JPH05229021A - Production of sandwich panel made of fiber reinforced thermoplastic resin - Google Patents

Production of sandwich panel made of fiber reinforced thermoplastic resin

Info

Publication number
JPH05229021A
JPH05229021A JP4032339A JP3233992A JPH05229021A JP H05229021 A JPH05229021 A JP H05229021A JP 4032339 A JP4032339 A JP 4032339A JP 3233992 A JP3233992 A JP 3233992A JP H05229021 A JPH05229021 A JP H05229021A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin precursor
core material
fiber fabric
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4032339A
Other languages
Japanese (ja)
Other versions
JP3209780B2 (en
Inventor
Manabu Yasuda
学 安田
Toshiyuki Ito
稔之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP03233992A priority Critical patent/JP3209780B2/en
Publication of JPH05229021A publication Critical patent/JPH05229021A/en
Application granted granted Critical
Publication of JP3209780B2 publication Critical patent/JP3209780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To efficiently and continuously produce a thermally shapable sandwich structure made of a fiber reinforced thermoplastic resin. CONSTITUTION:A room temp. or heat polymerizable thermoplastic resin precursor whose viscosity is 10-10<4> centipoise and a reinforcing fiber fabric are brought to a contact state and the resin precursor is infiltrated in the fabric to form a fiber reinforced thermoplastic resin precursor. This resin precursor is bonded to the upper and rear entire surfaces of a core material and the whole is polymerized and cured at room temp. or/and at high temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、加熱による後賦型が可
能で、かつ、軽量なサンドイッチ構造体の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a lightweight sandwich structure which can be post-molded by heating.

【0002】[0002]

【従来の技術】サンドイッチ構造体は、軽量で、剛性が
高く、断熱性、遮音性に優れているため、航空機、船
舶、大型車両、高層建築物、および、一般産業用途に多
く用いられている。サンドイッチ構造体は、表面材と芯
材、そして、多くの場合、その二つを接着しているシー
ト状接着剤から構成されている。表面材には、多くの場
合、繊維強化樹脂が用いられており、芯材には、アルミ
ハニカム、アラミドハニカム等のハニカム材や熱硬化
性、または、熱可塑性発泡体が用いられている。
2. Description of the Related Art Since a sandwich structure is lightweight, has high rigidity, and is excellent in heat insulation and sound insulation, it is widely used in aircrafts, ships, large vehicles, high-rise buildings, and general industrial applications. .. The sandwich structure is composed of a surface material, a core material, and, in many cases, a sheet-like adhesive bonding the two. In many cases, a fiber reinforced resin is used as the surface material, and a honeycomb material such as an aluminum honeycomb or an aramid honeycomb, or a thermosetting or thermoplastic foam is used as the core material.

【0003】[0003]

【発明が解決しようとする課題】従来、このようなサン
ドイッチ構造体の製造は、繊維強化熱硬化性樹脂を表面
材として、次のような方法で行われている。 コーキュアー法(未硬化の表面材を芯材の上に積層
し、表面材の硬化と接着を同時に行う。) 2段階硬化法(硬化した表面材に芯材を接着剤により
接着する) コーキュアー+接着剤法(芯材上に接着剤層を設け、
その上に未硬化の表面材を積層し、表面材の硬化と接着
を同時に行う。) しかし、〜の方法では、表面材の硬化、接着剤の硬
化を伴うため、効率的、連続的にサンドイッチ板を製造
することは難しい。また、表面材、接着剤層が熱硬化性
樹脂であるため、サンドイッチ化した後、賦型すること
は非常に難しい。
Conventionally, the production of such a sandwich structure has been carried out by the following method using a fiber-reinforced thermosetting resin as a surface material. Cocure method (Unhardened surface material is laminated on the core material to cure and bond the surface material at the same time.) Two-step curing method (bond the core material to the cured surface material with an adhesive) Cocure + adhesion Agent method (providing an adhesive layer on the core material,
An uncured surface material is laminated thereon, and the surface material is cured and adhered at the same time. However, in the methods (1) to (4), the surface material and the adhesive are hardened, so that it is difficult to efficiently and continuously manufacture the sandwich plate. Further, since the surface material and the adhesive layer are thermosetting resins, it is very difficult to mold them after sandwiching them.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者らは、
熱賦型可能なサンドイッチ構造体を効率的、連続的に製
造する方法について鋭意検討を行い、本発明に到達し
た。本発明は上記の課題を解決しようとするもので、そ
の要旨とするところは、粘度が10から104センチポ
イズの範囲にある常温または加熱重合性熱可塑性樹脂前
駆体と強化繊維ファブリックとを接触させ、前記強化繊
維ファブリックに前記樹脂前駆体が含浸した繊維強化熱
可塑性樹脂前駆体を芯材の上下、または、全面に接着し
て、これを室温または/および加熱により重合硬化させ
ることを特徴とする、熱賦型可能な繊維強化熱可塑性樹
脂サンドイッチ構造体の製造方法にある。
Therefore, the present inventors have
The present invention has been accomplished by earnestly studying a method for efficiently and continuously producing a heat-moldable sandwich structure. The present invention is intended to solve the above problems, and the gist thereof is to bring a reinforced fiber fabric into contact with a room temperature or heat-polymerizable thermoplastic resin precursor having a viscosity in the range of 10 to 10 4 centipoise. Characterized in that the fiber-reinforced thermoplastic resin precursor in which the resin precursor is impregnated in the reinforcing fiber fabric is adhered to the upper and lower sides or the entire surface of the core material, and this is polymerized and cured at room temperature or / and by heating. A method for producing a heat-moldable fiber-reinforced thermoplastic resin sandwich structure.

