JP3208274B2 - Method for producing semiconductor thin film and plasma CVD apparatus used for the method - Google Patents

Method for producing semiconductor thin film and plasma CVD apparatus used for the method

Info

Publication number
JP3208274B2
JP3208274B2 JP02908695A JP2908695A JP3208274B2 JP 3208274 B2 JP3208274 B2 JP 3208274B2 JP 02908695 A JP02908695 A JP 02908695A JP 2908695 A JP2908695 A JP 2908695A JP 3208274 B2 JP3208274 B2 JP 3208274B2
Authority
JP
Japan
Prior art keywords
film
thin film
plasma cvd
semiconductor thin
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02908695A
Other languages
Japanese (ja)
Other versions
JPH08222520A (en
Inventor
克彦 野元
仁 三宮
義宏 山本
孝司 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP02908695A priority Critical patent/JP3208274B2/en
Priority to US08/601,990 priority patent/US5618758A/en
Priority to DE69633754T priority patent/DE69633754T2/en
Priority to EP96301052A priority patent/EP0727826B1/en
Publication of JPH08222520A publication Critical patent/JPH08222520A/en
Priority to US08/783,283 priority patent/US6009828A/en
Application granted granted Critical
Publication of JP3208274B2 publication Critical patent/JP3208274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子産業における半導
体薄膜の製造方法及びそれに用いるプラズマCVD装置
に関するものであって、特に、太陽電池等の光半導体デ
バイスに最適な半導体薄膜の製造方法及びプラズマCV
D装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a semiconductor thin film in the electronics industry and a plasma CVD apparatus used for the same, and more particularly, to a method for producing a semiconductor thin film and a plasma suitable for an optical semiconductor device such as a solar cell. CV
It relates to the D device.

【0002】[0002]

【従来の技術】今日、プラズマを用いた気相からの薄膜
形成方法は、金属膜、半導体膜、誘電体膜等の広範囲に
わたって用いられるようになってきた。特に、プラズマ
CVD装置を用いて4族水素化合物をプラズマにして活
性種に分解して基板上に堆積させる、水素化アモルファ
スシリコン系薄膜(水素化アモルファスシリコン(a−
Si:H)、水素化アモルファスシリコンカーボン(a
−SiC:H)、水素化アモルファスシリコンゲルマニ
ウム(a−SiGe:H)等)は、半導体として最も重
要なpn制御が報告されて以来、精力的な研究開発が行
われ、電卓などの民生用太陽電池や液晶表示デバイス、
感光ドラム、各種センサーの心臓部の半導体薄膜として
実用化されるに至っている。
2. Description of the Related Art At present, a thin film forming method from a gas phase using plasma has been widely used for a metal film, a semiconductor film, a dielectric film and the like. In particular, a hydrogenated amorphous silicon-based thin film (hydrogenated amorphous silicon (a-
Si: H), hydrogenated amorphous silicon carbon (a
-SiC: H), hydrogenated amorphous silicon germanium (a-SiGe: H), etc. have been energetically researched and developed since the most important pn control as a semiconductor has been reported. Batteries and liquid crystal display devices,
It has been put to practical use as a semiconductor thin film at the heart of photosensitive drums and various sensors.

【0003】このような半導体薄膜を用いたデバイスの
応用範囲をさらに広げ、マーケットを拡大していくため
には、高品質の膜を、高速かつ高歩留まりで成膜される
ことが望まれている。例えば、水素化アモルファスシリ
コン系薄膜を用いたアモルファス太陽電池について言え
ば、電卓などの民生用以外に大きな用途展開が期待され
る電力用の太陽電池として実用化されるためには、既存
の商用電力と競合できる低コスト化が不可欠である。本
発明者らのコスト分析によれば、水素化アモルファスシ
リコン系薄膜の成膜速度は、現状より一桁程度の高速
化、具体的には〜600Å/分程度の高速成膜条件下で
高品質な膜を高歩留まりで堆積することが必要である。
In order to further expand the application range of devices using such semiconductor thin films and to expand the market, it is desired that high-quality films be formed at high speed and with high yield. . For example, in the case of amorphous solar cells using hydrogenated amorphous silicon-based thin films, existing commercial power is required to be used as a solar cell for electric power, which is expected to be used in a wide range of applications other than consumer use such as calculators. It is indispensable to lower the cost to be able to compete with. According to the cost analysis of the present inventors, the deposition rate of the hydrogenated amorphous silicon-based thin film is higher by about one digit than the current state, specifically, high quality under high-speed deposition conditions of about 600 ° / min. It is necessary to deposit a high quality film at a high yield.

