JP3209780B2 - Method for producing fiber-reinforced thermoplastic resin sandwich plate - Google Patents

Method for producing fiber-reinforced thermoplastic resin sandwich plate

Info

Publication number
JP3209780B2
JP3209780B2 JP03233992A JP3233992A JP3209780B2 JP 3209780 B2 JP3209780 B2 JP 3209780B2 JP 03233992 A JP03233992 A JP 03233992A JP 3233992 A JP3233992 A JP 3233992A JP 3209780 B2 JP3209780 B2 JP 3209780B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
reinforcing fiber
heat
core material
fiber fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03233992A
Other languages
Japanese (ja)
Other versions
JPH05229021A (en
Inventor
学 安田
稔之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP03233992A priority Critical patent/JP3209780B2/en
Publication of JPH05229021A publication Critical patent/JPH05229021A/en
Application granted granted Critical
Publication of JP3209780B2 publication Critical patent/JP3209780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、加熱による後賦型が可
能で、かつ、軽量なサンドイッチ構造体の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lightweight sandwich structure which can be post-shaped by heating.

【0002】[0002]

【従来の技術】サンドイッチ構造体は、軽量で、剛性が
高く、断熱性、遮音性に優れているため、航空機、船
舶、大型車両、高層建築物、および、一般産業用途に多
く用いられている。サンドイッチ構造体は、表面材と芯
材、そして、多くの場合、その二つを接着しているシー
ト状接着剤から構成されている。表面材には、多くの場
合、繊維強化樹脂が用いられており、芯材には、アルミ
ハニカム、アラミドハニカム等のハニカム材や熱硬化
性、または、熱可塑性発泡体が用いられている。
2. Description of the Related Art Sandwich structures are lightweight, have high rigidity, and are excellent in heat insulation and sound insulation, so that they are widely used in aircraft, ships, large vehicles, high-rise buildings, and general industrial applications. . The sandwich structure is composed of a surface material, a core material, and, in many cases, a sheet-like adhesive bonding the two. In many cases, a fiber reinforced resin is used for the surface material, and a honeycomb material such as an aluminum honeycomb or an aramid honeycomb, a thermosetting material, or a thermoplastic foam is used for the core material.

【0003】[0003]

【発明が解決しようとする課題】従来、このようなサン
ドイッチ構造体の製造は、繊維強化熱硬化性樹脂を表面
材として、次のような方法で行われている。 コーキュアー法(未硬化の表面材を芯材の上に積層
し、表面材の硬化と接着を同時に行う。) 2段階硬化法(硬化した表面材に芯材を接着剤により
接着する) コーキュアー+接着剤法(芯材上に接着剤層を設け、
その上に未硬化の表面材を積層し、表面材の硬化と接着
を同時に行う。) しかし、〜の方法では、表面材の硬化、接着剤の硬
化を伴うため、効率的、連続的にサンドイッチ板を製造
することは難しい。また、表面材、接着剤層が熱硬化性
樹脂であるため、サンドイッチ化した後、賦型すること
は非常に難しい。
Conventionally, the production of such a sandwich structure has been carried out by using a fiber-reinforced thermosetting resin as a surface material in the following manner. Cocure method (Laminate the uncured surface material on the core material and simultaneously cure and bond the surface material.) Two-stage curing method (Adhere the core material to the cured surface material with an adhesive) Agent method (providing an adhesive layer on the core material,
An uncured surface material is laminated thereon, and curing and adhesion of the surface material are performed simultaneously. However, the methods (1) to (4) involve curing of the surface material and curing of the adhesive, so that it is difficult to efficiently and continuously produce a sandwich plate. In addition, since the surface material and the adhesive layer are thermosetting resins, it is very difficult to shape after sandwiching.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
熱賦型可能なサンドイッチ構造体を効率的、連続的に製
造する方法について鋭意検討を行い、本発明に到達し
た。本発明は上記の課題を解決しようとするもので、そ
の要旨とするところは、粘度が10から104センチポ
イズの範囲にある常温または加熱重合性熱可塑性樹脂前
駆体と強化繊維ファブリックとを接触させ、前記強化繊
維ファブリックに前記樹脂前駆体が含浸した繊維強化熱
可塑性樹脂前駆体を芯材の上下、または、全面に接着し
て、これを室温および/または加熱により重合硬化させ
ることを特徴とする、熱賦型可能な繊維強化熱可塑性樹
脂サンドイッチ構造体の製造方法にある。
Means for Solving the Problems Accordingly, the present inventors have:
The present inventors have conducted intensive studies on a method of efficiently and continuously producing a sandwich structure that can be thermally shaped, and have reached the present invention. The present invention is intended to solve the above problems, and the gist of the present invention is to bring a reinforcing fiber fabric into contact with a room temperature or heat polymerizable thermoplastic resin precursor having a viscosity in the range of 10 to 10 4 centipoise. And bonding the fiber reinforced thermoplastic resin precursor impregnated with the resin precursor to the reinforcing fiber fabric to the upper, lower, or entire surface of the core material, and polymerizing and curing this at room temperature and / or heating. And a method for producing a fiber-reinforced thermoplastic resin sandwich structure that can be thermally shaped.

【0005】また、本発明の製造方法においては、下記
の操作を順次行うことが好ましい。 (A)常温または加熱重合硬化性熱可塑性樹脂前駆体と
硬化剤からなる樹脂前駆体組成物と強化繊維ファブリッ
クとを連続的に接触させ、強化繊維ファブリックに該組
成物が付着した付着物を得ること。 (B)芯材の両面または片面に前記付着物を連続方向に
張力をかけつつ、接触し、芯材の両面あるいは片面に前
記付着物から成る層を形成すること。 (C)(B)で得られた付着物形成芯材の上下から通気
性の少ないフィルムで挟持しつつ、移送すること。 (D)前記のフィルムに挟持した状態で1対以上のロー
ラーにより前記付着物から成る層の厚みを減少すること
によって押圧を加え、樹脂組成物が強化繊維ファブリッ
クの横断面にわたって含浸すると同時に芯材と強化繊維
ファブリック間に接着に必要な樹脂を供給すること。 (E)前記含浸物中の樹脂の硬化後、フィルムを剥離し
て、硬化したサンドイッチ状物を得ること。
[0005] In the production method of the present invention, it is preferable to sequentially perform the following operations. (A) A resin precursor composition composed of a room temperature or heat polymerization curable thermoplastic resin precursor and a curing agent and a reinforcing fiber fabric are continuously brought into contact with each other to obtain an adhered substance having the composition adhered to the reinforcing fiber fabric. thing. (B) contacting the attached material on both sides or one surface of the core material while applying tension in a continuous direction to form a layer composed of the attached material on both surfaces or one surface of the core material; (C) Transfer while sandwiching the core material obtained in (B) from above and below with a film having low air permeability. (D) a pressure is applied by reducing the thickness of the layer comprising the deposits by one or more rollers while being sandwiched between the films, so that the resin composition is impregnated over the cross section of the reinforcing fiber fabric, and at the same time the core material is impregnated. To supply the resin required for bonding between the reinforced fiber fabric. (E) After curing the resin in the impregnated material, the film is peeled off to obtain a cured sandwich-like material.

【0006】本発明によれば、前記の(A)項におい
て、樹脂組成を適正化することにより強化繊維ファブリ
ック中に含浸するのに十分な粘度を付与されており、
(B)、(C)、(D)項において、前記フィルム越し
に押圧を加えることにより強化繊維ファブリックの空隙
が前記樹脂前駆体組成物で完全に満たされた状態が実現
され、かつ、芯材との間に接着に必要な樹脂前駆体が供
給される。そして、(E)項に記載した方法により樹脂
前駆体組成物が硬化し、強化繊維ファブリックと芯材と
の一体化がなされる。
According to the present invention, in the above item (A), a viscosity sufficient for impregnating the reinforcing fiber fabric is provided by optimizing the resin composition,
In (B), (C) and (D), a state in which the voids of the reinforcing fiber fabric are completely filled with the resin precursor composition is realized by applying pressure through the film, and the core material A resin precursor required for adhesion is supplied between the two. Then, the resin precursor composition is cured by the method described in (E), and the reinforcing fiber fabric and the core material are integrated.

【0007】(A)項で使用される樹脂前駆体組成物は
低粘度組成物であり、かつ非反応性の溶剤を含まないた
め、容易に完全な含浸がなされ、かつ、空孔がない製品
が得られる。
The resin precursor composition used in the item (A) is a low-viscosity composition and does not contain a non-reactive solvent, so that it is easily impregnated completely and has no voids. Is obtained.

【0008】以下、本発明の詳細を具体的に説明する。
本発明に使用する強化繊維ファブリックとは、高弾性、
高強度の繊維からなる織布、一方向繊維束、チョップ、
ランダムストランドマット、または、これらを組み合わ
せたものであって、繊維としては、炭素繊維、ガラス繊
維、炭化珪素繊維、アルミナ繊維、金属繊維等の無機繊
維、アラミド繊維、ポリエチレン繊維、ポリイミド繊維
等の有機繊維が使用される。これらの2種以上の繊維を
組み合わせて使用することもできる。また、これらの強
化繊維と樹脂との密着性を改良するため、各種の表面処
理を施すこともできる。
Hereinafter, the present invention will be described in detail.
The reinforcing fiber fabric used in the present invention has high elasticity,
Woven fabric made of high-strength fibers, unidirectional fiber bundles, chops,
Random strand mats, or a combination thereof, wherein the fibers are carbon fibers, glass fibers, silicon carbide fibers, alumina fibers, inorganic fibers such as metal fibers, and aramid fibers, polyethylene fibers, and organic fibers such as polyimide fibers. Fiber is used. These two or more kinds of fibers can be used in combination. Various surface treatments can also be applied to improve the adhesion between these reinforcing fibers and the resin.

【0009】本発明に用いる常温または加熱重合性熱可
塑性樹脂前駆体とは、非反応性の溶剤を含まず、繊維束
間に含浸した後、常温または加熱によって重合する、い
わゆるキャスティング法、反応射出成形法使用される樹
脂前駆体であれば良い。このような常温または加熱重合
性熱可塑性樹脂前駆体の一例としては、メタクリル酸ア
ルキルエステルおよび/またはアクリル酸アルキルエス
テルとこれらに溶解する熱可塑性重合体を主成分とし、
レドックス反応により重合するアクリル樹脂前駆体や溶
融したω−ラクタム類とポリエーテルを主成分とし、ア
ルカリ重合法によって重合するナイロン樹脂前駆体等が
挙げられる。硬化剤としては、ベンゾイルパーオキサイ
ド、メチルエチルケトンパーオキサイド等の有機過酸化
物、アゾビスイソブチロニトリル、アゾビスイソ酪酸メ
チル等のアゾ系開始剤が用いられる。硬化促進剤として
は、ナフテン酸コバルト、オクチル酸コバルト等の金属
石鹸やジメチルトルイジン等の芳香族3級アミン等が用
いられる。得られた硬化物は、体無機酸、耐有機酸、耐
アルカリの耐薬品性、耐候性等に優れた特徴を持つ、成
形性に優れた熱可塑性樹脂である。
The room temperature or heat-polymerizable thermoplastic resin precursor used in the present invention does not contain a non-reactive solvent, is impregnated between fiber bundles, and is polymerized at room temperature or by heating. Any resin precursor used in the molding method may be used. As an example of such a room temperature or heat polymerizable thermoplastic resin precursor, the main component is a methacrylic acid alkyl ester and / or an alkyl acrylate and a thermoplastic polymer dissolved therein.
Examples include an acrylic resin precursor polymerized by a redox reaction, and a nylon resin precursor containing molten ω-lactams and polyether as main components and polymerized by an alkali polymerization method. As the curing agent, organic peroxides such as benzoyl peroxide and methyl ethyl ketone peroxide, and azo initiators such as azobisisobutyronitrile and methyl azobisisobutyrate are used. As the curing accelerator, metal soaps such as cobalt naphthenate and cobalt octylate, and aromatic tertiary amines such as dimethyl toluidine are used. The obtained cured product is a thermoplastic resin excellent in moldability, having characteristics such as chemical resistance of body inorganic acid, organic acid resistance, and alkali resistance, and weather resistance.

【0010】また、前記の常温または加熱重合性熱可塑
性樹脂前駆体の組成物以外に、樹脂の特性を改善するた
めの種々の添加剤、例えば、耐熱剤、耐候剤、帯電防止
剤、潤滑剤、離型剤、染料、顔料、消泡剤、脱酸素剤、
難燃剤及び各種フィラーなどを含有させてもよい。
In addition to the above-mentioned composition of the room temperature or heat polymerizable thermoplastic resin precursor, various additives for improving the properties of the resin, for example, a heat-resistant agent, a weather-resistant agent, an antistatic agent, a lubricant , Release agent, dye, pigment, defoamer, oxygen absorber,
A flame retardant and various fillers may be contained.

【0011】本発明の前記(A)項において、強化繊維
ファブリックに樹脂前駆体組成物を連続的に接触させ、
強化繊維ファブリックに樹脂前駆体組成物が付着した付
着物を得る方法には特に制限がないが、たとえば、下記
の方法が用いられる。 (1)組成物の浴中に強化繊維ファブリックを浸漬また
は通過させる方法。 (2)1対以上のロールの上に樹脂溜りを設け、その中
を強化繊維ファブリックを通過させる方法。 (3)樹脂前駆体組成物をフィルム状に所定の目付けの
塗膜とし、その上に強化繊維ファブリックを重ねる方
法。
[0011] In the above item (A) of the present invention, the resin precursor composition is brought into continuous contact with the reinforcing fiber fabric,
There is no particular limitation on the method for obtaining the adhered substance in which the resin precursor composition has adhered to the reinforcing fiber fabric. For example, the following method is used. (1) A method of dipping or passing a reinforcing fiber fabric into a bath of the composition. (2) A method in which a resin pool is provided on at least one pair of rolls, and a reinforcing fiber fabric is passed through the pool. (3) A method in which a resin precursor composition is formed into a film into a coating film having a predetermined basis weight, and a reinforcing fiber fabric is laminated thereon.

【0012】樹脂前駆体付着物の付着量は、前記の
(D)の方法でロール間の間隙を調節することで強化繊
維の体積分率を10〜70容積%に制御することができ
る。本発明の前記(D)で使用する1対以上のローラー
は(D)項を満足するものであればよく、金属、合成
樹脂製、合成ゴム製、木製、あるいは、それらを組み合
わせた物を使用することができるが、樹脂分が付着した
際、腐食しない材質であることが望ましい。
The amount of the resin precursor deposit can be controlled by adjusting the gap between the rolls by the method (D) to control the volume fraction of the reinforcing fibers to 10 to 70% by volume. The one or more pairs of rollers used in the above (D) of the present invention may be those that satisfy the item (D), and may be made of metal, synthetic resin, synthetic rubber, wood, or a combination thereof. Although it can be used, it is preferable that the material does not corrode when the resin component adheres.

【0013】本発明において、ローラー対で付与する押
圧は、前記付着物層の厚みを減少させる程度に加えるこ
とが重要であり、この条件を満足しない場合には、強化
繊維ファブリックへの樹脂前駆体組成物の十分な含浸が
実現されないし、強化繊維ファブリックと芯材の間にこ
れらを接着するのに必要な樹脂を供給できない。前記付
着物層の厚みの減少は、前記付着物層の10〜80%の
範囲が適当であり、減少が小さすぎる場合には、前述の
ような未含浸、接着不良の原因となり、大きすぎる場合
には、繊維方向の乱れ、損傷、芯材の損傷、樹脂不足を
生じるため好ましくない。
In the present invention, it is important that the pressure applied by the roller pair is applied to such an extent that the thickness of the deposit layer is reduced. If this condition is not satisfied, a resin precursor to the reinforcing fiber fabric is required. Insufficient impregnation of the composition is not achieved and the resin required to bond them between the reinforcing fiber fabric and the core material cannot be supplied. The decrease in the thickness of the deposit layer is suitably in the range of 10 to 80% of the deposit layer. If the decrease is too small, it causes unimpregnation and poor adhesion as described above, and if it is too large. Is undesirable because it causes disturbance in the fiber direction, damage, damage to the core material, and insufficient resin.

【0014】本発明において、強化繊維ファブリックの
連続方向に付与する張力は、強化繊維ファブリックの形
態を維持できる程度に十分強く、樹脂前駆体の含浸を阻
害しない程度に十分、弱い範囲の張力が好ましい。この
前記の張力を付与する方法は、既存の方法を用いればよ
く、例えば、1対以上のロール間に挟持し、張力を付与
する方法、強化繊維ファブリックを供給する際の抵抗、
または、樹脂浴、または、含浸ローラー通過路の抵抗に
より張力を付与する方法等が挙げられる。
In the present invention, the tension applied in the continuous direction of the reinforcing fiber fabric is preferably strong enough to maintain the form of the reinforcing fiber fabric, and sufficient and weak enough not to hinder the impregnation of the resin precursor. . The method of applying the tension may use an existing method, for example, sandwiching between one or more pairs of rolls, a method of applying a tension, a resistance when supplying a reinforcing fiber fabric,
Alternatively, a method of imparting tension by the resistance of a resin bath or a passage of an impregnated roller may be used.

【0015】本発明における、前記(E)における樹脂
成分を硬化する工程は、樹脂成分の性質から室温に放置
したままでもよいが、シート材外部への熱の流出を防ぐ
ため断熱材で覆う、あるいは防爆型のオーブン中で加熱
する等して、硬化を促進することも可能である。
In the step (E) of curing the resin component in the present invention, the resin component may be left at room temperature due to the properties of the resin component, but is covered with a heat insulating material to prevent heat from flowing out of the sheet material. Alternatively, curing can be promoted by heating in an explosion-proof oven or the like.

【0016】[0016]

【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明する。下記例中の『部』は『重量部』を意味す
る。 (実施例1)熱可塑性重合体として、重合平均分子95
000のメタクリル酸メチルホモポリマー19部、メタ
クリル酸メチル81部、硬化促進剤として、ジメチル−
p−トルイジン0.8部からなるアクリル系樹脂混合液
(B型粘度計、20℃90センチポイズ)に硬化触媒と
して、ベンゾイルパーオキシドを樹脂液100部に対し
て、1重量部添加し、常温硬化型アクリル系樹脂液を調
製した。強化繊維ファブリックとして、炭素繊維300
0本を集束してなる炭素繊維トウ(三菱レイヨン製パイ
ロフィル TR40)を製織(12.5本/インチ経緯
糸とも)してなる炭素繊維織布を用意した。芯材とし
て、2mm厚みのメタクリル樹脂板(三菱レイヨン製ア
クリライト−L)を用意した。これから以下の工程を経
て、サンドイッチ板を得た。以下の図1により説明す
る。上記織布1をドクターナイフ2の直前でポリエステ
ルフィルム4上に供給される樹脂成分3と接触させ付着
物とする、一方、上から重ねた芯材とともに移送し、ロ
ーラー対10の直前で、同様な工程を経た付着物を重ね
る。間隙を2.8mmに設定したローラー対10で含浸
し、ついで間隙を2.6mm設定したローラー11でさ
らに含浸を進めた。平坦なガラス板上にこれを26℃の
室温中に40分放置し、硬化を行った。得られたサンド
イッチ板の炭素繊維含有率は、10容積%であり、長さ
方向、幅方向に切断した厚み2.6mmの薄片の端面を
研磨して光学顕微鏡観察を行ったところ、炭素繊維トウ
中への樹脂の含浸は良好であった。また、芯材の樹脂板
と強化繊維ファブリック間にボイド、クラックは見られ
なかった。次に、このサンドイッチ板から切り出した試
験片に対して、ASTM D−790に準じた曲げ試験
を実施したところ、曲げ強度37kg/mm2、曲げ弾
性率2.3ton/mm2と、優れた特性を示した。こ
のサンドイッチ板を180℃に加熱し、曲率半径30m
mの金型を使用して、圧力5kg/cm2で賦型して、
室温に冷却後、取り出し、曲率半径30mmの成形物を
得た。芯材と強化ファブリック層間の剥離は見られなか
った。
The present invention will be described more specifically with reference to the following examples. “Parts” in the following examples means “parts by weight”. (Example 1) As a thermoplastic polymer, a polymerization average molecule of 95 was used.
19 parts of methyl methacrylate homopolymer, 81 parts of methyl methacrylate, and dimethyl- as a curing accelerator.
As a curing catalyst, 1 part by weight of benzoyl peroxide was added to 100 parts of a resin liquid to an acrylic resin mixture liquid (B type viscometer, 20 ° C., 90 centipoise) consisting of 0.8 parts of p-toluidine, and cured at room temperature. An acrylic resin solution was prepared. Carbon fiber 300 as a reinforcing fiber fabric
A carbon fiber woven fabric was prepared by weaving carbon fiber tow (Pyrofil TR40 manufactured by Mitsubishi Rayon Co., Ltd.) obtained by bundling 0 fibers (12.5 fibers / inch warp). A methacrylic resin plate (Acrylite-L manufactured by Mitsubishi Rayon) having a thickness of 2 mm was prepared as a core material. From this, a sandwich plate was obtained through the following steps. This will be described with reference to FIG. Immediately before the doctor knife 2, the woven fabric 1 is brought into contact with the resin component 3 supplied on the polyester film 4 to form an adhered substance. Layers that have passed through various processes. Impregnation was carried out with a roller pair 10 having a gap set to 2.8 mm, and then further impregnation was carried out with a roller 11 having a gap set to 2.6 mm. This was left on a flat glass plate at a room temperature of 26 ° C. for 40 minutes to cure. The obtained sandwich plate had a carbon fiber content of 10% by volume, and the end face of a 2.6 mm thick slice cut in the length and width directions was polished and observed with an optical microscope. The impregnation of the resin therein was good. No voids or cracks were observed between the core resin plate and the reinforcing fiber fabric. Next, a bending test according to ASTM D-790 was performed on the test piece cut out from the sandwich plate, and the bending strength was 37 kg / mm 2 , and the flexural modulus was 2.3 ton / mm 2. showed that. This sandwich plate is heated to 180 ° C. and has a radius of curvature of 30 m.
m using a mold with a pressure of 5 kg / cm 2
After cooling to room temperature, it was taken out to obtain a molded product having a radius of curvature of 30 mm. No delamination between the core material and the reinforced fabric layer was observed.

【0017】(実施例2)芯材を2mm厚の硬質ポリ塩
化ビニル発泡板(比重0.7、曲げ強度2.9kg/m
2)に変更した他は、実施例1と同様な方法でサンド
イッチ板を製作した。得られたサンドイッチ板の炭素繊
維含有率は、10容積%であり、長さ方向、幅方向に切
断した厚み2.6mmの薄片の端面を研磨して光学顕微
鏡観察を行ったところ、炭素繊維トウ中への樹脂の含浸
は良好であった。また、芯材の樹脂板と強化繊維ファブ
リック間にボイド、クラックは見られなかった。次に、
このサンドイッチ板から切り出した試験片に対して、A
STM D−790に準じた曲げ試験を実施したとこ
ろ、曲げ強度24kg/mm2、曲げ弾性率2.3to
n/mm2と、優れた特性を示した。このサンドイッチ
板を180℃に加熱し、曲率半径30mmの金型を使用
して、圧力5kg/cm2で賦型して、室温に冷却後、
取り出し、曲率半径30mmの成形物を得た。芯材と強
化ファブリック層間の剥離は見られなかった。
Example 2 A 2 mm thick rigid polyvinyl chloride foam plate (specific gravity 0.7, bending strength 2.9 kg / m) was used as the core material.
A sandwich plate was manufactured in the same manner as in Example 1 except that the thickness was changed to m 2 ). The obtained sandwich plate had a carbon fiber content of 10% by volume, and the end face of a 2.6 mm thick slice cut in the length and width directions was polished and observed with an optical microscope. The impregnation of the resin therein was good. No voids or cracks were observed between the core resin plate and the reinforcing fiber fabric. next,
A test piece cut out from this sandwich plate
When a bending test according to STM D-790 was performed, the bending strength was 24 kg / mm 2 , and the flexural modulus was 2.3 to.
It exhibited excellent properties of n / mm 2 . This sandwich plate was heated to 180 ° C., molded at a pressure of 5 kg / cm 2 using a mold having a radius of curvature of 30 mm, and cooled to room temperature.
The molded product was taken out and had a radius of curvature of 30 mm. No delamination between the core material and the reinforced fabric layer was observed.

【0018】(比較例1)実施例1と同じ炭素繊維織布
にエポキシ樹脂を含浸した、CFクロス・プリプレグ
(三菱レイヨン製TR3110 340タイプ)を2m
m厚のメタクリル樹脂板の上下面に積層して、130
℃、1時間で硬化・接着し、厚み2.6mmのサンドイ
ッチ板とした。得られたサンドイッチ板の炭素繊維含有
率は、10容積%であり、長さ方向、幅方向に切断した
厚み2.6mmの薄片の端面を研磨して光学顕微鏡観察
を行ったところ、炭素繊維トウ中への樹脂の含浸は良好
であった。また、芯材の樹脂板と強化繊維ファブリック
間にボイド、クラックは見られなかった。このサンドイ
ッチ板を180℃に加熱し、曲率半径30mmの金型を
使用して、圧力5kg/cm2で賦型したが、芯材と強
化ファブリック層間が剥離し、成形品は得られなかっ
た。
Comparative Example 1 CF cloth prepreg (TR3110 340 type, manufactured by Mitsubishi Rayon Co., Ltd.) impregnated with epoxy resin in the same carbon fiber woven fabric as in Example 1 was 2 m in length.
laminated on the upper and lower surfaces of a methacrylic resin plate having a thickness of
The mixture was cured and adhered at 1 ° C. for 1 hour to form a 2.6 mm-thick sandwich plate. The obtained sandwich plate had a carbon fiber content of 10% by volume, and the end face of a 2.6 mm thick slice cut in the length and width directions was polished and observed with an optical microscope. The impregnation of the resin therein was good. No voids or cracks were observed between the core resin plate and the reinforcing fiber fabric. The sandwich plate was heated to 180 ° C. and molded using a mold having a radius of curvature of 30 mm at a pressure of 5 kg / cm 2. However, the core material and the reinforced fabric layer peeled off, and a molded product was not obtained.

【0019】[0019]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で使用する装置の概略図であ
る。
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 強化繊維ファブリック 2 ドクターナイフ 3 樹脂前駆体 4 ポリエステルフィルム 5 強化繊維ファブリック 6 ドクターナイフ ルム 7 樹脂前駆体 8 ポリエステルフィルム 9 芯材 10 ローラー対 11 ローラー対 12 押切りカッター DESCRIPTION OF SYMBOLS 1 Reinforced fiber fabric 2 Doctor knife 3 Resin precursor 4 Polyester film 5 Reinforced fiber fabric 6 Doctor knife Lum 7 Resin precursor 8 Polyester film 9 Core material 10 Roller pair 11 Roller pair 12 Press cutter

フロントページの続き (51)Int.Cl.7 識別記号 FI B32B 27/04 C08J 5/04 C08J 5/04 B29K 105:08 // B29K 105:08 B29L 9:00 B29L 9:00 B29C 67/14 L (58)調査した分野(Int.Cl.7,DB名) B29C 70/00 - 70/88 B29B 15/00 - 15/14 Continued on the front page (51) Int.Cl. 7 Identification code FI B32B 27/04 C08J 5/04 C08J 5/04 B29K 105: 08 // B29K 105: 08 B29L 9:00 B29L 9:00 B29C 67/14 L (58) Field surveyed (Int. Cl. 7 , DB name) B29C 70/00-70/88 B29B 15/00-15/14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 粘度が10から104センチポイズの範
囲にある常温または加熱重合性熱可塑性樹脂前駆体と強
化繊維ファブリックとを接触させ、前記強化繊維ファブ
リックに前記樹脂前駆体が含浸した繊維強化熱可塑性樹
脂前駆体を芯材の上下、または、全面に接着して、これ
を室温および/または加熱により重合硬化させることを
特徴とする、熱賦型可能な繊維強化熱可塑性樹脂サンド
イッチ構造体の製造方法。
1. A fiber reinforced heat treatment in which a room temperature or heat polymerizable thermoplastic resin precursor having a viscosity in the range of 10 to 10 4 centipoise is brought into contact with a reinforcing fiber fabric, and the reinforcing fiber fabric is impregnated with the resin precursor. Manufacturing a heat-moldable fiber-reinforced thermoplastic resin sandwich structure, wherein a thermoplastic resin precursor is adhered to the top, bottom, or entire surface of a core material and polymerized and cured at room temperature and / or heating. Method.
【請求項2】 粘度が10から104センチポイズの範
囲にある常温または加熱重合性熱可塑性樹脂前駆体と強
化繊維ファブリックとを接触させ、前記強化繊維ファブ
リックに前記樹脂前駆体が含浸した繊維強化熱可塑性樹
脂前駆体を芯材の上下、または、全面に接着して、これ
を室温および/または加熱により硬化させ、熱賦型可能
な繊維強化熱可塑性樹脂サンドイッチ構造体を得る際、
下記の操作を順次行うことを特徴とする繊維強化熱可塑
性樹脂サンドイッチ構造体の製造方法; (A)常温または加熱重合硬化性熱可塑性樹脂前駆体と
硬化剤からなる樹脂前駆体組成物と強化繊維ファブリッ
クとを連続的に接触させ、強化繊維ファブリックに該組
成物が付着した付着物を得ること。 (B)芯材の両面または片面に前記付着物を連続方向に
張力をかけつつ、接触し、芯材の両面あるいは片面に前
記付着物から成る層を形成すること。 (C)(B)で得られた付着物形成芯材の上下から通気
性の少ないフィルムで挟持しつつ、移送すること。 (D)前記のフィルムに挟持した状態で1対以上のロー
ラーにより前記付着物から成る層の厚みを減少すること
によって押圧を加え、樹脂組成物が強化繊維ファブリッ
クの横断面にわたって含浸すると同時に芯材と強化繊維
ファブリック間に接着に必要な樹脂を供給すること。 (E)前記含浸物中の樹脂の硬化後、フィルムを剥離し
て、硬化したサンドイッチ状物を得ること。
2. A fiber reinforced heat treatment in which a room temperature or heat polymerizable thermoplastic resin precursor having a viscosity in the range of 10 to 10 4 centipoise is brought into contact with a reinforcing fiber fabric, and the reinforcing fiber fabric is impregnated with the resin precursor. When the thermoplastic resin precursor is adhered to the top and bottom of the core material, or the entire surface, and cured by room temperature and / or heating to obtain a heat-moldable fiber-reinforced thermoplastic resin sandwich structure,
A method for producing a fiber-reinforced thermoplastic resin sandwich structure, characterized by sequentially performing the following operations; (A) a resin precursor composition comprising a room-temperature or heat-polymerizable thermoplastic resin precursor and a curing agent, and a reinforcing fiber Contacting the fabric with the fabric continuously to obtain a deposit of the composition adhering to the reinforcing fiber fabric. (B) contacting the attached material on both sides or one surface of the core material while applying tension in a continuous direction to form a layer composed of the attached material on both surfaces or one surface of the core material; (C) Transfer while sandwiching the core material obtained in (B) from above and below with a film having low air permeability. (D) a pressure is applied by reducing the thickness of the layer comprising the deposits by one or more rollers while being sandwiched between the films, so that the resin composition is impregnated over the cross section of the reinforcing fiber fabric, and the core material is simultaneously To supply the resin required for bonding between the reinforced fiber fabric. (E) After curing the resin in the impregnated material, the film is peeled off to obtain a cured sandwich-like material.
【請求項3】 常温または加熱重合性熱可塑性樹脂前駆
体として、メタクリル酸アルキルエステルおよび/また
はアクリル酸アルキルエステルとこれらに溶解する熱可
塑性重合体を主成分とし、レドックス反応により重合す
るアクリル樹 脂前駆体を用いる請求項1または2記載の
繊維強化熱可塑性樹脂サンドイッチ構造体の製造方法。
3. Precursor of room temperature or heat polymerizable thermoplastic resin
As a body, alkyl methacrylate and / or
Is an acrylic acid alkyl ester and heat-soluble
Polymerized by a redox reaction with a plastic polymer as the main component
That of claim 1, wherein an acryl resins precursor
A method for producing a fiber-reinforced thermoplastic resin sandwich structure.
JP03233992A 1992-02-19 1992-02-19 Method for producing fiber-reinforced thermoplastic resin sandwich plate Expired - Lifetime JP3209780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03233992A JP3209780B2 (en) 1992-02-19 1992-02-19 Method for producing fiber-reinforced thermoplastic resin sandwich plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03233992A JP3209780B2 (en) 1992-02-19 1992-02-19 Method for producing fiber-reinforced thermoplastic resin sandwich plate

Publications (2)

Publication Number Publication Date
JPH05229021A JPH05229021A (en) 1993-09-07
JP3209780B2 true JP3209780B2 (en) 2001-09-17

Family

ID=12356197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03233992A Expired - Lifetime JP3209780B2 (en) 1992-02-19 1992-02-19 Method for producing fiber-reinforced thermoplastic resin sandwich plate

Country Status (1)

Country Link
JP (1) JP3209780B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2981652B1 (en) * 2011-10-21 2015-03-27 Arkema France COMPOSITIONS VIA IN-SITU POLYMERIZATION OF METHACRYLIC THERMOPLASTIC RESINS

Also Published As

Publication number Publication date
JPH05229021A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
AU2005232257B2 (en) Moulding materials
US4443507A (en) Heat-moldable laminate and process for molding said laminated structures
US7179517B2 (en) Sheet moulding compound (SMC) with ventilating structure for entrapped gases
US5770313A (en) Prepreg, composite molded body and method of manufacture of the composite molded body
AU2001293967A1 (en) Sheet moulding compound (SMC) with ventilating structure for entrapped gases
JPWO2008038591A1 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
US11040504B2 (en) Method for producing a multilayer composite material, multilayer composite material obtained by the method and mechanical parts or structures produced with said material
JPH0797465A (en) Prepreg and laminated structure
JPH0575575B2 (en)
JP3209780B2 (en) Method for producing fiber-reinforced thermoplastic resin sandwich plate
JPH05230230A (en) Production of fiber-reinforced thermoplastic resin
JPH0583072B2 (en)
JPH09174547A (en) Composite sheet of carbon fiber reinforced thermoplastic resin, manufacture thereof, and manufacture of molded piece using the sheet
JP3035618B2 (en) Fiber-reinforced thermoplastic resin sheet material and method for producing the same
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP6620255B1 (en) Prepreg and manufacturing method thereof
JP2009226657A (en) Method of manufacturing frp molding having surface gloss
JPS5849378B2 (en) Sekisouhouhou
JPH0740490A (en) Fiber reinforced resin composite material
JPS5871123A (en) Preparation of prepreg
JPH02194949A (en) Thermosetting resin composition
JPH03231808A (en) Manufacture of prepreg sheet
CN118027605A (en) Carbon fiber reinforced thermoplastic epoxy resin prepreg, composite material and recycling method thereof
JPH0550438A (en) Prepreg for resin mold for forming surface layer of resin mold

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11