【0005】また、本発明の製造方法においては、下記
の操作を順次行うことが好ましい。 (A)常温または加熱重合硬化性熱可塑性樹脂前駆体と
硬化剤からなる樹脂前駆体組成物と強化繊維ファブリッ
クとを連続的に接触させ、強化繊維ファブリックに該組
成物が付着した付着物を得ること。 (B)芯材の両面または片面に前記付着物を連続方向に
張力をかけつつ、接触し、芯材の両面あるいは片面に前
記付着物から成る層を形成すること。 (C)(B)で得られた付着物形成芯材の上下から通気
性の少ないフィルムで挟持しつつ、移送すること。 (D)前記のフィルムに挟持した状態で1対以上のロー
ラーにより前記付着物から成る層の厚みを減少すること
によって押圧を加え、樹脂組成物が強化繊維ファブリッ
クの横断面にわたって含浸すると同時に芯材と強化繊維
ファブリック間に接着に必要な樹脂を供給すること。 (E)前記含浸物中の樹脂の硬化後、フィルムを剥離し
て、硬化したサンドイッチ状物を得ること。
In the manufacturing method of the present invention, it is preferable to carry out the following operations in sequence. (A) Room temperature or heat polymerization curable thermoplastic resin precursor and a resin precursor composition comprising a curing agent and a reinforced fiber fabric are continuously contacted to obtain an adhered matter in which the composition is attached to the reinforced fiber fabric. thing. (B) To form a layer of the deposit on both sides or one side of the core material by contacting the deposit on both sides or one side of the core material while applying tension in a continuous direction. (C) Transferring the above-mentioned deposit-forming core material obtained in (B) while sandwiching it with a film having low air permeability from above and below. (D) A pressure is applied by reducing the thickness of the layer consisting of the deposit by one or more pairs of rollers while sandwiched between the films, and the resin composition is impregnated over the cross section of the reinforced fiber fabric and at the same time, the core material. And to supply the resin required for adhesion between the reinforced fiber fabric. (E) After curing the resin in the impregnated product, the film is peeled off to obtain a cured sandwich.

【0006】本発明によれば、前記の(A)項におい
て、樹脂組成を適正化することにより強化繊維ファブリ
ック中に含浸するのに十分な粘度を付与されており、
(B)、(C)、(D)項において、前記フィルム越し
に押圧を加えることにより強化繊維ファブリックの空隙
が前記樹脂前駆体組成物で完全に満たされた状態が実現
され、かつ、芯材との間に接着に必要な樹脂前駆体が供
給される。そして、(E)項に記載した方法により樹脂
前駆体組成物が硬化し、強化繊維ファブリックと芯材と
の一体化がなされる。
According to the present invention, in the above item (A), by optimizing the resin composition, a viscosity sufficient to impregnate the reinforcing fiber fabric is imparted.
In the items (B), (C), and (D), a state in which voids of the reinforcing fiber fabric are completely filled with the resin precursor composition is realized by applying pressure through the film, and the core material The resin precursor required for adhesion is supplied between the and. Then, the resin precursor composition is cured by the method described in the item (E), and the reinforcing fiber fabric and the core material are integrated.

【0007】(A)項で使用される樹脂前駆体組成物は
低粘度組成物であり、かつ非反応性の溶剤を含まないた
め、容易に完全な含浸がなされ、かつ、空孔がない製品
が得られる。
Since the resin precursor composition used in the item (A) is a low viscosity composition and does not contain a non-reactive solvent, it can be easily completely impregnated and has no pores. Is obtained.

【0008】以下、本発明の詳細を具体的に説明する。
本発明に使用する強化繊維ファブリックとは、高弾性、
高強度の繊維からなる織布、一方向繊維束、チョップ、
ランダムストランドマット、または、これらを組み合わ
せたものであって、繊維としては、炭素繊維、ガラス繊
維、炭化珪素繊維、アルミナ繊維、金属繊維等の無機繊
維、アラミド繊維、ポリエチレン繊維、ポリイミド繊維
等の有機繊維が使用される。これらの2種以上の繊維を
組み合わせて使用することもできる。また、これらの強
化繊維と樹脂との密着性を改良するため、各種の表面処
理を施すこともできる。
The details of the present invention will be specifically described below.
The reinforcing fiber fabric used in the present invention has high elasticity,
Woven fabric made of high-strength fibers, unidirectional fiber bundles, chops,
Random strand mat, or a combination thereof, and as the fibers, carbon fibers, glass fibers, silicon carbide fibers, alumina fibers, inorganic fibers such as metal fibers, aramid fibers, polyethylene fibers, polyimide fibers and the like organic Fiber is used. It is also possible to use a combination of two or more kinds of these fibers. Further, various surface treatments can be applied to improve the adhesion between these reinforcing fibers and the resin.

【0009】本発明に用いる常温または加熱重合性熱可
塑性樹脂前駆体とは、非反応性の溶剤を含まず、繊維束
間に含浸した後、常温または加熱によって重合する、い
わゆるキャスティング法、反応射出成形法使用される樹
脂前駆体であれば良い。このような常温または加熱重合
性熱可塑性樹脂前駆体の一例としては、メタクリル酸ア
ルキルエステルまたは/およびアクリル酸アルキルエス
テルとこれらに溶解する熱可塑性重合体を主成分とし、
レドックス反応により重合するアクリル樹脂前駆体や溶
融したω−ラクタム類とポリエーテルを主成分とし、ア
ルカリ重合法によって重合するナイロン樹脂前駆体等が
挙げられる。硬化剤としては、ベンゾイルパーオキサイ
ド、メチルエチルケトンパーオキサイド等の有機過酸化
物、アゾビスイソブチロニトリル、アゾビスイソ酪酸メ
チル等のアゾ系開始剤が用いられる。硬化促進剤として
は、ナフテン酸コバルト、オクチル酸コバルト等の金属
石鹸やジメチルトルイジン等の芳香族3級アミン等が用
いられる。得られた硬化物は、体無機酸、耐有機酸、耐
アルカリの耐薬品性、耐候性等に優れた特徴を持つ、成
形性に優れた熱可塑性樹脂である。
The room-temperature or heat-polymerizable thermoplastic resin precursor used in the present invention does not contain a non-reactive solvent, and is impregnated between fiber bundles and then polymerized at room temperature or by heating, a so-called casting method, reaction injection Any resin precursor used in the molding method may be used. An example of such a room temperature or heat-polymerizable thermoplastic resin precursor is mainly composed of a methacrylic acid alkyl ester or / and an acrylic acid alkyl ester and a thermoplastic polymer dissolved therein.
Examples thereof include an acrylic resin precursor which is polymerized by a redox reaction, and a nylon resin precursor which contains a melted ω-lactam and a polyether as main components and is polymerized by an alkali polymerization method. As the curing agent, an organic peroxide such as benzoyl peroxide or methyl ethyl ketone peroxide, or an azo initiator such as azobisisobutyronitrile or methyl azobisisobutyrate is used. As the curing accelerator, metal soaps such as cobalt naphthenate and cobalt octylate, and aromatic tertiary amines such as dimethyltoluidine are used. The obtained cured product is a thermoplastic resin having excellent moldability, which is characterized by excellent body inorganic acid, organic acid resistance, alkali resistance, chemical resistance, weather resistance and the like.

【0010】また、前記の常温または加熱重合性熱可塑
性樹脂前駆体の組成物以外に、樹脂の特性を改善するた
めの種々の添加剤、例えば、耐熱剤、耐候剤、帯電防止
剤、潤滑剤、離型剤、染料、顔料、消泡剤、脱酸素剤、
難燃剤及び各種フィラーなどを含有させてもよい。
In addition to the above-mentioned composition of the room temperature or heat-polymerizable thermoplastic resin precursor, various additives for improving the characteristics of the resin, such as heat-resistant agents, weather-resistant agents, antistatic agents, lubricants, etc. , Release agent, dye, pigment, defoaming agent, oxygen absorber,
A flame retardant and various fillers may be included.

【0011】本発明の前記(A)項において、強化繊維
ファブリックに樹脂前駆体組成物を連続的に接触させ、
強化繊維ファブリックに樹脂前駆体組成物が付着した付
着物を得る方法には特に制限がないが、たとえば、下記
の方法が用いられる。 (1)組成物の浴中に強化繊維ファブリックを浸漬また
は通過させる方法。 (2)1対以上のロールの上に樹脂溜りを設け、その中
を強化繊維ファブリックを通過させる方法。 (3)樹脂前駆体組成物をフィルム状に所定の目付けの
塗膜とし、その上に強化繊維ファブリックを重ねる方
法。
In the above item (A) of the present invention, the resin precursor composition is continuously contacted with the reinforcing fiber fabric,
There is no particular limitation on the method for obtaining the deposit in which the resin precursor composition is attached to the reinforcing fiber fabric, but the following method is used, for example. (1) A method of dipping or passing a reinforcing fiber fabric in a bath of the composition. (2) A method in which a resin pool is provided on one or more pairs of rolls and a reinforcing fiber fabric is passed through the resin pool. (3) A method in which the resin precursor composition is formed into a film having a predetermined basis weight and a reinforcing fiber fabric is laminated thereon.

【0012】樹脂前駆体付着物の付着量は、前記の
(D)の方法でロール間の間隙を調節することで強化繊
維の体積分率を10〜70容積%に制御することができ
る。本発明の前記(D)で使用する1対以上のローラー
は(D)項を満足するものであればよく、金属性、合成
樹脂製、合成ゴム製、木製、あるいは、それらを組み合
わせた物を使用することができるが、樹脂分が付着した
際、腐食しない材質であることが望ましい。
The deposit amount of the resin precursor deposit can be controlled to a volume fraction of the reinforcing fiber of 10 to 70% by volume by adjusting the gap between the rolls by the method (D). The one or more pairs of rollers used in the above (D) of the present invention may be those satisfying the item (D), and may be metallic, synthetic resin, synthetic rubber, wooden, or a combination thereof. It can be used, but it is desirable that the material does not corrode when the resin component adheres.

【0013】本発明において、ローラー対で付与する押
圧は、前記付着物層の厚みを減少させる程度に加えるこ
とが重要であり、この条件を満足しない場合には、強化
繊維ファブリックへの樹脂前駆体組成物の十分な含浸が
実現されないし、強化繊維ファブリックと芯材の間にこ
れらを接着するのに必要な樹脂を供給できない。前記付
着物層の厚みの減少は、前記付着物層の10〜80%の
範囲が適当であり、減少が小さすぎる場合には、前述の
ような未含浸、接着不良の原因となり、大きすぎる場合
には、繊維方向の乱れ、損傷、芯材の損傷、樹脂不足を
生じるため好ましくない。
In the present invention, it is important that the pressure applied by the pair of rollers is applied to the extent that the thickness of the deposit layer is reduced. If this condition is not satisfied, the resin precursor for the reinforcing fiber fabric is used. Sufficient impregnation of the composition is not achieved and the resin necessary to bond them between the reinforcing fiber fabric and the core cannot be provided. The reduction of the thickness of the deposit layer is appropriately in the range of 10 to 80% of the deposit layer, and when the reduction is too small, it causes unimpregnation and poor adhesion as described above, and when it is too large. In addition, the fiber direction is disturbed, damage is caused, core material is damaged, and resin is insufficient, which is not preferable.

【0014】本発明において、強化繊維ファブリックの
連続方向に付与する張力は、強化繊維ファブリックの形
態を維持できる程度に十分強く、樹脂前駆体の含浸を阻
害しない程度に十分、弱い範囲の張力が好ましい。この
前記の張力を付与する方法は、既存の方法を用いればよ
く、例えば、1対以上のロール間に挟持し、張力を付与
する方法、強化繊維ファブリックを供給する際の抵抗、
または、樹脂浴、または、含浸ローラー通過路の抵抗に
より張力を付与する方法等が挙げられる。
In the present invention, the tension applied in the continuous direction of the reinforcing fiber fabric is preferably strong enough to maintain the form of the reinforcing fiber fabric and weak enough to not impair the impregnation of the resin precursor. .. As the method for applying the tension, an existing method may be used, for example, a method of sandwiching between one or more pairs of rolls and applying tension, a resistance when supplying a reinforcing fiber fabric,
Alternatively, a method of applying tension by the resistance of the resin bath or the passage of the impregnating roller may be used.

【0015】本発明における、前記(E)における樹脂
成分を硬化する工程は、樹脂成分の性質から室温に放置
したままでもよいが、シート材外部への熱の流出を防ぐ
ため断熱材で覆う、あるいは防爆型のオーブン中で加熱
する等して、硬化を促進することも可能である。
The step (E) of curing the resin component in the present invention may be left at room temperature because of the nature of the resin component, but is covered with a heat insulating material to prevent heat from flowing out of the sheet material. Alternatively, curing can be accelerated by heating in an explosion-proof oven.

【0016】[0016]

【実施例】以下に実施例を挙げて本発明をさらに具体的
に説明する。下記例中の『部』は『重量部』を意味す
る。 (実施例1)熱可塑性重合体として、重合平均分子95
000のメタクリル酸メチルホモポリマー19部、メタ
クリル酸メチル81部、硬化促進剤として、ジメチル−
p−トルイジン0.8部からなるアクリル系樹脂混合液
(B型粘度計、20℃90センチポイズ)に硬化触媒と
して、ベンゾイルパーオキシドを樹脂液100部に対し
て、1重量部添加し、常温硬化型アクリル系樹脂液を調
製した。強化繊維ファブリックとして、炭素繊維300
0本を集束してなる炭素繊維トウ(三菱レイヨン製パイ
ロフィル TR40)を製織(12.5本/インチ経緯
糸とも)してなる炭素繊維織布を用意した。芯材とし
て、2mm厚みのメタクリル樹脂板(三菱レイヨン製ア
クリライト−L)を用意した。これから以下の工程を経
て、サンドイッチ板を得た。以下の図1により説明す
る。上記織布1をドクターナイフ2の直前でポリエステ
ルフィルム4上に供給される樹脂成分3と接触させ付着
物とする、一方、上から重ねた芯材とともに移送し、ロ
ーラー対10の直前で、同様な工程を経た付着物を重ね
る。間隙を2.8mmに設定したローラー対10で含浸
し、ついで間隙を2.6mm設定したローラー11でさ
らに含浸を進めた。平坦なガラス板上にこれを26℃の
室温中に40分放置し、硬化を行った。得られたサンド
イッチ板の炭素繊維含有率は、10容積%であり、長さ
方向、幅方向に切断した厚み2.6mmの薄片の端面を
研磨して光学顕微鏡観察を行ったところ、炭素繊維トウ
中への樹脂の含浸は良好であった。また、芯材の樹脂板
と強化繊維ファブリック間にボイド、クラックは見られ
なかった。次に、このサンドイッチ板から切り出した試
験片に対して、ASTM D−790に準じた曲げ試験
を実施したところ、曲げ強度37kg/mm2、曲げ弾
性率2.3ton/mm2と、優れた特性を示した。こ
のサンドイッチ板を180℃に加熱し、曲率半径30m
mの金型を使用して、圧力5kg/cm2で賦型して、
室温に冷却後、取り出し、曲率半径30mmの成形物を
得た。芯材と強化ファブリック層間の剥離は見られなか
った。
EXAMPLES The present invention will be described in more detail with reference to the following examples. In the following examples, "part" means "part by weight". (Example 1) Polymerization average molecule 95 as a thermoplastic polymer
000 methyl methacrylate homopolymer 19 parts, methyl methacrylate 81 parts, dimethyl-
1 part by weight of benzoyl peroxide was added as a curing catalyst to an acrylic resin mixture (B-type viscometer, 20 ° C. 90 centipoise) consisting of 0.8 parts of p-toluidine, and the mixture was cured at room temperature. A type acrylic resin liquid was prepared. Carbon fiber 300 as reinforced fiber fabric
A carbon fiber woven fabric was prepared by weaving carbon fiber tow (Pyrofil TR40 manufactured by Mitsubishi Rayon) obtained by bundling 0 fibers (also 12.5 fibers / inch warp and weft). As a core material, a 2 mm thick methacrylic resin plate (Acrylite-L manufactured by Mitsubishi Rayon) was prepared. From this, a sandwich plate was obtained through the following steps. This will be described with reference to FIG. 1 below. Immediately before the doctor knife 2, the woven cloth 1 is brought into contact with the resin component 3 supplied on the polyester film 4 to form an adhering substance. The deposits that have undergone various steps are stacked. Impregnation was carried out with a roller pair 10 having a gap set to 2.8 mm, and then impregnation was further advanced with a roller 11 having a gap set to 2.6 mm. This was allowed to stand at room temperature of 26 ° C. for 40 minutes on a flat glass plate for curing. The carbon fiber content of the obtained sandwich plate was 10% by volume, and the end face of a 2.6 mm-thick thin piece cut in the length direction and the width direction was polished and observed by an optical microscope. The impregnation of the resin into the inside was good. No void or crack was observed between the resin plate of the core material and the reinforcing fiber fabric. Next, a bending test according to ASTM D-790 was carried out on the test piece cut out from the sandwich plate, and the bending strength was 37 kg / mm 2 , and the bending elastic modulus was 2.3 ton / mm 2 , which were excellent properties. showed that. This sandwich plate is heated to 180 ℃ and the radius of curvature is 30m.
Using a mold of m, it is impressed with a pressure of 5 kg / cm 2 ,
After cooling to room temperature, the product was taken out to obtain a molded product having a radius of curvature of 30 mm. No peeling between the core material and the reinforced fabric layer was observed.

【0017】(実施例2)芯材を2mm厚の硬質ポリ塩
化ビニル発泡板(比重0.7、曲げ強度2.9kg/m
2)に変更した他は、実施例1と同様な方法でサンド
イッチ板を製作した。得られたサンドイッチ板の炭素繊
維含有率は、10容積%であり、長さ方向、幅方向に切
断した厚み2.6mmの薄片の端面を研磨して光学顕微
鏡観察を行ったところ、炭素繊維トウ中への樹脂の含浸
は良好であった。また、芯材の樹脂板と強化繊維ファブ
リック間にボイド、クラックは見られなかった。次に、
このサンドイッチ板から切り出した試験片に対して、A
STM D−790に準じた曲げ試験を実施したとこ
ろ、曲げ強度24kg/mm2、曲げ弾性率2.3to
n/mm2と、優れた特性を示した。このサンドイッチ
板を180℃に加熱し、曲率半径30mmの金型を使用
して、圧力5kg/cm2で賦型して、室温に冷却後、
取り出し、曲率半径30mmの成形物を得た。芯材と強
化ファブリック層間の剥離は見られなかった。
(Example 2) A core material made of a rigid polyvinyl chloride foam plate having a thickness of 2 mm (specific gravity 0.7, bending strength 2.9 kg / m)
A sandwich plate was manufactured in the same manner as in Example 1 except that the sandwich plate was changed to m 2 ). The carbon fiber content of the obtained sandwich plate was 10% by volume, and the end face of a 2.6 mm-thick thin piece cut in the length direction and the width direction was polished and observed by an optical microscope. The impregnation of the resin into the inside was good. No void or crack was observed between the resin plate of the core material and the reinforcing fiber fabric. next,
For test pieces cut out from this sandwich plate, A
When a bending test according to STM D-790 was conducted, the bending strength was 24 kg / mm 2 , and the bending elastic modulus was 2.3 to.
It showed excellent characteristics of n / mm 2 . This sandwich plate was heated to 180 ° C., a mold having a radius of curvature of 30 mm was used, a mold was applied at a pressure of 5 kg / cm 2 , and after cooling to room temperature,
The product was taken out to obtain a molded product having a curvature radius of 30 mm. No peeling between the core material and the reinforced fabric layer was observed.

【0018】(比較例1)実施例1と同じ炭素繊維織布
にエポキシ樹脂を含浸した、CFクロス・プリプレグ
(三菱レイヨン製TR3110 340タイプ)を2m
m厚のメタクリル樹脂板の上下面に積層して、130
℃、1時間で硬化・接着し、厚み2.6mmのサンドイ
ッチ板とした。得られたサンドイッチ板の炭素繊維含有
率は、10容積%であり、長さ方向、幅方向に切断した
厚み2.6mmの薄片の端面を研磨して光学顕微鏡観察
を行ったところ、炭素繊維トウ中への樹脂の含浸は良好
であった。また、芯材の樹脂板と強化繊維ファブリック
間にボイド、クラックは見られなかった。このサンドイ
ッチ板を180℃に加熱し、曲率半径30mmの金型を
使用して、圧力5kg/cm2で賦型したが、芯材と強
化ファブリック層間が剥離し、成形品は得られなかっ
た。
(Comparative Example 1) A CF cloth prepreg (TR3110 340 type manufactured by Mitsubishi Rayon) in which the same carbon fiber woven cloth as in Example 1 was impregnated with an epoxy resin was 2 m in length.
Laminated on the upper and lower surfaces of m-thick methacrylic resin plate,
It was cured and adhered at 1 ° C for 1 hour to obtain a sandwich plate having a thickness of 2.6 mm. The carbon fiber content of the obtained sandwich plate was 10% by volume, and the end face of a 2.6 mm-thick thin piece cut in the length direction and the width direction was polished and observed by an optical microscope. The impregnation of the resin into the inside was good. No void or crack was observed between the resin plate of the core material and the reinforcing fiber fabric. This sandwich plate was heated to 180 ° C. and molded with a pressure of 5 kg / cm 2 using a mold having a radius of curvature of 30 mm, but the core material and the reinforced fabric layer were separated, and a molded product could not be obtained.

【0019】[0019]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で使用する装置の概略図であ
る。
FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 強化繊維ファブリック 2 ドクターナイフ 3 樹脂前駆体 4 ポリエステルフィルム 5 強化繊維ファブリック 6 ドクターナイフ ルム 7 樹脂前駆体 8 ポリエステルフィルム 9 芯材 10 ローラー対 11 ローラー対 12 押切りカッター 1 Reinforced fiber fabric 2 Doctor knife 3 Resin precursor 4 Polyester film 5 Reinforced fiber fabric 6 Doctor knife Rum 7 Resin precursor 8 Polyester film 9 Core material 10 Roller pair 11 Roller pair 12 Press cutter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/04 Z 7717−4F C08J 5/04 7188−4F // B29K 105:08 B29L 9:00 4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location B32B 27/04 Z 7717-4F C08J 5/04 7188-4F // B29K 105: 08 B29L 9:00 4F

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粘度が10から104センチポイズの範
囲にある常温または加熱重合性熱可塑性樹脂前駆体と強
化繊維ファブリックとを接触させ、前記強化繊維ファブ
リックに前記樹脂前駆体が含浸した繊維強化熱可塑性樹
脂前駆体を芯材の上下、または、全面に接着して、これ
を室温または/および加熱により重合硬化させることを
特徴とする、熱賦型可能な繊維強化熱可塑性樹脂サンド
イッチ構造体の製造方法。
1. A fiber-reinforced heat obtained by contacting a reinforcing fiber fabric with a room temperature or heat-polymerizable thermoplastic resin precursor having a viscosity in the range of 10 to 10 4 centipoise, and impregnating the reinforcing fiber fabric with the resin precursor. Manufacture of a heat-moldable fiber-reinforced thermoplastic resin sandwich structure characterized in that a plastic resin precursor is adhered to the upper and lower sides or the entire surface of a core material, and this is polymerized and cured at room temperature and / or heating. Method.
【請求項2】 粘度が10から104センチポイズの範
囲にある常温または加熱重合性熱可塑性樹脂前駆体と強
化繊維ファブリックとを接触させ、前記強化繊維ファブ
リックに前記樹脂前駆体が含浸した繊維強化熱可塑性樹
脂前駆体を芯材の上下、または、全面に接着して、これ
を室温または/および加熱により硬化させ、熱賦型可能
な繊維強化熱可塑性樹脂サンドイッチ構造体を得る際、
下記の操作を順次行うことを特徴とする繊維強化熱可塑
性樹脂サンドイッチ構造体の製造方法; (A)常温または加熱重合硬化性熱可塑性樹脂前駆体と
硬化剤からなる樹脂前駆体組成物と強化繊維ファブリッ
クとを連続的に接触させ、強化繊維ファブリックに該組
成物が付着した付着物を得ること。 (B)芯材の両面または片面に前記付着物を連続方向に
張力をかけつつ、接触し、芯材の両面あるいは片面に前
記付着物から成る層を形成すること。 (C)(B)で得られた付着物形成芯材の上下から通気
性の少ないフィルムで挟持しつつ、移送すること。 (D)前記のフィルムに挟持した状態で1対以上のロー
ラーにより前記付着物から成る層の厚みを減少すること
によって押圧を加え、樹脂組成物が強化繊維ファブリッ
クの横断面にわたって含浸すると同時に芯材と強化繊維
ファブリック間に接着に必要な樹脂を供給すること。 (E)前記含浸物中の樹脂の硬化後、フィルムを剥離し
て、硬化したサンドイッチ状物を得ること。
2. A fiber-reinforced heat obtained by contacting a reinforcing fiber fabric with a room temperature or heat-polymerizable thermoplastic resin precursor having a viscosity in the range of 10 to 10 4 centipoise, and impregnating the reinforcing fiber fabric with the resin precursor. When a thermoplastic resin precursor is adhered to the top and bottom of the core material, or to the entire surface, and this is cured at room temperature and / or heating to obtain a heat-moldable fiber-reinforced thermoplastic resin sandwich structure,
A method for producing a fiber-reinforced thermoplastic resin sandwich structure characterized by sequentially performing the following operations: (A) a resin precursor composition comprising a thermoplastic resin precursor curable at room temperature or by heat and a curing agent, and a reinforcing fiber Continuing contact with the fabric to obtain a deposit of the composition on the reinforcing fiber fabric. (B) To form a layer of the deposit on both sides or one side of the core material by contacting the deposit on both sides or one side of the core material while applying tension in a continuous direction. (C) Transferring the above-mentioned deposit-forming core material obtained in (B) while sandwiching it with a film having low air permeability from above and below. (D) A pressure is applied by reducing the thickness of the layer consisting of the deposit by one or more pairs of rollers while sandwiched between the films, and the resin composition is impregnated over the cross section of the reinforced fiber fabric and at the same time, the core material. And to supply the resin required for adhesion between the reinforced fiber fabric. (E) After curing the resin in the impregnated product, the film is peeled off to obtain a cured sandwich.
JP03233992A 1992-02-19 1992-02-19 Method for producing fiber-reinforced thermoplastic resin sandwich plate Expired - Lifetime JP3209780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03233992A JP3209780B2 (en) 1992-02-19 1992-02-19 Method for producing fiber-reinforced thermoplastic resin sandwich plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03233992A JP3209780B2 (en) 1992-02-19 1992-02-19 Method for producing fiber-reinforced thermoplastic resin sandwich plate

Publications (2)

Publication Number Publication Date
JPH05229021A true JPH05229021A (en) 1993-09-07
JP3209780B2 JP3209780B2 (en) 2001-09-17

Family

ID=12356197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03233992A Expired - Lifetime JP3209780B2 (en) 1992-02-19 1992-02-19 Method for producing fiber-reinforced thermoplastic resin sandwich plate

Country Status (1)

Country Link
JP (1) JP3209780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076510A (en) * 2011-10-21 2018-05-17 アルケマ フランス Composite material of thermoplastic (meth)acrylic resin obtained by in situ polymerization, and use of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018076510A (en) * 2011-10-21 2018-05-17 アルケマ フランス Composite material of thermoplastic (meth)acrylic resin obtained by in situ polymerization, and use of the same

Also Published As

Publication number Publication date
JP3209780B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
EP2985135B1 (en) Composite material obtained by in-situ polymerization of thermoplastic (meth) acrylic resins and its use
JP5706402B2 (en) Method for delivering a thermoplastic resin and / or a crosslinkable resin to a composite laminate structure
US5770313A (en) Prepreg, composite molded body and method of manufacture of the composite molded body
CN114561804A (en) Impregnation process for fibrous substrates, liquid (meth) acrylic syrup and structured articles obtained therefrom
US11040504B2 (en) Method for producing a multilayer composite material, multilayer composite material obtained by the method and mechanical parts or structures produced with said material
JPWO2008038591A1 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
JP2004510842A (en) Sheet (SMC) molding compound with vented structure for trapped gas
EP2794272A2 (en) Prepreg, fiber reinforced composite material, and manufacturing method for fiber reinforced composite material
CN114030268B (en) Preparation method of honeycomb sandwich structure composite material with high-strength cementing property
JP3209780B2 (en) Method for producing fiber-reinforced thermoplastic resin sandwich plate
JP2005313607A (en) Reinforcing fiber base material, prepreg, fiber-reinforced plastic and manufacturing method of fiber-reinforced plastic
CN111890771A (en) Damping intercalation and continuous fiber reinforced composite material with strong interface and wide temperature range
JPH05230230A (en) Production of fiber-reinforced thermoplastic resin
JPH0583072B2 (en)
JP2004276355A (en) Preform and method for manufacturing fiber reinforced resin composite using the preform
JPH09174547A (en) Composite sheet of carbon fiber reinforced thermoplastic resin, manufacture thereof, and manufacture of molded piece using the sheet
JP3035618B2 (en) Fiber-reinforced thermoplastic resin sheet material and method for producing the same
JP2004035604A (en) Semi-impregnated prepreg
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP2020163584A (en) Manufacturing method of sandwich molded product
JP6620255B1 (en) Prepreg and manufacturing method thereof
JP2009226657A (en) Method of manufacturing frp molding having surface gloss
CN109774263B (en) Continuously-formed segmented-cured high-gloss-surface glass fiber reinforced plastic gel coating plate and preparation method thereof
JPH0740490A (en) Fiber reinforced resin composite material
CN118027605A (en) Carbon fiber reinforced thermoplastic epoxy resin prepreg, composite material and recycling method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11