【0004】しかしながら、〜600Å/分程度の高速
成膜条件を達成するために、プラズマCVD法で半導体
膜を成膜する場合に、供給する高周波電力を高めたり、
原料ガスの供給を増加させることにより、高速成膜が実
現できるが、パウダーの発生が多く、結局、低歩留まり
な膜しか得られなかった(以下「従来プラズマCVD法
1」という)。
However, in order to achieve a high-speed film forming condition of about 600 ° / min, when a semiconductor film is formed by a plasma CVD method, the supplied high-frequency power may be increased,
By increasing the supply of the raw material gas, high-speed film formation can be realized, but powder is often generated and, as a result, only a film with a low yield was obtained (hereinafter, referred to as "conventional plasma CVD method 1").

【0005】この問題点を解決するため、プラズマCV
D法を用いたa−Si:H膜の高速成膜のために、高周
波発振回路に周期的にオン・オフを行う発振回路を組み
合わせ、図1(a)に示されるように、周期的オン・オ
フを行った変調高周波電源を励起電源に用いたプラズマ
CVD法(Appl.Phys.Lett.53,(1988)1263、Appl.Phys.L
ett.57(1990)1616、応用物理第62巻第7号(1993)699)が
提案されている(以下「従来プラズマCVD法2」とい
う)。
To solve this problem, a plasma CV
For high-speed deposition of an a-Si: H film using the D method, a high-frequency oscillation circuit is combined with an oscillation circuit that periodically turns on and off, and as shown in FIG. -Plasma CVD method using the modulated high-frequency power supply turned off as the excitation power supply (Appl. Phys. Lett. 53, (1988) 1263, Appl. Phys. L.
ett. 57 (1990) 1616, Applied Physics Vol. 62, No. 7, (1993) 699) (hereinafter referred to as "conventional plasma CVD method 2").

【0006】従来プラズマCVD法2では、周期的オン
・オフの周波数1kHz、デユーティ比50%(従って
オン時間は500μsec)近傍の成膜条件で成膜速度
300Å/分〜600Å/分程度のa−Si:H膜を堆
積させた場合、従来プラズマCVD法1と比べて、反応
装置内には、いわゆるポリシランのパウダー発生が顕著
に抑さえられるという効果が認められている。反応装置
内に堆積されるパウダーは、装置メンテナンス頻度を増
加させるばかりではなく、このようなパウダーが基板に
付着すれば製品の歩留まりを低下させる。従って、高速
成膜でパウダー発生を抑制できる従来プラズマCVD法
2は生産ラインのスループット、及び歩留まりを高める
方法と言える。
In the conventional plasma CVD method 2, a film is formed at a film forming rate of about 300 ° / min to about 600 ° / min under a film forming condition near a periodic on / off frequency of 1 kHz and a duty ratio of 50% (the on time is about 500 μsec). When a Si: H film is deposited, it is recognized that the effect of so-called polysilane powder generation is significantly suppressed in the reactor as compared with the conventional plasma CVD method 1. Powder deposited in the reactor not only increases equipment maintenance frequency, but also reduces product yield if such powder adheres to the substrate. Therefore, it can be said that the conventional plasma CVD method 2, which can suppress powder generation by high-speed film formation, is a method for improving the throughput and the yield of the production line.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来プ
ラズマCVD法2で得られるa−Si:H膜の膜構造を
赤外吸収スペクトルから本発明者が詳細に調べてみる
と、通常の〜60Å/分程度の低速で堆積された高品質
なa−Si:H膜では、2000cm- 1 付近のSi−
H結合がほとんどであるのに対して、従来プラズマCV
D法2の高速膜では〜2090cm- 1 付近のSi−H
2 結合がSi−H結合と同程度に存在することがわかっ
た。a−Si:H膜中に含まれるSi−H2 結合は、半
導体膜の光導電率、及び光導電率/暗導電率の比を低下
させ、ひいては光半導体デバイスの性能を低下させる。
従って、従来プラズマCVD法2によるa−Si:H膜
の成膜では、反応装置内でのパウダー発生を抑止しなが
ら高速成膜できるが、膜構造の変化に伴う光導電率、及
び光導電率/暗導電率の比の低下を招いてしまうという
大きな問題点があり、太陽電池等の光半導体デバイスの
半導体薄膜としては不適であった。
However, when the present inventor examined the film structure of the a-Si: H film obtained by the conventional plasma CVD method 2 from the infrared absorption spectrum in detail, it was found that the film thickness was usually about 60 ° / deposited at a low speed of about minute high-quality a-Si: in H film, 2000 cm - 1 near Si-
Most of the H-coupling, whereas the conventional plasma CV
The fast film D Method 2 ~2090cm - 1 near Si-H
It was found that two bonds exist to the same extent as Si-H bonds. a-Si: H film Si-H 2 bonds contained in the optical conductivity of the semiconductor film, and reduce the ratio of the optical conductivity / dark conductivity, reducing the thus optical semiconductor device performance.
Therefore, in the conventional method of forming an a-Si: H film by the plasma CVD method 2, high-speed film formation can be achieved while suppressing generation of powder in the reaction apparatus. There is a major problem that the ratio of the ratio of the dark / conductivity is reduced, and it is not suitable as a semiconductor thin film of an optical semiconductor device such as a solar cell.

【0008】本発明の目的は、パウダー発生を抑止しな
がら高速成膜をした場合にも、太陽電池等の光半導体デ
バイスとして高品質な半導体薄膜の製造方法及びそれに
用いるCVD装置を提供することにある。
An object of the present invention is to provide a method of manufacturing a high-quality semiconductor thin film as an optical semiconductor device such as a solar cell even when a high-speed film formation is performed while suppressing powder generation, and a CVD apparatus used therefor. is there.

【0009】[0009]

【課題を解決するための手段】本発明の半導体薄膜の製
造方法は、高周波電力を周期的にオンオフさせて4族水
素化合物あるいはその誘導体をプラズマにして活性種に
分解し堆積させる半導体薄膜の製造方法であって、Si
−H結合に対するSi−H 2 結合の含有比が小さくなる
ように、上記オン時間は、[(プラズマ内の長寿命活性
種以外の活性種と反応する母ガスとの2次反応速度定
数)×(母ガス分子の数)]の逆数の時間以下に設定さ
れてなることを特徴とする。
SUMMARY OF THE INVENTION A method of manufacturing a semiconductor thin film according to the present invention is a method of manufacturing a semiconductor thin film in which high-frequency power is periodically turned on and off to turn a group 4 hydrogen compound or its derivative into plasma to decompose and deposit active species. A method, comprising: Si
Content ratio of Si-H 2 bonds is small for -H bond
As described above, the on- time is set to be equal to or less than the reciprocal of [(second order reaction rate constant of mother gas reacting with active species other than long-lived active species in plasma) × (number of mother gas molecules)]. It is characterized by being done.

【0010】さらに、本発明のプラズマCVD装置は、
上記半導体薄膜の製造方法に用いるプラズマCVD装置
であって、高周波電力の供給を行う高周波電力発生手段
と、高周波電力の供給の有無を時分割制御する手段とを
備えたことを特徴とする。
Further, the plasma CVD apparatus of the present invention
A plasma CVD apparatus used in the manufacturing method of the semiconductor thin film, wherein a high frequency power generating means for supplying high-frequency power, further comprising: a means for dividing control when the presence or absence of the supply of the high-frequency power.

【0011】[0011]

【作用】以上のように本発明は、プラズマ生成のエネル
ギー供給時間を、[(プラズマ内の長寿命活性種以外の
活性種と反応する母ガスとの2次反応速度定数)×(母
ガス分子の数)]の逆数の時間以下に設定したことによ
り、Si−H結合に対するSi−H2結合の含有比を小
とすることができた。この理由は以下のように考えられ
る。
As described above, according to the present invention, the energy supply time for plasma generation is set to [(second order reaction rate constant with mother gas reacting with active species other than long-lived active species in plasma) × (base gas molecule) )], The content ratio of Si—H 2 bonds to Si—H bonds could be reduced. The reason is considered as follows.

【0012】モノシラン(SiH4 )ガスを原料ガスと
して用いたプラズマCVD法によるa−Si:H膜の成
膜を例にとって説明する。一般に、モノシランをプラズ
マ励起、分解すると、母ガスであるSiH4 から1次生
成物として、堆積するのに好適な主たる活性種のSiH
3 を含め、Si,SiH,SiH2 などの活性種も生成
される。Si,SiH,SiH2 ,SiH3 の活性種
は、気相中で、桁違いに多い母ガスのSiH4 と2次反
応を起こす。
An example of forming an a-Si: H film by a plasma CVD method using a monosilane (SiH 4 ) gas as a source gas will be described. In general, when monosilane is excited by plasma and decomposed, the main active species of SiH suitable for deposition as a primary product from the mother gas SiH 4 is SiH 4.
3 including, Si, SiH, active species such as SiH 2 also produced. The active species of Si, SiH, SiH 2 , and SiH 3 cause a secondary reaction with an extremely large number of mother gases, SiH 4 , in the gas phase.

【0013】一方、SiH,SiH2 などの活性種の2
次反応過程を、もう少し詳しく調べてみると、その2次
反応速度定数は、およそ10-1 2 cm3 /sec程度
であるから、主たるSiH3 以外の活性種のSiHやS
iH2 の寿命[=(2次反応速度定数×SiH4 分子の
数)- 1 ]は、2次反応速度定数を大まかに〜2×10
-1 2 cm3 /secとして、シランガスの反応圧力5
0mTorrでは〜400μsec、さらに高い、例え
ば500mTorrという反応圧力であれば、その10
分の1の〜40μsecと計算され、主たるSiH3
寿命よりも短いと考えられる。
[0013] On the other hand, SiH, of active species such as SiH 2 2
The following reaction process, when you look a bit more, the second-order rate constant, because it is approximately 10 -1 2 cm 3 / sec about, active species of SiH and other principal SiH 3 S
iH 2 life [= (number of second-order rate constants × SiH 4 molecules) - 1] is roughly to 2 × 10 The second-order rate constant
As -1 2 cm 3 / sec, the reaction pressure of the silane gas 5
At 0 mTorr, a reaction pressure of 400 μsec or higher, for example, 500 mTorr,
It is calculated to be 1/40 μsec, which is considered to be shorter than the life of the main SiH 3 .

【0014】本発明は、プラズマ生成のエネルギーを間
欠的に供給することにより、4族水素化合物をプラズマ
にして活性種に分解し基板上に堆積させるものにおい
て、2次反応過程を抑止するため、上記のように活性種
のSiHやSiH2 の寿命の時間を目安にして、それ以
下のエネルギー供給時間に設定するものである。
According to the present invention, in order to intermittently supply the energy of plasma generation to convert a group 4 hydrogen compound into plasma to decompose into active species and deposit it on a substrate, a secondary reaction process is suppressed. As described above, the energy supply time is set to be shorter than the lifetime of the active species SiH or SiH 2 .

【0015】[0015]

【実施例】【Example】

(実施例1)本実施例は、4族水素化合物の原料ガスと
してモノシランを用いて太陽電池用の半導体薄膜である
a−Si:H膜を成膜した場合である。なお、原料ガス
として、4族水素化合物の誘導体であるSiH22,S
iHF3,SiH2Cl2を用いることもできる。
(Embodiment 1) In this embodiment, an a-Si: H film, which is a semiconductor thin film for a solar cell, is formed using monosilane as a source gas of a Group 4 hydrogen compound. In addition, SiH 2 F 2 , S, which is a derivative of a Group 4 hydrogen compound, is used as a source gas.
iHF 3 and SiH 2 Cl 2 can also be used.

【0016】図2に、本実施例に用いたプラズマCVD
装置の模式図を示す。このプラズマCVD装置は、いわ
ゆる容量結合型のプラズマCVD装置で、反応室1のカ
ソード電極2に高周波電源3と変調用電源4とがマッチ
ング回路5を介して接続され、基板6を固定した対極の
アノード電極7との間でプラズマ8を発生させる構造で
ある。ここで、基板6は、赤外吸収スペクトルを評価す
るため結晶シリコンウエハーである。
FIG. 2 shows the plasma CVD used in this embodiment.
1 shows a schematic view of the device. This plasma CVD apparatus is a so-called capacitively-coupled plasma CVD apparatus in which a high-frequency power supply 3 and a modulation power supply 4 are connected to a cathode electrode 2 of a reaction chamber 1 via a matching circuit 5 and a counter electrode to which a substrate 6 is fixed. This is a structure in which plasma 8 is generated between the anode 8 and the anode 8. Here, the substrate 6 is a crystalline silicon wafer for evaluating an infrared absorption spectrum.

【0017】このプラズマCVD装置を用いて、流量コ
ントローラを通して500sccmのシランガスを反応
室1に導入し(導入口は図示せず)、一定割合で排気し
て、反応室1内の圧力0.62Torrとし、高周波電
源3の発振周波数は27.12MHzで、この高周波電
力に直流的にオン・オフを一定周期で繰り返す変調用電
源4の低周波電力を重ね合わせ、図1(b)に示すよう
に、27.12MHzの高周波電力を周期的にオン・オ
フする変調高周波電力を発生させ、マッチング回路5を
通してカソード電極2に供給し、アノード電極7との間
でプラズマ8を発生させ、シランプラズマを両電極間に
発生させることによって、基板6上にa−Si:H膜を
堆積させた。本実施例では、高周波電力を完全にオフに
せずとも、プラズマ生成のオン・オフを行うができれば
よい。なお、基板温度は270℃とした。
Using this plasma CVD apparatus, a silane gas of 500 sccm is introduced into the reaction chamber 1 through a flow rate controller (the inlet is not shown), and the silane gas is exhausted at a constant rate to make the pressure in the reaction chamber 1 0.62 Torr. The oscillation frequency of the high-frequency power source 3 is 27.12 MHz, and the high-frequency power is superimposed on the low-frequency power of the modulation power source 4 which repeats DC on and off at a constant cycle, as shown in FIG. A modulated high-frequency power for periodically turning on and off a high-frequency power of 27.12 MHz is generated, supplied to the cathode electrode 2 through the matching circuit 5, and a plasma 8 is generated between the anode electrode 7 and the silane plasma. An a-Si: H film was deposited on the substrate 6 by causing the film to be generated in between. In this embodiment, it is sufficient that the plasma generation can be turned on and off without completely turning off the high frequency power. Note that the substrate temperature was 270 ° C.

【0018】図3に、上記成膜条件で、変調高周波の1
周期のオン時間を、オフ時間は50μsecと固定して
5μsecから100μsecまで変えた時に得られた
膜の赤外吸収スペクトルから解析したSi−H結合及び
Si−H2 結合の結合水素量の原子%の結果を示す。上
記成膜条件の中で、成膜速度は約600Å/分となるよ
うに高周波電力のパワーを200Wから1kWまで調整
した。図3から、明らかなように、膜中のSi−H2
合は、オン時間〜50μsec以下から減少し始め、5
μsecでは、Si−H結合に対するSi−H2 結合の
含有比が〜10%程度まで低下している。これは、通常
の成膜速度が約60Å/分程度の低速膜と、濃度及び含
有比で同等の高品質な膜であり、光導電率、及び光導電
率/暗導電率の比の優れた膜が得られた。なお、Si−
H結合に対するSi−H2 結合の含有比は20%以下で
あれば、太陽電池としては実用上問題がない。
FIG. 3 shows that the modulated high frequency 1
The period of on-time, off-time 50μsec and fixed to atoms bonded hydrogen content of the infrared Si-H bonds was analyzed from the absorption spectrum and Si-H 2 bonds of the resulting film when changing to 100μsec from 5 .mu.sec% The result is shown. Under the above film forming conditions, the power of the high frequency power was adjusted from 200 W to 1 kW so that the film forming rate was about 600 ° / min. As is clear from FIG. 3, the Si—H 2 bond in the film starts to decrease from the on-time of 50 μsec or less.
In μsec, the content ratio of the Si—H 2 bond to the Si—H bond is reduced to about 10%. This is a high-quality film equivalent in concentration and content ratio to a low-speed film having a normal film formation rate of about 60 ° / min, and has excellent photoconductivity and a ratio of photoconductivity / dark conductivity. A film was obtained. In addition, Si-
If the content ratio of Si—H 2 bonds to H bonds is 20% or less, there is no practical problem as a solar cell.

【0019】本実施例の成膜条件でSi−H2 結合の含
有比を小とするオン時間幅の時間スケールは、式[2次
反応速度定数×SiH4 分子の数]- 1 から〜30μs
ec以下となり、本実施例で膜の高品質化が見られた5
0μsec以下と良く符合していることが分かる。
The time scale of the on time width and a small content ratio of SiH 2 bonds in the film formation conditions of this embodiment, equation [the number of second-order rate constants × SiH 4 molecules] - 1 from ~30μs
ec or less, and a high quality film was observed in this example.
It can be seen that the values match well with 0 μsec or less.

【0020】従って、本発明の製造方法及びプラズマC
VD装置を用いれば、成膜速度約600Å/分という従
来より一桁早い成膜速度で高品質なa−Si:H膜が得
られた。なお、本実施例では反応室内にパウダー発生が
ほとんど見られなかった。
Therefore, the manufacturing method of the present invention and the plasma C
When a VD apparatus was used, a high-quality a-Si: H film was obtained at a film formation rate of about 600 ° / min, which is an order of magnitude faster than the conventional one. In this example, almost no powder was generated in the reaction chamber.

【0021】(実施例2)実施例1よりもさらに高速化
を図るために、モノシランガスの流量を実施例1の倍の
1000sccmとした。それ以外のプラズマCVD装
置、及び成膜条件は、特に断らない限り、実施例1と同
じである。本実施例では、成膜速度は約1300Å/分
と、実施例1の倍の高速化を達成することができた。
(Embodiment 2) The flow rate of the monosilane gas was set to 1000 sccm which is twice as large as that of the embodiment 1 in order to achieve a higher speed than in the embodiment 1. The other plasma CVD apparatus and film forming conditions are the same as in Example 1 unless otherwise specified. In this embodiment, the film formation rate was about 1300 ° / min, which was twice as fast as that of the first embodiment.

【0022】図4に、変調高周波の1周期のオン時間
を、オフ時間は50μsecと固定して10μsecか
ら100μsecまで変えた時に得られた膜の赤外吸収
スペクトルから解析したSi−H結合及びSi−H2
合の結合水素量の原子%の結果を示す。成膜条件の中
で、成膜速度は約1300Å/分となるように高周波電
力のパワーを400Wから1.5kWまで調整した。本
実施例でも、オン時間が〜50μsec以下からSi−
2 結合が減少し始め、高品質な膜が得られている。
FIG. 4 shows the Si—H bond and Si analyzed from the infrared absorption spectrum of the film obtained when the ON time of one cycle of the modulated high frequency was fixed at 50 μsec and the OFF time was changed from 10 μsec to 100 μsec. The results are shown in terms of atomic% of the amount of hydrogen bonded to -H 2 bonds. Under the film forming conditions, the power of the high frequency power was adjusted from 400 W to 1.5 kW so that the film forming speed was about 1300 ° / min. Also in the present embodiment, the on-time is reduced from 50 μsec or less to Si-
H 2 bonds begin to decrease and a high quality film is obtained.

【0023】また、本実施例の成膜条件でSi−H2
合の含有比を小とするオン時間幅の時間スケールは、反
応ガス圧力が実施例1と同じ0.65Torrであるの
で、実施例1と同じ〜30μsecとなり、本実施例で
も膜の高品質化が見られた50μsec以下と良く符合
していると言える。
The time scale of the on-time width for reducing the Si—H 2 bond content ratio under the film forming conditions of the present embodiment is 0.65 Torr, which is the same as that of the first embodiment. It is the same as that of Example 1 up to 30 μsec, and it can be said that also in this example, it is well matched to 50 μsec or less at which high quality of the film was observed.

【0024】以上の実施例ではオフ時間は50μsec
と固定したが、オフ時間は、1μsecから10000
μsecまでの範囲であればよく、望ましくは、10μ
secから100μsecまでの範囲であればよい。さ
らに、上記実施例では、オン時間とオフ時間の割合は一
定であるが、必ずしも一定でなくてもよく、上記オン時
間とオフ時間の範囲内であれば、成膜中にその割合を変
化させてもよい。
In the above embodiment, the off time is 50 μsec.
But the off-time is from 1 μsec to 10000
μsec and preferably 10 μsec.
The time may be in the range from sec to 100 μsec. Further, in the above embodiment, the ratio between the on-time and the off-time is constant. However, the ratio is not necessarily constant. If the ratio is within the range between the on-time and the off-time, the ratio is changed during film formation. You may.

【0025】また、以上の実施例では、水素化アモルフ
ァスシリコンa−Si:H膜を例にとって説明してきた
が、4族水素化合物を原料ガスとして作成される、狭バ
ンドギャップのa−SiGe:H膜あるいは広バンドギ
ャップのa−SiC:H膜などのアモルファスシリコン
系合金膜の同種元素同士の高速、高品質化にも、本発明
が有効である。
In the above embodiment, the hydrogenated amorphous silicon a-Si: H film has been described as an example. However, a narrow band gap a-SiGe: H formed using a Group 4 hydrogen compound as a source gas. The present invention is also effective in increasing the speed and quality of the same kind of elements of an amorphous silicon alloy film such as a film or an a-SiC: H film having a wide band gap.

【0026】なお、本実施例は、太陽電池等の光半導体
デバイスに最適であるが、光が動作上関与しないTFT
等の半導体デバイス全般にも適用できる。
Although this embodiment is most suitable for an optical semiconductor device such as a solar cell, a TFT in which light is not involved in the operation.
The present invention can be applied to semiconductor devices in general.

【0027】[0027]

【発明の効果】本発明によれば、水素化アモルファス薄
膜を高速で堆積した場合にも、光導電率、及び光導電率
/暗導電率の比に優れた高品質な半導体薄膜が高歩留ま
りで得られ、太陽電池、感光ドラム、各種光センサー等
の光半導体デバイス及びTFT等の半導体デバイス全般
の半導体薄膜として適用できる。
According to the present invention, even when a hydrogenated amorphous thin film is deposited at a high speed, a high-quality semiconductor thin film having excellent photoconductivity and a ratio of photoconductivity / dark conductivity can be obtained at a high yield. It can be obtained as a semiconductor thin film for semiconductor devices such as solar cells, photosensitive drums, various optical sensors, and semiconductor devices such as TFTs.

【0028】その結果、高スループットで生産すること
が可能となり、低コストで高性能の半導体デバイスを提
供できるようになる。
As a result, high-throughput production becomes possible, and a low-cost, high-performance semiconductor device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)従来の、高周波電力を周期的にオン・オ
フした変調高周波電力の模式図である。 (b)本発明の、高周波電力を周期的にオン・オフした
変調高周波電力の模式図である。
FIG. 1A is a schematic diagram of a conventional modulated high-frequency power in which high-frequency power is periodically turned on and off. FIG. 4B is a schematic diagram of modulated high-frequency power obtained by periodically turning on and off high-frequency power according to the present invention.

【図2】本実施例に用いたプラズマCVD装置の模式図
である。
FIG. 2 is a schematic view of a plasma CVD apparatus used in the present embodiment.

【図3】実施例1の実験結果を示す図である。FIG. 3 is a view showing experimental results of Example 1.

【図4】実施例2の実験結果を示す図である。FIG. 4 is a diagram showing experimental results of Example 2.

【符号の説明】[Explanation of symbols]

1 反応室 2 カソード電極 3 高周波電源 4 変調用電源 5 マッチング回路 6 基板 7 アノード電極 DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Cathode electrode 3 High frequency power supply 4 Modulation power supply 5 Matching circuit 6 Substrate 7 Anode electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富田 孝司 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 平5−156451(JP,A) 特開 平5−217908(JP,A) 特開 平6−291045(JP,A) 特開 平7−37818(JP,A) 特開 昭64−73620(JP,A) 特開 平6−291048(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/205 C23C 16/50 H01L 31/04 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Koji Tomita 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (56) References JP-A-5-156451 (JP, A) JP-A-5-205 217908 (JP, A) JP-A-6-291045 (JP, A) JP-A-7-37818 (JP, A) JP-A 64-73620 (JP, A) JP-A-6-291048 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/205 C23C 16/50 H01L 31/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高周波電力を周期的にオンオフさせて
族水素化合物あるいはその誘導体をプラズマにして活性
種に分解し堆積させる半導体薄膜の製造方法であって、Si−H結合に対するSi−H 2 結合の含有比が小さく
なるように、上記オン 時間は、[(プラズマ内の長寿命
活性種以外の活性種と反応する母ガスとの2次反応速度
定数)×(母ガス分子の数)]の逆数の時間以下に設定
されてなることを特徴とする半導体薄膜の製造方法。
1. A high frequency power is periodically turned on and off by
A method for producing a semiconductor thin film in which an aromatic hydrogen compound or a derivative thereof is decomposed into active species by plasma and deposited, wherein the content ratio of Si—H 2 bonds to Si—H bonds is small.
The ON time is set to be equal to or less than the reciprocal of [(second order reaction rate constant of mother gas reacting with active species other than long-lived active species in plasma) × (number of mother gas molecules)]. A method of manufacturing a semiconductor thin film, wherein the method is set.
【請求項2】 請求項1に記載の半導体薄膜の製造方法
に用いるプラズマCVD装置であって、高周波電力 の供給を行う高周波電力発生手段と、高周波
電力の供給の有無を時分割制御する手段とを備えたこと
を特徴とするプラズマCVD装置。
2. A plasma CVD apparatus used in the method for manufacturing a semiconductor thin film according to claim 1, a high frequency power generating means for supplying high-frequency power, frequency
Means for time-divisionally controlling whether power is supplied or not, a plasma CVD apparatus.
JP02908695A 1995-02-17 1995-02-17 Method for producing semiconductor thin film and plasma CVD apparatus used for the method Expired - Fee Related JP3208274B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP02908695A JP3208274B2 (en) 1995-02-17 1995-02-17 Method for producing semiconductor thin film and plasma CVD apparatus used for the method
US08/601,990 US5618758A (en) 1995-02-17 1996-02-15 Method for forming a thin semiconductor film and a plasma CVD apparatus to be used in the method
DE69633754T DE69633754T2 (en) 1995-02-17 1996-02-16 Manufacturing method for a thin semiconductor film
EP96301052A EP0727826B1 (en) 1995-02-17 1996-02-16 A method for forming a thin semiconductor film
US08/783,283 US6009828A (en) 1995-02-17 1997-01-10 Method for forming a thin semiconductor film and a plasma CVD apparatus to be used in the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02908695A JP3208274B2 (en) 1995-02-17 1995-02-17 Method for producing semiconductor thin film and plasma CVD apparatus used for the method

Publications (2)

Publication Number Publication Date
JPH08222520A JPH08222520A (en) 1996-08-30
JP3208274B2 true JP3208274B2 (en) 2001-09-10

Family

ID=12266547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02908695A Expired - Fee Related JP3208274B2 (en) 1995-02-17 1995-02-17 Method for producing semiconductor thin film and plasma CVD apparatus used for the method

Country Status (1)

Country Link
JP (1) JP3208274B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004813A (en) * 2006-06-23 2008-01-10 Sharp Corp Silicon-based thin film photoelectric conversion element and manufacturing method and manufacturing apparatus therefor
JP4761322B2 (en) * 2009-04-30 2011-08-31 シャープ株式会社 Method for forming semiconductor film and method for manufacturing photoelectric conversion device

Also Published As

Publication number Publication date
JPH08222520A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
US4818560A (en) Method for preparation of multi-layer structure film
JPH04234111A (en) Surface processing device and method
JP2008124111A (en) Method for forming silicon thin film by plasma cvd method
Kondo et al. Novel aspects in thin film silicon solar cells–amorphous, microcrystalline and nanocrystalline silicon
EP0727826B1 (en) A method for forming a thin semiconductor film
JP2013509701A (en) Deposit removal method
JP3112880B2 (en) Cleaning method for CVD equipment
JP3201576B2 (en) Method for manufacturing semiconductor thin film and plasma CVD apparatus using the method
JP3208274B2 (en) Method for producing semiconductor thin film and plasma CVD apparatus used for the method
Madan et al. High deposition rate amorphous and polycrystalline silicon materials using the pulsed plasma and “Hot-Wire” CVD techniques
JP2003197536A (en) Plasma enhanced cvd system, amorphous silicon-based thin film, and its manufacturing method
JP3807127B2 (en) Method for forming silicon-based thin film
JPH0280577A (en) Formation of thin film
JP2002164290A (en) Method of manufacturing polycrystalline silicone film
JP3061811B2 (en) Fabrication method of non-single crystal thin film
JPH10139413A (en) Microcrystalline film and its production
JP4510242B2 (en) Thin film formation method
JP3040247B2 (en) Manufacturing method of silicon thin film
van Sark et al. Role of ions in PECVD of amorphous silicon
JP2001332503A (en) Method of manufacturing fine crystal film by plasma discharge
JPH01289110A (en) Formation of deposited film
JPH0351089B2 (en)
JPH1174201A (en) Manufacture of non-single crystalline semiconductor thin film
JP2750955B2 (en) Amorphous alloy semiconductor thin film production equipment
JPH0267719A (en) Formation of silicon carbide crystallite thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees