内側減圧装置 43、室外側減圧装置 44、室外熱交換器 45が順次閉回路となるように接続されている。また、給湯用熱交 の出口には 給湯用減圧装置 47が設置されており、給湯用熱交換器 46の入口は圧縮機 40の吐 出側と四方弁 41との間の配管に、給湯用熱交翻 46の出口は給湯用減圧装置 47 を介して室内側減圧装置 43と室外側減圧装置 44との間の配管にそれぞれ接続され ており、冷媒循環回路が形成されている。除霜運転時には、循環ポンプ 48を起動さ せて貯湯槽 49の温水を熱源とした除霜運転を行う。  As shown in FIG. 8, this heat pump device has a compressor 40, a four-way valve 41 as a cooling / heating switching valve, an indoor heat exchanger 42, an indoor decompression device 43, an outdoor decompression device 44, and an outdoor heat exchanger 45 in this order. It is connected so as to be a closed circuit. In addition, a hot water supply pressure reducing device 47 is installed at the outlet of the hot water supply heat exchange, and the inlet of the hot water supply heat exchanger 46 is connected to the piping between the discharge side of the compressor 40 and the four-way valve 41 for hot water supply. The outlet of the heat exchanger 46 is connected to a pipe between the indoor decompression device 43 and the outdoor decompression device 44 via a hot water decompression device 47, thereby forming a refrigerant circulation circuit. During the defrosting operation, the circulation pump 48 is activated to perform the defrosting operation using the hot water in the hot water storage tank 49 as a heat source.
[0006] つまり、蒸発器が着霜を生じるような条件になると、循環ポンプを稼動させて貯湯槽 の温水を蒸発器近傍の熱交換器に循環させ、蒸発器を加熱することで着霜を生じさ せないようにしていた。 [0006] That is, when the evaporator is in a condition that causes frost formation, the circulation pump is operated to circulate the hot water in the hot water storage tank to the heat exchanger near the evaporator, and the evaporator is heated to thereby form the frost formation. Arise I was trying not to let it.
[0007] また、蒸発器の出口側に水熱交換器を設置し、給湯用の高温水を流すことにより蒸 発器での着霜を防止するようにした構成も提案されて ヽる (例えば、特許文献 3参照)  [0007] In addition, a configuration in which a water heat exchanger is installed on the outlet side of the evaporator and high temperature water for hot water supply is allowed to flow to prevent frosting in the evaporator has been proposed (for example, , See Patent Document 3)
[0008] 特許文献 1:特開 2004— 218944号公報 [0008] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-218944
特許文献 2:実開昭 55— 96370号公報  Patent Document 2: Japanese Utility Model Publication No. 55-96370
特許文献 3 :実開昭 55— 17126号公報  Patent Document 3: Japanese Utility Model Publication No. 55-17126
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] し力しながら、特許文献 1あるいは 2に記載の構成では、蒸発器のフィン間を温水流 路を貫通させて蒸発器冷媒を加熱する場合、熱伝達が悪!ヽことから除霜を短時間で 行うことができず、加熱能力が低下するという課題がある。 [0009] However, in the configuration described in Patent Document 1 or 2, when the evaporator refrigerant is heated by passing the hot water flow path between the fins of the evaporator, heat transfer is poor, so defrosting is performed. There is a problem that heating cannot be performed in a short time and the heating capacity is reduced.
[0010] また、特許文献 3に記載の構成では、後述するように蒸発器の出口側は入口側に 比べて冷媒熱伝達率が小さいため、水冷媒熱交翻における熱交換量が十分確保 されないという課題がある。 [0010] In addition, in the configuration described in Patent Document 3, since the refrigerant heat transfer coefficient is smaller on the outlet side of the evaporator than on the inlet side as will be described later, a sufficient amount of heat exchange in the water-refrigerant heat exchange cannot be secured. There is a problem.
[0011] 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、蒸発 器の入口側に温水冷媒熱交^^を設けることにより加熱能力を低減させることなく除 霜を行うことができる冷凍サイクル装置を提供することを目的として 、る。 [0011] The present invention has been made in view of the above-described problems of the prior art, and is provided with a hot water refrigerant heat exchanger on the inlet side of the evaporator to remove the frost without reducing the heating capacity. An object of the present invention is to provide a refrigeration cycle apparatus capable of performing the above.
課題を解決するための手段  Means for solving the problem
[0012] 上記目的を達成するため、本発明は、冷媒を圧縮する圧縮機と、圧縮機で圧縮さ れた冷媒と水とを熱交換させ使用端末に温水を供給する放熱器と、放熱器で放熱さ れた冷媒の圧力を低下させる膨張機構と、膨張機構で低下させた冷媒を蒸発させる 蒸発器を冷媒経路で接続し、膨張機構と蒸発器間の冷媒経路に、温水と冷媒とを熱 交換する温水冷媒熱交換器を設けた構成とする。 [0012] In order to achieve the above object, the present invention provides a compressor that compresses a refrigerant, a radiator that exchanges heat between the refrigerant compressed by the compressor and water, and supplies hot water to a use terminal, and a radiator An expansion mechanism that reduces the pressure of the refrigerant radiated by the refrigerant and an evaporator that evaporates the refrigerant reduced by the expansion mechanism are connected by a refrigerant path, and hot water and refrigerant are connected to the refrigerant path between the expansion mechanism and the evaporator. A hot water refrigerant heat exchanger for heat exchange is provided.
発明の効果  The invention's effect
[0013] 本発明の冷凍サイクル装置によれば、膨張機構と蒸発器間の冷媒経路の冷媒を温 水で効率的に加熱することができるので、温水を継続して生成でき、放熱器での加 熱能力を低減させることなぐ除霜運転を行うことができる。 [0013] According to the refrigeration cycle apparatus of the present invention, the refrigerant in the refrigerant path between the expansion mechanism and the evaporator can be efficiently heated with hot water, so that hot water can be continuously generated, Addition A defrosting operation without reducing the heat capacity can be performed.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は本発明の第 1の実施の形態の冷凍サイクル装置の構成図  FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to a first embodiment of the present invention.
[図 2]図 2は本発明の第 1の実施の形態の変形例に力かる冷凍サイクル装置の構成 図  [Fig. 2] Fig. 2 is a configuration diagram of a refrigeration cycle apparatus according to a modification of the first embodiment of the present invention.
[図 3]図 3は図 1あるいは図 2の冷凍サイクル装置に設けられた温水冷媒熱交換器の 部分断面平面図  [Fig. 3] Fig. 3 is a partial sectional plan view of the hot water refrigerant heat exchanger provided in the refrigeration cycle apparatus of Fig. 1 or Fig. 2.
[図 4]図 4は本発明の第 1の実施の形態の冷凍サイクルのモリエル線図  FIG. 4 is a Mollier diagram of the refrigeration cycle according to the first embodiment of the present invention.
[図 5]図 5は本発明の第 1の実施の形態の冷媒乾き度と冷媒熱伝達率の関係図 FIG. 5 is a graph showing the relationship between the refrigerant dryness and the refrigerant heat transfer coefficient according to the first embodiment of the present invention.
[図 6]図 6は本発明の第 2の実施の形態の冷凍サイクル装置の構成図 FIG. 6 is a configuration diagram of a refrigeration cycle apparatus according to a second embodiment of the present invention.
[図 7]図 7は図 6の冷凍サイクル装置の変形例の構成図  [FIG. 7] FIG. 7 is a block diagram of a modified example of the refrigeration cycle apparatus of FIG.
[図 8]図 8は従来のヒートポンプ装置の構成図  [Figure 8] Figure 8 shows the configuration of a conventional heat pump device
符号の説明  Explanation of symbols
[0015] ΙΟ,ΙΟΑ, 30 冷凍サイクル装置 [0015] ΙΟ, ΙΟΑ, 30 Refrigeration cycle equipment
11, 31 冷凍サイクル  11, 31 Refrigeration cycle
12 貯湯槽  12 Hot water tank
13 給湯負荷ユニット  13 Hot water supply load unit
14 制御器  14 Controller
15 圧縮機  15 Compressor
16 放熱器  16 Heatsink
17 膨張弁  17 Expansion valve
18 温水冷媒熱交換器  18 Hot water refrigerant heat exchanger
19 蒸発器  19 Evaporator
20 第 1の循環ポンプ  20 First circulation pump
21 冷媒温度検出器  21 Refrigerant temperature detector
22 第 2の循環ポンプ 26 逆止弁 22 Second circulation pump 26 Check valve
27 三方弁  27 Three-way valve
28 開閉弁  28 On-off valve
32 室内熱交換器  32 Indoor heat exchanger
33 被暖房室  33 Heated room
34 送風ファン  34 Blower fan
50 飽和曲線  50 saturation curve
51 閉サイクノレ A B C D  51 Closed Cycle A B C D
1 1 1  1 1 1
52 閉サイクノレ A B C D  52 Closed cycle A B C D
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施の形態について、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1の実施の形態  First embodiment
図 1は本発明の第 1の実施の形態の貯湯槽付き冷凍サイクル装置 10の構成図で、 冷凍サイクル 11、貯湯槽 12、使用端末としての給湯負荷ユニット 13および制御器 1 4を有して構成され、冷媒としては二酸ィ匕炭素を用いて 、る。  FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 10 with a hot water tank according to a first embodiment of the present invention, which includes a refrigeration cycle 11, a hot water tank 12, a hot water supply load unit 13 as a use terminal, and a controller 14. It is composed of carbon dioxide as a refrigerant.
[0017] 冷凍サイクル 11は、圧縮機 15、放熱器 16、膨張機構である膨張弁 17、温水冷媒 熱交換器 18および蒸発器 19が冷媒を流す経路で接続され、閉サイクルを形成して いる。 [0017] In the refrigeration cycle 11, a compressor 15, a radiator 16, an expansion valve 17, which is an expansion mechanism, a hot water refrigerant heat exchanger 18, and an evaporator 19 are connected through a path through which a refrigerant flows to form a closed cycle. .
[0018] 図 1に示すように、温水冷媒熱交換器 18は、冷媒流れにおける膨張弁 17の下流側 で蒸発器 19の上流側に設けられている。冷媒は圧縮機 15で高温、高圧にして吐出 され、放熱器 16で貯湯槽 12から給水される冷水と熱交換して放熱する。冷水と熱交 換した冷媒は、膨張弁 17でその圧力が低下した後、必要により温水冷媒熱交換器 1 8で貯湯槽 12から供給された温水により加熱され、蒸発器 19で大気から熱を奪って 気化し、圧縮機 15に戻る。なお、冷媒が温水冷媒熱交換器 18で加熱される場合と は、蒸発器 19を除霜する必要がある場合であり、蒸発器 19を除霜する必要がない 場合は、温水冷媒熱交翻18に温水を流さない。  As shown in FIG. 1, the hot water refrigerant heat exchanger 18 is provided downstream of the expansion valve 17 and upstream of the evaporator 19 in the refrigerant flow. The refrigerant is discharged at a high temperature and high pressure by the compressor 15, and dissipates heat by exchanging heat with the cold water supplied from the hot water storage tank 12 by the radiator 16. The refrigerant heat-exchanged with the cold water is reduced in pressure by the expansion valve 17 and then heated by hot water supplied from the hot water tank 12 by the hot water refrigerant heat exchanger 18 as necessary, and heat from the atmosphere is obtained by the evaporator 19. Take it, vaporize, and return to compressor 15. The refrigerant is heated by the hot water refrigerant heat exchanger 18 when the evaporator 19 needs to be defrosted, and when the evaporator 19 does not need to be defrosted, the hot water refrigerant heat exchange is performed. Do not pour hot water into 18
[0019] また、貯湯槽 12の下部から引き出された冷水は、第 1の循環ポンプ 20により放熱器 16で冷媒と熱交換して貯湯槽 12の上部に戻される。ここで、貯湯槽 12の温水は、貯 湯槽 12の内部に設けられた温度センサ(図示せず)で、設定温度になるまで第 1の 循環ポンプ 20で循環される。貯湯槽 12では、冷水と温水とが温度成層を成している ため、貯湯槽 12の下部から上部に向かうに従って、貯留されている水は温度が高く なっている。そして、設定温度となった貯湯槽 12の温水は、貯湯槽 12の上部から浴 槽等の給湯負荷ユニット 13に供給される。 In addition, the cold water drawn from the lower part of the hot water storage tank 12 is radiated by the first circulation pump 20 to the radiator. At 16 the heat exchange with the refrigerant is returned to the top of the hot water tank 12. Here, the hot water in the hot water tank 12 is circulated by the first circulation pump 20 by a temperature sensor (not shown) provided in the hot water tank 12 until the set temperature is reached. In the hot water storage tank 12, cold water and hot water form a temperature stratification, so the temperature of the stored water increases from the lower part of the hot water storage tank 12 toward the upper part. The hot water in the hot water storage tank 12 that has reached the set temperature is supplied from the upper part of the hot water storage tank 12 to the hot water supply load unit 13 such as a bath tank.
[0020] また、貯湯槽 12の下部は電磁弁 23を介して給水源 24に接続されるとともに、貯湯 槽 12の内部にはフロートスィッチ等のレベル検出器(図示せず)が設けられており、 給湯負荷ユニット 13で温水が消費され、貯湯槽 12内部の水位が所定の第 1レベル より低くなると、電磁弁 23が開制御されて給水源 24より貯湯槽 12に給水される。給 水された貯湯槽 12内部の水位が第 1レベルより高い所定の第 2レベルより高くなると 、電磁弁 23は閉制御され、給水源 24からの給水は停止する。  [0020] The lower part of the hot water storage tank 12 is connected to a water supply source 24 via an electromagnetic valve 23, and a level detector (not shown) such as a float switch is provided inside the hot water storage tank 12. When the hot water is consumed in the hot water supply load unit 13 and the water level in the hot water storage tank 12 becomes lower than the predetermined first level, the solenoid valve 23 is controlled to open, and the hot water storage tank 12 is supplied with water. When the water level in the supplied hot water storage tank 12 becomes higher than a predetermined second level which is higher than the first level, the solenoid valve 23 is closed and the water supply from the water supply source 24 is stopped.
[0021] 制御器 14はマイクロコンピュータより構成され、蒸発器 19入口の冷媒の蒸発温度 を計測するサーミスタ等の冷媒温度検出器 21と、貯湯槽 12に貯留された温水を温 水冷媒熱交換器 18に供給する第 2の循環ポンプ 22と、上述した電磁弁 23等に信号 線 25を介して接続されて 、る。冷媒温度検出器 21で計測した冷媒の蒸発温度が所 定の値以下になると、第 2の循環ポンプ 22を稼動させるための信号が冷媒温度検出 器 21より制御器 14に出力され、制御器 14からの出力信号を受けて第 2の循環ボン プ 22が稼動すると、貯湯槽 12の中央部カゝら取り出された温水は、温水冷媒熱交換 器 18で冷媒を加熱して貯湯槽 12の下部に戻る。  [0021] The controller 14 includes a microcomputer, and a refrigerant temperature detector 21 such as a thermistor for measuring the refrigerant evaporation temperature at the inlet of the evaporator 19, and hot water stored in the hot water tank 12 is used as a hot water refrigerant heat exchanger. The second circulating pump 22 supplied to 18 and the above-described solenoid valve 23 and the like are connected via a signal line 25. When the evaporation temperature of the refrigerant measured by the refrigerant temperature detector 21 falls below a predetermined value, a signal for operating the second circulation pump 22 is output from the refrigerant temperature detector 21 to the controller 14, and the controller 14 When the second circulation pump 22 is activated in response to the output signal from the hot water, the hot water taken out from the central part of the hot water tank 12 is heated by the hot water refrigerant heat exchanger 18 to heat the refrigerant at the lower part of the hot water tank 12. Return to.
[0022] なお、図 1に示す冷凍サイクル装置 10は、貯湯槽 12の容量が比較的大きぐ例え ば安価な深夜電力を使用して貯湯槽 12に貯留された冷水を夜間に加熱し、昼間は 貯湯槽 12に貯留された温水で給湯負荷ユニット 13で消費される温水の全てを賄う 場合に適している。  [0022] It should be noted that the refrigeration cycle apparatus 10 shown in FIG. 1 heats cold water stored in the hot water tank 12 at night by using inexpensive late-night power, for example, when the capacity of the hot water tank 12 is relatively large. Is suitable when the hot water stored in the hot water tank 12 covers all of the hot water consumed by the hot water supply load unit 13.
[0023] 図 2は、図 1に示す冷凍サイクル装置 10の変形例 10Aを示しており、この冷凍サイ クル装置 10Aは貯湯槽 12の容量が比較的小さい場合に適した構成である。以下、こ の冷凍サイクル装置 10Aと上述した冷凍サイクル装置 10との相違点につき説明する [0024] 図 2に示すように、貯湯槽 12と放熱器 16と第 1の循環ポンプ 20は、図 1の冷凍サイ クル装置 10と同様、ループ状に接続されている力 放熱器 16は電磁弁 23を介して 給水源 24にも接続されている。また、第 1の循環ポンプ 20は逆止弁 26と三方弁 27を 介して貯湯槽 12に接続されるとともに、三方弁 27はさらに給湯負荷ユニット 13に接 続されている。また、三方弁 27と給湯負荷ユニット 13間の配管は、貯湯槽 12と第 2の 循環ポンプ 22とを接続する配管に接続されるとともに、放熱器 16と電磁弁 23とを接 続する配管に開閉弁 28を介して接続されている。 FIG. 2 shows a modified example 10A of the refrigeration cycle apparatus 10 shown in FIG. 1, and this refrigeration cycle apparatus 10A has a configuration suitable when the capacity of the hot water tank 12 is relatively small. Hereinafter, differences between this refrigeration cycle apparatus 10A and the above-described refrigeration cycle apparatus 10 will be described. [0024] As shown in Fig. 2, the hot water tank 12, the radiator 16, and the first circulation pump 20 are connected in a loop like the refrigeration cycle device 10 of Fig. 1. It is also connected to the water supply 24 via a valve 23. The first circulation pump 20 is connected to the hot water storage tank 12 via a check valve 26 and a three-way valve 27, and the three-way valve 27 is further connected to the hot water supply load unit 13. The pipe between the three-way valve 27 and the hot water supply load unit 13 is connected to the pipe connecting the hot water tank 12 and the second circulation pump 22, and the pipe connecting the radiator 16 and the solenoid valve 23. It is connected via an on-off valve 28.
[0025] 上記構成の冷凍サイクル装置 10Aにおいて、電磁弁 23が開制御されることで貯湯 槽 12に貯水され、第 1の循環ポンプ 20が駆動されて貯湯槽 12に貯留された冷水が 所定の温度まで加熱される。貯湯槽 12に貯留された温水が所定のレベル以下にな ると、電磁弁 23が開制御されて給水源 24から貯湯槽 12に給水されるが、貯湯槽 12 に貯留された温水の全てが給湯負荷ユニット 13で消費された場合、第 1の循環ボン プ 20により放熱器 16から給湯負荷ユニット 13に温水が直接供給されるので、給湯負 荷ユニット 13での温水の使用は可能である。  [0025] In the refrigeration cycle apparatus 10A having the above-described configuration, the solenoid valve 23 is controlled to open to store water in the hot water storage tank 12, and the first circulation pump 20 is driven to store cold water stored in the hot water storage tank 12 with a predetermined amount. Heated to temperature. When the hot water stored in the hot water tank 12 falls below a predetermined level, the solenoid valve 23 is controlled to open and water is supplied from the water supply source 24 to the hot water tank 12, but all of the hot water stored in the hot water tank 12 is lost. When consumed by the hot water supply load unit 13, the hot water is directly supplied from the radiator 16 to the hot water supply load unit 13 by the first circulation pump 20, so that hot water can be used in the hot water supply load unit 13.
[0026] また、蒸発器 19を除霜する必要がある場合も同様に、第 1の循環ポンプ 20により放 熱器 16からの温水が第 2の循環ポンプ 22に供給され、さらに温水冷媒熱交 に温水が直接供給されるので、貯湯槽 12が空になった場合でも、所定の除霜を行う ことができる。  [0026] Similarly, when it is necessary to defrost the evaporator 19, the hot water from the heat radiator 16 is supplied to the second circulation pump 22 by the first circulation pump 20, and the heat exchange of the hot water refrigerant is further performed. Since the hot water is directly supplied to the hot water tank, the predetermined defrosting can be performed even when the hot water tank 12 becomes empty.
[0027] さらに、図 2の冷凍サイクル装置 10Aの場合、給湯負荷ユニット 13で使用される温 水の温度を下げることも可能で、貯湯槽 12から供給される温水あるいは第 1の循環 ポンプ 20により放熱器 16を介して直接供給される温水に加えて、開閉弁 28を開放 することで、給水源 24からの冷水も給湯負荷ユニット 13に供給されるので、所定の温 度まで低下した温水を利用することができる。  Further, in the case of the refrigeration cycle apparatus 10A of FIG. 2, the temperature of the hot water used in the hot water supply load unit 13 can be lowered, and the hot water supplied from the hot water tank 12 or the first circulation pump 20 can be used. In addition to the hot water supplied directly via the radiator 16, by opening the on-off valve 28, cold water from the water supply source 24 is also supplied to the hot water supply load unit 13. Can be used.
[0028] 実際には、三方弁 27、開閉弁 28は開度が調整可能な電磁弁で構成するのが好ま しぐ電磁弁を使用することで上述した操作は自動的に行われる。  [0028] Actually, the above-described operation is automatically performed by using a solenoid valve that is preferably composed of an electromagnetic valve whose opening degree can be adjusted as the three-way valve 27 and the on-off valve 28.
[0029] 温水冷媒熱交 は種々の構造のものを採用できるが、図 3に示される二重管 構造が好ましい。  [0029] The hot water refrigerant heat exchange can employ various structures, but the double tube structure shown in Fig. 3 is preferred.
[0030] さらに詳述すると、図 3に示すように、温水冷媒熱交 を二重管で構成し、内 側の管に冷媒を、外側の管に貯湯槽 12からの温水を対向させて流し、冷媒と温水と の熱交換を行なう構成としている。このように温水と冷媒とを対向して流すと、温水と 冷媒との熱交換効率がよぐ冷媒の温度は均一になりやすい。また温水から冷媒へ の熱伝達率は 100WZm2K〜 15, 000WZm2Kである。 In more detail, as shown in FIG. 3, the hot water refrigerant heat exchange is constituted by a double pipe, The refrigerant is flown in the pipe on the side and the hot water from the hot water storage tank 12 is allowed to flow in the outer pipe so as to exchange heat between the refrigerant and the hot water. When the hot water and the refrigerant are made to flow in this manner, the temperature of the refrigerant having a high heat exchange efficiency between the hot water and the refrigerant tends to be uniform. The heat transfer rate from the hot water to the refrigerant is 100WZm 2 K~ 15, 000WZm 2 K .
[0031] 次に、本発明の第 1の実施の形態の冷凍サイクル装置 10の動作を、縦軸を冷媒の 圧力、横軸を冷媒のェンタルピーで表示した図 4のモリエル線図、および図 1を参照 しながら説明する。 Next, the operation of the refrigeration cycle apparatus 10 according to the first embodiment of the present invention is illustrated by the Mollier diagram of FIG. 4 with the vertical axis representing the refrigerant pressure and the horizontal axis representing the refrigerant enthalpy, and FIG. This will be explained with reference to.
[0032] 図 4のモリエル線図は、冷媒が二酸化炭素の場合であり、飽和曲線 50は冷媒の飽 和液線と飽和蒸気線とを結んだ線を示している。閉サイクル A B C D 51は、大気 温度も高く蒸発圧力も高 ヽ場合で、蒸発器を除霜する必要がな!ヽ場合のモリエル線 図である。図 4で、例えば点 Aのェンタルピーを hAとすると、(hC -hB )が蒸発器 の集熱量、 (hD -hC )が圧縮機の仕事量、 (hD h^)が放熱器の放熱量、(hA -hB )が膨張弁でのェンタルピー減少分である。この閉サイクル A B C D 51は、 図 1の構成において第 2の循環ポンプ 22は停止状態で温水冷媒熱交換器 18には 貯湯槽 12の温水が供給されることはなぐ冷凍サイクル 11で温水を作り、貯湯槽 12 に温水を貯留している。ここで、図 1に示す蒸発器 19は大気から集熱するため、大気 温度に応じてファン風量を適宜設定することで、蒸発器 19における冷媒の蒸発温度 は常に大気温度より通常 3°C〜5°C低くなるように設定されている。  [0032] The Mollier diagram in FIG. 4 shows the case where the refrigerant is carbon dioxide, and the saturation curve 50 shows a line connecting the saturated liquid line and the saturated vapor line. The closed cycle A B C D 51 is a Mollier diagram in the case where the atmospheric temperature is high and the evaporation pressure is high, and it is not necessary to defrost the evaporator. In Figure 4, for example, if the enthalpy at point A is hA, (hC -hB) is the amount of heat collected by the evaporator, (hD -hC) is the amount of work of the compressor, (hD h ^) is the amount of heat released by the radiator, (HA -hB) is the amount of enthalpy reduction at the expansion valve. This closed cycle ABCD 51 creates hot water in the refrigeration cycle 11 in which the second circulation pump 22 is stopped in the configuration of FIG. 1 and the hot water refrigerant heat exchanger 18 is not supplied with the hot water in the hot water tank 12. Hot water is stored in the hot water tank 12. Here, since the evaporator 19 shown in FIG. 1 collects heat from the atmosphere, the refrigerant evaporating temperature in the evaporator 19 is always set to 3 ° C to It is set to be 5 ° C lower.
[0033] 次に、大気温度が低下し蒸発器 19が着霜を始めた場合を説明する。図 4の閉サイ クル A B C D 52は、大気温度が低下し、蒸発温度も低下させて蒸発器 19を除霜 [0033] Next, the case where the atmospheric temperature decreases and the evaporator 19 starts frosting will be described. The closed cycle A B C D 52 in Fig. 4 defrosts the evaporator 19 by lowering the atmospheric temperature and lowering the evaporation temperature.
2 2 2 2 2 2 2 2
する必要がある場合のモリエル線図である。この時、図 1の冷媒温度検出器 21が例 えば 0°C以下を検出すると、第 2の循環ポンプ 22を稼動させ、温水冷媒熱交換器 18 に貯湯槽 12の温水を流し冷媒を加熱して蒸発圧力を上げ、蒸発器 19を除霜しなが ら蒸発器 19で集熱運転を行う。すなわち、蒸発器 19の入口の冷媒を加熱することで 、閉サイクル A B C D 52の運転を、点 B、点じの圧力を上昇させた運転にする。こ  It is a Mollier diagram when it is necessary to do. At this time, for example, when the refrigerant temperature detector 21 in FIG. 1 detects 0 ° C. or less, the second circulation pump 22 is operated, and the hot water in the hot water storage tank 12 is allowed to flow through the hot water refrigerant heat exchanger 18 to heat the refrigerant. Then, evaporating pressure is increased, and the evaporator 19 performs heat collecting operation while defrosting the evaporator 19. That is, by heating the refrigerant at the inlet of the evaporator 19, the operation of the closed cycle ABCD 52 is changed to an operation in which the pressure at point B is increased. This
2 2 2 2 2 2  2 2 2 2 2 2
のように、除霜に伴い蒸発圧力を上げるものの、冷凍サイクル 11は集熱運転を続け るため、温水を継続して作ることができる。  As described above, although evaporating pressure is increased along with defrosting, since the refrigeration cycle 11 continues the heat collecting operation, hot water can be continuously produced.
[0034] さらに具体的に、本発明の第 1の実施の形態の冷凍サイクル装置 10, 10Aの効果 について説明する。以下は、本発明による蒸発器 19の除霜に要する熱量を示すもの で、除霜を行なわないときに生成する霜の量力 その熱量を換算することにする。一 例として、熱交換量 Hが 3.25kWの蒸発器で、その蒸発器通過前の大気の乾球温 度が 7°C、湿球温度が 6°Cで、蒸発器通過後の乾球温度、湿球温度がそれぞれ 2°C となる場合を説明する。まず蒸発器の通過風量 G(m3Zs)は (数 1)より以下の通りで ある。 [0034] More specifically, the effects of the refrigeration cycle apparatuses 10, 10A of the first embodiment of the present invention Will be described. The following shows the amount of heat required for defrosting of the evaporator 19 according to the present invention, and the amount of heat generated when defrosting is not performed. As an example, an evaporator with a heat exchange amount H of 3.25kW, the dry bulb temperature in the atmosphere before passing through the evaporator is 7 ° C, the wet bulb temperature is 6 ° C, and the dry bulb temperature after passing through the evaporator The case where the wet bulb temperature is 2 ° C is explained. First, the flow rate G (m 3 Zs) of the evaporator is as follows from (Equation 1).
[数 1]  [Number 1]
p x Gx Cx厶 t =H  p x Gx Cx 厶 t = H
[0035] ここで p:大気密度( 1.25kgZm3) [0035] where p: atmospheric density (1.25kgZm 3 )
じ:大気比熱(1.008kj/kgK)  J: Specific heat of the atmosphere (1.008kj / kgK)
Δ t:蒸発器通過前後の乾球温度差 (5K)  Δt: Dry bulb temperature difference before and after passing through the evaporator (5K)
H:蒸発器熱交換量 (3.25kW)  H: Evaporator heat exchange (3.25kW)
より、 G = 0.516である。従って着霜量 V (kgZh)は、(数 2)に示す通りである。  From G = 0.516. Therefore, the amount of frost formation V (kgZh) is as shown in (Equation 2).
f  f
[数 2]  [Equation 2]
Vf=p x GxAx x 3600 V f = px GxAx x 3600
[0036] ここで Δχ:蒸発器通過前後の絶対湿度差 (0.00539kg/kg-0.0045kg/kg) より、 V=2.066である。この着霜量 Vを溶かすのに必要な熱量 Q (kjZh)は、(数 f f 1 Here, Δχ: V = 2.066 from the absolute humidity difference (0.00539 kg / kg-0.0045 kg / kg) before and after passing through the evaporator. The amount of heat Q (kjZh) required to melt this amount of frost formation V is (f f 1
3)に示す通りである。 As shown in 3).
[数 3]  [Equation 3]
Q τ = L X V f Q τ = LXV f
[0037] ここで L:氷の潜熱量(350kjZkg) [0037] where L: latent heat of ice (350kjZkg)
より、 Q =723kjZhである。  Therefore, Q = 723kjZh.
[0038] 一方、同様の蒸発器を有する冷凍サイクルでは、放熱器の能力は 4.5kWhである 。従来は着霜を除去するために冷媒の流れを逆にして除霜する力 この除霜中は当 然、温水が生成されない。上述の蒸発器通過前後で大気の乾球温度、湿球温度が それぞれ 7°C、 6°Cから 2°C、 2°Cになる場合では、除霜に要する時間は 1時間当たり 平均 8分である。従って、給湯運転中に温水の生成に寄与しない熱量 Q (kjZh)は 、(数 4)に示す通りである。 [0038] On the other hand, in a refrigeration cycle having a similar evaporator, the capacity of the radiator is 4.5kWh. Conventionally, the defrosting force by reversing the refrigerant flow in order to remove frost is not generated during this defrosting process. When the atmospheric dry bulb temperature and wet bulb temperature change from 7 ° C, 6 ° C to 2 ° C and 2 ° C, respectively, before and after passing through the evaporator, the average time required for defrosting is 8 minutes per hour. It is. Therefore, the amount of heat Q (kjZh) that does not contribute to the generation of hot water during hot water supply operation is (Equation 4)
 Picture
Q 2 = 4 . 5 X ( 8 / 6 0 ) X 3 . 6 X 1 0 3 より、 Q = 2160kjZhである。 From Q 2 = 4.5 X (8/60) X 3.6 X 10 3 , Q = 2160 kjZh.
2  2
[0039] このように、本発明の第 1の実施の形態の冷凍サイクル装置 10, 10Aによれば、蒸 発器 19が着霜しても、温水の生成を継続しながら、温水冷媒熱交換器 18で冷媒を 加熱して除霜することができる。そして、除霜に要する熱量は 723kjZhであり、従来 の冷媒の流れを逆にする除霜運転の場合の温水生成に寄与しない熱量 2160kjZ hの約 1Z3である。  [0039] Thus, according to the refrigeration cycle apparatuses 10 and 10A of the first embodiment of the present invention, even when the evaporator 19 is frosted, hot water refrigerant heat exchange is performed while continuing the generation of hot water. The refrigerant can be defrosted by heating in the vessel 18. The amount of heat required for defrosting is 723 kjZh, which is about 1Z3 of the amount of heat 2160 kjZh that does not contribute to hot water generation in the case of the conventional defrosting operation in which the refrigerant flow is reversed.
[0040] また、蒸発器の近傍に貯湯槽からの温水を循環させて、その蒸発器を加熱する熱 交翻の熱伝達率は、 5WZm2K〜25WZm2Kであり、本発明の温水冷媒熱交換 器は 100WZm2K〜15, 000WZm2Kであるため、本発明の方がはるかに熱伝達 率がよい。従って、本発明の第 1の実施の形態の貯湯槽付き冷凍サイクル装置 10, 10Aの温水冷媒熱交翻18を用いる方が、蒸発器を加熱する熱交翻を用いるよ り熱伝達効率が良いため、除霜に用いる熱量は少なくて済む。 [0040] Further, the heat transfer coefficient of heat exchange for circulating the hot water from the hot water tank in the vicinity of the evaporator and heating the evaporator is 5 WZm 2 K to 25 WZm 2 K, and the hot water refrigerant of the present invention heat exchanger 100WZm 2 K~15, since it is 000WZm 2 K, it is much more heat transfer coefficient towards the present invention. Therefore, it is better to use the hot water refrigerant heat exchange 18 of the refrigeration cycle apparatus 10, 10A with the hot water tank of the first embodiment of the present invention than to use the heat exchange that heats the evaporator. Therefore, the amount of heat used for defrosting is small.
[0041] 図 5は、熱交換器の乾き度に対する冷媒熱伝達率の関係を表す図である (空気調 和,冷凍連合講演会講演論文集、 VOL. 37th; PAGE. 124より引用)。図 5に示す ように、熱交換器入口側 (冷媒乾き度が 0. 2)の方が出口側 (冷媒乾き度が 1)に比べ て冷媒熱伝達率が高ぐ入口側で熱交換を行った方がより高い熱交換量を得ること ができる。  [0041] Figure 5 shows the relationship of the refrigerant heat transfer coefficient to the dryness of the heat exchanger (air conditioning, Proceedings of the Refrigeration Union Lecture, VOL. 37th; PAGE 124). As shown in Fig. 5, heat exchange is performed on the inlet side where the refrigerant heat transfer coefficient is higher on the inlet side of the heat exchanger (refrigerant dryness of 0.2) than on the outlet side (refrigerant dryness of 1). Can obtain a higher amount of heat exchange.
[0042] この理由について説明する。まず、熱交換器入口側 (冷媒乾き度が 0. 2)の方が出 口側 (冷媒乾き度が 1)に比べて冷媒熱伝達率が高い理由は、熱交換器入口側は冷 媒のほとんどが液体であるのに対し、出口は冷媒のほとんどが気体になっていて、液 冷媒の熱伝達率は気体冷媒と比較して数倍高い。しかし、グラフの△のように条件に よっては熱交 入口側のときと出口側のときの局所熱伝達率に大きな差がない場 合もあるが、出口側を越えて冷媒がスーパーヒートされていくと局所熱伝達率は急激 に低下していくため、平均的に局所熱伝達率を高く保っている熱交 入口側に設 置したほうがより高い熱交換量を得ることができる。 [0042] The reason for this will be described. First, the reason why the refrigerant heat transfer rate is higher on the heat exchanger inlet side (refrigerant dryness of 0.2) than on the outlet side (refrigerant dryness of 1) is that the heat exchanger inlet side is Most of them are liquid, but most of the refrigerant is gas at the outlet, and the heat transfer coefficient of liquid refrigerant is several times higher than that of gas refrigerant. However, depending on the conditions as indicated by Δ in the graph, there may be no significant difference in the local heat transfer coefficient between the heat inlet side and the outlet side, but the refrigerant is superheated beyond the outlet side. As the local heat transfer coefficient decreases rapidly, it is installed on the heat inlet side where the local heat transfer coefficient is kept high on average. It is possible to obtain a higher amount of heat exchange when placed.
[0043] 次に、グラフの傾向として乾き度 0. 9付近でピークを持つ理由を説明する。  [0043] Next, the reason why the graph has a peak near a dryness of 0.9 will be described.
その理由は、管内二相流の乾き度に対する流動様式の違いによる。冷媒乾き度が 0. 2付近では、冷媒はほとんど液体の状態であり乾き度が大きくなるにつれて液体と 気体が混ざった状態になり、それに伴い局所熱伝達率も増加していく。そして、いく つかの流動様式の中で環状噴霧流における局所熱伝達率が最も高くなることが知ら れており、図 5の条件においては乾き度が 0. 9付近で環状噴霧流になっていると考 えられるからである。ただし、条件 (管径、熱流束、質量流束等)が違えば環状噴霧流 になる乾き度も変化するため、乾き度 0. 9で必ずピーク値を持つとは限らない。  The reason is due to the difference in flow pattern with respect to the dryness of the two-phase flow in the pipe. When the dryness of the refrigerant is around 0.2, the refrigerant is almost in a liquid state, and as the dryness increases, the liquid and gas are mixed, and the local heat transfer coefficient increases accordingly. It is known that the local heat transfer coefficient in the annular spray flow is the highest among several flow modes. Under the conditions shown in Fig. 5, the annular spray flow is around 0.9. This is because it is considered. However, if the conditions (tube diameter, heat flux, mass flux, etc.) are different, the dryness that results in an annular spray flow also changes, so a dryness of 0.9 does not always have a peak value.
[0044] 以上説明したように、本発明の第 1の実施の形態の冷凍サイクル装置 10, 10Aによ れば、温水の生成を継続しながら、除霜に使用する熱量は少なくて済むため、本来 の給湯の使用量を多くすることができる。  [0044] As described above, according to the refrigeration cycle apparatuses 10 and 10A of the first embodiment of the present invention, the amount of heat used for defrosting can be reduced while continuing the generation of hot water. The original amount of hot water used can be increased.
[0045] また本発明は、蒸発器の入口側に温水冷媒熱交 を設けることによって、十分 な熱交換量を確保することができる。  [0045] Further, in the present invention, a sufficient amount of heat exchange can be secured by providing hot water refrigerant heat exchange on the inlet side of the evaporator.
[0046] なお、本発明の第 1の実施の形態では、蒸発器 19入口の冷媒温度を検知して制 御する方法を示した力 冷媒圧力を検知してその値を制御器 14に入力する方法でも よい。また計測位置も蒸発器入口に限定されることなぐ蒸発器の内部であってもよ い。  In the first embodiment of the present invention, a force indicating a method for detecting and controlling the refrigerant temperature at the inlet of the evaporator 19 is detected and the value is input to the controller 14. The method may be used. Also, the measurement position may be inside the evaporator without being limited to the evaporator inlet.
[0047] 第 2の実施の形態  [0047] Second Embodiment
図 6は、本発明の第 2の実施の形態の貯湯槽付き冷凍サイクル装置 30である。冷 凍サイクル 31は、放熱器 16と膨張弁 17との間に、室内熱交翻32を設けてある以 外は本発明の第 1の実施の形態の冷凍サイクル 11と同様な構成である。本発明の第 2の実施の形態では、同一機能を有する装置については本発明の第 1の実施の形 態と同一番号を使用し、その構成および作用の説明は省略する。  FIG. 6 shows a refrigeration cycle apparatus 30 with a hot water tank according to the second embodiment of the present invention. The refrigeration cycle 31 has the same configuration as the refrigeration cycle 11 of the first embodiment of the present invention except that an indoor heat exchange 32 is provided between the radiator 16 and the expansion valve 17. In the second embodiment of the present invention, devices having the same functions are denoted by the same reference numerals as those in the first embodiment of the present invention, and description of the configuration and operation thereof is omitted.
[0048] 室内熱交 は放熱器 16と膨張弁 17との間の冷媒の経路に設けられ、室内空 気と熱交換して、被暖房室 33を暖房する。また、室内熱交 32と室内空気との熱 交換を促進するため、室内熱交翻32の近傍には送風ファン 34が設けられている。 本発明の第 2の実施の形態では、給湯用の熱交換器である放熱器 16で放熱した冷 媒をさらに室内熱交 32で放熱させる構成としている。このような構成では、放熱 器 16で温水を生成しながら、室内熱交換器 32で被暖房室 33を暖房できる。 [0048] The indoor heat exchange is provided in the refrigerant path between the radiator 16 and the expansion valve 17, and heats the room air to heat the room to be heated 33. In addition, a blower fan 34 is provided in the vicinity of the indoor heat exchanger 32 in order to promote heat exchange between the indoor heat exchanger 32 and the indoor air. In the second embodiment of the present invention, the cooling heat radiated by the radiator 16 which is a heat exchanger for hot water supply is used. The medium is further radiated by indoor heat exchange 32. In such a configuration, the heated room 33 can be heated by the indoor heat exchanger 32 while hot water is generated by the radiator 16.
[0049] 次に、本発明の第 2の実施の形態の冷凍サイクル装置 30の動作を説明する。大気 温度が低下すると、蒸発器 19に着霜する可能性があるので、着霜が生じているかど うかを冷媒温度検出器 21で検知し、冷媒温度検知器 21が所定の温度以下を検知 する (蒸発器 19に着霜が生じ始める)と、第 2の循環ポンプ 22を稼動させ、温水冷媒 熱交 18に貯湯槽 12の温水を流す。その結果、蒸発器 19は着霜が続くことなく 集熱運転を継続でき、放熱器 16で温水を生成しながら、室内熱交換器 32で被暖房 室 33の暖房を続けることができる。  [0049] Next, the operation of the refrigeration cycle apparatus 30 according to the second embodiment of the present invention will be described. If the atmospheric temperature decreases, the evaporator 19 may be frosted. Therefore, the refrigerant temperature detector 21 detects whether frost has been formed, and the refrigerant temperature detector 21 detects a predetermined temperature or lower. (When frosting begins to occur in the evaporator 19), the second circulation pump 22 is operated, and the hot water in the hot water storage tank 12 is caused to flow through the hot water refrigerant heat exchanger 18. As a result, the evaporator 19 can continue the heat collecting operation without frost formation, and the indoor heat exchanger 32 can continue to heat the heated room 33 while the radiator 16 generates hot water.
[0050] 着霜時は、従来の暖房を行なう冷凍サイクル装置では除霜運転を行い、除霜運転 中は冷風を室内に送らな 、ように室内熱交翻近傍の送風ファンを停止させて 、た 。このように、従来は除霜運転時は完全に暖房運転が停止するため、使用者に不***を与えていたが、本発明の第 2の実施の形態によれば、暖房運転を停止させること はな!ヽので使用者にこのような不'|~夬感を与えることはな 、。  [0050] During frost formation, a conventional refrigeration cycle apparatus that performs heating performs a defrosting operation, and during the defrosting operation, cool air is not sent indoors, so that the blower fan near the indoor heat exchange is stopped, The As described above, since the heating operation is completely stopped during the defrosting operation in the past, the user is uncomfortable, but according to the second embodiment of the present invention, the heating operation is stopped. Hana! ヽ so don't give the user such a bad feeling.
[0051] なお、図 6の構成では、室内熱交換器 32を放熱器 16の下流側に直列に設けてい るが、室内熱交翻 32を放熱器 16の上流側に直列に設けてもよい。  [0051] In the configuration of FIG. 6, the indoor heat exchanger 32 is provided in series on the downstream side of the radiator 16, but the indoor heat exchanger 32 may be provided in series on the upstream side of the radiator 16. .
[0052] このように室内熱交 を放熱器 16と直列に接続することで、上述したように、 放熱器 16で温水を生成しながら、室内熱交換器 32で被暖房室 33を暖房できるが、 上流側の機器 (放熱器 16あるいは室内熱交翻 32)の能力は十分に発揮できるも のの、下流側の機器 (室内熱交 あるいは放熱器 16)の能力が低下する(被カロ 熱流体を十分に加熱できない)ので、温水生成と暖房を同時に行わない使用方法が より効果的である。  [0052] By connecting the indoor heat exchanger in series with the radiator 16 in this way, the heated room 33 can be heated by the indoor heat exchanger 32 while generating hot water by the radiator 16, as described above. Although the capacity of the upstream equipment (heatsink 16 or indoor heat exchange 32) can be fully demonstrated, the capacity of the downstream equipment (room heat exchange or heatsink 16) is reduced (caloric heat fluid Therefore, it is more effective to use the hot water without heating and heating at the same time.
[0053] すなわち、貯湯槽 12の容量を比較的大きく設定し、例えば、温水は深夜に生成し て貯湯槽 12に貯留する一方、昼間や夜間は必要に応じて暖房運転を行うとともに温 水が必要なときは貯湯槽 12内に貯留された温水を使用すればよい。  [0053] That is, the capacity of the hot water tank 12 is set to be relatively large. For example, hot water is generated at midnight and stored in the hot water tank 12, while heating operation is performed during daytime and nighttime as needed and the hot water is stored. When necessary, hot water stored in the hot water tank 12 may be used.
[0054] この場合、放熱器 16と室内熱交 32の同時運転を行うことがなぐ図 1あるいは 図 2の構成に新たに室内熱交換器 32を追加するだけでよいので、大幅なコストアツ プを惹起することがないばかりか、装置の大型化を抑制することができる。 [0055] なお、放熱器 16と室内熱交換器 32の両方の能力を十分に確保した状態 (被加熱 流体を十分に加熱できる状態)で温水生成と暖房を同時に行いたい場合には、図 7 に示されるように、圧縮機 15から膨張弁 17に向力 冷媒の経路中に、室内熱交翻 32と放熱器 16とを並列に接続すればよい。また、放熱器 16の一部を室内熱交翻 32としてもよい。 [0054] In this case, since it is only necessary to add a new indoor heat exchanger 32 to the configuration shown in Fig. 1 or Fig. 2 where simultaneous operation of the radiator 16 and the indoor heat exchanger 32 is not performed, a significant cost increase is achieved. Not only does this cause an increase in the size of the apparatus. [0055] In the case where it is desired to simultaneously generate hot water and heat in a state where the capabilities of both the radiator 16 and the indoor heat exchanger 32 are sufficiently secured (a state where the heated fluid can be sufficiently heated), FIG. As shown in the figure, the indoor heat exchanger 32 and the radiator 16 may be connected in parallel in the path of the counter-current refrigerant from the compressor 15 to the expansion valve 17. Further, a part of the radiator 16 may be used as the indoor heat exchanger 32.
[0056] この場合、 2台以上の圧縮機を並列に接続するなどして所定の冷媒循環量を確保 するのが好ましい。  [0056] In this case, it is preferable to secure a predetermined refrigerant circulation amount by connecting two or more compressors in parallel.
[0057] また、図 6あるいは図 7に示される室内熱交^^ 32を図 2に示される冷凍サイクル 装置に設ける構成も勿論可能である。  Further, it is of course possible to provide the indoor heat exchanger 32 shown in FIG. 6 or FIG. 7 in the refrigeration cycle apparatus shown in FIG.
[0058] さらに、本発明の第 2の実施の形態では、暖房運転のみを行える冷凍サイクルを示 したが、四方弁等を用い冷暖房の両運転を行える冷凍サイクルにも適用できることは[0058] Furthermore, in the second embodiment of the present invention, a refrigeration cycle capable of performing only heating operation has been described. However, the present invention can also be applied to a refrigeration cycle capable of performing both cooling and heating operations using a four-way valve or the like.
、言うまでもない。 Needless to say.
[0059] また、上述した第 1および第 2の実施の形態では、着霜検出手段として冷媒温度検 出器 21を採用し、冷媒温度検出器 21で計測した冷媒の蒸発温度が所定の値以下 になると、蒸発器 19に着霜していると判断し、第 2の循環ポンプ 22を稼動させて温水 冷媒熱交換器 18で冷媒を加熱するようにしたが、冷媒温度検出器 21に代えて以下 のような検出器を着霜検出手段として採用することもできる。  In the first and second embodiments described above, the refrigerant temperature detector 21 is employed as the frost detection means, and the evaporation temperature of the refrigerant measured by the refrigerant temperature detector 21 is equal to or less than a predetermined value. Then, it is determined that the evaporator 19 is frosted and the second circulation pump 22 is operated to heat the refrigerant with the hot water refrigerant heat exchanger 18, but the refrigerant temperature detector 21 is used instead. The following detectors can also be employed as the frost detection means.
•蒸発器 19の配管温度検出器  • Evaporator 19 piping temperature detector
配管温度検出器で計測した配管温度が所定の値以下になると、着霜していると 判断する。  When the pipe temperature measured by the pipe temperature detector falls below the specified value, it is judged that frost is formed.
'蒸発器 19のフィン温度検出器  'Evaporator 19 fin temperature detector
フィン温度検出器で計測したフィン温度が所定の値以下になると、着霜して 、ると 判断する。  When the fin temperature measured by the fin temperature detector falls below a predetermined value, it is determined that frosting has occurred.
•蒸発器 19における冷媒圧力検出器  • Refrigerant pressure detector in evaporator 19
冷媒圧力検出器で計測した冷媒圧力が所定の値以下になると、着霜していると 判断する。  When the refrigerant pressure measured by the refrigerant pressure detector falls below a predetermined value, it is determined that frost is formed.
•蒸発器 19を通過する空気の蒸発器 19前後の風量差を検出する手段  • Means to detect the difference in air volume before and after the evaporator 19 of the air passing through the evaporator 19
風量差検出手段で計測した蒸発器 19前後の風量差が所定の値以下になると、 着霜していると判断する。 When the airflow difference before and after the evaporator 19 measured by the airflow difference detection means is below a predetermined value, Judged to be frosting.
•蒸発器 19を通過する空気の蒸発器 19前後の圧力損失を検出する手段  • Means to detect the pressure loss before and after the evaporator 19 of the air passing through the evaporator 19
圧力損失検出手段で計測した蒸発器 19前後の圧力損失が所定の値以上になる と、着霜していると判断する。  When the pressure loss before and after the evaporator 19 measured by the pressure loss detection means exceeds a predetermined value, it is determined that frost is formed.
[0060] また、本発明の第 1および第 2の実施の形態では、膨張機構として膨張弁を使用し ているが、電動機を駆動源とする膨張機であってもよい。 [0060] In the first and second embodiments of the present invention, an expansion valve is used as an expansion mechanism, but an expansion machine using an electric motor as a drive source may be used.
産業上の利用可能性  Industrial applicability
[0061] 本発明に力かる貯湯槽付き冷凍サイクル装置は、除霜のための貯湯槽の温水の使 用量を少なくして本来の給湯の使用量を多くでき、貯湯槽付きの給湯装置や給湯暖 房装置等として有用である。 [0061] The refrigeration cycle apparatus with a hot water tank that is effective in the present invention can reduce the amount of hot water used in the hot water tank for defrosting and increase the amount of original hot water supply. It is useful as a heating device.

Claims

請求の範囲 The scope of the claims
[1] 冷媒を圧縮する圧縮機と、  [1] a compressor for compressing the refrigerant;
前記圧縮機で圧縮された冷媒と水とを熱交換させ使用端末に温水を供給する放熱 器と、  A radiator that exchanges heat between the refrigerant compressed by the compressor and water and supplies hot water to a terminal used;
前記放熱器で放熱された冷媒の圧力を低下させる膨張機構と、  An expansion mechanism that reduces the pressure of the refrigerant radiated by the radiator;
前記膨張機構で低下させた冷媒を蒸発させる蒸発器と、  An evaporator for evaporating the refrigerant lowered by the expansion mechanism;
を冷媒経路で接続し、  Connected by refrigerant path,
前記膨張機構と前記蒸発器間の冷媒経路に、温水と冷媒とを熱交換する温水冷媒 熱交換器を設けた冷凍サイクル装置。  A refrigeration cycle apparatus provided with a hot water refrigerant heat exchanger for exchanging heat between hot water and refrigerant in a refrigerant path between the expansion mechanism and the evaporator.
[2] 前記蒸発器に着霜検出手段を設け、前記着霜検出手段で前記蒸発器の着霜を検 出すると前記温水冷媒熱交換器に温水を流すようにした請求項 1に記載の冷凍サイ クル装置。  [2] The refrigeration according to claim 1, wherein the evaporator is provided with frost detection means, and when the frost detection means detects frost formation on the evaporator, hot water is allowed to flow through the hot water refrigerant heat exchanger. Cycle equipment.
[3] 前記着霜検出手段として前記蒸発器に冷媒の温度を検出する冷媒温度検出器を 設け、前記冷媒温度検出器で検出された冷媒の温度が所定温度以下になると前記 温水冷媒熱交換器に温水を流すようにした請求項 2に記載の冷凍サイクル装置。  [3] The refrigerant temperature detector for detecting the temperature of the refrigerant is provided in the evaporator as the frosting detection means, and the hot water refrigerant heat exchanger is detected when the temperature of the refrigerant detected by the refrigerant temperature detector is equal to or lower than a predetermined temperature. 3. The refrigeration cycle apparatus according to claim 2, wherein warm water is allowed to flow through.
[4] 前記放熱器と前記膨張機構間の冷媒経路に冷媒と室内空気とを熱交換する室内 熱交換器を設けた請求項 2に記載の冷凍サイクル装置。  4. The refrigeration cycle apparatus according to claim 2, wherein an indoor heat exchanger for exchanging heat between the refrigerant and room air is provided in a refrigerant path between the radiator and the expansion mechanism.
PCT/JP2006/306686 2005-04-25 2006-03-30 Refrigeration cycle device WO2006114983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005126035A JP2008170015A (en) 2005-04-25 2005-04-25 Refrigeration cycle device with warm water container
JP2005-126035 2005-04-25

Publications (1)

Publication Number Publication Date
WO2006114983A1 true WO2006114983A1 (en) 2006-11-02

Family

ID=37214611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306686 WO2006114983A1 (en) 2005-04-25 2006-03-30 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP2008170015A (en)
WO (1) WO2006114983A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101504210B (en) * 2009-03-17 2011-07-20 贝莱特空调有限公司 Six-in-one air-cooling heat pump unit
EP2458304A3 (en) * 2010-11-24 2014-06-18 Glen Dimplex Deutschland GmbH Heat pump assembly comprising a heat pump and method for operating such a heat pump assembly
EP2918921A1 (en) * 2014-03-12 2015-09-16 Panasonic Intellectual Property Management Co., Ltd. Hot water generator
EP2375195A4 (en) * 2009-01-05 2016-08-24 Mitsubishi Electric Corp Heat pump type water heater
EP4048958A4 (en) * 2019-10-25 2023-08-30 M.E.D. Energy Inc. Method for thermal energy transmission using water and carbon dioxide

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091129A (en) * 2008-10-03 2010-04-22 Daikin Ind Ltd Heat exchanger and water heating system
JP5816422B2 (en) * 2010-08-27 2015-11-18 日立アプライアンス株式会社 Waste heat utilization system of refrigeration equipment
JP2012207915A (en) * 2012-07-30 2012-10-25 Daikin Industries Ltd Heat exchanger and hot water system
JP6297072B2 (en) * 2014-02-10 2018-03-20 三菱電機株式会社 Heat pump type water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277181A (en) * 1988-04-28 1989-11-07 M T Akua:Kk Space cooling hot water supply device, space heating hot water supply device and cooling/heating hot water supply device
JPH0875272A (en) * 1994-08-31 1996-03-19 Tokyo Gas Co Ltd Air conditioner
JP2004108597A (en) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Heat pump system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277181A (en) * 1988-04-28 1989-11-07 M T Akua:Kk Space cooling hot water supply device, space heating hot water supply device and cooling/heating hot water supply device
JPH0875272A (en) * 1994-08-31 1996-03-19 Tokyo Gas Co Ltd Air conditioner
JP2004108597A (en) * 2002-09-13 2004-04-08 Mitsubishi Electric Corp Heat pump system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375195A4 (en) * 2009-01-05 2016-08-24 Mitsubishi Electric Corp Heat pump type water heater
CN101504210B (en) * 2009-03-17 2011-07-20 贝莱特空调有限公司 Six-in-one air-cooling heat pump unit
EP2458304A3 (en) * 2010-11-24 2014-06-18 Glen Dimplex Deutschland GmbH Heat pump assembly comprising a heat pump and method for operating such a heat pump assembly
EP2918921A1 (en) * 2014-03-12 2015-09-16 Panasonic Intellectual Property Management Co., Ltd. Hot water generator
EP4048958A4 (en) * 2019-10-25 2023-08-30 M.E.D. Energy Inc. Method for thermal energy transmission using water and carbon dioxide

Also Published As

Publication number Publication date
JP2008170015A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
WO2006114983A1 (en) Refrigeration cycle device
CN107514683A (en) Air conditioner and its indoor set automatically cleaning control method
CN107525220A (en) Air conditioner and its outdoor unit automatically cleaning control method
JP4975076B2 (en) Defrosting device and defrosting method
JP6602403B2 (en) Refrigeration cycle equipment
CN108072214A (en) Air-conditioning device and its control method
KR101576366B1 (en) Air conditioner testing apparatus
JP2008121982A (en) Refrigerating cycle device
JP2001280769A (en) Method and apparatus for controlling defrosting of reversible heat pump device
JP3956674B2 (en) Refrigerant circuit
JP3410859B2 (en) Air conditioner
US7222496B2 (en) Heat pump type air conditioner having an improved defrosting structure and defrosting method for the same
Wang et al. Investigation of air cooler fan start-up delay in liquid refrigerant defrosting system
JP2010085004A (en) Heat pump water heater and method for defrosting the heat pump water heater
JP3737357B2 (en) Water heater
JP6465332B2 (en) Heat pump hot water supply system
JP4372361B2 (en) Heat pump water heater
JP2014190641A (en) Air conditioner
JPH08303903A (en) Defrosting device of air conditioner and its control method
CN112444004A (en) Air conditioning device
JP3457697B2 (en) Air conditioner
JP6327499B2 (en) Heat pump water heater
JPH1054617A (en) Air conditioner
KR200405714Y1 (en) Heat-pump type heating apparatus
KR20100088378A (en) Air conditioner and defrosting driving method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP